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Chapter 1

Introduction

According to Eichberger and Harper (1997, p.xi), “...a good grounding in microeconomic the-

ory is considered essential to a proper grasp of the principles of finance”. Financial economics

combines insights from the literature on finance and economics using theoretical models. Typ-

ically, these models consider decisions at different points in time and allude to the concepts

of uncertainty and risk. This dissertation presents three distinct theoretical models which

complement the existing theory in the respective area of financial economics.

Investment behavior and portfolio choice are similar topics. Both relate to the idea of dis-

pensing with current consumption for the benefit of future profit. Several actors in an economy

face this decision. Households consisting of individuals have to schedule their consumption

behavior. In order to do a trip around the world next year, today’s consumption must be re-

duced. Firms are subject to demand constraints and must decide whether to strengthen their

operative units today or to keep their funds safe to invest in the future. However, ‘investment

behavior’ is frequently used to describe the process of ‘how much’, whereas ‘portfolio choice’ is

more concerned with the ‘how’. Applying this distinction, Chapter 2 is more closely related to

investment behavior. Firms face an investment decision and have to get funding from banks.

Banks have to obtain refinancing from households by offering them interest rates on deposits,

which in turn depend on how much and which firms choose to invest. Chapter 3 focuses on

microfinance institutions which obtain funding from capital markets and decide subject to

market forces how to channel funds to micro-entrepreneurs. Chapter 4 considers a classical

portfolio choice problem in which a given amount of money is to be allocated between a given

1



2 CHAPTER 1. INTRODUCTION

set of securities.

Households’ consumption-savings and firms’ investment decisions are directly connected

to uncertainty and risk. Buying a car today gives immediate pleasure. By contrast, money

invested in some security might become less valuable due to price fluctuations, or might even

be completely lost if the issuer of the security declares default. Depending on preferences

in general and risk attitude in particular, consumption-savings decisions will differ between

households and so will investment plans between firms. A common feature of the decisions of

both households and firms involves some kind of optimization. The theory of decisions under

uncertainty has proposed several ways to represent and model decision making. The models

in Chapters 2 and 3 assume that households (firms) take decisions in order to maximize

expected utility (profits), but Chapter 2 also extends to consequences of non-expected utility

maximization. In Chapter 4, we set up a model which assumes that investors behave in order

to maximize some function of statistical moments, similar to the standard mean-variance

approach.

In Chapters 2 and 3 we focus on a particular type of market friction and its respective

implications for equilibrium outcomes. Even though the idealized concept of perfect markets

serves to analyze basic relationships in an economy, it is highly fictitious and unable to help

explain many of the phenomena observed in our world.

A market friction which has received considerable attention not only in the realm of

financial markets is asymmetric information. The literature started to incorporate the fact

that information is neither perfect nor symmetric some decades ago.1 Stiglitz (2002, p.461)

argues that researchers focusing on perfect information models were aware of the fact that

information is imperfect, but that the academic climate of the era was to hope that results

for markets with minor information asymmetries were similar to results obtained assuming

symmetric information.

Much of this research has taken place in the realm of contract theory analyzing principals

contracting with agents. Hart and Holmström (1987) speak of adverse selection models when

agents have precontractual information. By contrast, in moral hazard models, information is

symmetrically distributed at the time of contracting. A further distinction can be made: If

1For a survey on different types of asymmetric information, see Laffont and Martimort (2002, Ch.1). A
description of the (change of the) role of information in economic theory during the last decades is given by
Stiglitz (2000, 2002).
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there is asymmetric information in the contract period, moral hazard is said to obtain ‘ex ante’.

Otherwise, i.e., if asymmetric information exists only after the duration of the contract, there

is ‘ex post’ moral hazard. Classical examples for ex ante moral hazard are, first, the employee

whose effort at work is imperfectly observable and who might thus shirk and, second, the

insuree who undertakes more risky actions than if uninsured. In the realm of credit markets,

the two examples are also present: Borrowers might be lazy and thus jeopardize contractual

repayment, or they might choose to invest the money in a project which goes against the

bank’s interest, e.g., with limited liability, a project with high risk. Ex post moral hazard is

typical of credit markets. If the bank cannot observe how successful borrowers are, the latter

might simply tell the bank a lie about their revenues. Also, borrowers might not consider

to repay but ‘take the money and run’ instead. Armendáriz de Aghion and Morduch (2005)

describe this latter action both as ex post moral hazard and as an enforcement problem. In

fact, the distinction between the latter two concepts is blurred, but we propose to interpret

the ‘take the money and run’ phenomenon as a problem arising from imperfect enforcement.2

