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ANALYTIC TORSION FOR FAMILIES

Sebastian Goette

Göttingen, September 1–5

These are notes for the series of lectures on “analytic torsion for families” I gave at the workshop
“smooth fibre bundles and higher torsion” in Göttingen. These notes are basically a summary of
the original article [BL] by Bismut and Lott, together with some introductory and motivational
remarks. These notes are neither original nor complete — they should be read together with [BL].
Also, a copy of [BGV] will be helpful for standard constructions with Dirac operators and heat
kernels.

1. Franz-Reidemeister torsion and Ray-Singer Torsion

We recall two possible definitions of “torsion” on single manifolds.

1.a. Franz-Reidemeister torsion. We recall the definition of Franz-Reidemeister torsion ([R],
[F]). A compact manifold M , a flat bundle F → M with parallel metric, and a cell structure S
on M give a finite complex (C•(S;F ), ∂) with metric gC . Define

τ(M ;F ) = −1
2

dim M∑
i=0

(−1)i i log det
(
(∂ + ∂∗)2|ker(∂+∂∗)⊥∩Ci(S;F )

)
= −1

2
strker(∂+∂∗)⊥

(
NC log

(
(∂ + ∂∗)2

))
.

(1.1)

In the second line, NC acts by multiplication with i on Ci(S;F ), and the supertrace “str” is an
abbreviation for the alternating sum of traces.

Let H•(M ;F ) ∼= ker(∂ + ∂∗) denote the cohomology of C•(S;F ), then H•(M ;F ) is called the
(cellular) cohomology of M with local coefficients in F . The cohomology is independent of S.
If H•(M ;F ) = 0, we call F acyclic.

1.2. Theorem (Reidemeister, Franz). If the bundle F → M is acyclic, then τ(M ;F ) is independent
of the metric on F and of the cellular structure S on M .

1.3. Remark. (Reidemeister, Franz). Let Lq,p1,...,pk
= S2k−1/Zq denote the quotient of S2k−1 ⊂ Ck

by a cyclic group of order q generated by the matrix e
2πi p1

q

. . .

e
2πi pk

q

 ,

where p1, . . . , pk are relative prime to q. Then two such lens spaces Lq,p1,...,pk
and Lq,p′1,...,p′k

are
homeomorphic iff they are isometric.
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To prove this statement, consider the q− 1 pairwise non-isomorphic flat acyclic one-dimensional
complex bundles over Lq,p1,...,pk

. These bundles give rise to a set of q−1 numbers. For non-isometric
lens spaces, one can show that these sets of numbers are different.

Let us note that nevertheless, some Lq,p1,...,pk
and Lq,p′1,...,p′k

are homotopy equivalent even
though they are not isometric and thus also not homeomorphic. This shows that Franz-Reidemeister
torsion detects a difference between the category of topological spaces and the category of topolog-
ical spaces up to homotopy equivalence. In fact, torsion is even a simple-homotopy invariant, not
only a homeomorphism invariant.

The complex (C•(S;F ), ∂) computes the cohomology of M with local coefficients in the bundle F .
Since many different cellular structures on M give many different complexes, but all these complexes
give rise to the same value of τ , Ray and Singer tried to use a different complex to compute the
torsion of a manifold with a flat bundle.

1.b. Vector bundles, connections and the de Rham complex. We recall some definitions
from differential geometry/topology.

Let M be a differentiable manifold, and let TM and T ∗M denote its tangent and cotangent
bundle. The bundle Λ•T ∗M has fibres

Λ•T ∗p M =
dim M⊕

i=0

ΛiT ∗p M .

For the spaces of smooth sections, we write

Ωi(M) = Γ(ΛiT ∗M) and Ω•(M) =
dim M⊕

i=0

Ωi(M) .

1.4. Remark. Let X(M) = Γ(TM) denote the space of smooth vector fields on M and let C∞(M)
denote the space of smooth functions on M , then

Ωi(M) =
{

α: X(M)× · · · × X(M)︸ ︷︷ ︸
i factors

−→ C∞(M)
∣∣ α is alternating and C∞(M)-multilinear

}
.

There is a wedge product ∧: Ωi(M) × Ωj(M) → Ωi+j(M), and (Ω•(M),∧) is called the exterior
algebra. If F :M → N is smooth, then there is a natural pullback F ∗: Ωi(N) → Ωi(M) given
for α ∈ Ωk(N) and X1, . . . , Xk ∈ X(M) by

(F ∗α)(X1, . . . , Xk) = (α ◦ F )
(
dF (X1), . . . , dF (Xk)

)
.

We recall that the exterior differential d: Ωi(M) → Ωi+1(M) is given by

(1.5) (dα)(X0, . . . , Xi) =
i∑

j=0

(−1)jXj

(
α
(
X0, . . . , X̂j , . . . , Xi

))
+

∑
0≤j<k≤i

(−1)j+kα
(
[Xj , Xk], X0, . . . , X̂j , . . . , X̂k, . . . , Xi

)
,

where X0, . . . , Xi ∈ X(M) are vector fields on M .
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1.6. Proposition.

(1) for a function f ∈ C∞(M) = Ω0(M), df is the total differential of f ;
(2) d ◦ d = 0;
(3) d(α ∧ β) = dα ∧ β + (−1)deg αα ∧ dβ;
(4) Let F :M → N be smooth, then F ∗ ◦ d = d ◦ F ∗.

The complex (Ω•(M), d) is called de Rham complex, it is a functor from the category of differ-
entiable manifolds to the category of chain complexes over R.

We also want to consider the de Rham complex twisted by flat vector bundles, in analogy with
(1.1). Suppose that V → M is a vector bundle, then define

Ωi(M ;V ) = Γ
(
ΛiT ∗M ⊗ V

)
and Ω•(M ;V ) =

dim M⊕
i=0

Ωi(M ;V ) .

Again,

Ωi(M ;V ) =
{

α: X(M)× · · · × X(M)︸ ︷︷ ︸
i factors

−→ Γ(V )
∣∣ α is alternating and C∞(M)-multilinear

}
.

A connection on V is an operator

∇V : Γ(V ) = Ω0(M ;V ) −→ Γ(T ∗M ⊗ V ) = Ω1(M ;V )

satisfying the Leibniz rule
∇V (fv) = df ⊗ v + f · ∇V v

for all f ∈ C∞(M) and all v ∈ Γ(V ). Write

∇V
Xv =

(
∇V v

)
(X) ∈ Γ(V )

for X ∈ X(M) and v ∈ Γ(V ). We extend ∇V to an operator Ωi(M ;V ) → Ωi+1(M ;V ) by

∇V (α⊗ v) = dα⊗ v + (−1)iα ∧∇V v

for all α ∈ Ωi(M) and v ∈ Γ(V ). For η ∈ Ωi(M ;V ),

(1.7)
(
∇V η

)
(X0, . . . , Xi) =

i∑
j=0

(−1)j∇V
Xj

(
η
(
X0, . . . , X̂j , . . . , Xi

))
+

∑
0≤j<k≤i

(−1)j+kη
([

Xj , Xk

]
, X0, . . . , X̂j , . . . , X̂k, . . . , Xi

)
.

The square (∇V )2 is C∞(M)-linear and can be regarded as an element of Ω2(M ; End V ).
By (1.7),

(1.8)
(
∇V
)
2(v)(X, Y ) = ∇V

X∇V
Y v −∇V

Y∇V
Xv −∇V

[X,Y ]v ,

and this is called the curvature of ∇V .



4 SEBASTIAN GOETTE

1.9. Definition. A connection ∇V on V is called flat if (∇V )2 = 0. In this case, (V,∇V ) is called
a flat vector bundle.

This is equivalent to any of the topological definitions by calling a local section v ∈ Γ(V |U ) locally
constant iff ∇V v = 0, and by associating to (V,∇V ) the representation ρ:π1(M) → GL(n, k) given
by parallel translation with respect to ∇V .

If F :M → N is a smooth map and (V,∇V ) → N is a flat vector bundle, then there is a natural
pullback (F ∗V, F ∗∇V ) which is again a flat vector bundle. With this definition, the analogue of
Proposition 1.6 holds. The complex (Ω•(M ;V ),∇V ) is called the de Rham complex with local
coefficients in the flat vector bundle (V,∇V ). Later on, we will use the letter F instead of V , and
we will sometimes write d or dM instead of ∇V .

1.c. Ray-Singer torsion. We introduce the Ray-Singer analytic torsion ([RS]). The value of τ
in (1.1) is independent of the choice of cellular structure S chosen on M and the complex C•(S;F )
defined by it. This suggests to replace C•(S;F ) by a different complex which is natural (does
not depend on extra choices)—the de Rham complex. Unfortunately, we still need to choose a
Riemannian metric on M .

Let gTM be a Riemannian metric on M , and let d volM ∈ Ωn(M ; o(M)) denote the induced
Lebesgue measure on M . Here, o(M) = ΛmaxT ∗M → M is the orientation line bundle, which is
trivial if M is orientable. Let gF be a metric on the flat vector bundle (F,∇F ) → M which is
parallel, i.e.,

(1.10) ∇F gF = 0 , or equivalently X
(
gF (v, w)

)
= gF

(
∇F

Xv, w
)

+ gF
(
v,∇F

Xw
)

for all X ∈ X(M) and v, w ∈ Γ(F ). The metrics gTM on TM and gF on F induce a metric gT∗M,F

on Λ•T ∗M ⊗ F , and an L2-metric gT∗M,F
L2

on Ω•(M ;F ) by

gT∗M,F
L2

(η, θ) =
∫

M

gT∗M,F (ηp, θp) d volM (p) .

Vector fields X ∈ X(M) act on Ω•(M ;F ) in several ways. Let us define the operators ε (exterior
multiplication) and ι (interior multiplication) by

εXη = gTM (X, · ) ∧ η and ιXη = η(X, . . . ) .

Then ι is independent of gTM . If e1, . . . , en is a local orthonormal frame on M and 1 ≤ j ≤ n, we
abbreviate

εj = εej
and ιj = ιej

.

Let ∇TM denote the Levi-Civita connection on M with respect to gTM , then ∇TM and ∇F

induce a connection ∇TM,F on Λ•T ∗M ⊗ F , and we may rewrite (1.5) and (1.7) locally as

dη =
n∑

j=1

εj∇TM,F
ej

η

for a local orthonormal base e1, . . . , en of TM . The adjoint d∗ of d = ∇F with respect to gT∗M,F
L2

is then given by the formula

(1.11) d∗η = −
n∑

j=1

ιj∇T∗M,F
ej

η ,
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because ε and ι are adjoint to each other, and∇TM,F is skewsymmetric by our choice of gF in (1.10).
To find an analytic analogue of (1.1), we observe that for λ > 0,

∂

∂s

∣∣∣
s=0

λ−s = − log λ .

If 0 ≤ λ1 ≤ λ2 ≤ . . . are the eigenvalues of a non-negative formally self-adjoint operator ∆ with
discrete spectrum, we introduce the ζ-function

(1.12) ζ∆(s) =
∑
λi>0

λ−s
i .

Then at least formally,
−ζ ′∆(0) =

∑
λi>0

log λi .

For the Hodge-Laplacian ∆F = (d + d∗)2, by Weyl’s assymptotic formula, the sum in (1.12)
converges for Re(s) ≥ n

2 . Moreover it is known that ζ∆ admits a meromorphic continuation to the
whole complex plane that has no pole at s = 0.

