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We give a detailed QCD sum-rule analysis of the semileptonic decays D+ —K % v, and
D*5K%e%v,. We use the standard method based on expansion in Euclidean distance as well as a new
set of sum rules on the light cone. We compare the results with current experimental data and results
from quark models. Special attention is paid to the ¢ dependence of the form factors. We find from our
sum-rule analysis that for the vector form factors the usual pole model approximation works perfectly
well, but is not adequate for the axial-vector form factors.

I. INTRODUCTION

Weak semileptonic decays of charmed mesons have
been attracting continuous interest in the last decade due
to the relative simplicity of their theoretical description
and due to the possibility of extracting mixing angles in
the Kobayashi-Maskawa matrix. While the experimental
status of D — Kev decay seems to be settled [1,2], the sit-
uation with the decay D — K *ev remains uncertain [3,4].

Quark models have been generally regarded as giving a
successful description of semileptonic decays of heavy
quarks and were natural candidates for use in calculating
decay rates. These calculations seem to be without prob-
lems in decays such as D — Kev and with polarization in
B —D*ev. However, the E691 data [4] for the branching
ratio and polarization in the decay DT —K*% ™,
disagree considerably with quark model predictions
[S-7]. By relaxing some of the relations intrinsic to
quark models, it turns out to be possible to remove the
discrepancy [8,9], but the predictive power of the method
then diminishes considerably.

QCD sum rules [10] provide an independent approach
for calculating hadronic matrix elements and form fac-
tors for systems of both light and heavy quarks. Though
sum rules yield generally less detailed results than quark
models, their underlying physical assumptions are more
directly related to the field theory. In view of an uncer-
tain experimental situation, an independent calculation of
decay amplitudes by the sum-rule method seems there-
fore to be necessary and timely. In this paper we give a
detailed analysis of weak semileptonic decays of charmed
mesons within the framework of QCD sum rules and put
special emphasis on the ¢ dependence of form factors.

The development of the sum-rule technique for three-
point functions was initiated by a successful description
of the pion electromagnetic form factor at intermediate
momentum transfer ¢ ~—(0.5-1.5) GeV? [11,12]. The
first calculation for weak decays [13] was done for the
value f,(0) of the form factor D" —K%™tv, in the
chiral limit. Later, a similar approach was used for cal-
culations of weak decays of beauty mesons B— Dev
[14,15], B—>D*ev [14], and B —mev [16]. Until now
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there has been no detailed analysis of sum rules for the
D —>K*ev decay except for an unpublished paper [17]
and our Letter [18], reporting first results of the analysis
given here.

A new aspect of this paper is the analysis of the sum
rules in the physical region for positive values of the
momentum squared ¢ =(p,, —p,,)* transferred to the lep-
ton pair. Although the cut in the ¢ channel starts at
t~m?, and thus, the Euclidean region stretches up to
that threshold, existing calculations have avoided this re-
gion for the following reasons: first, it has been believed
that calculations at ¢t =0 are more reliable since it is deep
in the Euclidean region; second, the authors of [15] have
claimed the presence of nonintegrable singularities in the
double dispersion relation for the three-point function
describing the semileptonic decay at ¢ > 0. This difficulty
has been attributed there to the breakdown of the short-
distance expansion. Such an abrupt breakdown would of
course also jeopardize the results at z=0. In our paper
we show that both arguments are incorrect. The double
dispersion relation remains perfectly well defined up to
t=ty,=(m.+m,)? and the effect observed in [15] is due
to a nonproper treatment of non-Landau-type singulari-
ties. This point is discussed in detail in Sec. III.

We also argue that there is no reason to expect better
accuracy of sum rules at ¢ =0 than at t =1 GeV?, since it
is the distance from the threshold t,~2 GeV? that
counts. If lt—tth| is too small, then, indeed, contribu-
tions of large distances in the ¢ channel come into the
game [19]. The situation is, however, even worse when
It—tth| becomes too large, since in this case the power
corrections which are proportional to powers of |t —1|
are no longer under control. This difficulty is an artifact
of the expansion in local operators and is well known in
connection with sum rules for the pion form factor
[11,12]. We show in Sec. V that this difficulty is not
present if nonlocal condensates are introduced. We com-
pare the results obtained with nonlocal condensates to
those obtained in the (local) operator-product expansion
and discuss new contributions to the sum rules which are
eliminated in the standard procedure by the Borel trans-
formation.

The main results obtained are
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B(D°—>Kev)=(2.7+0.6)% |,
B(D" >K*ev)=(4.0%£1.6)% ,

'(D—-K*)
(D —K)

I, /T ;=0.860.06 ,
I, /T'_=0.09+0.02 .

=0.50%0.15,

The ¢ dependence of the form factors corresponding to
vector particle exchange in the ¢ channel turns out to be
in excellent agreement with the expected dominance of
the lowest hadron state, but the axial-vector form factors
show a much weaker ¢t dependence than predicted by the
pole model, as will be discussed in Sec. IV.

Finally, in Sec. VI we propose a new set of sum rules
for the form factors in question, considering a two-point
function and making use of existing information on wave
functions of K and K* mesons [20,21] to calculate the
relevant meson-to-vacuum transition amplitudes. Al-
though our poor knowledge of wave functions of higher
twist limits the present accuracy of this approach, it has

|
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the advantage that one needs to extrapolate in one vari-
able only from the Euclidean to the physical region in-
stead of extrapolating in two variables as in the standard
procedure. The results agree with those obtained from
the three-point function within the expected accuracy.

II. THE STANDARD PROCEDURE

In order to evaluate the form factors for the semilep-
tonic D decays we consider the three-point function

T,=i% [ d*x d*y (0| T{M(x)J,(0)D(y)}]0)e ™™™ 7»”
2.1)

where J,=3y,(l—ys)c is the weak current,
D(y)=c(y)iysd(y) and M (x) are currents with quantum
numbers of the initial (D*) and final (K°K°*,...)
mesons, respectively. Specifically we use vector and
axial-vector currents as interpolating fields for the K*
and K meson, respectively. The three-point function are
expressed through the invariant amplitudes as follows:
for the current M (x) interpolating the K° meson we have

I,,(pp,px) =12 [ d*x d*y (O|T{d(x)y,yss(x)J,(0)D (p)}|0)e x> ~Pp”

:ig'u-vHO—}'i(pD +pK)pPKVH+ +l(pD —PK)plPKVH—+ cee

(2.2)

and for the current M (x) interpolating the K * meson the expansion reads

CulPpopx)=i% [ d*x d*y 0| T{d(x)y,5(x)7,,(0)D (3)}[0)e"x* 7P

=iguLo—i(pp +pg)pp, L+ —i(pp =Pk )uPp,T — —€4ypePBPETy+ - - - .