Assuming perfect enforcement of contracts is not as critical as the assumption of symmet-

ric information, but very inadequate in some specific contexts. If the analysis is to explain

a phenomenon in a developed country, enforcement is indeed a minor problem. A sound

legal system along with a corruption-free executive makes perfect enforcement a good ap-

proximation to reality. The most important obstacle to perfect enforcement is then debtor

protection by limited liability. By contrast, the world consists to a large extent of develop-

ing and transition economies, which are frequently characterized by institutional problems,

e.g., poor property rights or high degrees of corruption. If theoretical models are to properly

reflect economic choices of agents in such economies, it is highly doubtful to assume perfect

enforcement. In Chapter 3, we consider a model of credit markets in developing countries,

where enforcement problems are a major impediment to welfare-enhancing trade.

As mentioned above, this dissertation contributes to the existing theory of financial mar-

kets. Chapter 2 reexamines one of the most influential models in this area, viz., Stiglitz and

Weiss (1981) (SW, henceforth). In Chapter 3, we conduct an equilibrium analysis of the

2Note that the classification of the ‘take the money and run’ phenomenon depends on the kind of money
referred to. If a borrower takes the funds obtained to invest and then runs, we have a situation of ex ante
moral hazard. By contrast, borrowers taking the proceeds of their investments and running matches the ex
post moral hazard or enforcement problem definitions.
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Besley and Coate (1995) (BC, henceforth) model to describe credit market outcomes in the

realm of microfinance. Chapter 4 extends the theory of portfolio choice by adding a social

dimension to the classical mean-variance model of Markowitz (1952).

The first model, presented in Chapter 2, contributes to the literature on ‘equilibrium

credit rationing’. In light of the forthcoming publication of Arnold and Riley (2009) (AR,

henceforth), the results of the seminal model of SW require closer scrutiny. A particularly

important issue is the consideration of dependency of firms’ revenues and the analysis of

consequences for equilibrium. In SW and AR, revenues are assumed to be independent. This

assumption seems rather restrictive given the global economic ties and the recent correlated

movement of asset prices. The additional assumption of a large number of firms in SW and

AR leads to perfect diversification of (idiosyncratic) risk and, hence, a riskless deposit rate

that can be passed through to suppliers of capital. Therefore, SW and AR model capital

supply in a highly simplified way. The consideration of dependent revenues calls for explicit

modeling of households’ consumption-savings decision since the deposit rate passed through

to households is not riskless in that case.

We show that the type of equilibrium can crucially depend on the degree of dependence

of project revenues. Capital risk deters households from saving so that there might be a

credit rationing equilibrium. Defining the social optimum, we find that project dependence

might reduce the number of safe projects carried out in equilibrium in a socially harmful way.

Thus, project dependence can aggravate adverse selection. In three extensions, we show how

risk aversion, imperfect revenue dependence and a different structure of dependence influence

the results. Our analysis points out that project dependence is an important factor in the

determination of credit market outcomes.

Chapter 3 is based on the observation that many microfinance institutions (MFIs) ap-

proach financial self-sufficiency, which improves their ability to compete for funds on the

capital market. At the same time, the use of market instruments increases. This brings up

the question of what market equilibria in microfinance markets look like and which kinds of

market failure tend to afflict them. Our starting point is the seminal model of BC, who put

a game-theoretic structure on the repayment behavior of borrowers under joint liability. We

compare standard ‘individual lending’ (IL) to ‘group lending’ (GL). One result is that the

repayment rate comparison of BC is not sufficient to predict market outcomes, as it is biased
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toward group lending. The market outcomes with non-cooperative repayment behavior of

group members are compared to the results under the assumption of cooperative behavior. A

characterization of market equilibria shows that microfinance markets can suffer from market

failures known from the adverse selection literature, namely financial fragility, redlining, and

credit rationing. Social sanctions ameliorate these problems, but do not eliminate them.