1.13. Definition. Let (F,∇F ) → M be a flat vector bundle with parallel metric gF , let gTM be
a Riemannian metric on M , and let ∆i = (d + d∗)2 be the induced Hodge-Laplacian on Ωi(M ;F ).
Then the Ray-Singer analytic torsion is defined as

T (M ;F ) = −1
2

n∑
i=0

(−1)ii ζ ′∆i(0) .

To compute the Ray-Singer analytic torsion, one may apply the Mellin transform. Let

bi(M ;F ) = dim Hi(M ;F ) ,

χ(M ;F ) =
n∑

i=0

(−1)i dim Hi(M ;F )

and χ′(M ;F ) =
n∑

i=0

(−1)iidim Hi(M ;F ) .

and let NM act on Ωi(M ;F ) by multiplication with i. Once again, the supertrace “str” is an
abbreviation for tr

(
(−1)NM ·

)
.

1.14. Proposition. For Re(s) � 0,

(1) ζ∆i(s) =
1

Γ(s)

∫ ∞

0

ts−1
(
tr
(
e−t∆i)

− bi(M ;F )
)

dt .

There exist a0, a−1 ∈ R such that as t → 0,

(2) str
(
NM e−t(d+d∗)2

)
= a−1 t−

1
2 + a0 + O

(
t
1
2

)
.
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The analytic torsion is given by

(3) T (M ;F ) = −
∫ ∞

1

(
str
(
NM e−t(d+d∗)2

)
− χ′(M ;F )

) dt

2t

−
∫ 1

0

(
str
(
NM e−t(d+d∗)2

)
− a−1 t−

1
2 − a0

) dt

2t
+ a−1 +

a0 − χ′(M ;F )
2

Γ′(1) .

We will encounter a slightly more elegant description in connection with higher torsion forms.

Proof. Let 0 ≤ λ1 ≤ λ2 ≤ . . . denote the eigenvalues of ∆i. For Re(s) > n
2 , we have

ζ∆i(s) =
1

Γ(s)

∑
λj>0

∫ ∞

0

(
t

λj

)s−1

e−t dt

λj

=
1

Γ(s)

∫ ∞

0

ts−1
∑
λj>0

e−tλj dt .

This proves (1). The second claim follows from local calculations, which we omit here.
By (2), we have for Re(s) > 1

2 ,
n∑

i=0

(−1)ii ζ∆i(s) =
1

Γ(s)

∫ ∞

0

(
str
(
NM e−t(d+d∗)2

)
− χ′(M ;F )

) dt

2t
.

The integral over [1,∞) converges for all s, and since Γ(s) has a pole with residuum 1 at s = 0, we
find

− ∂

∂s
|s=0

(
1

Γ(s)

∫ ∞

1

(
str
(
NM e−t(d+d∗)2

)
− χ′(M ;F )

) dt

2t

)
=
∫ ∞

1

(
str
(
NM e−t(d+d∗)2

)
− χ′(M ;F )

) dt

2t
: .

For a function f(t) = a−1 t−
1
2 + a0 + O

(
t

1
2
)
, we find for Re(s) > 1

2 that

1
Γ(s)

∫ 1

0

ts−1 f(t)
dt

2t
=

1
Γ(s)

∫ 1

0

ts−1
(
f(t)− a−1 t−

1
2 − a0

)
dt +

a−1(
s− 1

2

)
Γ(s)

+
a0

Γ(s + 1)
,

and the left hand side describes the meromorphic continuation to Re(s) > − 1
2 with a pole at s = 1

2 .
Together with (1) and (2), we get (3). �

Ray and Singer conjectured the following result, which was later proved independently by
Cheeger and Müller, and which was extended to the case of arbitrary flat vector bundles (nei-
ther acyclic nor with a parallel metric) by Bismut and Zhang.

1.15. Theorem (Cheeger [C], Müller [M1], [M2], Bismut-Zhang [BZ]). Let (F,∇F ) → M be an
acyclic flat vector bundle with a parallel metric gF on a compact Riemannian manifold (M, gTM ),
then

τ(M ;F ) = T (M ;F ) .

Bismut and Zhang not only generalised Theorem 1.15 to bundles that do not carry parallel
metrics, they also proved a variation formula for T . In fact, assume that the metrics gF and gTM

are parametrized by some parameter space B, then we get a function

T (M ;F ): B −→ R .

The tangent bundle TM becomes a bundle over M × B, with a nontrivial connection ∇TM if
the metric gTM varies. Let e(TM,∇TM ) ∈ Ωn(M × B) denotes its Euler form. Also, the L2-
metric gH on the cohomology varies over B. We describe the variation of T (M ;F ) by giving its
total derivative.
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1.16. Theorem (Bismut-Zhang [BZ]). Under the assumptions above,

dT (M ;F ) =
∫

M

e
(
TM,∇TM

)
trF

(
(gF )−1

[
∇F , gF

])
− trH

(
(gH)−1

[
dB , gH

])
.

Bismut-Lott’s main theorem on higher analytic torsion (Theorem 3.16) is an extension of the
theorem above involving higher powers of the logarithmic derivative of the metric.

1.17. Exercise. Prove (1.8) using (1.7). Check that the second Bianchi identity is equivalent
to [∇V , (∇V )2] = 0 using the fact that the Levi-Civita connection ∇TM is torsion free.

2. Torsion forms for complexes of vector bundles

This chapter introduces Chern-Weil theory for flat vector bundles. Moreover, we define a “higher
torsion” for complexes of vector bundles. This higher torsion should be seen as a “toy model” for
the higher analytic torsion of smooth fibre bundles.

2.a. Chern-Weil theory for flat bundles. We recall the Chern character form for vector
bundles with connection and define Kamber-Tondeur classes for flat vector bundles, following [BL]
and [BG].

Let (V,∇V ) → M be a vector bundle over C of rank r with an arbitrary connection. We regard
the curvature of ∇V as (

∇V
)
2 ∈ Ω2(M ; EndV ) = Γ

(
Λ2T ∗M ⊗ EndV

)
.

We extend the usual trace tr: EndV → C to a map

trV = idΛ•T∗M ⊗ tr: Ω•(M ; End V ) −→ Ω•(M ; C) .

Then the Chern character form of (V,∇V ) is defined as

ch
(
V,∇V

)
= trV

(
e−

(∇V )2

2πi

)
∈ Ωeven(M) .

The homogeneous components of ch(V,∇V ) are given by polynomials

ch
(
V,∇V

)
[2j] =

(−1)j

(2πi)j j!
trV

(
(∇V )2j

)
∈ Ω2j(M) .

2.1. Proposition. The form ch(V,∇V ) is closed, i.e.,

(1) d ch
(
V,∇V

)
= 0 ∈ Ωodd(M, C) .

There exist natural classes c̃h(V,∇V,0,∇V,1) ∈ Ωodd(M)/dΩeven(M) depending on two connec-
tions ∇V,0 and ∇V,1 on V , such that

(2) dc̃h
(
V,∇V,0,∇V,1

)
= ch

(
V,∇V,1

)
− ch

(
V,∇V,0

)
.

Proof. To prove (1), we fix a local trivialisation of V over a sufficiently small open subset U ⊂ M
and let∇0 denote the local flat connection that preserves this trivialisation. The exterior differential
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of the trace of a matrix is the trace of the componentwise exterior differential of the matrix. For a
matrix valued function A:U → Mr(C) and any vector valued function v:U → Cr, we have

(dA) · v + A · (dv) = d(A · v) =
(
∇0 ◦A

)
(v) =

[
∇0, A

]
(v) +

(
A ◦ ∇0

)
(v) ,

so in the language of operators on V , we have to write

dA =
[
∇0, A

]
.

Hence

(*) d ch
(
V,∇V

)
= trV

([
∇0, e−

(∇V )2

2πi

])
.

Note that ∇0 −∇V contains no more derivatives, hence

∇0 −∇V ∈ Ω1(M ; EndV ) .

Because the coefficients Λ1T ∗M commute with ΛevenT ∗M , and because the trace of a commutator
of matrices with commuting entries vanishes, we find by (*) that

d ch
(
V,∇V

)
= trV

([
∇V , e−

(∇V )2

2πi

])
+ trV

([
∇0 −∇V , e−

(∇V )2

2πi

])
= trV

([
∇V , e−

(∇V )2

2πi

])
.

The right hand side vanishes because ∇V obviously commutes with (∇V )2 and its powers (cf.
second Bianchi identity). This proves (1).

Next, we construct c̃h. The following construction is universal and will occur more often in the
future. Replace V → M by its pullback

V = V × [0, 1] −→ M = M × [0, 1]

to M × [0, 1]. Then we can find a connection ∇V such that

∇V |M×{0} = ∇V,0 and ∇V |M×{1} = ∇V,1 ,

and this is in fact the decisive step in the proof.
Let s denote the extra coordinate on [0, 1]. We put

c̃h
(
V,∇V,0,∇V,1

)
=
∫

M/M

ch
(
V ,∇V

)
=
∫ 1

0

(
ι ∂

∂s
ch
(
V ,∇V

))∣∣
M×{s} ds .

Let L denote the Lie derivative, then LX = [d, ιX ] := d ◦ ιX + ιX ◦ d by Cartan’s formula. Be-
cause ch

(
V ,∇V

)
is closed, we find

dc̃h
(
V,∇V,0,∇V,1

)
=
∫ 1

0

((
dM×{s} ◦ ι ∂

∂s

)
ch
(
V ,∇V

))∣∣
M×{s} ds

=
∫ 1

0

(
L ∂

∂s
ch
(
V ,∇V

))∣∣
M×{s} ds

= ch
(
V ,∇V

)
|M×{1} − ch

(
V ,∇V

)
|M×{0} ,
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which proves (2).
It remains to show that c̃h(V,∇V,0,∇V,1) is (modulo exact forms) independent of the choice

of ∇V . Here, we proceed as above by regarding a connection on V = V × [0, 1]2 → M × [0, 1]2,
which restricts to ∇i over M × {i} × [0, 1] for i = 0, 1, and to the two chosen extensions ∇V ,i

over M × [0, 1]× {i} for i = 0, 1. By a similar argument as above,∫
M/M

ch
(
V ,∇V ,1

)
−
∫

M/M

ch
(
V ,∇V ,0

)
= d

∫
M×[0,1]2/M

ch
(
V ,∇V

)
= d

∫ 1

0

∫ 1

0

(
ι ∂

∂s
ι ∂

∂t
ch
(
V ,∇V

))∣∣
M×{(s,t)} dt ds . �

From now on we assume that (F,∇F ) → M is a flat complex vector bundle of rank r. Obviously

ch(F,∇F ) = tr
(
e0
)

= r ,

and Chern-Weil theory gives only trivial information on F . Suppose that gF is a metric on F , then
there exists another connection ∇F,∗ defined by

(2.2) d
(
gF (v, w)

)
= gF

(
∇F v, w

)
+ gF

(
v,∇F,∗w

)
.

It is easy to check in local coordinates that ∇F,∗ is given by

(2.3) ∇F,∗ = ∇F + ωF , where ωF =
(
gF
)−1

[
∇F , gF

]
∈ Ω1(M ; End F ) ,

because
d
(
gF (v, w)

)
= gF

(
∇F v, w

)
+ gF

(
v,∇F w

)
+
[
∇F , gF

]
(v, w) .

2.4. Remark.

(1) We have ωF = 0 iff the metric gF is parallel with respect to∇F , i.e., iff (2.2) holds with∇F,∗

replaced by ∇F .
(2) The connection ∇F,∗ is again flat because

0 = d2
(
gF (v, w)

)
= gF

(
(∇F )2v, w

)
+ gF

(
v, (∇F,∗)2w

)
.

By Proposition 2.1 (2), we have

(2.5) dc̃h
(
V,∇F ,∇F,∗) = 0 ,

so πi c̃h(V,∇F ,∇F,∗) defines a cohomology class on M , the odd Chern character of (F,∇F ). This
class is a Kamber-Tondeur class ([KT]) and as such related to the Borel regular classes.

We want to contruct a specific differential form, not just a cohomology class. Therefore, we
consider the connection

∇F = (1− s)∇F + s∇F,∗ +
∂

∂s
ds

on F = F × [0, 1] → M . Because both ∇F and ∇F,∗ are flat,(
∇F
)
2 = s(1− s)

(
∇F∇F,∗ +∇F,∗∇F

)
+ ds

(
∇F,∗ −∇F

)
= −s(1− s)

(
ωF
)
2 − ωF ds
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using (2.3). The Chern character form on M is thus given by

ch
(
F ,∇F

)
= trF

(
e

s(1−s)
2πi (ωF )2

)
+

1
2πi

trF

(
ωF e

s(1−s)
2πi (ωF )2

)
ds .

Integrating over s ∈ [0, 1] gives our preferred representative

cho
(
∇F , gF

)
= πi

∫
M/M

ch
(
F ,∇F

)
:=

1
2

∫ 1

0

trF

(
ωF e

s(1−s)
2πi (ωF )2

)
ds ∈ Ωodd(M) .

(2.6)

The components of cho(∇F , gF ) are given by

cho
(
∇F , gF

)
[2k+1] =

1
2 (2πi)k

trF

(
(ωF )2k+1

) ∫ 1

0

(
s(1− s)

)k
k!

ds ,

so we might write as well

(2.7) cho
(
∇F , gF

)
=

1
2

∫ 1

0

(
s(1− s)

2πi

)
1−NB

2 tr
(
ωF e(ωF )2

)
ds .

2.8. Proposition (Bismut-Lott [BL], Bismut-Goette [BG]). The form cho(∇F , gF ) ∈ Ωodd(M) is
real. We have

(1) d cho
(
∇F , gF

)
= 0 .

Given two metrics gF
0 , gF

1 , there is a natural class c̃ho(∇F , gF
0 , gF

1 ) ∈ Ωeven(M)/dΩodd(M) such
that

(2) dc̃ho
(
∇F , gF

0 , gF
1

)
= cho

(
∇F , gF

1

)
− cho

(
∇F , gF

0

)
.

Proof. To show that cho(∇F , gF ) is real, we use that ωF
X is symmetric with respect to gF for all

vector fields X ∈ X(M). Then we have

(ωF )2k+1
∗

= (−1)k
(
ωF
)
2k+1

because the (2k + 1) arguments in X(M) have to be reordered. The powers of i in our definition
guarantee that we obtain an even form. Because cho(∇F , gF ) represents πi c̃h(V,∇F ,∇F,∗), it is
automatically closed by (2.5), which proves (1).

To prove (2), we extend∇F to a flat connection on F and choose a metric gF with gF
i = gF |M×{i}

for i = 0, 1. We put

c̃ho
(
∇F , gF

0 , gF
1

)
=
∫

M/M

cho
(
∇F , gF

)
.

Our claim follows from exactness of cho
(
∇F , gF

)
precisely as in the proof of Proposition 2.1 (2). The

arguments there also show that the definition of c̃ho(∇F , gF
0 , gF

1 ) is independent of the particular
choice of the extension gF modulo exact forms. �
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2.b. The superconnection formalism. We recall that Franz-Reidemeister torsion was defined
as an invariant of finite-dimensional chain complexes. We will give a generalisation of this invariant
for families of finite-dimensional chain complexes. More precisely, we consider a Z-graded vector
bundle V • with a connection ∇V and a fibrewise map v:V • → V •+1 of degree 1. We obtain a
complex (

Ω•(M ;V •),∇V + v
)

iff (∇V + v)2 = 0. The total operator A′ = ∇V + v is a superconnection, and it describes a toy
version of the de Rham complex of a fibre bundle. Let us introduce the superformalism, which is
basically a formalisation of Koszul’s sign rule.

A superspace is a Z2-graded (complex) vector space

V = V even ⊕ V odd .

We decompose elements v ∈ V into v = veven + vodd with veven ∈ V even and vodd ∈ V odd. We
will sometimes write V 0 = V even and V 1 = V odd if no confusion is possible. For example, each
Z-graded vector space V • becomes a superspace by putting

V even =
⊕

i even

V i and V odd =
⊕
i odd

V i .

Each ungraded vector space W becomes a superspace by setting

W even = W and W odd = 0 .

The tensor product of superspaces V and W is given by

(V ⊗W )i =
⊕

j+k=i

V j ⊗W k

with i, j, k ∈ {0, 1}. The superspaces Hom(V,W ) and End(V ) are defined similarly. Note
that EndV is a superalgebra, i.e., a Z2-graded algebra.

If A is a superalgebra, we define the supercommutator of a ∈ Ai, b ∈ Aj by

[a, b] = a ◦ b− (−1)ijb ◦ a .

A superalgebra is called supercommutative iff all supercommutators vanish. For example, Λ•W is
supercommutative for any (ungraded) vector space W .

On the superalgebra EndV , we define the supertrace strV : End V → C by

str(A) = tr
(
A|V even

)
− tr

(
A|V odd

)
.

The following fact is crucial.

2.9. Proposition. Let V be a superspace, and let A, B ∈ EndV , then

strV ([A,B]) = 0 . �

We define the supertensorproduct A ⊗̂B of two superalgebras A and B as the superspace A⊗B
with the product

(2.10)
(
a0 ⊗̂ b0

)
·
(
a1 ⊗̂ b1

)
= (−1)ij

(
a0 · a1

)
⊗̂
(
b0 · b1

)
if b0 ∈ Bi and a1 ∈ Aj .
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The supertensorproduct of two supercommutative superalgebras is again supercommutative. For
example, for two (ungraded) vector spaces V and W , we have a natural isomorphism of superalge-
bras

Λ•(V ⊕W ) = Λ•V ⊗̂ Λ•W .

A superbundle is a Z2-graded vector bundle. If V → M is a superbundle, then so is Λ•T ∗M⊗V ,
and the Ω•(M ;V •) is a superspace. We have a natural superalgebra

Ω•(M ; End V •) = Γ
(
Λ•T ∗M ⊗̂ EndV

)
.

Any additional structure that preserves the Z2-grading will be called graded, so a graded metric gV

and a graded connection ∇V are of the form

gV = gV even
⊕ gV odd

and ∇V = ∇V even
⊕∇V odd

.

2.11. Definition. Let V be a superbundle. A superconnection on a vector bundle V is an odd
C-linear operator A on Ω•(M ;V ) satisfying

A(α ∧ s) = dα ∧ s + (−1)iα ∧As

for each α ∈ Ωi(M) and each s ∈ Ω•(M ;V ).

In particular, each connection on a vector bundle W is a superconnection if we put W even = W ,
W odd = 0.

2.12. Proposition. Let A be a superconnection on a superbundle V , then for any graded connec-
tion ∇V , we have

(1) A = ∇V +
∑

i

ai with ai ∈
{

Ωi(M,Endodd V ) i even, and

Ωi(M,Endeven V ) i odd.

Conversely, every A of the form (1) is a superconnection.
For every superconnection A on a superbundle V , we have

A2 ∈ Ω•(M ; End V )even .

Motivated by (1.8), we call A2 the curvature of the superconnection A.
We will refer to ∇V + a1 and the (ai)i 6=1 as the components of A.

Proof. Clearly, a := A−∇V is an Ω•(M)-linear operator on Ω•(M ;V ) and can thus be represented
by an element of Ω•(M ; End V ). The precise form of a follows because a is odd. The converse is
also easy to check.

To prove (2), we check that for all α ∈ Ω•(M) and all s ∈ Ω•(M ;V ), we have

A2(α ∧ s) = α ∧A2s ,

so A2 is Ω•(M)-linear and thus A2 ∈ Ω•(M ; End V ). It is clear that A2 is even. �

To give some meaning to Proposition 2.12, let us see how a superconnection acts. For α ∈ Ωj(M)
and v ∈ Γ(V k), we have(

∇V +
∑

ai

)
(α⊗ v) = (−1)jα ∧∇V v +

∑
(−1)ijα ∧ aiv .
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This is compatible with the curvature formula

(2.13)
(
∇V +

∑
ai

)2

=
(
∇V
)
2 +

∑
i

[
∇V , ai

]
+
∑
i,j

ai · aj ,

where the products in the last term have to be taken in the sense of (2.10). Note that [∇V , ai]
is an anticommutator because both ∇V and ai are odd. Still, [∇V , ai] is a derivative of ai by
Exercise 2.36.

In many respects, superconnections are as well behaved as connections. For example, let NM

denote the number operator on Ω•(M), which acts as multiplication by k on Ωk(M). Similarly,
λNM

acts as multiplication by λk on Ωk(M). For a superbundle V with superconnection A, we put

ch(V,A) = (2πi)−
NM

2 str
(
e−A2)

.

Then the analogue of Proposition 2.1 holds, in particular

(2.14) [ch(V,A)] =
[
ch
(
V,∇V

)]
=
[
ch
(
V even,∇V even)]

−
[
ch
(
V odd,∇V odd)]

.

To prove this, one proceeds as in the proof of Proposition 2.1, but uses supercommutators instead
of commutators. We will see in Exercise 2.37 that some bundles admit flat superconnections even
though they do not admit a flat connection.

2.c. Adjoint Superconnections and odd Chern forms. We now want to transfer the def-
inition of the odd Chern character form cho(∇F , gF ) to the case of a flat superconnection. We
therefore need the notion of an adjoint superconnection. We will use the description in [G1], which
is equivalent to the original definition in [BL].

A graded metric gV = gV even ⊕ gV odd
on V induces a pairing

gV : Ω•(M,V )⊗ Ω•(M ;V ) −→ Ω•(M)

with
(
α ⊗̂ v

)
⊗
(
β ⊗̂ w

)
7−→ 〈α ⊗̂ v, β ⊗̂ w〉 = (−1)

[
deg β

2

]
αβ 〈v, w〉

(2.15)

for α, β ∈ Ω•(M) and v, w ∈ Γ(V ). The factor (−1)[
deg β

2 ] comes from reversing the order of the
one-form components of β. Note the absence of a sign factor (−1)deg V ·deg β ; in particular, the
pairing gV violates our sign convention. The fact that gV is Hermitian is equivalent to the relation

(2.16) 〈β ⊗̂ w,α ⊗̂ v〉 = (−1)
[deg(αβ)

2

]
〈α ⊗̂ v, β ⊗̂ w〉 ,

where the sign factor is once more equivalent to a reversal of the order of the one-form factors.

2.17. Definition. Define a C-anti-linear operator on Ω•(M ; C) by

(2.18) α∗ = (−1)
[

NB+1
2

]
α .

2.19. Remark. This operator has the following properties:

f
∗

= f for all f ∈ Ω0(B; C),

α∗ = −α for all α ∈ Ω1(B; C),

and (α ∧ β)
∗

= β
∗ ∧ α∗ . for all α, β ∈ Ω•(B; C).

Note that this operator differs from the operator (−1)[
deg( · )

2 ] · encountered in (2.15) and (2.16) by
a factor of (−1)deg( · ).

We let E∗ denote the classical (ungraded) adjoint of an endomorphism E ∈ EndV with respect
to gV , and we let ∇V,∗ denote the adjoint of a connection ∇V .
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2.20. Definition. The adjoint of a differential form α ⊗̂ E ∈ Ω•(B; EndV ) is defined as

(α ⊗̂ E)∗ = (−1)deg α·deg E α∗ E∗ .

The adjoint of a superconnection A = ∇V + a with a ∈ Ω•(M ; EndV ) is given by

A∗ = ∇V,∗ + a∗ .

We call E or A self-adjoint (skew-adjoint) iff E∗ = E or A∗ = A (E∗ = −E or A∗ = −A)
respectively.

2.21. Remark. The definition of A∗ is independent of the splitting A = ∇V + a. For odd ele-
ments E ∈ Ω•(M ; EndV )odd and for superconnections A on V , Definition 2.20 is compatible with
the sign convention of (2.15) in the sense that

0 = 〈E∗v, w〉+ (−1)deg E (deg v+deg w) 〈v,Ew〉

and d〈v, w〉 = 〈A∗v, w〉+ (−1)deg E (deg v+deg w) 〈v,Aw〉

for all v, w ∈ Ω•(M ;V ).
Symmetry of gV together with Definition 2.20 implies that (E∗)∗ = E and (A∗)∗ = A for all

superconnections A and all E ∈ Ω•(M ; EndV ).
It is easy to see from Remark 2.21 that A∗ is flat iff A is. Now we can define cho(A, gV ) as

in (2.7) by

cho
(
A, gV

)
=

1
2

∫ 1

0

(
s(1− s)

2πi

)
NM−1

2 ds strV

(
(A∗ −A) e(A∗−A)2

)
.

The analogue of Proposition 2.8 still holds and can easily be proved using the fact that 1
2 (A + A∗)

is a superconnection for which
1
2
[
A + A∗, A−A∗] = 0

by flatness of A and A∗. But in contrary to (2.14), there is in general no easy formula for cho(A, gV )
in terms of usual connections and metrics only.

We therefore consider a very special case. Assume that A′ = ∇V + ∂ is a superconnection on a
Z-graded vector bundle V , and that ∂ ∈ EndV is of degree 1, so

∂ ∈
⊕

i

Hom
(
V i, V i+1

)
.

Then A′ is flat iff the following three conditions hold.

∂2 = 0 i.e., (V, ∂) is a family of complexes,

[∇V , ∂] = 0 i.e., ∂ is parallel with respect to ∇V ,

and (∇V )2 = 0 i.e., each (V i,∇V i

) −→ M is a flat bundle.

Let NV ∈ EndV denote the number operator of V which acts on V i as multiplication by i. We
fix a Z-graded metric gV and regard the family

(2.22) gV
t ( · , · ) = gV (tN

V

· , · ) .
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Let A′′
t denote the adjoint of A′ with respect to gV

t , then

A′′
t = ∇V,∗ + t ∂∗ .

Put

(2.23)
Ã′

t = t
NV

2 A′ t−
NV

2 = ∇V +
√

t ∂

and Ã′′
t = t

NV

2 A′′
t t−

NV

2 = ∇V,∗ +
√

t ∂∗ ,

then Ã′′
t is adjoint to Ã′ with respect to gV , and since trace is invariant by conjugation, we clearly

have
cho
(
Ã′

t, g
V
)

= cho
(
A′, gV

t

)
.

Then clearly
lim
t→0

cho
(
A′, gV

t

)
= lim

t→0
cho
(
Ã′

t, g
V
)

= cho
(
∇V , gV

)
is cohomologous to cho(A′, gV

t ) for all t.
For t →∞, the limit is even more interesting. We note that

(Ã′′
t − Ã′

t)
2 = −(Ã′′

t + Ã′
t)

2 = −t (∂ + ∂∗)2 −
√

t
([
∇V , ∂∗

]
+
[
∇V,∗, ∂

])
−
[
∇V ,∇V,∗] .

Moreover, the operator (∂ + ∂∗)2 is nonnegative, and clearly limt→∞ e−t(∂+∂∗)2 is the projection
onto the kernel of ∂ + ∂∗.

By finite-dimensional Hodge theory, we know that

V = im ∂ ⊕ im ∂∗ ⊕ ker(∂ + ∂∗) ,

and

(2.24) ker(∂ + ∂∗) ∼= H•(V •, ∂) =: H −→ M .

Moreover, since ∂ is parallel with respect to the flat connection ∇V , the bundle H carries a flat
connection ∇H. Also, the isomorphism (2.24) induces a metric gH on H by pulling back gV .
Since limt→∞ e−t(Ã′t+Ã′′t )2 is projection onto ker(∂ + ∂∗) in degree 0 with respect to Ω•(M), this at
least motivates the following result from [BL].

2.25. Theorem ([BL]). We have

lim
t→∞

cho
(
A′, gV

t

)
= lim

t→∞
cho
(
Ã′

t, g
V
)

= cho
(
∇H, gH

)
;

in particular, cho(∇V , gV ) and cho(∇H, gH) are cohomologous.

I do not know of a proof of this result that entirely avoids the superconnection formalism, even
though no superconnection is visible in the final formula.

Proof. With f(z) = z ez2
, we may write

cho
(
Ã′

t, g
V
)

=
1
2

∫ 1

0

(
s(1− s)

2πi

)
NM−1

2 strV

(
f
(
Ã′′

t − Ã′
t

))
ds
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√
t r0i

−
√

t r0i

S1

Γ+
t

Γ−t

1

1

1

Figure 2.27. The contour Γt = S1 ∪ Γ+
t ∪ Γ−t .

We want to compute f(Ã′′
t − Ã′

t) using holomorphic functional calculus. First of all, for each k
there exist C and c > 0 such that

(2.26)
∣∣∣∣∂kf(z)

∂zk

∣∣∣∣ ≤ C e−c|z| for all z with |Im z| < r .

Next, the spectrum of (∂∗−∂) is purely imaginary and contained in
(
(−∞,−r0)∪{0}∪(r0,∞)

)
i

for some r0 > 0. In particular, the spectrum of
√

t(∂∗ − ∂) is contained within the contour Γt =
S1 ∪ Γ+

t ∪ Γ−t depicted in Figure 2.27.
By holomorphic functional calculus,

f
(
Ã′′

t − Ã′
t

)
=

1
2πi

∫
Γt

f(z) dz

z −
(
Ã′′

t − Ã′
t

)
=

1
2πi

∫
Γt

( ∞∑
k=0

(
1

z −
√

t (∂∗ − ∂)
ωV

)k
)

f(z) dz

z −
√

t (∂∗ − ∂)

Note that the sum is finite with k ≤ dim M . We can estimate
∣∣∣ 1
z−
√

t (∂∗−∂)

∣∣∣ by 1 on the whole

contuor Γt, and
∣∣ωV

∣∣ by a constant. Because of (2.26), we find that∣∣∣∣∣ 1
2πi

∫
Γ+

t ∪Γ−t

f(z) dz

z −
(
Ã′′

t − Ã′
t

) ∣∣∣∣∣ = O
(
e−

√
tc
)

.

Let P :V → ker(∂+∂∗) denote the orthogonal projection with respect to gV . On the contour S1,
we estimate ∣∣∣∣ 1

z −
√

t (∂∗ − ∂)
− P

z

∣∣∣∣ ≤ 1√
t r0 − 1

for t sufficiently large. Thus∣∣∣∣∣
∫

S1

f(z)dz

z −
(
Ã′′

t − Ã′
t

) − ∫
S1

( ∞∑
k=0

(
P

z
ωV

)k
)

P

z
f(z) dz

∣∣∣∣∣ = O
(
t−

1
2

)
.
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It remains to check that
P ωV P = P ωH P = P

(
∇H −∇H,∗)P

with respect to the metric gH induced by identifying H with ker(∂ + ∂∗). Then apparently

lim
t→∞

f ′
(
Ã′′

t − Ã′
t

)
= f ′

(
P ωH P

)
and thus

lim
t→∞

cho
(
A′, gV

t

)
= cho

(
∇H, gH

)
. �

2.d. Torsion forms for families of finite dimensional complexes. We refine Theorem 2.25
to an equality of differential forms. We will find that as a correction term, we need the exterior
differential of a form that starts with the Franz-Reidemeister torsion in degree 0, and therefore will
be called a torsion form. It is of course the toy model for the higher analytic torsion.

Recall that by Proposition 2.8 (2), there is a differential form c̃ho(A′, gV
τ , gV

T ) such that

dc̃ho
(
A′, gV

τ , gV
T

)
= cho

(
A′, gV

T

)
− cho

(
A′, gV

τ

)
.

We want to compute this form. Up to a correction term, the analytic torsion will equal the
limit c̃ho(A′, gV

τ , gV
T ) as τ → 0 and T →∞.

We extend A′ trivially to a superconnection A
′
on the bundle

V × (0,∞) −→ B × (0,∞) ,

define ḡV on this bundle such that

ḡV |(p,t) = gV
t |p = gV

(
tN

V

· , ·
)

and let A
′′

denote the adjoint of A
′
with respect to ḡV . Then

A
′
= ∇V + ∂ +

∂

∂t
dt = A′ +

∂

∂t
dt

and A
′′

= ∇V,∗ + t ∂∗ +
(

∂

∂t
+

NV

t

)
dt = A′′

t +
(

∂

∂t
+

NV

t

)
dt .

The form c̃ho(A′, gV
τ , gV

T ) can be defined as

(2.28) cho
(
A′, gV

T

)
=

1
2

∫ 1

0

(
s(1− s)

2πi

)
NB

2 ds

∫
B×(0,∞)/B

strV

((
A
′′ −A

′)
e(A

′′−A
′
)2
)

.

If we write f(z) = zez2
, then the integrand can be written as

strV

(
f
(
A
′′ −A

′))
= strV

(
NV

t
dt f ′

(
A′′

t −A′))
= strV

(
NV

t
f ′
(
Ã′′

t − Ã′
t

))
dt ,

where we have conjugated with t
NV

2 in the last step. Thus

(2.29) c̃ho
(
A′, gV

τ , gV
T

)
=
∫ 1

0

∫ T

τ

(
s(1− s)

2πi

)
NB

2 strV

(
NV f ′

(
Ã′′

t − Ã′
t

)) dt

2t
ds .

Unfortunately, this integral diverges as τ → 0 and T →∞. Let us write

χ′(V ) =
∑

i

(−1)ii rkV i and χ′(H) =
∑

i

(−1)ii rkHi .
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2.30. Proposition ([BL]). As t → 0,

(1) strV

(
NV f ′

(
Ã′′

t − Ã′
t

))
= χ′(V ) + O(t) .

As t →∞,

(2) strV

(
NV f ′

(
Ã′′

t − Ã′
t

))
= χ′(H) + O

(
t−

1
2

)
.

Proof. Clearly,

lim
t→0

strV

(
NV f ′

(
Ã′′

t − Ã′
t

))
= strV

(
NV f ′

(
∇V ∗

−∇V
))

= strV

(
NV f ′

(
ωV
))

.

We note that ωV preserves the Z-grading and thus commutes with NV . Hence, since f ′(z) =
(1 + 2z2)ez2

is an even function with f ′(0) = 1, we compute

strV

(
NV f ′

(
ωV
))

= f ′(0) strV

(
NV

)
+

1
2

strV

([
NV ωV ,

f ′(ωV )− f ′(0)
ωV

])
= strV

(
NV

)
= χ′(V ) ,

because the supertrace of a supercommutator vanishes. Equation (1) follows because

strV

(
NV f ′

(
Ã′′

t − Ã′
t

))
= strV

(
NV f ′

(
A′′

t −A′))
is a polynomial in t.