In the following we evaluate the three-point function (2.1)
at negative values of pg and pf, by the operator-product
expansion in QCD on one side, and on the other side by
saturating the p3 and pZ, channels by hadronic states.
Both representations are matched using Borel improve-
ment in p3 and p? which suppresses higher resonance
and continuum contributions as well as the higher-
dimensional condensates. The unit operator in the
operator-product expansion is given to lowest order in o
by the triangle diagram of Fig. 1(a). Since we perform a
Borel transformation both in p3 and pZ, and since we
model our higher resonance and continuum by the per-
turbative contribution above some thresholds (see below),
the large integral should be written in the form of a dou-
ble dispersion integral. The construction of the double
spectral function for t =(pp —py, )2>0 involves some del-
icate points and is discussed in detail in the next session.
The nonperturbative contributions included in our
analysis are shown in Figs. 1(b)-1(j). We have not taken
into account the contribution of the gluon condensate
which is estimated to be negligible. The terms propor-
tional to the condensate of strange quarks {55) and to
the corresponding mixed condensate g{5o,,G*'s) be-
come O after the Borel transformation in both variables
p3 and p%. The complete expressions are collected in

(2.3)

Appendix A. Except for the terms proportional to the
four-quark condensate they agree with those of Ref. [17].
The latter, however, turn out to be very small numerical-

ly.
Second, we saturate the three-point functions (2.2),
(2.3) by intermediate hadron states:
1 1

,(pp,px)= (0ldy,yss|K®)
wPpoPK pp—mp+ie pp—mz—ie v

X{(K°lJ,|D) (Dl|ciysd|0)

+ higher resonances , (2.4)

1 1 = =
T, (pp,pg)= (oldy ,sIK*,1)
wrPDPK pp—mp+ie pt—m}k+ie 7]

X(K*,AlJ,|D) (Dciysd|0)

+higher resonances . (2.5)

The standard parametrization for the D — Kev amplitude
is

<K|J”[D>=f+(t)(pp +pK )#+f~(t)(pD _pK)u .

In the limit of vanishing lepton mass the form factor
f _(t) does not contribute to the decay rate; therefore, we

(2.6)
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FIG. 1. Graphs for the operator-product expansion of the
three-point function. D and M are the mesons in the initial and
the final state, J is the weak current. The internal lines
represent the c, d, and s quarks, respectively. Lines ending at a
cross denote vacuum expectation values. (a) contributes to
e (b) to '), T, and T'®; (¢c) and (d) to I'*> and T'*®; (e)-(j)
to I''®; (k) vanishes after the Borel transformation, but contrib-
utes if a nonlocal condensate (see Sec. V) is introduced.

shall omit it. Note that only the vector part of the weak

current J # contributes in that case.

For the weak matrix element D —>K™* we use the
decomposition adopted in [5]:

(K*,AJ,|D)= —ilmp+m )4, (Der™
iA,(1)
mp+m,«

2V ()
+._.__.____
mp+m

(G*WPD Npptrk ),

vpo *(A
. €, €,
K

)prpK(T ) 2.7

where t =(pp —pg )>. The fourth Lorentz invariant A;(¢)
multiplying (e**pp ) pp—px ), does not contribute in
the limit of vanishing lepton mass and is therefore omit-
ted.

The vacuum-to-meson transition amplitudes are writ-
ten in terms of the corresponding decay constants as

mp

(Oldiysc|D)=fp pralt

c
2
mK*

(oldy s|IK*,A)= e‘v}‘)=fé’*mK,.e(VM , (2.8)

K*

<0|‘7?’v7’ss IK) =ifgPky -

FORM FACTORS OF SEMILEPTONIC D DECAYS FROM QCD . ..

3569

Finally we perform a Borel transformation in both
variables p3,p% and equate the two representations de-
scribed above. We assume that the contributions of
higher resonances and the continuum in (2.4) and (2.5)
are represented by the perturbative contributions above
certain thresholds s, =p3 >s5,5x =p% =s2. Thus, the
following set of sum rules arises:

2 2

MeZy+ mp  Mgx
4,()= 2 2 XP |75 2
fplmp+m s )mpmy . Mp; Mg
XTo(M3,M2,t),
m.gy«(mptmy ) m} m12<*
4,(1)= 2 2 CXP |72 2
Sompmp« Mp Mg
XT (M3, ME,t), 2.9)
mch*(mD-i-mK*) m}) mé*
V)= 2,2 eXP | 72 2
szmDmK* MD MK
XT (M}, M;,t),
and
2 2
mp mg 2 2
fe@)= —exp M, (M3,M%,1),
fofxmp Mp - Mg

(2.10)

where M3 and M2 are the corresponding Borel parame-
ters and

Fi=r})ert+r\$3)+r\}5)+rg6)+ e

are the double Borel transformed expressions for the per-
turbative graph and for the contribution of condensates
of dimension 3,5,6, respectively, which are listed in Ap-
pendix A.

The perturbative contribution is given by the double
dispersion relation
/M})e —sg /M2

>

0 0
Sg Sp -
F?ertzfo dsg fo dsp pi(sp,sk,tle 5p
(2.11)

where the double spectral densities p; contain contribu-
tions of non-Landau-type singularities (cf. Ref. [22], for
example) for £ >0. We outline their origin and structure
in the next section.

III. THE ¢t DEPENDENCE OF THE PERTURBATIVE
CONTRIBUTION

In order to illustrate the problem, let us consider first
the double dispersion relation for the triangle graph of
Fig. 1(a) in the case of scalar quarks:

T(p3.pk.t)

. d*q 1
= (41)? :
T G 7*(px + 0 (pp+qP—m?]