In Chapter 4, we challenge the frequently made assumption that economic agents act upon

purely materialistic grounds, i.e., that decisions are taken only to maximize (utility derived

from) income and wealth. Even though there seems to be a consensus that it is not the only

decision criterion, most theoretical models use it as a workhorse. We complement standard

portfolio theory à la Markowitz by adding a social dimension. We distinguish between two

main setups, taking social returns as stochastic in the first, but as deterministic in the second.

Two main features need to be introduced: Every asset must be assigned a (distribution of)

social return(s), and the investor has to cherish social returns. The former is subject to

measurement problems, whereas the latter is mainly a problem of choosing a suitable utility

representation. The main result involves the existence of a unique optimal portfolio of risky

assets for all investors, as in Tobin (1958). If there is a riskless asset, we show that different

types of investors usually have different optimal portfolios of risky assets. Interestingly, if

investors differ in risk aversion only, there is a unique optimal portfolio of risky assets, and

only the shares of wealth invested in the riskless asset and that portfolio differ.

Each chapter starts with a section in which we lay out in detail why we study the respective

topic. These sections also provide a survey of the respective literature. Moreover, each chapter

has its own appendix with additional material like numerical calculations or proofs. In the

main text, we present those proofs which are either constructive or theoretically demanding,

whereas pure algebra is delegated to the appendix. Chapter 5 concludes.





Chapter 2

Asymmetric Information in Credit

Markets

This chapter is based on joint work with Stefanie Trepl. It presents an extended version of

Reeder and Trepl (2009).

7



8 CHAPTER 2. ASYMMETRIC INFORMATION IN CREDIT MARKETS

2.1 Motivation and the literature

From business cycle theory, we know that most economic variables fluctuate over time. During

expansive periods, aggregate economic activity increases and so do aggregate profits. In a

recession, the opposite occurs. Ups and downs over time indicate that firms’ profits are not

independent of each other, but depend on common economic factors. The possible extent of

these interdependencies has been highlighted by the recent financial crisis, which caused most

industries serious financial distress. Households lost a fortune, not only through highly risky

investments. Given that firms’ profits are highly dependent1 and aggregate risk is enormous,

how does this influence savings of households? We try to answer the question of whether

households’ awareness of risk might make them reduce savings such that firms do not obtain

the funds they would like to borrow. Asymmetric information plays a major role in answering

that question. Since firms know more about the risk characteristics of their projects than

households and banks do,2 the problem of high aggregate risk cannot be avoided by only

funding safe firms. Aggregate risk can have tremendous consequences for one of the banks’

most important tasks, diversification. Revenue dependence within a single bank’s credit

portfolio is one of the main research topics in financial risk management. However, to our

best knowledge, there is no literature that analyzes the consequences of dependence of firms’

revenues for credit market equilibria in an adverse selection model.

In banking theory, credit rationing is an important phenomenon. Bhattacharya and

Thakor (1993) mention six fundamental puzzles in financial intermediation research. The

second is about allocation of credit and questions “why banks deny credit to some rather

than charging higher prices” (p.3). There is a vast literature trying to answer this question.

In the very early literature, the term credit rationing was mainly used in connection with

the effects of monetary policy, an example being Rosa (1951)3. Scott (1957) assumed that

banks hold government debt and private sector loans at the same time and react to changes

in monetary policy with redeployment of capital between the two. Other advocates of the so-

called ‘availability doctrine’ stressed the effects of monetary policy not only on the supply but
1Instead of ‘dependence’, some readers might prefer to speak of ‘correlation’.
2Almost all of the literature on asymmetric information assumes that financial intermediaries are less well

informed about projects of firms. However, Hillier and Ibrahimo (1993, p.300) point to the possibility of a
converse information structure citing young firms as a convincing example.

3For an explication of the confusion regarding the spelling of the author’s last name, see footnote 3 on page
273 in Hillier and Ibrahimo (1993).
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on the credit demand side, too. Uncertainty and changing expectations of market participants

were frequently used explanations: If firms expect that an increase of the federal funds rate

will be followed by a decrease, they reduce current demand for funds since conditions in

the future might become better. A comprehensive description of the numerous contributions

around the availability doctrine is given in Jaffee (1971, Ch.2). Notwithstanding widespread

criticism, Baltensperger (1978, p.170) attributes great importance to the doctrine, namely

that it “suggested an alternative transmission channel for monetary policy that was ... based

on a credit rationing argument”.

A unanimous definition of credit rationing is missing to this day. It is helpful to distinguish

credit rationing from general price rationing in economics. If the Walrasian market price

is too high for someone to take a loan, he is frequently said to be rationed by the market

mechanism. This is not what credit rationing means in the literature. Instead, credit rationing

is said to occur if a borrower is ready to pay the market interest rate, but does not get

credit nonetheless. However, credit contracts do not only stipulate an interest rate. Section

5.1 in Freixas and Rochet (2008) refers to Baltensperger (1978), defining “equilibrium credit

rationing as occurring whenever some borrower’s demand for credit is turned down, even

if this borrower is willing to pay all the price and nonprice elements of the loan contract”

(Freixas and Rochet, 2008, p.172). The loan rate is the most obvious price element, examples

for nonprice elements are the amount of collateral, loan size or maturity of the loan.

Most of the contributions in the field use very specific models. Based on the respective as-

sumptions, the authors propose definitions which allow them to establish the (non-) existence

of credit rationing in their respective setups. A helpful distinction has been proposed by

Keeton (1979). On the one hand, “credit is rationed whenever a customer receives a loan of

smaller size than he would desire at the interest rate quoted by the bank” (p.2). On the other

hand, there is credit rationing “when some firms are able to obtain loans while other, identical

firms are not” (p.2). The literature has referred to these two concepts as rationing of ‘type I’

and ‘type II’, respectively. According to Elsas and Krahnen (2004, p.216), “[c]redit rationing

is an economic phenomenon typically associated with problems of information asymmetries or

incomplete contracting in debt markets”. This definition focusses on the more recent publi-

cations which establish credit rationing as arising endogenously due to some plausible market

friction, like the ones mentioned in the definition. In contrast, as pointed out by Clemenz
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(1986, p.3), the early approach to credit rationing assumed rather than explained it. As an

example, Clemenz mentions ad hoc rigidities which - rather unsurprisingly - lead to credit

rationing by the standard mechanisms of supply and demand theory. Such ad hoc rigidities

frequently consist of interest rate regulations as, for instance, the existence of usury laws.4

It was in the late seventies that the literature started to incorporate the fact that credit

market participants do not necessarily share the same information, and to abandon the as-

sumption of complete state-contingent contracting. Critics argued that there was no way to

explain credit rationing in consistency with rational, profit-maximizing lenders, taking into ac-

count both credit supply and demand. SW resorted to research following Akerlof (1970)5 and

introduced asymmetric information as a crucial assumption in models of the credit market.

They were - supposedly6 - able to explain how adverse selection resulting from asymmetric

information might lead to an equilibrium with credit rationing. In SW, the term credit ra-

tioning is used “...for circumstances in which either a) among loan applicants who appear to be

identical some receive a loan and others do not, and the rejected applicants would not receive

a loan even if they offered to pay a higher interest rate; or b) there are identifiable groups of

individuals in the population who, with a given supply of credit, are unable to obtain loans at

any interest rate, even though with a larger supply of credit, they would” (pp.394-395). SW

argued that an increase of the loan rate might decrease banks’ expected returns since some

‘good’ borrowers do not demand credit any more, notwithstanding the remaining borrowers

paying a higher rate (if they are able to pay back). The equilibrium in their model entails

credit rationing if the decrease is such that the return function is ‘globally hump-shaped’.

As in SW, most of the theory on equilibrium credit rationing is based on the possibility

of a backward-bending credit supply curve: From a certain loan rate on, an increase in the

loan rate could make lenders reduce their supply of credit due to a decrease in the return

on lending. In SW, this follows from the fact that banks’ returns can - supposedly - be

globally hump-shaped. Another line of argument explains a backward-bending credit supply

by resorting to changes in default risk due to decreasing returns to scale of projects with

variable loan size. Baltensperger (1978, p.171) summarizes the argument as “showing that,

4In a standard supply and demand diagram, it can easily be seen how a usury law stipulating a maximal
interest rate below the market-clearing rate leads to excess demand at the former rate.

5Using the market for used cars, Akerlof first explained how asymmetric (quality) information can prevent
that markets clear.

6We come back to this point later in this section.
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after a certain loan size is reached, no increase in the rate of interest can compensate the

lender for the increased default risk associated with further increases in the size of the loan”.7

Both the SW approach and the default risk explanation lead to a backward-bending supply

curve for the same reason, viz., the dependence of the loan portfolio’s quality on the interest

rate. The direct gains from charging a higher loan rate might be offset by a reduction in the

(average) quality of the remaining borrowers.8

Asymmetric information has been modelled in various ways (cf. Chapter 1). In SW,

two types of ex ante asymmetric information are shown to possibly cause credit rationing:

hidden information and hidden actions. If there is hidden information, banks face different

types of firms which they cannot distinguish when they decide about which firms to fund. If

borrowers can take actions which influence the project payoff (or the probabilities of payoffs)

after a loan has been granted, firms might be tempted to commit ‘moral hazard’, i.e., to take

actions unobservable for (hidden from) the bank which are good for them at the expense of

the bank.9 Williamson (1987) considers ex post asymmetric information referring to moral

hazard after project returns have been realized. The central claim is that banks cannot observe

project revenues of firms without a cost.10

Even though widely recognized as a seminal contribution to the literature, many of the

assumptions in the SW paper have been criticized and modified to yield a variety of interesting

results. Riley (1987) assumes that banks are able to classify borrowers into risk classes. He

shows that credit rationing cannot occur in more than one of these classes and concludes that

“the extent of rationing generated by the S-W model is not likely to be empirically important”

(p.224). The neglect of other markets, the equity market in particular, elicited work on the

interaction of equity and debt financing. Hellmann and Stiglitz (2000) consider the mutual

compatibility of debt and equity markets, as well as their interaction. They also provide

an excellent survey of the literature of rationing under asymmetric information. De Meza

7Given the assumptions underlying this result, Baltensperger does not consider it as surprising.
8In Chapter 3, we will see how credit rationing can occur even if borrowers are (ex ante) homogeneous

and information is symmetric. Due to enforcement problems, higher loan rates make strategic default more
probable so that returns decrease.

9Other important contributions emphasizing hidden actions are Jaffee and Russell (1976) and Bester and
Hellwig (1987).

10Williamson adapts the model of Gale and Hellwig (1985) to point out how monitoring costs can imply
optimality of the standard debt contract à la Townsend (1979). Furthermore, in Williamson (1986), he is able
to show how bank intermediation arises endogenously: Financial intermediaries economize on monitoring costs.
In both of his papers, credit rationing can exist in equilibrium.
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and Webb (1987) analyze how the method of finance, debt or equity, endogenously arises

in equilibrium. They compare the equilibrium investment level to the socially optimal level

and show that the SW assumptions lead to underinvestment, whereas their own assumptions

imply overinvestment in equilibrium. The optimum method of finance differs between both

situations: equity in the SW setup, but debt in their own setup. The results depend on the

assumptions which differ, first, in terms of the asymmetry of information. Whereas lenders

are uninformed about the expected return of a potential borrower in the model of de Meza

and Webb, it is only the risk of a borrower’s project which lenders cannot observe in the

SW model.11 Second, de Meza and Webb’s analysis tackles another critical feature of the

SW setup, namely the specific distribution of project returns (cf. Section 5.1 in Hillier and

Ibrahimo, 1993). In SW, all projects are assumed to yield the same expected return and,

thus, to differ only in risk. In the model of de Meza and Webb, firms have the same return

if successful but different success probabilities. Thus, safer projects have higher expected

returns. It is an empirical question which of the two setups is more adequate.12

It has also been criticized that SW assume the use of standard debt contracts. Most

importantly, this excludes that contracts can be used as a sorting mechanism in order to

induce self-selection of borrowers. In contrast to SW, who assume an exogenous amount

of collateral, Bester (1985) allows banks to offer various loan contracts specifying loan rate

and amount of collateral at the same time to show that, if an equilibrium exists, it is not

characterized by credit rationing. In his model, less risky firms choose the contract with higher

collateral requirement at a lower loan rate, and vice versa. Another sorting mechanism is loan

size. