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Abstract. We calculate 'Se intra-shell wavefunctions of highly doubly exciled two-electron 
atoms by diagonalizing the corresponding Hamiltonian in a SNrmian-type basis set representing 
symmerrically excited electrons. We take into account couplings belween different intra-shell 
manifolds. The 2-dependence of lhe energies of all intra-shell states up IO pnncipd quantum 
numbers N = n = 12 is examined. We investigate the nodal smcture of the WavefunCtiON in 
the manifold N = 8 for nuclear charges Z = 2 and Z = 10 lo examine the validity of the Herrick 
classification scheme. I1 turns out that this scheme appropriately describes the smcture of the 
lower stales in the multiplets but it breaks down for the higher lying slates. A comparison 
With wavefunclions from large-scale calculations reveals mal the intra-shell diagonalization 
overenimam the radial independenrelmn chancer of the wavefuncrions, A semiclassical 
interpretation of the wavefunctions is given in terms of fundamental modes of the elecwn-pair 
motion. 

1. Introduction 

Since the identification of doubly excited states of helium (Madden and Codling 1963) 
different classification schemes have been proposed for an appropriate description of these 
states (Cooper et al 1963, Macek 1968, Conneely and Lipsky 1978, Henick 1983, Fan0 
1983, Lin 1984, Feagin and Briggs 1986, 1988, Macias and Riera 1991). Among the doubly 
excited resonant state the so-called intra-shell states composed of symmetrically excited 
electrons have retained particular interest. These states correspond to configurations with 
individual principal quantum numbers N = n (in an independent-particle model), see e.g. 
Herrick (1983). Fano (1983). Lin (1984). Macias and Riera (1991). Herrick ef nl (1980), 
Dmitrieva and Plindov (1988), Rost er a1 (1991% b). It has been supposed that they exhibit 
considerable electronic correlation since the electrons occupy similar independent-particle 
shells, ( r l )  % (rz).  Additional interest stems from the (still unsolved) question of whether 
there exists a connection between features of intra-shell states in the limit N = n + 00 

and the correlation which govems the threshold behaviour of two escaping electrons in the 
processes of double photoionization of helium or electron-impact ionization of hydrogen 
(Wannier 1953, Macek'and Feagin 1985). 

The most frequently applied classification scheme of doubly excited states has been 
suggested by Wulfman (1973) and Henick and Sinanoglu (1975) proceeding from a 
group theoretical analysis. It was re-interpreted by Lin (1984) in the framework of the 
hyperspherical adiabatic approach, Briggs and co-workers (Feagin and Briggs 1986, 1988, 
Rost er nl 1991a, b) identified a relation to approximate symmetries obtained within 
a molecular orbital treatment of doubly excited states. Herrick (1983) and co-workers 
suggested a certain coupling of different individual electronic angular momenta for fixed 
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principal quantum numbers ( N . n )  to construct doubly excited symmerry basis (DESB) 
wavefunctions. They introduced two quantum numbers K, T to characterize the DESB 
functions. The D€SB functions were assumed to approximately diagonalize the electron- 
electron interaction within the degenerate hydrogenic manifolds of fixed principal quantum 
numbers N, n. Following this classification scheme doubly excited states are labelled in 
terms of the set of approximate quantum numbers N (K, T ) n  in addition to the fully 
conserved quantum numbers L, S, lr. 

Henick and Sinanoglu (1975) concluded that low-lying DESB functions are in good 
agreement with CI wavefunctions which incorporate inter-shell couplings between subspaces 
of fixed N but varying n. On the other hand Lin and Macek (1984) performed a critical 
comparison between DESB states and full CI functions for N = n = 3 for helium. They 
found that DESB functions insufficiently account for radial correlations, particularly states of 
high bending vibration where the electrons are no longer located predominantly on different 
sides of the nucleus. 

In his treatment Herrick made use of essentially two approximations. (i) He performed 
the diagonalization within each degenerate manifold of states with fixed principal quantum 
numbers N ,  n. (ii) The DESB functions do not diagonalize the electronelectron interaction 
but merely approximately its quadratic inverse. In the present work we calculate resonance 
energies and wavefunctions for symmetrically excited electrons by extending Herrick's 
method through diagonalization of the entire two-electron Hamiltonian using a basis set 
of (in principle) all states with N = n .  i.e. we take into account couplings between different 
intra-shell manifolds. The states under consideration belong to an energy regime where 
different intra-shell manifolds overlap for the case of helium. We study highly excited states 
(N = n = 8) in order to investigate the rearrangement of nodal pattems for the different 
states within a given N-manifold. Examination of nodal structures of wavefunctions have 
been performed only for low doubly excited states (Herrick and Sinanoglu 1975. Lin and 
Macek 1984, Rost er al 1991% b). We find that the radial part of low-lying states in each 
intra-shell manifold seems to separate approximately in independent particle coordinates. 
The corresponding nearly rectangular nodal pattern (with respect to the electron distances 
r , ,  rz) rearranges to a diagonal pattenrfor the states with the highest bending excitation of 
the electrons. 

Herrick's K ,  T classification is frequently used in the literature to label intra-shell states 
of two-electron atoms. One aim of this paper is to investigate how far the approximate 
separability of the wavefunctions, i.e. the conservation of the quantum number K ,  remains 
valid for the higher lying states of each manifold (T 

We compare results of the diagonalization of the full Hamiltonian within a basis set 
of symmetrically excited electrons with the resulting energies and wavefunctions from 
calculations using near-complete basis sets. 

Finally we will show that the nodal structure of specific classes of wavefunctions can 
be understood in terms of fundamental classical periodic motion of the electron pair. Such 
a description is particularly suitable for wavefunctions which cannot be characterized by 
global approximate quantum numbers but which approximately separate in local coordinates 
along and perpendicular to the corresponding classical periodic orbits (Gutzwiller 1990). 
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0 for 'Se states considered here). 

2. Methods of calculation 

2 . I .  Diagonalization techniques 
The non-relativistic Hamiltonian of a two-electron atom (or ion) with nuclear charge 2 
reads (atomic units are used throughout the paper) 
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where E is the Z-scaled energy ( E  + E/Z2), rl ,  r2 are the Z-scaled (ri -+ Zri) electron-' 
nucleus distances, and r12 denotes the Z-scaled distance between the electrons. In the present 
paper we compare energy positions and wavefunctions obtained from the diagonalization of 
the Hamiltonian ( I )  within a basis set of equally excited electrons with converged results 
from ah initio calculations using a truncated but new-complete basis set. 

For both diagonalization procedures we use a transformation of the Schrodinger equation 
into perimetric coordinates (James and Coolidge 1937, Pekeris 1958, Richter et a1 1952) 
which are defined as 

x = rl + r 2  -r12 y = rl - r 2 + r 1 2  z = -rl +rz +r12 x.y,  z 2 0. (2) 

For total angular momentum L = 0 the Hamiltonian (1) transforms to 

(3) a (3)  a 2 2 212 
( x  + Y)(X + Z)(Y + 2) i,,=, a9i a9j x + y  x + z  y + z  

+- 
3 1 

H =  C-P,, (x,y,z)----- 

where (ql, 92.93) are defined as (x, y.  2). The Pf)  are polynomials of degree 3 (see, for 
example, Frost er a1 1964, Zhen 1990). Each degree of freedom is expanded in a Sturmian 
basis set and the product functions are symmetrized (the electron exchange corresponds to 
an exchange of the perimetric coordinates y and z). 

@nnlr(x. Y,Z) = 4n.2Bx) [$!n(BY)$k(BZ) +$dBY)@"(BZ)l. (4) 

The $"(U) are defined by 

&(U) = L.(u)e-v'2 (5) 

and L,(u) are the Laguerre polynomials. One advantage of using perimetric coordinates in 
combination with a Sturmian basis is that the volume element 

dV = $ ( x  +y)(x + z)(y +z)drdydz  (6) 

cancels the singularities in the kinetic energy and in the potential terms if matrix elements 
are calculated. All matrix elements are of simple analytic form. Their calculation requires 
only integer arithmetic and is fast and accurate. In addition, selection rules guarantee that 
most of them vanish. The resulting matrix equation is of banded, sparse structure and allows 
for efficient diagonalization. 

The Schrodinger equation is now transformed into a matrix equation of the particular 
form 

(pi+ go - Eb) YJ = 0. (7) 

The scaled matrices f, o, fi of the kinetic energy, potential, and the unit operator do not 
depend on B .  

Starting from equation (7) we use the method of complex rotation (Reinhardt 1982, Ho 
1983) to calculate accurate ah initio energy positions as reference values for a comparison 
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with the approximate intra-shell diagonalization discussed below. The complex scaling 
leads to a complex symmetric eigenvalue problem, since the scale parameter @ becomes 
complex-valued. However, the matrices i, V, fi are still real symmetric. We use basis 
functions with a total nodal-number N = n + k + m (see equation (4)) up to 50 which 
corresponds to matrix dimensions up to 12051. More details about the numerical solution 
of the complex matrix equation (6) and the different convergence checks we performed can 
be found in (Richter et al 1992, Burgers and Wintgen 1993). 

In addition to our ah initio method we use the following procedure (which we call 
intra-shell diagonalizationj to obtain energies based on a reduced basis set of symmetrically 
excited electrons. 
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(i) We start from the rearranged matrix equation (6) 

in the unrotated form, i.e. for real p. In solving the eigenvalue problem for ,9 (with E / p 2  
fixed) we treat the resonances as bound states. The potential matrix V is composed of a 
part Vndep containing the electron-nuclear interactions I / r i  and a part containing the inter- 
electron potential V, = l / ( Z r , 2 ) .  In a first step we solve the independent electron problem 
(Z = DO), i.e. the matrix equation (Sy is diagonalized to obtain the eigenfunctions QN,” 
with energies E = - 1 / ( 2 N z )  - l/(2n2). 

(ii) In a second step the basis functions *N=,, of symmetrically excited electrons ( N  = n) 
with energy EN = - 1 / N 2  are isolated. Each eigenvalue E N  is N times degenerated. Note 
that with the choice E / p z  = - I  the eigenfunctions are represented e.ractly as a finite sum 
over the Sturmian basis functions with total nodal-number n + k + m 4 2 N .  

(iii) In a third step (which may be omitted) the inter-electron potential is pre-diagonalized 
within each N x N intra-shell block of degenerate states, which accounts for first- 
order degenerate perturbation theory. The symmetry breaking electron-electron interaction 
removes the degeneracy. and the perturbative treatment yields the correct 112 -+ 0 limit 
of the wavefunclions of the full Hamiltonian. 

(iv) In the last (fundamental) step the full Hamiltonian is diagonalized in the intra-shell 
basis set (W,=,l of all N by solving the generalized eigenvalue problem (8) with fi/f?’ 
fixed to -I to obtain eigenvalues - I/p and the corresponding energies E = -pz. 

There is a sophisticated reason, why we use the unusual arrangement (8) of the 
Schriidinger equation. In general Sturmian basis functions are used to solve the Schriidinger 
eigenvalue problem with a fixed scale parameter p for the entire basis set. ,9 is chosen to give 
the approximate fail-off behaviour of the wavefunctions in the particular energy range of 
interest, i.e. p PY I,”. In solving the eigenvalue problem (8) we exploit a scaling property 
with respect to p and do not fix ,9 but E/+’?’ -1. Each diagonalization now yields 
eigenvalues - l ip,  i.e. each eigenstate has its own Sturmian parameter. This procedure has 
the advantage that the scale parameter ,9 of the basis functions is automatically adjusted 
to a suitable value over a large range in  energy. All the basis functions possess the exact 
fall-off behaviour in the independent-electron limit 2 -+ W. This procedure combines the 
advantages of a complete basis set (the Sturmian functions represent bound and continuum 
states) with efficient diagonalization techniques to obtain well converged eigenstates within 
a wide range of energies. 

The steps (i)-(iii) must be performed only once. Only the diagonalization (iv), which 
in the following we will refer lo as intra-shell diqqonalization, depends explicitly on the 
nuclear charge 2. The intra-shell diagonalization contains two approximations: the use 
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of a (truncated) Lz-basis set to describe resonance positions and-more importantly-the 
constraint to a basis set of symmetrically excited electrons. 

For the present calculations we included all independent particle intra-shell basis states 
up to quantum numbers N = n = 14, i.e. 105 basis functions. The corresponding set 
containing all intra- and inter-shell Sturmian basis functions would consist of 1925 states. 

2.2. Relation to Herrick's approach 

There are several differences between the present intra-shell diagonalization and the group 
theoretical approach of Herrick ( i 9 8 3 )  and co-workers. The DESB functions constructed 
by Henick are certain linear combinations of bound state hydrogenic wavefunctions for the 
individual electrons with fixed principal quantum numbers N = n (i.e. they do not represent 
a complete basis set even if inter-shell states with N # n were included). In addition, 
mixing between different intra-shell manifolds is negelected, i.e. N .  n are assumed to be 
good quantum numbers. The DESB functions are constructed to diagonalize the operator 
B2 = (bl - b2)', where bi are the individual electronic Runge-Lenz vectors. Taking into 
account the so-called Pauli replacement (within a fixed electronic shell N )  

3 N  22 
r .  - - bi i.e. B = - 3 N (  r l  -72)  ' - 22 (9) 

the DESB functions approximately diagonalize the operator of the quadratic inverse of the 
inter-electron interaction within a fixed N = n manifold. Therefore the DESB approach 
can be considered as an approximate first order peaurbative treatment of the operator 
I / (Z~T ,  - r2i) .  In comparison to the present intra-shell diagonalization (step (iv)) the DESB 
approach thus makes use of two additional approximations: neither the whole two-electron 
Hamiltonian is diagonalized nor are couplings between different intra-shell manifolds taken 
into account. 

2.3. Classification 

In order to assign quantum numbers to the calculated states we will use Herrick's 
classification scheme. Besides the principal quantum numbers N ,  n,  new quantum numbers 
K ,  T are introduced which replace the individual electron angular momenta /I, i,. T (T = 0 
for S states) is the body-fixed azimuthal quantum number T = L'  B with the body-fixed L- 
axis directed along the inter-electron distance Ti - r2 .  The label K counts the eigenvalues 
of B2 and describes the angular correlation of the electrons. For symmetrically excited 
electrons Herrick and co-workers derived an approximate formula for the average value 
0 1 2  of the angle between the electron radius vectors TI, T:! as function of N ,  K ,  T (Herrick 
et a1 1980) (given here for L = T = 0), 

4N2 - 3 ( N  + K)* - 1 
8 N 2  

( C O S 0 ~ 2 )  = 

For S states K takes the values K = N - ~ l ,  N - 3 , .  . . , - ( N  - I). A positive value of 
K corresponds to a dominant localization of the electrons on opposite sides of the nucleus. 
Thus decreasing values of K label states of increasing electron repulsion. On the other 
hand, negative values of K belong to states of high bending vibrations of the electrons. In 
these states the electrons are located to a large extent on the same side of the ionic core. In 
the limit of large N the correlation angles (10) have a range of values 60" < 0 1 2  < 180". 
This behaviour for symmetrically excited electrons is in striking contrast to correlation 
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angles derived from a dipole-channel treatment for inter-shell states ( N .  n >> N ) ,  where 
-K has the meaning of the electric (Stark) quantum number for the inner electron N and 
(cos @I?) - - K I N  ranges from 0" c ~@12 i 180". 

Herrick's classification is equivalent to labelling schemes originating from different 
approaches as documented i n  the literature: Lin (1984) proposed the (K, T)-classification 
scheme resulting from an empirical analysis of adiabatic hyperspherical potential curves 
and wavefunctions. A derivation of Herrick's quantum numbers within the molecular 
framework was given by Briggs and coworkers (Feagin and Briggs 1986, 1988, Rost et 
al (1991a, b). The whole set of (exact and approximate) quantum numbers finally leads 
to the classification N(K. T)n zs+lL". Since we will deal exclusively with 'Se intra-shell 
states (S = 0, L = T = 0, iz even) we will use the simplified classification ( N .  K )  in the 
following. 

K Richter and D Wintgen 

3. Results 

We will report our results for the energies and expectation values first and then examine 
the structure of the corresponding wavefunctions. Finally, we discuss the validity of the 
classification scheme for highly doubly excited states. 

12 

10 

8 

4 

I I 

0 - d  

1 /Z 
0.0 0.2 0.4 0.6 

Figure 1. Plot of the effective quantum number N,m = I / , @  of 'Se inua-shell ~tates plotted 
against 1/Z. The energies are obtained by using the reduced basis set of symmetrically excited 
elecvons. 

3.1. Energies and expectation values 

In figure I we plot the effective quantum number Ner = I/- as a function of 1/Z to 
get an idea of the global structure of the intra-shell spectrum. The 2-correlation diagram 
is plotted for integer as well as non-integer values of Z to get insight into the systematics 
of the Z-dependence. At the independent particle limit (1/Z = 0) all levels within an 
( N  = n )  intra-shell manifold are N times degenerated. Figure 1 depicts the level splittings 
with increasing perturbation l / ( Z r j z ) .  The lowest levels of each manifold. K = N - I ,  
correspond to electron pairs in a near-collinear arrangement OI2 % iz, i.e. these are states of 
minimal inter-electron repulsion. Higher lying levels with increasing off-collinear parts of 
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Table 1. Energies and expectation values (cosI312) of ISc intra-shell states in helium. Results 
from the intra-shell diagonalization (column 3. 5) are compared with results from ab initio 
calculations (compl. rot.). The stales are labelled by N = n.  K in the classification scheme of 
Henick. The last column conlainrj analytical values from formula (IO). A dash indicates that 
the state is below the ( N  - 1)-threshold. 

-Energies (a") -(cos63,l2) ( 2 = 2 )  -(cosQ~z) (2 = IO) 

N K Intra-shell Comol. rot Intra-shell Comol. rot Inm-shell Eon (10) 

I O  
2 1  
2 -1 

3 2  
3 0  
3 -2 
4 3  
4 1  
4 -1 
4 -3 
5 4  
5 2  
5 0  
5 -2 
5 -4 
6 5  
6 3  
6 1  
6 -1 
6 -3 
6 -5 
7 6  
7 4  
7 2  
7 0  
7 -2 
7 -4 
7 -6 
8 7  
8 5  
8 3  
8 1  
8 - I  
8 -3 
8 -5 
8 -7 

2.8708 
0.771 I 
0.5979 
0.3519 
0.3041 
0.2425 
0.2003 
0.1826 
0.1560 
0.1299 
0.1291 
0. I207 
0.1089 
0.0930 
0.0809 
0.0901 
0.0855 
0.0794 
0.07 10 
0.0614 
0.0553 
0.0664 
0.0636 
0.0600 
0.0555 
0.0495 
0.0434 
0.0403 
0.0509 
0.0491 
0.0469 
0.0441 
0.0405 
0.0362 
0.0324 
0.0307 

29037 
0.7779 
0.6219 
0.3535 
0.3175 
0.2574 
0.2010 
0.1878 
0.1683 
0.1411 
0.1294 
0.1233 
0.1153 
0.1024 
0.0896 
0.0901 
0.0863 
0.0821 
0.0772 
0.0679 
0.0621 
0.0664 
0.0640 
0.0606 
0.0582 
0.0500 
0.0469 
0.0455 
0.0508 
0.0497 
0.0481 
0.0163 
0.0441 
0.0405 
0.0366 
0.0348 

0.054 
0.379 

-0.224 
0.545 

-0.066 
-0.214 

0.643 
0.106 

-0.207 
-0.168 

0.706 
0.233 

-0.083 
-0.256 
-0.120 

0.751 
0.333 
0.026 

-0.193 
-0.243 
-0.098 

0.784 
0.411 
0.117 

-0.081 
-0.262 
-0.207 
-0.067 

0.810 
0.473 
0.205 

-0.014 
-0.172 
-0.264 
-0.163 
-0.132 

0.064 
0.448 

-0.291 
0.601 

-0.033 
-0.351 

0.690 
0.200 

-0.110 
-0.534 
- 
0.329 
0.028 

-0.199 
-0.712 
- 
- 
- 

-0.060 
-0.152 
-0.747 
- 
- 
- 
- 

-0.167 
-0.346 
-0.776 
- 
- 
- 
- 
- 

-0.204 
-0.195 
-0.802 

0,011 
0.366 

-0.337 
0.536 

-0.081 
-0.407 

0.635 
0.091 

-0.216 
-0.442 

0.700 
0.222 

-0.092 
-0.277 
-0.466 

0.746 
0.321 
0.020 

-0.186 
-0.310 
-0.483 

0.780 
0.400 
0.113 

-0.094 
-0.242 
-0.333 
-0.494 

0.806 
0.462 
0.193 

-0.013 
-0.166 
-0.280 
-0.349 
-0.502 

0.000 
0.375 

-0.375 
0.556 

-0.111 
-0,444 

0.656 
0.093 

-0.281 
-0.469 

0.720 
0.240 

-0.120 
-0.360 
-0.480 

0.764 
0.347 

-0.014 
-0.236 
-0.403 
-0.486 

0.796 
0.429 
0.122 

-0.122 
-0.306 
-0.429 
-0.490 

0.820 
0.492 
0.21 1 

-0.023 
-0.211 
-0.352 
-0.445 
-0.492 

the two-electron wavefunction belong to states of successively increasing bending excitation. 
For small N or large Z different N-manifolds are energetically well separated and first 
order degenerate perturbation theory, i.e. diagonalization of I/(Zr,*) in the subspace of 
degenerated states, may be well justified (Herrick et a/ 1980, Dmitrieva and Plindov 1988) 
However, for helium ( l /Z  = 0.5) intra-shell manifolds with N > 4 intersect, even though 
avoided crossings between levels of different N are only small (they are actually invisible 
on the figure). Nevertheless, beyond the region of isolated N-manifolds mixing between 
different N states occurs and the validity of approaches which ignore inter-shell couplings 
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(for example Herrick's DESB ansatz) has to be examined. 
The lowest states (K = N - I )  of each N-multiplet exhibit only a weak Z-dependence. 

The classical phase space regions to which these states belong are only negligibly affected 
by varying Z. This is not the case, however, for states of high bending vibration. The 
classical allowed region of the electron-pair motion is strongly affected by changing 2, 
resulting in a considerable (non-trivial) Z-dependence of the energies and wavefunctions of 
the highest states with K = -(N - 1). 

In table I we list resonance positions and expectation values of cos012 for intra-shell 
states up to N = 8. Results from the diagonalization within the basis set of symmetrical 
electrons are compared with energy values obtained from ab initio calculations described 
in the previous section. In columns 5 to 8 expectation values of cosQ12 are given for 
Z = 2 (calculated by intra-shell diagonalization and ab initio). for Z = 10 (from intra-shell 
diagonalization), and from the group theoretical analytical formula (10). With increasing 
excitation N the values of (cos 0 1 2 )  for maximal K = N - 1 reflect the increasing alignment 
of the electrons along the body-fixed z-axis 0 1 2  = K. Within each intra-shell manifold N 
higher vibrational states (lower K) reduce the polarization of the electrons. For helium 
the values (cos 0 1 2 )  from the intra-shell diagonalization are generally smaller than the 
ah inifio results, since the reduced Hilbert space of symmetrical basis-set configurations 
does not allow for the high degree of polarization as in the full calculations. Hemcvs 
analytical formula (10) predicts values for the correlation angle between - 1 < cos 0 < 0.5, 
i.e. (180" > 0 1 2  2 60"). The analytical values are in resonable agreement with the 
numerical results for Z = 10. Since the ( N  = 8)-multiplet is energetically separated 
(see figure I ) ,  mixing between different intra-shell manifolds tums out to be of minor 
significance. For helium, equation (10) reproduces the numerical results only for the lowest 
states of each N-manifold. The highest states show a non-monotonic behaviour in the 
expectation values of the correlation angle. The analytical limiting value 0 = 60" is not 
reached, which indicates strong inter-shell mixings in the ab initio states of low K. (Mixing 
coefficents are given in table 2 and will be discussed in section 3.2. 
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Table 2. Weigh& of pre-diagonalized basis swes for the ( N  = 8) eigenfunctions from the 
inn-shell diagondizalion for helium. Only the weights for smtes (N, U) of similar character 
are listed. The label U = (N - K - l ) /2 denores [he number of nodal bending excitations. 

K U (6. U) (7. v -  1) (7.~7) (8. U )  (9.v) (9. U +  1) (IO. U )  
7 0 0.012 - 0.123 0.982 -0.142 0.029 0.W4 
5 I 0.005 0,029 0.116 0.981 0,136 0.065 0.009 
3 2 0.002 0.066 -0.080 -0.977 0.112 0.116 0.018 
I 3 -0.003 -0.127 0.003 -0.946 -0.048 0.195 0.025 

- 1  4 0.062 -0.243 0.112 -0.845 -0.086 -0.289 0.033 
-3 5 0.074 0.362 -0.004 0.486 -0.309 -0.310 0.080 
-5 6 - 0.262 -0.201 0.086 0.177 0,441 0.169 
-7 7 - 0.115 - -0.187 -0.327 0.338 -0.012 

- 

A comparison of the energies obtained within the intra-shell basis set and a complete 
basis set shows considerable agreement for states of strong polarization along the axis 
0 1 2  = ir with (absolute) errors ranging up to I%. The inaccuracy of the intra-shell 
diagonalization increases with decreasing K and is largest for the highest states of each 
N-manifold. Again this indicates that contributions from basis states of asymmetrically 
excited electrons, which are not taken into account in the intra-shell diagonalization, are of 
particular impoltance for the states of high bending excitation. 
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3.2. Nodal structure and classifrcation ofthe wavefunctions 

In this section we study the nodal structures of symmetrically doubly excited states. We will 
particularly focus on the rearrangement of the wavefunctions for different K but N fixed. 
As representative manifold we chose N = 8. For helium, the corresponding energy range 
already belongs to the N-mixing regime but i t  is still feasible to obtain fully converged 
results within the different approaches. In addition, the number of nodal excitations is large 
enough to study the rearrangement of nodal pattems in the multiplet. Before we examine 
plots of the wavefunctions we will first study the contributions of pre-diagonalized (PD) 
basis states W r i  (obtained from step (iii) as described in section 2.1) to the eigenstates 
WN.K of the intra-shell diagonalization (step (iv)). 

3.2.1. Mixing coeficients for (N = 8) slates ofhelium. The weights w:K of the eigenstate 
decomposition 

yield information about the degree of mixing between states of different K and of different 
N-shells. For simplicity, we list in table 2 the dominant weights of the (N = 8)-eigenstates 
only. Contributions of other basis states which in some cases are of considerable magnitude 
are not given in table 2. 

In addition to K, we introduced the label U = ( N  - K - 1)/2--originally used by Herrick 
(1983)-to count the number of bending excitations in 0 1 2 .  Table 2 shows that the states 
of low bending excitation (U = 0. 1.2) are nearly identical with the corresponding pre- 
diagonalized basis states. They are fairly well described within the first order perturbative 
approach. On the contrary, the states of high bending excitation (U = 5,6,7) exhibit 
strong mixings between states of different N-shells and their character can no longer be 
described by a dominant contribution of some pre-diagonalized state WcFpKDI. We recall 
that the weights tabulated are derived from the intra-shell diagonalization omitting basis 
states of asymmetrical-electron character. Their inclusion will certainly not decrease (but 
presumably increase) the strong inter-N mixing. The occurrence of strong mixings questions 
the interpretation and validity of Herrick's quantum number K for the uppermost states of 
each N-manifold. It may still be used as a label but the character of the high U states of 
helium certainly differs from the pre-diagonalized states giving the large Z-limit. 

3.2.2. Prohahility densities for ?he ( N  = 8) stafcs in helium. In the following we will 
examine the nodal structures of the (N = 8) wavefunctions in helium derived from the intra- 
shell diagonalization as a further check of the validity of the large Z-limit classification. 
Comparisons with wavefunctions derived for the nuclear charge Z = I O  allow us to study 
the transition from the perturbative to the N-mixing regime. In addition, we compare our 
results with full  quantum calculations for helium. 

We plot the 
probability density of each wavefunction in three different symmetry planes of configuration 
space. The three planes are defined by (i) 0 1 2  = R, i.e. the collinear configuration with 
bothelectrons on different sides, (ii) 0 1 2  = 0, i.e. the collinear configuration with both 
electrons on the same side. and (iii) rl = 1'2, i.e. the so-called Wannier configuration. The 
configurations are drawn schematically on top of figure 2. For helium, figure 2 depicts the 
probability distributions of all (N = 8)  intra-shell states. In the first and second column 

The wavefunctions depend on three degrees of freedom rl,rz,012. 
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Figure 2. Conditional probability densities of ail helium intra-shell stales for N = n = 8 
calculated by intra-shell diagonalizaiion. The densities are plotted for Rxed angle = x (firs1 
column). (-)Iz = 0 (second column) and for rI = ra (third column). respectively. On top of the 
figure the electron configurations of the different symmetry planes are displayed schematically. 
Probability distributions are shown for K = 7 down to K = -7 (((I) to (h ) ) .  The probabiliiy 
maxima in the ((-)I? = 0 )  plane are about five times smaller on the average than [he maxima 
in the other symmetry planes. The axes in the piols of the first two columns have a quadratic 
scale to account for the typically quadraticai spacing of nodal lines i n  Coulomb systems. 
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'1, 

Figure 2. (Continued) 

probability densities are plotted as functions of r1, r2 for the collinear planes 0 1 2  = IT, 0, 
respectively. Considering the typical quadratic spacing of nodal lines in Coulombic systems, 
we obtain nearly constant nodal distances by using quadratically scaled axes. 

The third column of the figure contains probability densities in the Wannier plane as 
functions of r = [(rl + r2)/21 and R = lrl - rzl. In the plots of the third column the 
nucleus is supposed to be at ( R ,  r )  = (0,O). The angle 0 1 2  is given in terms of R and 
r by 0 1 2  = 2tan- ' (R/ (2r ) ) .  Thus r = 0 denotes a collinear symmetrical arrangement of 
the electrons ( 0 1 2  = T) in addition to the symmetric character rl = r2. R = 0 belongs to 
the classically forbidden configuration rl = r2, 012 = 0, i.e. the electrons are located at the 
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same place in configuration space. The third column represents the probability distributions 
for a single electron. The densities of the second are given by a reflection of the plot along 
the r-axis. Due to the multiplication of the probability densities with the volume element 
R2r2 dR dr of the ( R ,  r )  representation the densities vanish on the line r = 0. 

The state of lowest bending excitation ( N ,  K )  = (8.7) depicted in figure 2(a) can be 
described as follows. In the (elz = a)-plane, figure ~ ( u I ) ,  the wavefunction exhibits a 
nearly rectangular nodal pattem with respect to the coordinates rl,  r2. The off-collinear 
part (012 # a) of the wavefunction is visible from figure 2(+) since constant 0 1 2  

belongs to straight lines RI2 = r tan(01zj2) in the r, R plane. The probability density 
decreases exponentially indicating a zero point motion in the bending degree of freedom. 
Finally, figure 2(a2) shows the probability distribution with both electrons on the same side, 
i.e. Q12 = 0, exhibiting significant contributions only when one electron is close to the 
nucleus, i.e. rl 5 0 or rz 5 0. This indicates that only an exponentially decreasing part of 
each polarized electron extends to the side of the nucleus where the other electron is located. 
Summarizing the plots the ( N ,  K )  = (8,7) state is composed of a strongly polarized electron 
wavefunction aligned near the axis 0 , ~  = a with only a zero-point bending excitation. 

The ( N  = 8) states with decreasing K = 5,3, 1 are depicted in figures 2(b)-(d). They 
are characterized by a successive transfer of nodal excitations from the (012 = a)-plane into 
the bending degree of freedom, see the third column of figure 2. The number of bending 
excitation nodes are described by the vibrational quantum number U as defined above. 

With decreasing K the successive decrease of nodal lines in the ( 0 1 2  = rr)-plane is 
accompanied by a rearrangement of the nodal structure. For high K ,  parts (a)+), the 
wavefunctions have a checkered pattem with respect to rl,  rz, whereas for low K the nodal 
surfaces are nearly spherical, parts (f), (g). The energetically highest state, K = -7, part 
(h), shows nodal lines approximately located on diagonals in the ( r l ,  r2)-plane. 

The rectangular nodal pattem of the high K (low U) states exhibits a close similarity 
to a product wavefunction for the radial parts of two independent electrons. i.e. the 
wavefunctions approximately separate in independent particle coordinates r l ,  rz and the 
use of the hydrogenic principal quantum numbers N,n is justified for these states. The 
wavefunctions with near-spherical or diagonal nodal lines indicate a near-separation in 
coordinate systems using the hyper-radius R = (r:  + r$-1/2 or the inter-electron distance 
R = PI - rz,  respectively. 

The maximum probability densities of all ( N  = 8) states in the (el2 = 0)-plane (second 
column in figure 2) are about five times smaller on the average than the density maxima for 
Q 1 2  = a. Hence, these parts of the wavefunctions are of less importance for a classification. 
However, it is worth mentioning that they show a checkered nodal pattem, too. Along the 
symmetry. !ine rI = rz .  ( 0 1 2  = 0) the probability density is strongly suppressed. 

The nodal structure in the (rl = rZ)-plane (third column of figure 2) does not behave 
as regular as for the other symmetry planes. As is visible from the third column of 
figure 2, the probability distributions of states with moderate or high bending excitation, 
i.e. K = I ,  - I ,  -3, -7, exhibit an irregular nodal structure. Except for the state K = -7 it  
is possible to assign a definite nodal number U counting the minima, i.e. bending excitations, 
between the dominant probability peaks. However, nodal lines are in general not regular, 
i.e. they are not located along lines of constant angle 012, which would appear as rays 
beginning at (0,O) in the plots of the third column. It is only for K = 7,5  and -5 (parts 
(a). (h),  and (8 ) )  that such a simple pattem approximately emerges. From the nodal analysis 
of the wavefunctions we again conclude that the quantum numbers N = n, K as derived 
from the large Z-limit are only of limited validity for the higher states of each multiplet in 
that they do not count regular nodal surfaces. 

K Richter and D Winrgm 
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3.2.3. (N = 8) statesfram intra-shell diagonalization for Z = 10. As is visible from figure 
I .  the (N = 8)-multiplet is energetically well separated from neighbouring N-levels for 
Z = IO. Thus the intra-shell diagonalization is nearly equivalent to first-order perturbation 
theory. (The wavefunctions should then be similar to Herrick’s DESB functions also.) Hence, 
results for Z = 10 can be considered as representing the perturbative limit of the two- 
electron problem. A comparison between 2 = 2 and Z = IO intra-shell states may therefore 
reveal a change in the wavefunction character due to the transition from the perturbative to 
the N-mixing regime. 

Figure 3 depicts some (N = S)-wavefunctions obtained from intra-shell diagonalization 
for nuclear charge Z = IO. As examples we choose the two energetically lowest and highest 
states. A comparison of the states ( N ,  K )  = (8,7) and ( 8 , 5 )  for Z = 10, figure 3(a), (b), 
with the corresponding states for Z = 2 in figure 2 shows that they are very similar in 
their structure. The probability distribution of the Z = 10 states is slightly more compact, 
i.e. they extend up to ri 8 compared to ri zz 9 for helium (note, that we use Z-scaled 
units). 

Such a close similarity is no longer observed, however, for the highest states of the 
multiplet, as can be seen from a comparison of the probability distributions in the ( 0 1 2  = n) 
symmetry plane (see parts ( h )  in figures 2 and 3). The (012 = n) probability density of 
the state Z = 10, K = -7 exhibits no nodal excitation perpendicular to the Wannier 
saddle line rI = r2. The probability distribution at 0 1 2  = i~ approximately has nodal 
lines at fixed hyperradius R. The probability distribution on the Wannier-saddle rl  rz 
characterizing maximum bending excitation appear to be not as regular smctured as in the 
collinear symmetry planes. A more careful analysis of these wavefunction shows that even 
these states of high bending excitation approximately possess nodal lines at fixed values of 
0 1 2 ,  i.e. the separation with respect to 0 1 2  is conserved for Z = 10 but not for helium 
(figure 7. (M. 

We finally note that the simple pattem of figure 3bl) does not reflect a maximum 
probability at the classical turning point of the symmetric stretch motion rI I r2, but a 
concentration of the probability near the point where the so-called Langmuir orbit (see 
below) passes through the 0 = ir-plane. As can be seen from part (g3) the motion (nodal 
surfaces) of the state takes place dominantly in the bending degree of freedom. 

In summary, we conclude that the lowest states of each helium N-manifold are in 
considerable agreement with wavefunctions obtained by the perturbative large-Z limit. 
Herrick’s classification scheme is approriate for these states but it breaks down for the 
highest states of each multiplet. N = n and K can still be used as labels but they lose their 
physical meaning in order to describe the nodal character of the helium states. 

3.2.4. (N = 8) states using a complete basis set far helium. The wavefunctions discussed 
so far were oblained by diagonalizing the Hamiltonian (3) using a basis set of all intra-shell 
states up to N = 14, but omitting basis functions of asymmetrically excited electrons (inrer- 
shell states). Therefore in addition to the N -  and K-mixings analysed in the preceding 
section. mixing with inter-shell states may also influence the character of the intra-shell 
functions. Macias and Riera (1991) found considerable avoided crossings in Z-correlation 
diagrams near 2 = 2 between low-lying doubly excited intra- and inter-shell levels, which 
give rise to character mixing and exchange. 

To obtain rigorous results we diagonalized the Hamiltonian (3) in a near-complete 
basis set taking into account all basis functions with a total number of nodes up to 
fl = n + k + m = 50 (see equation (4)). The resulting probability distributions for 
the states ( N ,  K )  = (8.7) and (8,5) are displayed in figure 4. Compared with the 



3732 K Richter and D Wintgen 

a 

'5 



Intra-shell states of doubly excited atoms 

~ 

3733 



3734 K Richter and D Wintgen 



Infra-shell states of doubly excited atom 3735 

corresponding density obtained within the intra-shell diagonalization (figure 2(a)), the 
(012 = a) probability for ( N .  K )  = (8,7), figure 4(a), is characterized by a strong 
suppression of inner maxima. Nevertheless, the dominant electron density is still located 
in the region at r , ,  rz 8 au. The particular density of the wavefunction reflects the 
localization along an asymmetric stretch type periodic motion of the electron pair (Ezra er a1 
1991). In contrast to the pure intra-shell character of the wavefunction shown in figure 2(a) 
however, the ab initio wavefunction contains a considerable contribution of asymmetrically 
excited states, dominantly from the state N(K,  T)n  = 7(6,0)9. The ( N ,  K )  = (8 ,5 )  state 
exhibits similar admixtures within the ( 0 1 2  = a)-plane, see figure 4(bl). As shown in parts 
(a3) and (h3) of the figure, the wavefunctions show v = 0 and U = 1 quanta for the bending 
motion, respectively. Again, this reflects the approximate separability of the bending degree 
of freedom from the residual intemal (radial) motion. 

We can in principle calculate higher lying wavefunctions N > 8. However, due to 
the high density of states and due to considerable mixing of the different Rydkrg-series 
the wavefunctions no longer exhibit a pure intra-shell character. Thus it becomes more 
and more difficult to definitely relate highly doubly-excited states (large N, n )  with states 
obtained from the intra-shell diagonalization. 

0 2 4 6 8 10 I> 

Figure 5. Contour plots of probabiliry densities of helium inlra-shell wavefunctions of minimum 
and maximum bending excitation and corresponding classical periodic orbiis. Shown is the 
ab initio wavefunction (N. K )  = (8 ,7)  for angle 0 1 2  fixed lo 0 1 2  = R ( U )  and the stale 
(N. K) = (7. -6) (from intra-shell diagonalization) for rl = rz (b). The asymmetric slretch 
orbit (full line in (U)). the Wannier orbit (broken line in ( U ) )  and the Langmuir orbit ( b )  overlayed 
each other on the figures. 

3.3. Semiclassical analysis 

If is now well established that the Fourier decomposition of the spectral density relates 
to the periodic orbits of the corresponding classical system (Gutzwiller 1990). For the 
helium atom this has been demonstrated by Ezra and co-workers (Kim and Ezra 1991) for 
a collinear model. Furthermore, the periodic orbits are the ingredients for a semiclassical 
quantization of the chaotic electron pair motion in helium (Ezra et a1 1991. Wintgen er a1 
1992). The semiclassical analysis of the intra-shell level density reveals the significance 
of two prominent periodic orbits, the Langmuir orbit (Langmuir 1921) and the asymmetric 
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stretch orbit (Richter 1991). It has been shown in Ezra el a1 (1991) that the wavefunctions of 
the (K = N -  I )  states follow the collinear ( 0 1 2  = r) asymmetric stretch-type periodic orbit. 
Figure 5(a) shows a contour plot of the probability distribution of figure 4 ( ~ ) ,  i.e. the ab 
inifio (N, K )  = (8,7) eigenstate. The asymmetric stretch-type periodic orbit is overlayed as 
full curve on the figure. Indeed, the quantum state is clearly localized along this fundamental 
mode indicating that the motion near the Wannier saddle rl = rz is perpendicular to the 
Wannier ridge rl rz. The symmetric saetch motion (i.e. the Wannier orbit) is shown as 
a broken line. We have not found any states localized along the symmetric stretch. This 
largely verifies the conjecture expressed in Richter and Wintgen (1990a) that the symmetric 
stretch motion has no semiclassical significance. 

For a similar correspondence between quantum states and classical periodic orbits, the 
states of high bending excitations should be related to the Langmuir orbit, which reflects 
a nearly pure bending motion of the electrons. This line of reasoning was also taken up 
in a recent publication by Muller et al (1992). Figure 5(b) shows the probability density 
of the ( N ,  K )  = (7, -6) state (obtained by intra-shell diagonalization!) in the Wannier- 
plane r I  E r2 as a function of R and r .  The classical Langmuir orbit is overlayed on the 
figure as a full line. Even though the classical orbit does not pass through the maxima 
of the wavefunction, the direction of quantum and classical motion appears to be very 
close. The expectation value (cosOlz) = 0.067 of this state is also close to the classical 
average (cos 0 1 2 ) c l  = 0.060 along the periodic orbit. We emphasize however, that the good 
agreement is some kind of artefact related to the incomplete basis set used the exact ab 
initio wavefunctions reflect a different behaviour as documented in table 1: the (cosO12) 
expectation values for the K = -(N - I )  states asymptotically ( N  -+ CO) approach the 
value 1, which corresponds to a collinear configuration where both electrons are mostly on 
the same side of the atom (Richter and Wintgen 1990b. Richter er al 1992). Again, this 
reflects the fact that for helium the upper states of the manifolds are not well represented 
by the intra-shell diagonalization and that asymmetric contributions to the wavefunctions 
are important. It is interesting to note in this context that Hemck’s analytical formula 
(10) predicts ( C O S @ ~ ~ } K = - , N - , ~  = 0.5 in the large N limit. Thus also the DESB stales 
with K = - ( N  - I )  cannot correspond to the Langmuir orbit for which most of the 
kinetic energy is located in the bending degree of freedom. However, there may be a 
correspondence between states of small K and an asymmetric version of hngmuir’s orbit, 
which exists for 2 > 5 (Richter 1991). 

K Richier and D Winfgen 

4. Summary 

In this paper we developed a method (intra-shell diagonalization) to diagonalize the 
Hamiltonian of a two-electron atom in a basis of symmetrically excited electron states. 
The method incorporates intra-shell mixings and reproduces the correct large Z-limit of the 
problem, but it neglects inter-shell mixings of states of asymmetrical electron excitation. 
We showed that the results of the intra-shell diagonalization are of reasonable accuracy 
for both energies and the nodal structure of the associated wavefunctions for helium 
states of low bending excitation. For high lying states of the intra-shell manifolds, 
however, a considerable Z-dependence leads to a strong rearrangement of the electron 
pair wavefunctions and the corresponding states for helium are inadequately described by 
the large Z-limit symmetries and classification. 
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