(3.1)
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The integral in (3.1) is finite and the amplitude vanishes
in the limit of infinitely large values of each argument
(the other ones kept fixed). Hence the amplitude
T(p3,p2,t) can be written in the form of a double disper-
sion integral without subtractions (¢ <m2):

p(Sp,Sk,t)
sp—pp sk —pg)
Applying the Cutkosky rules [23] we obtain readily the
double spectral function

S S
A s, sk, t

T(p12>,P12<,t)=f( dspdsg . (3.2)

p= O(sp —sg)0(sg) , (3.3)
where A(sp,sg,t)=(sp+sg —t)*—4spsg. The quantity
s, the lower limit of the s, integration, is determined by
the condition that all internal particles can be on mass
shell (Landau equations [24]), yielding

mc
SD =
m?

sg+m? (3.4)

The double dispersion relation (3.2) with the spectral
function (3.3) is shown in Fig. 2 at some values of p3 and
p# below the thresholds. In the region ¢ >0 the double
dispersion integral (dotted curve) clearly deviates from
the Feynman amplitude (3.1) (solid curve), indicating that
some contribution to the dispersion integral is missing.
To clarify this discrepancy, we first write (3.1) as a sin-
gle dispersion relation in pZ. A standard calculation

yields
OOU (p ’S )t)
T(pg,plzo f B dsK ’ (35)
Sk PK
where

0'+(P5,SK,t)"'0'_(P5,SKyt) s (3-6)
m

kl/z(pf,,sK,t)

UK(pg’sK’t):
2 —
o +(pp,sg,t)=

XIn[ sy —p32—t +2m2+AV2(p3,sk,t)] .
(3.7)

b

\r (pert)

-1 -0.5 0.5 1 1.5

FIG. 2. The scalar triangle graph [Eq. (3.1)] (solid line) and
the contribution of the Landau singularity to it (dotted line).
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One can easily check that Eq. (3.5) indeed reproduces the
exact value of the triangle-diagram equation (3.1).

Next, we discuss o x(p3,sk,t) as an analytic function
of sp=p} at fixed sy and t. For sg <(m2—1)*/t,t>0,
the functions o, and o_ both have square- root branch
points on the phys1ca1 sheet at s~ '=(1/sg Sk 2 and

s5T'=(V/sxg +Vt %, connected by a cut [dashed llnes in
Fig 3(a)]. In addition, the function o _ has a logarithmic
cut starting from sp,=s} [solid line in Fig. 3(a)]. The
square-root cuts cancel in the difference oy =0, —0_,
so that the logarithmic cut of o_ starting at sp,=s5
proves to be the only singularity of ox on the physical
sheet. Taking the discontinuity of o_ on this cut, we
reproduce Eq. (3.6). A closer inspection shows that the
functlon o+ has also a logarithmic cut starting from
sp=sp, but it is on the second (unphysical) sheet of the
Riemann surface of the square root [dotted line in Fig.
3(a)] and has therefore no influence on the double spectral
function. Thus, the situation is effectively the same as for
t <0, in which case for all values of sy there are no
square-root cuts at all, and only the logarithmic cut in
o _ persists, starting from s;, =s5 and giving rise to the
discontinuity in Eq. (3.6).
However, for sg=(m2—t)?/t it turns out that
syT'=sk, i.e., the logarithmic and square-root branch
points coincide, and for further increasing sg the loga-
rithmic branch point in o , dives through the square-root
cut up onto the physical sheet, whereas the position of
the logarithmic branch point of o_ moves to the second
sheet [see Fig. 3(b)]. Thus, on the physical sheet the func-

tion o, now has a logarithmic cut from sé*’ to s5,
whereas o _ has a logarithmic cut from s, to 1nﬁn1ty

Both have also the square-root cuts from s, to sj,"’. In

the difference o x =0 —o _ the square-root cuts cancel
as before, but the logarithmic cuts add. We thus end up
with the double spectral function

O(sg)0(sp —s5) (m2—1)?
0, =t v D e
P (SD’SKyt) Al/z(sD,sK’t) +29(t)6 SK ¢
O(s5—sp)0(sp —s5T))
X—2 PD D (3.8)

A2 (sp s ,t)

We have checked that the double dispersion relation (3.2)
with the spectral density (3.8) reproduces correctly ex-
pression (3.1) for the triangle diagram.

s > (O
~———— N .L.....> 0'+ a)
SD SD SD

——————— - L b)

FIG. 3. Singularity structure of the double spectral function
of Egs. (3.6) and (3.7) for (a) sy <(m2—1)?/t, (b) s, > (m2—1)*/t.
Solid line: logarithmic cut on the physical sheet; dotted line:
logarithmic cut on the unphysical sheet; dashed line: square-
root branch cut.
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The regions of integration are shown in Fig. 4 (for
m2>t>0). The displayed curves are s, =s\" (sg,t) and
sp=s5(sg,t). Usual Landau-type contributions come
from the shaded area I, whereas the second term in (3.8)
is nonvanishing in the double-shaded region II.

The structure of singularities in the double dispersion
relation remains unchanged for the triangle diagram with
internal fermion lines, except that the corresponding dou-
ble spectral densities may turn out to be more singular at
the lower integration limit in s,. For example, the con-
tribution to the form factor ¥ (¢) can be written as

v P(sp,sk,t)

Y Py

o
A.(SD,SK,

Sp,Sk,t) , (3.9)

w 1 1
ox(p>sg,)= [ , dsp
*D

Sp _PB A,(SD,SK,I)

2 P(sl()+),sK,t)
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where p° is the scalar spectral function (3.8) derived
above, and P(sp,Sg,t) is a polynomial in its arguments
vanishing at sp,=m2/t,sy =(m2—1t)*/t (see Appendix
A). A straightforward integration would yield in this
case “nonintegrable singularities” [15] due to the addi-
tional factor 1/A, which is singular at s, =s5"’. Thus,
one should apply the Cauchy theorem accurately,
representing o x(p3,sk,t) by a contour integral and tak-
ing into account the nonvanishing contribution of a small
circle around the starting point sj'’ of the cut [for
sg >(m2—1)?/t]. Then a properly regularized expression
emerges, which can be written as

P(sp,sk,1)p%(sp,Sk,1)

57 =pB 1sh =55 sp—

In the QCD sum-rule analysis the subtraction of the con-
tinuum contribution limits the sy integration to the re-
gion sx <sg; hence, for (m2—1¢)?/t >sp the non-Landau
singularities do not show up.

In the case of the standard dispersion relation in one
variable, a nonvanishing contribution coming from a
small circle around the branching point signals the pres-
ence of kinematical singularities in the amplitude which
can be sorted out. For the double dispersion relation this
is generally not the case. It is easy to see that the form
factors introduced in the previous section are free from
any kinematical singularities [22].

RN
N\

A

0n

D

FIG. 4. Regions of integration for the double dispersion in-
tegral (3.2). Shaded region (I): Landau singularities, double
shaded region (II): non-Landau singularities.

(m2—1)?
0 s ——<—"" o | . (3.10)

s(D+))]3/2

IV. RESULTS FROM THE STANDARD PROCEDURE

The numerical results given below have been obtained
using the values of vacuum condensates and quark
masses from Ref. [25] (at the normalization point p=1
GeV):

(au)={(dd)=—(230 MeV)}, (5s)=0.8(au) ,

g{90,,G*"PY=m}{P,¥), m§=0.8 GeV?, (4.1)

m; =160 MeV, m,=1.3 GeV .

In the Russian literature a somewhat higher value of the
quark condensate is preferred: {Zu ) =~ —(250 MeV)? (at
the same normalization point). The effect of this possible
change on our results is not large and is discussed below.
The contribution of the four-quark condensate turns out
to be very small in all cases (see Fig. 5). We have been us-
ing factorization for it in the whole range of Borel param-
eters. All quantities have been renormalization-group
improved up to the current value of u>=MpMy. The
values for the continuum thresholds s and s0 « are taken

from QCD sum rules for the corresponding two-point
functions

53=6 GeV? and s5%.=1.7 GeV? (4.2)

K*
(cf. Appendix B). The region of stability in the Borel pa-
rameter for the two-point functions is 1-2 GeV? for the
D and 0.7-1.1 GeV? for the K* meson, and the decay
constants extracted from these sum rules are

fp=160 MeV, fV,=210 MeV .

Y= 4.3)
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&

FIG. 5. The various contributions to the operator-product expansion of the form factors as functions of the Borel parameter M3.
Solid line: T'P*"; long dashes: I'"*® (quark condensate); short closely spaced dashes: I''® (mixed quark-gluon condensate); short widely

spaced dashes: I''® (four-quark condensate).

For the K meson we take sg =1.7 GeV? and the experi-
mental value fx =160 MeV.

On evidence of existing calculations [11], we expect the
region of stability sum rules for three-point functions to
be at values of Borel parameters twice as large as in the
corresponding two-point functions. Hence, we evaluate
our sum rules in the range 2 < M} <4 GeV? and at a fixed
ratio

M3 mp—m?
2 S ; =18,
MK* mK*_mS
(4.4)
M2
>=2.
My

We have checked that our results depend very weakly on
this ratio.

In Fig. 6 we show the values of the form factors
Ay, A,,V, and f, at zero-momentum transfer obtained
from the sum rules (2.9) and (2.10) as functions of the
Borel parameter. The stability is seen to be quite satisfac-
tory in the expected range. The relative contributions of
the perturbative graph and of different power corrections
are given as functions of M3 in Fig. 5. We see that 4,(0)
is mainly determined by the quark condensate, while the
perturbative contribution is the largest one for all other
form factors. Our final results for the values of form fac-
tors at t =0 are

A,(0)=0.50+0.15, A4,(0)=0.60+£0.15,

V(0)=1.1+0.25, f,(0)=0.601313, (4.5)
V(0) 4,(0)
=2.2+0.2, =1.240.2 .
4,(0) A4,(0)

The ¢t dependence of form factors for different values of
the Borel parameter M3 normalized to unity at ¢ =0 is
plotted in Fig. 7. The physical ¢ region for the decay
D —Kev extends up to 1.9 GeV. At values t>1 GeV?
the integration region in s, and sg [see Eq. (2.11)] shrinks

-~
S -

S e AR Y R
.N T — -
A;(0)
— , Mo
2 3 4

FIG. 6. The form factors A4,, A,, V, and f, are zero-
momentum transfer as functions of the Borel parameter M3.
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A,(1)7A,;0)

f,(t)/1,0) R
14 .7

02 - 05 1t

08 d )

FIG. 7. The t dependence of form factors for various values of M3. Solid line: M3 =2 GeV? long dashes: M3 =3 GeV?; short

dashes: M3 =4 GeV2.

drastically leading to a sharp decrease of the form factor
(cf. Fig. 8). This effect is thus simply an artifact of our
simple model for the continuum contribution. In addi-
tion, for values ¢ > 1 GeV? the distance to the threshold
gradually becomes too small and the operator-product
expansion breaks down.

The t dependence of ¥ (¢) and £, (¢) for t <1 GeV? can
be well approximated by a pole model expression with the
pole masses

m},.=1.95+0.10 GeV ,

S
pole

(4.6)

m 1.81£0.10 GeV .

Both V(¢) and f, (¢) obtain contributions of the vector
current only in the ¢ channel. Our result is thus very
compatible with the dominance of a low-lying charmed
resonance in the J¥=17 channel, which is estimated to
_~2.1GeV (Ref. [5]), and in the case of D - K
decgy is also compatible with the experimental value
m{ole=l.8f8:§f8j§ GeV [1]. In contrast with this pro-
nounced pole-type behavior the other two form factors
A ,(t) and A4,(t) show a much weaker ¢ dependence and
to our accuracy are nearly constant up to t =1 GeV2 In
the case of A4, this approximate ¢ dependence stems from
a mutual cancellation in the sum rule of an increase in
the perturbative and a decrease in the quark-condensate
contribution. In the case of 4, the dominant contribu-
tion of the quark condensate stays constant in ¢ and the
remaining slight ¢ dependence stems from the nondom-
inant contributions of perturbation theory and higher
condensates. We conclude that for the axial-vector form
factors A4,(¢) and A4,(¢) the assumption of pole domi-

nance is not adequate.

Finally, we use the form factors to calculate differential
decay rates dI'/dt for the decays D —K*ev,D —Kev,
(Fig. 9 and Table I). The decay rates for the decay
D —K*ev are evaluated with the ¢ dependence of the
form factors as obtained from the sum rules. For the
reasons explained above, f, is determined by the extra-
polation indicated in Fig. 8 in the ¢ range above 1 GeV?2.
It should be noted, however, that the influence of this ex-
trapolation on the total rate is quite small. The
differential rate of the decay D — Kev is given by

A f4(t)

FIG. 8. The ¢ dependence of the form factor f,(¢). Solid
line: pole fit with m,.=1.81 GeV; dotted line: result of the
sum rule. The falling-off at ¢ > 1 GeV? is an artifact of our sim-
ple model of the continuum.
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'.d T (t)/dt

a)

drit)/dt

FIG. 9. The decay rates as functions of momentum transfer
to the lepton pair in units of 10'° sec ™! GeV ~2: (a) for the decay
D—K*ev, (b) for D—Kew.

ar _ GilVsl® .4,

(mB,mE,t)f% (¢) .
dt  192m°m} Bomic, 0%

The rates for the decay D —K *ewv are written in terms of
the helicity amplitudes
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_ kl/z(mlz),m}(*,t)
Ho()=(mp+m )A4,(t)F — Vi(t),
Ho(t)=——— | (m3—mZ2s—0)mp+m ) A,(0)
mK*\/t
Mmp3,m2.,1)
mptmgx«
so that

dry G}V,
@ - oy M Amb,m DI L)
D

dr GElV,|?

T Tonry M mmEe DlHOF
D

dTl'y ¢4 dl" _ d

7 =E(r++r_)’ ?:E(FL+FT).

The comparison to experimental data, to lattice calcula-
tions, and to quark models is given in Table II.

The given errors of our results combine the results of
extensive calculations modeling intrinsic uncertainties of
the sum-rule method and include the possible influence of
moderate variations in the above-listed parameters. To
check the sensitivity of our results to the continuum
model, we have repeated all calculations with the thresh-
old sg =2 GeV? instead of s2=1.7 GeV? with all other
parameters fixed. The influence of this change on the
form factors turns out to be within 5%. An increase of
30% in the quark condensate [from (—230 MeV)’ to
(—250 MeV)® at 1 GeV] yields a ~20% increase in the
absolute rates. Taking the ratio of form factors, the effect
is reduced to =<12% and is most pronounced for 4,.
Changing the ratio of Borel parameters R =M3 /M2
from R=1.8 to R=3 induces changes in form factors
within 5%. The most important source of uncertainty is
due to the variation of the Borel parameters M} =RM}2
(see Figs. 6 and 7), which amounts to up to 50% in the
D —K* decay rates and up to 25% in D —K decay as

TABLE I. Differential decay rates as functions of momentum transfer ¢ in units of 10'° sec ™! GeV 2
dTX* /dt and dTX/dt: differential decay rates for the decays D —K *ev and D — Kewv, respectively.
dr¥* sar, drk* sdi, ark */dt, dTX" /dt: longitudinal, transversal, positive-helicity, and negative-
helicity differential decay rates for the decay D —K *ewv.

t (GeV?) dr¥* sds drx* sar drk* st drk* /dt drX* /d: drX/dt
0 3.09 3.09 0 0 0 6.80
0.20 4.64 2.60 2.04 0.05 1.99 6.15
0.40 5.25 2.15 3.10 0.11 2.99 5.46
0.60 4.89 1.69 3.20 0.20 3.00 4.76
0.80 3.44 1.12 2.32 0.32 2.00 4.03
0.96 0 0 0 0 0 321
1.20 2.48
1.40 1.67
1.60 0.87
1.80 0.18
1.89 0
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TABLE II. Experimental and theoretical values for decay rates. I';': total decay rate for the D * de-
* —_
cay. T'Q,: total decay rate for the D° decay. I'¥": decay rate for the decay D* —K e *v,. T'X: decay

rate for the decay D°—Kew,.

r;,I'r,I'y,I'_: longitudinal, transversal, positive-helicity, and

negative-helicity decay rates, respectively, for the decay D " —K ="e’Lve. The ARGUS Collaboration

3] gives DX*/If=4240.620.1%. A

new experimental

result of CLEO [33] s

¥* /PK=0.51+0.18+0.06. E691, Ref. [4]; Mark III, Ref. [1]; BWS, Ref. [5]; GS, Ref. [9]; IS, Ref. [7],

LMS, Ref. [32].

Experiment Sum rules Quark models Lattice
E691 Mark III This paper BWS GS IS LMS
I“K"‘/I“f{,t % 4.41+0.4%0.8 5.3*1-9+0.6 4.0+1.6 10.1 10.5 9.4 5.5+2.0
r,/Tr 1.873:5+0.3 0.5+8:9+81 0.86+0.06 0.89 1.20 .11 1.7+0.6
r,/r_ 0.15%9:87+0.03 0.09:+0.02 0.28 0.18  0.29
%/t % 3.8+0.5+0.6 3.4+0.5+0.4 2.7+0.6 35 2.1+0.3
r<*/rx 0.5040.09+0.07 1.0+33 0.50+0.15 1.14 145 1.1+0.3

M} varies from 2 to 4 GeV2 The ratios of rates are
much more stable (up to ~15%) and have the additional
advantage of not depending on the decay constants.

V. THE NONLOCAL QUARK CONDENSATE

The nonperturbative contributions to the sum rules
(2.9) and (2.10) stay constant for large negative values of
t, or even increase. This property is certainly not reason-
able, since for asymptotically large momentum transfers
the form factors should decrease as 1/¢, and the main
contribution to them should be of a completely different
origin (from the exchange of a hard gluon [26,27]). It is
easy to see that higher-order power corrections to the
sum rules would possess an even stronger ¢ dependence
and should effectively cancel unreasonably large contri-
butions of the lowest-order condensates.

To model this cancellation and to obtain a semiquanti-
tative estimate for the possible influence of higher-order
corrections on our results, we introduce in this section
the nonlocal quark condensate

(Flx)exp( [ “ig A, (x)dx, W(0)) = () £ (x?) (5.1)

and investigate its effect on the sum rules (x is the dis-
tance in Euclidean space-time). For simplicity, we as-
sume

f(x2)____._e—-x2/(4p) (5.2)

and take p=4/m} to be consistent with the short-

distance expansion in Euclidean space,
(Px)P(0)) =) —%ngﬁ?;UWGm,tﬁ) + o

Nonlocal condensates of type (5.1) are often introduced in
the literature in various contexts [28,29]. The physical
effect which is taken into account by (5.1) is that quarks
in QCD vacuum may actually have a nonvanishing
momentum.

The dominant nonperturbative contribution to the sum
rules comes from the diagram in Fig. 1(b). Using the

(5.3)

nonlocal condensate (5.1), the expression for this graph is
modified to

d*k 1/pK%—l(—m
b 2
(27) (pg T k)

s pD+k—mc
Y”(l_']/5) 2 Vs

(pp+k)+m
X AP )anipe P | (5.4)
where we have used Euclidean momenta and ¥ matrices.
In the limit p— «, Eq. (5.4) reduces to the standard ex-
pression for the contribution of the quark condensate.

In order to illustrate the effect, we consider here the
form factor A4,(t), which is the most controversial and
for which the contribution of the quark condensate plays
the most important role. Let us denote by A% and
AS$ND the contribution from the local condensate and
from its nonlocal generalization, respectively. Then a
straightforward calculation yields

APND . m? Mp+Mg
= - eXp | —
N M} MpMRp—M3 M}
Xexp d
M3 Mip—Mp— M}
X6 [1——— — L (5.5)
pMy  pMj

This ratio falls off exponentially for large negative ¢ with
p>Mp}, M} fixed. Thus the nonlocal condensate indeed
leads to the expected suppression of nonperturbative
terms at large negative momentum transfer [ ~—(2-3
GeV)’]. For 0=t <t,,,=(mp—m, ) the ratio (5.5) de-
viates noticeably from unity. However, the major part of
the effect is due to the linear term in the Taylor expan-
sion of (5.5) in powers of 1/p and is taken into account in
our sum rules explicitly and consistently as part of the
contribution of the mixed condensate. We therefore
prefer to stick to the standard procedure.

A particularly interesting effect of nonlocal conden-
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sates is the occurrence of terms which are nonanalytic in
1/p and missing in the standard operator-product expan-
sion. In particular, the contribution of the strange con-
densate [Fig. 1(k)] is now nonvanishing even after Borel
transformation. Denoting the contribution of that dia-
gram by A5SNL) we obtain, as before,

APSND gy L pME—1
A4 () P (ME+ME)
mXpMZi—1) ]
Xexp | —————
Mj
Mg — R
Xexp [t——=——— |60(pMg—1) . (5.6)
Mp+Mg

This ratio vanishes exponentially for p— c. It is small
but shows a rather strong ¢ dependence, ranging from
0.03 at £ =0 to 0.15 at #,,,=(mp—m, )" (for Mj=2

GeV? and R =1.8). As a result the form factor A4,(¢),
extracted from the sum rules taking into account the
nonlocality of the condensate, increases slowly with in-
creasing 7, but still the slope remains much smaller than
for Vor f,.

We conclude that the effects of nonlocality lead to the
necessary damping of power corrections in our sum rules
at large negative ¢, while in the physical region for the de-
cay 0=t =t_,, their influence on the rates is negligible
and only moderate on the ¢ dependence of the form fac-
tors. This indicates the self-consistency of our approach.

VI. SUM RULES ON THE LIGHT CONE

Besides the expansion in distance in Euclidean space-
time underlying the standard procedure of QCD sum
rules, there exists another expansion in the deviation
from the light cone which is more adapted to the kine-
matics of exclusive processes with large momentum
transfer. The factorization theorem allows one to collect
contributions of large distances in several hadron wave
functions which were studied quite some time ago [20].

In this section we apply this light-cone expansion in a
form suggested by studies of exclusive processes in order
to obtain a new set of sum rules for the form factors of
the weak D decay. Similar sum rules have been suggested
recently for B decays in [30].

We consider the two-point correlation function

=i [d* e (M(p)|T{J,(x)D(0)}[0) ,  (6.1)

where D =Ciysd, and M (p) is the K or K* meson with
momentum p. We shall evaluate (6.1) in the region where
x? is small in Minkowski metric, which implies that
mcz——t >1 GeV?, but at the same time components of x
may be large; i.e., we may have (px)*>>x2m2,. If one
goes to momentum space, the chosen kinematics ensures
that the momentum squared (p +g)* associated with the
D meson current is large and negative, while the value of
2gp /(p +¢q)?* is of the order of unity; hence the depen-
dence on this parameter should be calculated exactly.
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The leading contribution to the expansion of the T
product of currents in (6.1) on the light cone is

d4k e—ikx
Qm)* mi—k?
X(1—ys)m, —¥K)d(O)+ -+ .
(6.2)

T{J,(x)D(0)}=— [ s(x)y,,

The relevant matrix elements of the nonlocal operators in
(6.2) define wave functions of K (K*) mesons of leading
twist

(ROpIsx)y,75d(0)/0) = —ifxp, [ du o),
(R*(p)I5(x)y,d(0)|0) =€tmaf Vs [ du e pytu) ,
(6.3)
(K**|5(x)o,,,d(0)[0)
=if,?*(e;pv—e:p”)fol du e™pr(u) .

We use the parametrization of wave functions proposed
in [20],

plu)=6u(1—u){1+a[(2u —1)*—1]+b%(2u—1)},
(6.4)

with the following values of parameters (at normalization
point u?=1.5 GeV?) [21]:

ax=2, ay=0.5, ar=—1.6,

bg=0.1, b,=by=0.15.

(6.5)

In addition, in the case of D — K decay, we also take into
account the two-particle wave functions of twist 3
[20,31]:

K

— f m,2< 1 )
0 . iupx
(K (p)|s(x)ty5d(0)|0)———d fo du e™Ppp(u) ,

s

(K%p)I5(x)o,,vsd(0)[0) (6.6)

. 2
i fxmg

* 1 iupx
r— fo du e, (u) .

=(pux,—pyx,)

We use the asymptotic wave functions @p(u)=1 and
@,(u)=6u(1—u). In this approximation we do not take
into account the contribution of the twist-3 quark-gluon
operator (see [31]). The other parameters needed are
fr+=210MeV, fI. =220 MeV, fx =160 MeV [21].

On the other hand, the contribution of the D meson to
the correlation function (6.1) is

fomp 1
(M|J,ID*(p+q)) . (6.7)
me m3—(pTq) |7,1D " (p +q
Making the Borel transformation in (p+g¢)*> and sub-

tracting the continuum contribution above the threshold

59, we obtain the set of sum rules (with t =g?2)
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fi@) _ s o o S(u)
2 22 ar2] u(t —ml)—uaum
fomp A,(2) =exp[(m” me /M fliliexp < 3 M S,(u) |0(us® —m2+at —aum}) , (6.8)
. 0o u uM
V(t) S;3(u)
where m3;=mg or m}«, =1—u, and
[k miu mg m2+t—u’mi
=— — + (u) |,
S(u) 2 m.@g(u)+ e m, @plu) 6(m, +my) NYe P
1 —
S,(u)= mK*mchZ*qu(uH-—2—u~(m62—t+u2m12<*)fg,.,sz(u) (mp+m )7, (6.9)

Sy(w)=1fLe@p(u)mp+m ) .

To the accuracy of the approximation made above it
turns out that the form factors A4, and V coincide,
A,(t)=V(t); thus, their difference is a higher-twist effect.
It is easy to see that higher-twist O(x?) terms are down
by powers of 1/(up +q)* under the integral sign, so that
after the Borel transformation they behave as
~(uM?)""/n! The average value of u in the integrals
(6.8) turns out to be {(u ) =~0.6. Thus, one expects the re-
gion of stability of the sum rules (6.8) to be at values of
the Borel parameter 1/0.6 larger than for the standard
two-point correlation function of the D-meson current.

Numerical results for the form factors obtained from
(6.8) are plotted in Fig. 10. Figure 10(a) contains the
values of the three form factors f,,4,, and V at t =0,
given as a function of the Borel parameter. Their ¢
dependence is shown in Fig. 10(b) for the value M2=2.5
GeV?, which is in the middle of the expected stability
range. The results are qualitatively similar to those in the
previous sections. The absolute values of the form fac-
tors tend to be 20 —30 % larger, while the effective pole
masses for f,(¢) and V(t) are reduced by some 300
MeV. Again we find that the ¢t dependence of A4, is very
weak.

The main advantage of the sum rules (6.8) is that they
make use of only one Borel transformation instead of two
as in the standard procedure. The principal input is the
meson wave function (6.4), which involves new and non-
trivial information on the asymptotics of correlation
functions in QCD, related to the conformal symmetry
[26,27]. The accuracy of (6.8) can be increased consider-
ably by including contributions of wave functions of
higher twist [31]. We are going to elaborate on this point
in a separate publication.

VII. GENERAL DISCUSSION

We have given a detailed analysis of the semileptonic
decays D—Kev and D—K*ev. The main results are
displayed in Tables I-III. Our value for the branching
ratio of the D —K *ev decay agrees with the experimen-
tal data of E691 and Mark III as well as of ARGUS [3],
which is 4.24+0.61+0.1%. It also agrees with a recent nu-
merical calculation on the lattice [32], but is 2—3 times
smaller than predicted by quark models. Our result for
the ratio of rates for D —K *ev and D — Kewv decays is in

—

agreement with the data of E691 and of CLEO [33], but
is a factor of 2 smaller than reported by Mark III, the
quark models, and the lattice calculations. Our value for
the polarization I'y /T is similar to the Mark III result
(which has a large error range) and to quark model pre-
dictions, but is a factor of 2 below the E691 data.

— —

FIG. 10. Results of light-cone sum rules (Sec. VI): (a) the
form factors A4,(0), ¥(0) [= A4,(0) in our approximation], and
f+(0) as functions of the Borel parameter M?; (b) the ¢ depen-
dence of the form factors at M2=2.5 GeV?, normalized to unity
att=0.
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TABLE III. Experimental and theoretical values for the decay form factors at zero-momentum
transfer. LC = light cone; AOS, Ref. [17]. The references are the same as in Table II. Dominguez and
Paver [35] obtain f, (0)=0.75£0.05 using sum rules for two-point functions.

Experimental Sum Rules Quark models Lattice
Stand. SR LC SR Stand. SR
E691 This paper AOS BWS GS IS LMS?
f+(0)  0.79+0.05+0.06 0.67513 0.8 0.8+0.2 0.76 0.69* 0.76°  0.58+0.04
A(0) 0.46+0.05+0.05 0.5+0.15 0.8 0.9+0.2 0.9 0.8 0.8 0.524+0.07
A,(0) 0.00£0.240.1 0.6+0.15 1.1 0.8+0.3 1.2 0.6 0.8 0.05+0.35
V(0) 0.9+0.3+0.1 1.1+0.25 1.1 1.74+0.6 1.3 1.5 1.1 0.8510.08

Statistical error probably underestimated [32].

*Value recalculated from formulas given in the corresponding paper.

Whereas the latter experimental results lead to a small
value (compatible with 0) of the form factor 4,(0), we
obtain a ratio 4,(0)/ A4,(0) of the order of unity.

Our prediction for the asymmetry I' | /T _ is consider-
ably smaller than in quark models, and does not contra-
dict the experimental data. Thus the QCD sum-rule pre-
dictions are generally in good agreement with data, ex-
cept for the large polarization of K*, I'; /T",, obtained
by E691.

In this paper we have put special emphasis on the ¢
dependence of form factors and have calculated it direct-
ly from the sum rules. Our result strongly supports the
vector-dominance approximation for the form factors
f4(t) and V(¢), while for the axial-vector form factors
A(t) and A,(t) we obtain a much weaker ¢ dependence
than would be given by dominance of the lowest expected
cS state in the JP=17 channel.

Our sum rules involve several sources of uncertainties
which do not allow for an accuracy better than ~20% in
form factors and ~50% in decay rates. The two most
important sources of error in the standard procedure are
the dependence on the Borel parameter and the uncer-
tainty in the value of the quark condensate. Our results
for absolute values of form factors at t =0 are typically
20-30 % lower than those of an unpublished sum-rule
analysis [17]. The difference is partly due to a smaller
value of the quark condensate used in our paper, but the
main part of the difference is due to our consistent use of
the parameters (s5,s2,M3,. . .) found by using two-point
sum rules instead of the usual three-point sum rules.
However, the difference from [17] is still within the accu-
racy of the sum-rule approach.

To obtain semiquantitative estimates of possible effects
of higher-power corrections, we have evaluated the sum
rules with a nonlocal quark condensate in Sec. V. This
sample calculation is interesting in connection with the
behavior of form factors at large negative ¢, where the
usual expansion breaks down. A good task for the future
is the evaluation of the a, correction to the triangle dia-
gram in Fig. 1(a), which dominates in the ¢ — — oo limit.
Since the zeroth-order perturbative contribution to 4, is
particularly small [see Fig. 5(b)], radiative corrections
could be important.

The only serious discrepancy between our results and
experiment is thus the one in the form factor 4,(0). As
mentioned above, the perturbative contribution to this
form factor is very small, and the form factor itself is

dominated by the term proportional to the chiral-
symmetry-breaking quark condensate. It could be re-
duced by a much larger value of the mixed condensate,
which seems, however, to be excluded by other sum rules
(cf. [25]) or by an extremely large radiative correction to
the three-point function, which had to change sign and
had to exceed the zeroth-order contribution by a factor of
4 to 5 in order to be operative. Both possibilities thus
seem rather unlikely to us.

Finally, an additional source of error could be in con-
tributions of two-particle states in the hadronic part of
the sum rule, (see the figure in Ref. [18]). This type of
contribution is generally most difficult to control, al-
though a common belief is that it is not important. Still,
even a semiquantitative treatment of such contributions
would be desirable in order to judge whether the sum
rules indeed exclude a vanishing form factor 4,(¢) in the
D — K *ev decay as obtained by the E691 experiment. It
should be noted that these corrections are not included in
the lattice calculations [32], which yield a small value for
A,(0).

Our results obtained within the standard procedure re-
ceive support from an independent set of sum rules on
the light cone considered in Sec. VI. This technique is
potentially more accurate and reliable since it requires
analytical continuation in one variable only, and incorpo-
rates new and nontrivial information on asymptotics of
three-point functions related to the conformal symmetry.
To develop these sum rules to the same (or higher) level
of accuracy as the standard ones, one needs to take into
account contributions of K- and K *-meson wave func-
tions of higher twist. We plan to return to this question
in a separate publication.
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APPENDIX A: PERTURBATIVE
AND NONPERTURBATIVE CONTRIBUTIONS

Generally we take into account the mass of the strange
quark, mg, at most linearly. The perturbative double
spectral functions as obtained from Fig. 1(a) by Cutkosky
rules (for the corrections of the full double spectral func-
tions, see Sec. III) are
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(m.sg +mgc)+ msgle(t—m2)+sgm?],

c___3 3
pPo— PRIV 4720372

Pi =g mesk(2 =20+ m (2 =25psy )]

sgm, {3cH2sx —2)+2c[Slsp —2sg —1)+2sgsp | +sx [Z(—2sp +sx—t)+2sgspl} s

T a2
3
p,c;-:—W[mS(ZSDSK—CZ)‘i‘mcSK(ZC—2)] s
—
where 2__ 2__
1“(6)‘= D S 3mi—2t m;—t
c=sp—ml, - ¢ 9¢s? 9c3s 36¢3s 6c%s?
S=sptsg—t, 2mcz——t (mcz——t)2
A=s)+st+t>—2spsg —2spt — 25kt . +m, 12¢%s 18¢3s2
The nonperturbative contributions which survive the (6) 4 4 4
Borel transformation in p3 and p2 are Lo t=m | ——— 2,2 g
D K 9cs 95X (m2—1t) 9cs(m?—1t)
P Mems _ mETt
0 cs 2¢es (6) 1 2 m?  ml—t
r+‘=m - . c (4
. ¢ 9¢2%s2  9¢3s  12¢*s 18¢3s?
F(3):__ ,
+ 2cs (6),
r'Y=o,
r(3):_i 2 2
|4 cs - 22 4 mg m;—t
) 5 v ©19¢2s2  9s3%  6c*s  9c3s? |’
r(S)—_L 2mZ+3m . m,—2t)(m;—t)
0 6¢s 12¢2%s? ' _ 4m,
v 9esA(m2—1) ’
2m2+3m,m,—2t 3m2+9m m,—4t
12¢s? 12¢2s with
2 _
+m2mc+2mcms t , c=pi—m?,
¢ 4c3s — 2
s=pg .
2 2
m 2m;—m m;—2t
r=— 612 + Z ; + == 5 c2 25 , Coefficients F?)‘ multiply the (6)condensate
¢S cs ¢S %g%ffyukAdZu,dys‘q‘y”)»Aq), coefficients T'; > the con-
s R densate g2(dd ) {(5s).
) _1 me 2m;—m.m; —2t The perturbative and nonperturbative contributions to
r)=——+ P ;
' 3¢ 2¢3s 6c32s2 ’ I, first given in [17], are
1
3
P = 8723/ {m [2¢(Z—sg)+sg(Z—4sp)]+m(Zc—2spsg )]
3
—Wmc[c2(22—3sK2+2stK)+2csK(22—3sD2+2stK)+3st12<(2sD—2)] ,
Hm:__l__ 5= 1 mc2 _mcms+2t
* 2es” 0t 6e2%52 4¢3 12¢2%s?
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FIG. 11. fp as calculated from the two-point sum rule for
two different values of the quark condensate; contributions tak-
en into account stated in Appendix B. The arrows indicate the
limits of the admissible values of the Borel parameter.

with ¢, 2, and A defined as above. The Borel-improved
coefficients can easily be obtained by applying the trans-
formations

2 2
_1__) 1 (—1)" 12 . mc/MD’
c®  (n—1) (Mp)"
1 1 1
- _ln
sn—)(n-l)!( ) (MI%.)" ’
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fds"fT(g_—)_"A;_zde’p(S’>e‘s'/M2 ,

N

where My ,, are the Borel parameters.

APPENDIX B. THE TWO-POINT FUNCTION
FOR THE D MESON

For the sake of consistency we use a value of the D-
meson decay constant f, determined from a two-point
sum rule with exactly the same ingredients as used for the
three-point sum rule, i.e., the bare quark loop and non-
perturbative contributions including the quark, the
mixed, and the four-quark condensate. In addition to
fixing the value of f, the two-point sum rule determines
the continuum threshold s3 and the range of the Borel
parameter M3 to be used in the three-point sum rule, as
mentioned in Sec. IV. Using the formulas given in [34],
for example, we find the curves f,(M3) depicted in
Fig. 11, which correspond to two different choices of the
quark condensate. The working region of M3, which is
restricted by the condition that neither the continuum
nor the nonperturbative contributions exceed 50% of the
value f3, is indicated by the arrows. The curves are
given for the continuum threshold sj =6 GeV?, where
the stability of the sum rule is best. We find f,, =160+6
MeV with a smaller value of the quark condensate,
(gq ) (1 GeV) = (—230 MeV)? within the working region
1.00<M} <1.85 GeV? and f,=165+5 MeV within
1.15SM} <1.90 GeV? using the larger value {gq)
(1 GeV) =(—250 MeV)*. The values of all other parame-
ters used are given in Sec. IV. We want to point out that
these values of f, must not be considered as a new deter-
mination of the D-meson decay constant. They only
serve to diminish the influence of contributions not taken
into account in our approach such as radiative correc-
tions to the perturbative contribution.

*On leave of absence from Leningrad Nuclear Physics In-
stitute, 188350 Gatchina, USSR.
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