By a similar argument as in the proof of Theorem 2.25,

lim
t→∞

strV

(
NV f ′

(
Ã′′

t − Ã′
t

))
= strH

(
NH f ′

(
∇H,∗ −∇H

)))
= strH

(
NH) = χ′(H) .

More precisely, even (2) holds. �

2.31. Theorem ([BL]). The form

(1) T
(
A′, gV

)
= −

∫ 1

0

∫ ∞

0

(
s(1− s)

2πi

)
NB

2

(
strV

(
NV f ′

(
Ã′′

t − Ã′
t

))
− χ′(H)

−
(
χ′(V )− χ′(H)

)
f ′
(√
−t
)) dt

2t
ds

satisfies

(2) dT
(
A′, gV

)
= cho

(
∇V , gV

)
− cho

(
∇H, gH

)
.

Moreover, its component in degree 0 is the Franz-Reidemeister torsion of the fibrewise com-
plex (V, ∂).
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Proof. It follows from Proposition 2.30 that the integral (1) converges. Moreover,

− d

∫ 1

0

∫ T

τ

(
s(1− s)

2πi

)
NB

2

(
strV

(
NV f ′

(
Ã′′

t − Ã′
t

))
− χ′(H)

−
(
χ′(V )− χ′(H)

)
f ′
(√
−t
)) dt

2t
ds = cho

(
A′, gV

τ

)
− cho

(
A′, gV

T

)
.

Equation (2) follows by taking the limits τ → 0 and T →∞.
For the component in degree 0, the integral over s acts as 1. Let us assume that (∂ + ∂∗)2 has

a single eigenvalue λ. If λ = 0, then χ′(V ) = χ′(H) and∫ ∞

0

(
strV

(
NV f ′(0)

)
− χ′(H)

) dt

2t
= 0 .

If λ > 0, then χ′(H) = 0 and

∫ T

τ

(
strV

(
NV f ′

(√
−tλ

))
− χ′(V ) f ′

(√
−t
)) dt

2t

= χ′(V )
∫ τ

τ
λ

f ′
(√
−t
) dt

2t
− χ′(V )

∫ T

T
λ

f ′
(√
−t
) dt

2t

Because λ > 0, by (2.26) clearly

lim
T→∞

∫ T

T
λ

f ′
(√
−t
) dt

2t
= 0

and

lim
τ→0

∫ τ

τ
λ

f ′
(√
−t
) dt

2t
= lim

τ→0

∫ 1

1
λ

f ′
(√
−τt

) dt

2t

= f ′(0)
∫ 1

1
λ

dt

2t
=

1
2

log λ .

Combining these limits, we have

−
∫ T

τ

(
strV

(
NV , f ′

(√
−tλ

))
− χ′(V ) f ′

(√
−t
)) dt

2t
= −χ′(V )

2
log λ .

Decomposing V fibrewise into eigenspaces of (∂ + ∂∗)2, we finally find that

T
(
A′, gV

)
[0] = −1

2
strker(∂+∂∗)⊥

(
NV log

(
(∂ + ∂∗)2

))
= τ(V, ∂) . �



20 SEBASTIAN GOETTE

2.32. Proposition. Assume that the metric gV on V is parallel with respect to ∇V . Then

T
(
∇V + ∂, gV

)
= τ(V, ∂) ∈ R ⊂ C∞(B) ⊂ Ω•(B) .

Proof. In this case, ωV = ∇V,∗ −∇V = 0, so

Ã′′
t − Ã′

t =
√

t
(
∂∗ − ∂

)
is of degree 0 with respect to Ω•(B). �

As an application, assume that we are given a fibre bundle p:M → B with compact fibres and a
function h:M → R such that h|p−1b is a Morse function for each fibre of p. Let C ⊂ M be the set
of fibre-wise critical points, then p̂ = p|C :C → B is a finite covering of B. Along C, the vertical
tangent bundle TX = ker p∗ ⊂ TM splits (uniquely up to homotopy) as

TX|C = T sX ⊕ TuX −→ C

such that d2h is positive on T sX and negative on TuX. We have rkTuX = indh, and we
let o(TuX) = Λind hTuX denote the orientation bundle of TuX, which has a natural flat con-
nection ∇o(T uX). Let (F,∇F ) → M be a flat bundle and define

V = p̂∗F ⊗ o(TuX) −→ B ,

then V inherits a flat connection ∇V from ∇F and ∇o(T uX). The bundle V is Z-graded by the
Morse index indh.

Assume moreover that there exists a vertical metric gTX . such that the vertical gradient∇TXh ∈
Γ(TX) satisfies the Smale transversality condition on every fibre of p. Then over each b ∈ B, there
exists a natural differential ∂ ∈ End1 V such that the bundle

H = H•(V •, ∂) −→ B

is naturally isomorphic to the fibrewise cohomology H•(M/B;F ) of M → B with coefficients in F .
Moreover, the operator ∂ is parallel with respect to ∇V , so we can compute

T
(
∇V + ∂, gV

)
∈ Ωeven(B)

for any choice of metric gV on V . Unfortunately, our assumptions on M → B are so strong
that T (∇V + ∂, gV ) does not give an interesting invariant.

If we drop the fibrewise Smale condition, we already get interesting examples. We have to
replace A′ = ∇V + ∂ by a more general flat superconnection

A′ = ∇V +
∑

i

ai ,

such that at each b ∈ B, ai|b ∈ ΛiT ∗B ⊗Nb, where Nb ⊂ EndV is a certain nilpotent subalgebra.
In this situation, we have to change the definition of the torsion to ensure convergence as t → 0,
see [G1]. In [G2], a relation to Igusa’s definition of higher Franz-Reidemeister torsion in [I] is
established.

2.33. Exercise. Prove Proposition 2.1 (2) by writing

ch
(
V ,∇V

)
= α + β ds
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such that ι ∂
∂s

α = ι ∂
∂s

β = 0. Then check that

d

∫ 1

0

β|M×{s} ds = α|M×{1} − α|M×{0} .

2.34. Exercise. Check (2.3) and prove Remark 2.4 (2) using (2.3).

2.35. Exercise. Prove Proposition 2.9.

2.36. Exercise. Check that with our sign rules, for a ∈ Endodd V , v ∈ V and X ∈ X(M), we have

∇V
X(a · v) = ιX

(
[∇V , a](v)− a · ∇V v

)
.

Then check that the terms [∇V , ai] in (2.13) are indeed derivatives of the components ai.

2.37. Exercise. Construct a flat superconnection A = ∇V + a0 + a1 + a2 on the superbundle V
with V even ∼= V odd ∼= W an ordinary vector bundle, such that

a0 = idW : V even −→ V odd and ∇V + a1 = ∇W ⊕∇W .

In general, V does not admit a flat connection.

3. The higher analytic torsion of Bismut and Lott

We copy the construction of T (A′, gV ) by replacing the bundle V by the fibrewise de Rham
complex of a fibre bundle M → B.

3.a. The de Rham differential as a superconnection. Let M → B be a smooth fibre
bundle, then the exterior differential d on Ω•(M) may naturally be regarded as an example of a
superconnection.

Let TX = ker p∗ ⊂ TM → M denote the vertical tangent bundle. The bundle Λ•T ∗M admits
a natural increasing filtration

0 = F−1Λ•T ∗M ⊂ F0Λ•T ∗M ⊂ · · · ⊂ Fdim BΛ•T ∗M = Λ•T ∗M

given by

FjΛj+kT ∗x M =
{

α ∈ Λj+kT ∗x M
∣∣ ιX0 · · · ιXk

α = 0 for all X0, . . . , Xk ∈ TxX
}

at each point x ∈ M . These vector spaces clearly form bundles, and we have

FjΛ•T ∗M/Fj−1Λ•T ∗M ∼= p∗ΛjT ∗B ⊗̂ Λ•T ∗X ,

where T ∗X is the dual of TX.
Let us choose a horizontal subbundle THM → M , such that

TM = THM ⊕ TX ,

then THM ∼= TM/TX = p∗TB, and we obtain a splitting

Λ•T ∗M ∼=
⊕
j,k

p∗ΛjT ∗B ⊗̂ ΛkT ∗X
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that depends on the choice of THM .
We can define an infinite-dimensional vector bundle

Ω•(M/B) = p∗Λ•T ∗X −→ B by Ω•(M/B)b = Ω•(Xb) .

Then we have

(3.1) Ω•(M) = Ω•
(
B; Ω•(M/B)

)
= Γ

(
Λ•T ∗B ⊗̂ Ω•(M/B)

)
.

Then the fibrewise de Rham operator d on Ω(Xb)b∈B extends to a global operator

(3.2) dX = id⊗dX .

For a vector field V ∈ X(B), there is a vector field V ∈ X(M) satisfying

V ∈ Γ(THM) and p∗V x = Vp(x) for all x ∈ M ,

the horizontal lift of V . Since vector fields act on forms by the Lie derivative

(
LXα

)
(Y1, . . . , Yk) = X

(
α(Y1, . . . , Yk)

)
+

k∑
i=1

(−1)iα
(
[X, Yi], Y1, . . . , X̂i, , . . . , Xk

)
,

we have a connection ∇M/B on Ω•(M/B) → B given by

(3.3) ∇M/B
V α = LV α

for all α ∈ Γ(Ω•(M/B)) ⊂ Ω•(M) and all V ∈ X(B).
In general, the bundle THM is not integrable, i.e., there are no dim B-dimensional local sub-

manifolds tangent to THM . Even though over some small subset of B, one may choose THM
integrable, there are certain obstructions against the existence of a global integrable complement
to TX. The local nonintegrability is measured by the tensor

Ω ∈ Ω2(B; p∗TX) with Ω(V,W ) = −
[
V , W

]⊥ ∈ Γ(TX)

for all V , W ∈ X(B). To see that Ω is indeed a tensor, note that[
fV , gW

]
− fg

[
V ,W

]
= fV (g) W − gW (f) V ∈ Γ

(
THM

)
.

3.4. Proposition ([BGV]). With respect to the splitting (3.1), the exterior differential d on Ω•(M)
becomes a flat superconnection on Ω•(M/B) = p∗Λ•T ∗X with

d = dX +∇M/B + ιΩ .

Let us note that even though dX is uniquely defined on a single fibre, its action on Ω∗(M) depends
on the choice of THM . Of course, a similar formula as above applies to a flat connection ∇F on a
vector bundle F → M . We define

(3.5) A′ = ∇F = dF
X +∇M/B,F + ιΩ on Ω•(M ;F ) = Ω•

(
B; Ω•(M/B;F )

)
.
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Proof. The operator d is clearly odd. Naturality of d implies that for α ∈ Ωk(B), β ∈ Ω•(M), one
has

d(p∗α ∧ β) =
(
p∗dα

)
∧ β + (−1)kp∗α ∧ dβ .

By (3.1), d is thus a superconnection. It is flat because d2 = 0. The formula for d follows by a
careful study of (1.5). �

Since we want to study the class cho(A′) of the flat superconnection A′, we have to define a
suitable family of metrics on Ω

•
(M/B;F ) → B = B × R> as in (2.22). We start by choosing

metrics gTX on TX and gF on F . For t > 0, the metric 1
t gTX induces a fibrewise volume

form t−
n
2 d volX and together with gF , we get a metric gT∗X,F

t on Λ•T ∗X ⊗ F . Together, these
metrics define an L2-metric ḡM/B;F on Ω

•
(M/B;F ) → B with

ḡM/B;F |(b,t) =
∫

Xb

gT∗X,F
(
tN

X−n
2 · , ·

)
d volX .

Let A′ = A′+ ∂
∂t dt be the trivial extension of A′ to Ω

•
(M/B;F ). We compute the adjoint A′′ of A′

with respect to ḡM/B;F |(b,t).
The adjoint of dF

X clearly is t dF,∗
X as in (1.11). Because ε is adjoint to ι, the adjoint of ιΩ is − 1

t εΩ

because of the signs in Definition 2.17 and Definition 2.20.
The adjoint of ∇M/B,F + ∂

∂t dt involves the shape operator S ∈ Ω1(B; p∗ EndTX) given by

S(V ) = −
(
gTX

)−1 LV gTX ∈ Γ(EndTX)

for all V ∈ X(B), where we regard gTX :TX → T ∗X. The operator S(V ) is selfadjoint with respect
to gTX for all V , and H(V ) = trTX(S(V )) is the mean curvature of the fibres of M → B in the
corresponding horizontal direction—this can be defined solely in terms of a vertical metric.

We let S act as a formal derivative on Ω•(M/B) by(
S(V ) α

)
(X1, . . . , Xk) = α

(
S(V )X1, X2, . . . , Xk

)
+ · · ·+ α

(
X1, . . . , Xk−1, S(V ) Xk

)
.

The adjoint of ∇M/B,F
= ∇M/B + ∂

∂t dt with respect to ḡM/B,F is then given by

(3.6) ∇M/B,∗
= ∇M/B + ωF ( · ) + S − 1

2
H +

(
NX − n

2

) dt

t
,

because

dḡM/B,F (α, β) =
∫

X

(
L · +

∂

∂t
dt

)(
gT∗X,F

(
tN

X− n
2 α, β

)
d volX

)
=
∫

X

gT∗X,F
(
tN

X− n
2 L ·α, β

)
d volX

+
∫

X

gT∗X,F

(
tN

X− n
2 α,L · β + ωF ( · )β +

(
gT∗X,F

)−1
(
L · gT∗X,F

)
β

+
(
NX − n

2

) dt

t
β + d vol−1

X

(
L · d volX

)
· β
)

d volX

=
∫

X

(
gT∗X,F

(
∇M/B

α, β
)

+ gT∗X,F
(
α,∇M/B,∗

β
))

d volX .
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In particular,

A′′ − A′ =
(
t dF,∗

X − dF
X

)
+
(

S − 1
2

H + ωF ( · )
)
−
(

1
t

εΩ + ιΩ

)
+
(

NX − n

2

)
dt

t

∈ Ω•
(
B; EndΩ•(M/B;F )

)
.

As a difference of two superconnections, the formula above should not contain any differentials.
This is in fact true if we view the differential operator dF,∗

X − dF
X in degree 0 as an endomorphism

of Ω•(M/B;F ). As in (2.23), we conjugate with t
NX

2 and put

X̃ = t
NX

2
(
A′′ − A′

)
t−

NX

2

=
√

t
(
dF,∗

X − dF
X

)
+
(

S − 1
2

H + ωF ( · )
)
− 1√

t

(
1
t

ε + ι

)
Ω

+
dt

t

(
NX − n

2

)
.

(3.7)

3.b. Generalised Dirac and Laplace operators. Our formula for odd Chern classes forces us to
consider strΩ(M/B;F )

(
(A′′−A′) e(A′′−A′)2), so we have to check that e(A′′−A′)2 and (A′′−A′) e(A′′−A′)2

are trace class operators. We do this by showing that these operators are generalised (even and
odd) heat operators.

For v ∈ TX ∼= T ∗X, we define

c(v) = εv − ιv and ĉ(v) = εv + ιv .

Then c defines a Clifford action of T ∗M on Λ•T ∗M with respect to the degenerate metric gT∗X ,
and ĉ defines an anti-Clifford action, and these actions anticommute, so

0 = c(v) c(w) + c(w) c(v) + 2gT∗X(v, w)

= ĉ(v) ĉ(w) + ĉ(w) ĉ(v)− 2gTX(v, w)

= c(v) ĉ(w) + ĉ(w) c(v) .

We fix a local orthonormal basis e1, . . . , en of TX ∼= T ∗X and a basis en+1, . . . , em of TX⊥ ∼=
(THM)∗. Let e1, . . . , em denote the dual basis. We abbreviate ck = c(ek) and ĉk = ĉ(ek)
for 1 ≤ k ≤ n.

With this notation, we have

(
dF,∗

X − dF
X

)
= −

n∑
k=1

(
ιk ∇T∗X,F,∗

ek
+ εk ∇T∗X,F

ek

)
= −

n∑
k=1

(
ĉk ∇T∗X,F,u

ek
− 1

2
ck ωF (ek)

)
,

where

∇T∗X,F,u =
1
2
(
∇T∗X,F

ek
+∇T∗X,F,∗

ek

)
= ∇T∗X,F

ek
+

1
2

ωF .

We denote the coefficients of S − 1
2H by

sαkl = gTX
(
S(eα)ek, el

)
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for 1 ≤ i, j ≤ n and n < α ≤ m, then sαkl = sαlk. The tensor S − 1
2H can be expressed as

S − 1
2
H =

m∑
α=n+1

n∑
k,l=1

sαkl ε
α

(
εkιl −

1
2

δkl

)

=
1
4

m∑
α=n+1

n∑
k,l=1

sαkl ε
α
((

ĉk + ck

)(
ĉl − cl

)
− 2δkl

)
=

1
2

m∑
α=n+1

n∑
k,l=1

sαkl ε
αck ĉl .

Finally, with

Ω(eα, eβ) =
n∑

k=1

ωαβkek ,

we get

−ιΩ − εΩ = −1
2

∑
α,β

ωαβk εαεβ ĉk .

To understand the operator X̃ better, we regard it on a single fibre for fixed t, but with coefficients
in the exterior algebra of the base,

X̃|(b,t) ∈ Λ•T ∗(b,t)B ⊗̂ EndΩ•
(
X(b,t);F

)
⊂ EndΩ•

(
X(b,t); Λ•T ∗(b,t)B ⊗ F

)
.

Then we rearrange the terms of (3.7) as in

X̃|(b,t) = −
√

t
n∑

k=1

ĉk

(
∇T∗X,F,u

ek
+

1√
t

m∑
α=n+1

n∑
l=1

sαkl εαcl +
1
2t

m∑
α,β=n+1

ωαβk εαεβ

)
︸ ︷︷ ︸

=:∇T∗X,F,t
ek

+
√

t

2

n∑
k=1

ωF (ek) ck +
m∑

α=n+1

ωF (eα) εα

= −
√

t
n∑

k=1

ĉk ∇
T∗X,F,t

ek
+
√

t

2

m∑
i=1

µi
t ωF (ei) ,

(3.8)

where ∇T∗X,F,t
is a connection on the bundle Λ•T ∗M ⊗ F |X(b,t) , and where we write

(3.9) µi
t =

{
ci if ei ∈ TX, and
2√
t
εi if ei ∈ THM .

Let ∆
T∗X,F,t

denote the Laplace operator associated to the connection ∇T∗X,F,t
, so

∆
T∗X,F,t

= −
k∑

i=1

(
∇T∗X,F,t

ek
∇T∗X,F,t

ek
−∇T∗X,F,t

∇T X
ek

ek

)
.
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The square of X̃t can be calculated as

X̃2
t = −t ∆

T∗X,F,t
+

t

2

n∑
k,l=1

ĉk ĉl

(
∇T∗X,F,t)2

ek,el
− t

2

m∑
i=1

n∑
k=1

ĉk

[
∇T∗X,F,t

ek
, µi

tω
F (ei)

]
− t

4

m∑
i=1

ωF (ei)2 +
t

8

m∑
i,j=1

µi
tµ

j
t

[
ωF (ei), ωF (ej)

]
.

Usually, the second term on the right is worked out in detail, where it gives scalar curvature and
other interesting details, but this is not important here, we only need to know that this term
contains no more derivatives.

The most important thing to notice is that X̃2
t has the principal symbol of t-times a Laplace

operator. This implies that X̃2
t has discrete spectrum on the compact fibre X, and that the oper-

ators eX̃2
t , X̃te

X̃2
t and X̃2

t e
X̃2

t are trace class. Notice here that since the εα for n < α ≤ m act as
nilpotent operators, they have no influence on spectrum and tracability of X̃2

t , only on the precise
value of the trace in Λ•T ∗B. In particular, it makes sense to define

(3.10) cho
(
A′, gM/B,F

t

)
=
∫ 1

0

(
s(1− s)

2πi

)
NB

2 str
(
X̃t eX̃2

t

)
ds ∈ Ω•(B) .

As before, we will investigate the limits of cho(A′, gM/B,F
t ) as t → 0 and t →∞.

3.c. The asymptotics of cho(A′, gM/B,F
t ). Since we want to compute the odd heat kernel of X̃

associated to the operator X̃ eX̃2
, we introduce an extra exterior variable z that anticommutes with

all exterior and Clifford variables so far, and define

strz(A + zB) = str(B)

if both A and B are trace class operators not containing the variable z. Then we can describe the
supertrace of the odd heat kernel as the z-supertrace of an even heat kernel by

strz

(
eA2+zA

)
= strz

(
(1 + zA) eA2)

= str
(
A eA2)

.

If we define a connection

(3.11) ∇T∗X,F,t,z

ek
= ∇T∗X,F,t

ek
− 1

2
√

t
zĉk

on the bundle Λ•T ∗M ⊗̂ (R⊕ zR)⊗ F |X(b,t) and define ∆
T∗X,F,t,z

ek
as before, then

X̃2
t + z X̃t = −t ∆

T∗X,F,t,z
+

t

2

n∑
k,l=1

ĉk ĉl

(
∇T∗X,F,t,z)2

ek,el
− t

2

m∑
i=1

n∑
k=1

ĉk

[
∇T∗X,F,t

ek
, µi

tω
F (ei)

]
− t

4

m∑
i=1

ωF (ei)2 +
t

8

m∑
i,j=1

µi
tµ

j
t

[
ωF (ei), ωF (ej)

]
+
√

t z

2

m∑
i=1

µi
t ωF (ei) .

(3.12)

In particular, X̃2
t + z X̃t still has the pricipal symbol of a Laplace operator. So without extra effort,

we find that the odd heat kernel is indeed of trace class.
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From this point, we follow a standard procedure in local index theory, see e.g. [BGV]. First, we
locally trivialise Λ•T ∗M ⊗̂ (R ⊕ zR) ⊗ F |X(b,t) by parallel transport along radial geodesics in X

from a fixed point x with respect to the connection ∇T∗X,F,t,z
. We express X̃2 + zX̃ in these new

coordinates. Next, we show that as t → 0, the heat kernel of eX̃2+zX̃ can be computed up to an error
of order o(e−ct) using the local describtion of X̃2 + zX̃ obtained above. Finally, the z-supertrace of
the heat kernel involves only those terms with the maximum number of vertical Clifford variables ck

and ĉk. This allows us to perform a Getzler rescaling of the variables ck. We replace the ck by
vertical exterior variables εk and at the same time eliminate the singular factor t−

n
2 . Note that the

new εk has nothing to do with the εk in the definition of ck and ĉk.
After these three steps, the supertrace of the odd heat kernel can be written as an integral

over the fibres of M → B, and the integrand can be computed from the heat kernel of the model
operator. A similar procedure also computes a supertrace that is important later in the definition
of the higher torsion.

3.13. Theorem ([BL]). As t → 0,

str
(
X̃t eX̃2

t

)
=
∫

M/B

χ
(
TX,∇TX

)
trF

(
ωF e(ωF )2

)
+ O

(√
t
)

,(1)

and str
(
NX

(
1 + 2X̃2

t

)
eX̃2

t

)
=

n

2
χ
(
H
)

+ O
(√

t
)

.(2)

In particular

(3) lim
t→0

cho
(
A′, gM/B,F

t

)
=
∫

M/B

χ
(
TX,∇TX

)
cho
(
∇F , gF

)
.

The details are given in Section 3.e.
We now investigate the behaviour of cho(A′, gM/B,F

t ) as t →∞. The only difference with respect
to the proof of Theorem 2.25 is that V is replaced by an infinite dimensional bundle. The crucial
facts are

(1) the operator X̃t is skew-adjoint, has discrete spectrum, and is of trace class, and
(2) the kernel of X̃t forms a bundle H → B.

These facts ensure that for each sufficiently small subset of B, we have a constant r0 > 0 such
that

√
t r0 separates 0 from the rest of the spectrum of X̃, and we can again employ holomorphic

functional calculus, using the contour Γt of Figure 2.27.

3.14. Theorem ([BL]). As t →∞,

str
(
X̃t eX̃2

t

)
= strH

(
ωH e(ωH)2

)
+ O

(
t−

1
2

)
,(1)

and str
(
NX

(
1 + 2X̃2

t

)
eX̃2

t

)
= χ′

(
H
)

+ O
(
t−

1
2

)
.(2)

In particular,

(3) lim
t→∞

cho
(
A′, gM/B,F

t

)
= cho

(
∇H, gHL2

)
.

This implies that

(4) cho
(
∇H
)

=
∫

M/B

χ(TX) cho
(
∇F
)
∈ H•(B) .
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3.d. The higher analytic torsion form. As in Section 2.d, we refine Theorem 3.14 (4) to an
equality of differential forms. By (3.7), we are led to consider the expression

c̃ho
(
A′, gM/B;F

τ , g
M/B;F
T

)
=
∫ 1

0

∫ T

τ

(
s(1− s)

2πi

)
NB

2 str
((

NX − n

2

)
f ′
(
X̃t

)) dt

2t
ds

with f(z) = z ez2
as before.

Let us first understand the simpler expression str
(
f ′(X̃t)

)
. By the arguments of Section 3.e

below, we know that
lim
t→0

str
(
f ′
(
X̃t

))
= χ(X) rk(F ) = χ(H) .

The expression str
(
f ′(X̃t)

)
is almost independent of t, because by (3.7),

X̃t =
√

t t−
NB

2 X̃1 t
NB

2 ,

hence

str
(
f ′
(
X̃t

))
= t−

NB

2 str
(
f ′
(√

tX̃1

))
,

and
∂

∂t
str
(
f ′
(√

tX̃1

))
=

1
2
√

t
str
(
X̃1 f ′′

(√
tX̃1

))
=

1
4
√

t
str
([

X̃1, f
′′(√tX̃1

)])
= 0 .

By the last two equations,

(3.15) str
(
f ′
(
X̃t

))
= t−

NB

2 str
(
f ′
(
X̃1

))
= χ(H) for all t ≥ 0 .

So far,

c̃ho
(
A′, gM/B;F

τ , g
M/B;F
T

)
=
∫ 1

0

∫ T

τ

(
s(1− s)

2πi

)
NB

2 str
(
NX f ′

(
X̃t

)) dt

2t
ds− n

4
log

T

τ
χ(X) rkF .

Since the second term is an overall constant and has no exterior derivative, we will drop it when
we define the torsion. Once more, both limits τ → 0 and T → ∞ diverge, see Theorem 3.13
and Theorem 3.14. As in Theorem 2.31, we can eliminate the divergences in the definition of the
analytic torsion

3.16. Theorem ([BL]). The form

(1) T
(
THM, gTX ,∇F , gF

)
= −

∫ 1

0

∫ ∞

0

(
s(1− s)

2πi

)NB(
str
(
NX f ′

(
X̃t

))
− χ′(H) f ′(0)

+
(
χ′(H)− n

2
χ(X) rkF

)
f ′
(√
−t
)) dt

2t
ds

satisfies

(2) dT
(
THM, gTX ,∇F , gF

)
=
∫

M/B

e
(
TX,∇TX

)
cho
(
∇F , gF

)
− cho

(
∇H, gHL2

)
.

Moreover, its component in degree 0 is the Ray-Singer torsion of the corresponding fibre.



ANALYTIC TORSION FOR FAMILIES 29

Proof. Convergence of (1) and equation (2) are shown as in the proof of Theorem 2.31. For the
last statement, one has to work a little harder, see [BL]. �

In general, the form T (THM, gTX ,∇F , gF ) is not closed, and thus not very helpful. In fact,
often a small perturbation of THM , gTX or gF can alter T (THM, gTX ,∇F , gF ) considerably. We
have the following variation formula

(3.17) T
(
THM1, g

TX
1 ,∇F , gF

1

)
− T

(
THM0, g

TX
0 ,∇F , gF

0

)
=
∫

M/B

(
ẽ
(
TX,∇TX

0 ,∇TX
1

)
cho
(
∇F , gF

0

)
+ e
(
TX,∇TX

1

)
c̃ho
(
∇F , gF

0 , gF
1

))
− c̃ho

(
∇H, gHL2,0, g

H
L2,1

)
modulo dΩ•(B) .

Fortunately, in certain situations, we can get rid of the dependence on the secondary data THM ,
gTX and gF . Let ( · )[>0] denote the sum of the homogeneous parts of a form on B that are of
degree > 0.

3.18. Theorem. Assume that both (F,∇F ) → M and (H,∇H) carry parallel metrics, say gF

and gH . Then the form (
T
(
THM, gTX ,∇F , gF

)
+ c̃ho

(
∇H, gH, gHL2

))[>0]

is closed and its cohomology class is independent of gF and gH .

3.19. Definition. If (F,∇F ) → M and (H,∇H) carry parallel metrics gF and gH , we define the
higher analytic torsion of M → B with coefficients in F as

T (M/B;F ) =
(
T
(
THM, gTX ,∇F , gF

)
+ c̃ho

(
∇H, gH, gHL2

))[>0]

.

This is the class that can be compared against any of the topological definitions of torsion. More-
over, it can be used to detect that certain fibre bundles are homeomorphic but not diffeomorphic.

Proof of Theorem 3.18. Let gF
0 and gF

1 be two parallel metrics on F . Then the family (gF
t )t∈[0,1]

with
gF

t = (1− t) gF
0 + t gF

1

is a family of parallel metrics. Hence, for all t, the connection ∇F is metric and thus ωF
t = 0. In

particular, modulo exact forms,

c̃ho
(
∇F , gF

0 , gF
1

)
=
∫ 1

0

∫ 1

0

(
s(1− s)

2πi

)NB

tr
((

gF
t

)−1 ∂gF
t

∂t
f ′(0)

)
dt ds ∈ Ω0(B) .

Now, the theorem follows from (3.17). �

3.e. Small time limits. We sketch the main steps in the proof of Theorem 3.13 as outlined in
Section 3.c. We start from equation (3.12).

First, we have to compute the curvature of the connection ∇T∗X,F,t,z
on the vector bun-

dle Λ•T ∗M ⊗ F ⊗ (R⊕ zR)|X , which will appear a few times later on. Recall that

∇T∗X,F,t,z

ek
= ∇T∗X,F,u

ek
+

1√
t

m∑
α=n+1

n∑
l=1

sαkl εαcl +
1
2t

m∑
α,β=n+1

ωαβk εαεβ − 1
2
√

t
zĉk
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by (3.8) and (3.11), where ∇T∗X,F,u
ek

is the tensor product connection of the Levi-Civita connec-
tion ∇T∗X on Λ•T ∗X, the trivial connection on p∗Λ•T ∗B and the unitary connection ∇F + ωF

2
on F . We compute

(3.20)
(
∇T∗X,F,t,z

)2

ek,el

=
(
∇T∗X

)
2
ek,el

+
(
∇F +

ωF

2

)2

+
1√
t

m∑
α=n+1

εα c
((
∇TX

ek
S(eα)

)
el

)
− 2

t

n∑
α,β=m+1

〈S(eα)ek, S(eβ)el〉 εα εβ +
1
2t

n∑
α,β=m+1

〈∇TX
ek

Ω(eα, eβ), el〉 εα εβ .

The first two terms can also be evaluated more explicitly. Because T ∗X is isometric to TX, we
have (

∇T∗X
)
2
ek,el

=
n∑

p,q=1

〈RTX
ek,el

ep, eq〉εqιp

=
1
4

n∑
p,q=1

〈RTX
ek,el

ep, eq〉(ĉp + cp)(ĉq − cq)

=
1
4

n∑
p,q=1

〈RTX
ek,el

ep, eq〉 (ĉpĉq − cpcq)

(3.21)

for symmetry reasons. Also, since both ∇F and ∇F,∗ = ∇F + ωF are flat, we find that(
∇F +

ωF

2

)2

=
1
4
(
∇F +∇F,∗)2 = −1

4
(
∇F,∗ −∇F

)
2 = −1

4
(
ωF
)
2 .

Next, we need the following important observation by Bismut ([BGV]). The bundle TX → M
carries a natural metric connection ∇TX extending the Levi-Civita connection on TX → X that
was used so far, depending on gTX and THM , given for horizontal lifts V of vector fields V on B
by

(3.22) ∇TX
V

= LV +
1
2
(
gTX

)−1LV gTX = LV − 1
2

S(V ) .

The nice fact about this connection is that its curvature RTX collects some of the nasty terms
in (3.20). This should be viewed as a generalisation of a well-known symmetry of the Levi-Civita
connection, see e.g. [BGV]. Using the notation µt introduced in (3.9), we get
(3.23)(

∇T∗X,F,t,z
)2

ek,el

=
1
4

n∑
p,q=1

〈RTX
ep,eq

ek, el〉 ĉpĉq −
1
4

m∑
p,q=1

〈RTX
ep,eq

ek, el〉µp
t µ

q
t −

1
4
[
ωF (ek), ωF (el)

]
.

We insert the above into equation (3.12) and obtain

X̃2
t + z X̃t = −t∆

T∗X,F,t,z − tκ

4
− t

8

m∑
p,q=1

〈RTX
ep,eq

ek, el〉 ĉk ĉl µ
p
t µ

q
t

− t

8
ĉk ĉl

[
ωF (ej), ωF (ek)

]
− t

2

m∑
i=1

n∑
k=1

ĉkµi
t

(
∇T∗X,F,u

ek
ωF
)
(ei)

− t

4

m∑
i=1

ωF (ei)2 +
t

8

m∑
i,j=1

µi
tµ

j
t

[
ωF (ei), ωF (ej)

]
+
√

t z

2

m∑
i=1

µi
t ωF (ei) ,

(3.24)
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where we have used that
n∑

k,l,p,q=1

〈RTX
ep,eq

ek, el〉 ĉk ĉlĉpĉq = −2κ .

In the next step, we fix b ∈ B and q ∈ Mb = p−1(b). We choose geodesic normal coordinates x1,
. . . , xn of p−1(b) around q and trivialize Λ•T ∗M ⊗Λ•T ∗Mb⊗F ⊗ (R + zR) by parallel translation
along radial geodesics with respect to the connection ∇TX,F,t,z

.
Let us point out that the coordinate functions give rise to a basis dx1, . . . , dxn of T ∗X. At q,

we fix forms ei1...ik |q ∈ Λ•T ∗q M for 1 ≤ i1 < · · · < ik ≤ m, with ei1...ik |q = dxi1 ∧ · · · ∧ dxik
|q

if 1 ≤ i1 < · · · < ik ≤ n. These forms are extended ∇TX,F,t,z
-parallelly along radial geodesics in X.

Away from q, we no longer have dxi = ei.
In these new coordinates, the connection ∇TX,F,t,z

itself takes the form

∇TX,F,t,z

ek
= ∂k −

1
2

(
∇TX,F,t,z

)2

ek,R
+ O

(
|R|2

)
= ∂k −

1
8

(
n∑

p,q=1

〈RTX
ep,eq

ek,R〉 ĉpĉq −
m∑

p,q=1

〈RTX
ep,eq

ek,R〉µp
t µ

q
t

−
[
ωF (ek), ωF (R)

])
+ O

(
|R|2

)
,

whereR =
∑

i xi∂i denotes the radial vector field emanating from the point q. For later applications
it is important that the correction term O(|R|2) consists of terms with at most two variables of
type µi

t, ĉj , or z. This is is due to the following two facts. First, the curvature RTX takes its
values in the Lie algebra so(T ∗X), which can be described by cicj or ĉiĉj , depending on its action
on Λ•T ∗M . Second, equation (3.20) also involves only products of the type ĉiĉj or µi

tµ
j
t .

One also has to be careful with the Clifford multiplications c(X) and ĉ(X). With respect to the
bases chosen above, they have to be replaced by

ci 7 ci −
2√
t

n∑
α=m+1

εα S(eα)(R, ei) and ĉi 7 ĉi −
1√
t
z 〈R, ei〉 .

Since the correction term is always of the order O(|R|), these terms will not do any harm later on.
Applying the above to (3.24) gives

X̃2
t + z X̃t = t

∑
k

(
∂k −

1
8

( n∑
i,j=1

〈RTX
ei,ej

ek,R〉 ĉiĉj −
m∑

i,j=1

〈RTX
ei,ej

ek,R〉µp
t µ

q
t

−
[
ωF (ek), ωF (R)

]))2

− tκ

4
− t

8

m∑
i,j=1

n∑
k,l=1

〈RTX
ei,ej

ek, el〉 ĉk ĉl µ
i
tµ

j
t

− t

8
ĉk ĉl

[
ωF (ej), ωF (ek)

]
− t

2

m∑
i=1

n∑
k=1

ĉkµi
t

(
∇T∗X,F,u

ek
ωF
)
(ei)−

t

4

m∑
i=1

ωF (ei)2

+
t

8

m∑
i,j=1

µi
tµ

j
t

[
ωF (ei), ωF (ej)

]
+
√

t z

2

m∑
i=1

µi
t ωF (ei) + O(|R|)

(3.25)
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in our new coordinates. Once more, each term in the correction O(|R|) contains at most two of
the variables µi

t. We find that in each such term, the power of
√

t is not smaller than the number
of variables of type µi

t.
It is a classical result that the Schwarz kernels kt(x, y) of heat operators like eX̃2

t+zX̃t have
asymptotic expansion near the diagonal in X as t → 0 with leading term of the order t−

n
2 , whose

coefficients can be constructed locally from the coefficients of the corresponding Laplace-type op-
erator X̃2

t + zX̃t, see [BGV]. We describe the heat kernel

kt(p, q):
(
Λ•T ∗M ⊗ F ⊗ (R⊕ xR)

)
q −→

(
Λ•T ∗M ⊗ F ⊗ (R⊕ xR)

)
p

near the diagonal ∆X = { (q, q) | q ∈ M } ⊂ M ×B M by a sum of monomials of the form

zε ĉj1 · · · ĉjl
µi1

t · · ·µ
ik
t Ai1...ik,j1...jk

with 1 ≤ i1, · · · < ik ≤ m, 1 ≤ j1 < · · · < jl ≤ n, ε ∈ {0, 1} and Ai1...ik,j1...jk,ε ∈ EndF .
The only monomials contributing to the z-supertrace are those containing c1 · · · cn ĉ1 · · · ĉn z, and
for n + 1 ≤ α1 < · · · < αk ≤ m and A ∈ EndF , we have

(3.26) strz

(
z ĉ1 · · · ĉn c1 · · · cn eα1 · · · eαk A

)
= (−1)

[
n
2

]
2n eα1 · · · eαk trF (A) .

For this reason, no information is lost if we do the following Getzler rescaling. We represent ci

by εi − ιi, where the exterior variables εi are purely formal and have nothing to do with the
original exterior variables that still appear in ĉj = εj + ιj . We then look for the term containing
all variables ε1, . . . , εn, ĉ1, . . . , ĉn and z. If we replace

t 7 rt , xi 7 
√

r xi , ∂i 7 
1√
r

∂i ,

ci 7 
1√
r

εi −
√

r ιi , εα 7 εα , and ĉj 7 ĉj ,

the supertrace changes by a factor of r−
n
2 , which cancels with the (rt)−

n
2 in front of the leading

term. This way, the supertrace, which would have been a term of high order in t in the asymptotic
development of the original heat kernel, becomes a term of order r0 in r and thus easy to compute.
Moreover, due to the rescaling of the coordinates xi, we automatically localise near our base point q.

Let us put

(3.27) εp
t =

{
εp for 1 ≤ p ≤ n, and
2√
t
εp for n < p ≤ m.

We apply the Getzler rescaling above to (3.25) and obtain

(3.28) X̃2
t + z X̃t 7 t

∑
k

(
∂k +

1
8

m∑
p,q=1

〈RTX
ei,ej

ek,R〉 εi
tε

j
t

)2

− t

8

m∑
i,j=1

n∑
k,l=1

〈RTX
ei,ej

ek, el〉 ĉk ĉl ε
i
tε

j
t

+
t

8

m∑
i,j=1

εi
tε

j
t

[
ωF (ei), ωF (ej)

]
+
√

t z

2

m∑
i=1

εi
t ωF (ei) + O

(√
r
)

.

Here we have used that each term of the correction O(|R|) in (3.25) involves a power of
√

t at least
as large as the number of variables of type µi

t, so the O(|R|) of (3.25) is completely accounted for by



ANALYTIC TORSION FOR FAMILIES 33

the O(
√

r) above. The limit operator Ht as r → 0 decomposes into several commuting operators,
namely

−t∆ +
t

64

m∑
i,j,k,l=1

〈
RTX

ei,ej
R, RTX

ek,el
R
〉
εi

tε
j
t εk

t εl
t ,

t

4

m∑
i,j=1

n∑
k=1

〈
RTX

ei,ej
ek,R〉 εi

tε
j
t ∂k ,

− t

8

m∑
i,j=1

n∑
k,l=1

〈RTX
ei,ej

ek, el〉 ĉk ĉl ε
i
tε

j
t +

t

8

m∑
i,j=1

εi
tε

j
t

[
ωF (ei), ωF (ej)

]
+
√

t z

2

m∑
i=1

εi
t ωF (ei) .

If we replace 1
4

∑
i,j εi

tε
j
t RTX

ei,ej
by a skew adjoint endomorphism A of TX ∼= Rn, then the first

operator becomes a quantised harmonic oscillator t(∆ − ‖AR‖2 /4), the second an infinitesimal
rotation −t∂AR, and the third an endomorphism of Λ•T ∗X ⊗ F .

By Mehler’s formula, the operator e−t(∆+‖AR‖2/4) has a Schwarz kernel of the form

pt(x, y) = (4πt)−
n
2 det

(
tA

sinh(tA)

)
1
2

e−
1
4t

(〈
x, tA coth(tA) x

〉
− 2
〈
x, tA sinh(tA)−1 y

〉
+
〈
y, tA coth(tA) y

〉)
,

see [BGV]. The operator e−t∂AR is a rotation around 0, which has no effect if we evaluate at x =
y = 0. Exponentiating the third operator gives the endomorphism

e
− t

2

∑
k,l〈Aek, el〉 ĉk ĉl

(
1 +

√
t

2
z ωF

t

)
e

t
4 (ωF

t )2 ,

where we write ωF
t for

∑
i εi

t ωF (ei).
To compute supertraces, we have to extract those terms that are saturated in the variables ci,

ĉj and z. If we assume that our basis is adapted to the skew adjoint matrix A, so Ae2i−1 = aie2i,
we find that

e
− t

2

∑
k,l〈Aek, el〉 ĉk ĉl =

[n/2]∏
i=1

(
cos(tai)− sin(tai) ĉ2i−1ĉ2i

)
,

so the relevant term is

[n/2]∏
i=1

(
− sin(tai)

)
ĉ1 · · · ĉn = det

(
sinh(tA)

) 1
2 ĉ1 · · · ĉn

if n is even and 0 otherwise. Thus if n is even, the relevant term in the heat kernel of eHt along
the diagonal ∆X is simply

(4πt)−
n
2 det

(
tA

sinh(tA)

)
1
2 det

(
sinh(tA)

) 1
2 ĉ1 · · · ĉn

√
t

2
z ωF

t e
t
4 (ωF

t )2

= (4πt)−
n
2 det(tA)

1
2 ĉ1 · · · ĉn

√
t

2
z ωF

t e
t
4 (ωF

t )2 .
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This expression is independent of the choice of coordinates and remains valid if we replace A
again by 1

4

∑
i,j εi

tε
j
t RTX

ei,ej
. The supertrace is given by the terms that are also saturated in the

variables ε1, . . . , εn that have taken the role of c1, . . . , cn. It follows that the supertrace is
independent of t, and we put t = 4 which fits well with our definition of εi

t in (3.27). Then we
have εi

4 = εi, ωF
4 = ωF and ∑

i,j

εi
4ε

j
4 RTX

ei,ej
= 2RTX

· , · .

After all that has been said so far, we find that

strz

(
eH4
)

=
∫

M/B

2n (−1)−
n
2 (16π)−

n
2 det

(
2RTX

) 1
2 trF

(
ωF e(ωF )2

)
=
∫

M/B

e
(
TX,∇TX

)
trF

(
ωF e(ωF )2

)
if n is even, and strz(eH4) = 0 otherwise. The factor 2n (−1)−

n
2 appears because of (3.26), and

integration over the fibre makes sure that only terms containing all of the variables ε1, . . . , εn

enter. We have just proved Theorem 3.13 (1).
The proof of Theorem 3.13 (2) is similar. Because we do not have to consider the formal

variable z, only even powers of ωF appear, but since trF ((ωF )2k) = 0 for k > 0, the bundle F
enters only by its rank. An extra complication is the operator

NX =
1
2

(
n +

n∑
i=1

ĉici

)
,

which undergoes the same rescaling as X̃t. Yet another complication is the factor (1 + 2X̃2
t ); the

easiest way to deal with it consists in differentiating the kernel of esX̃2
t with respect to s, see [BL].

In the formulation of Theorem 3.13 (2) we have also used the Gauß-Bonnet-Chern theorem, by
which ∫

M/B

e
(
TX,∇TX

)
rkF = χ(X) rkF = χ(H) .
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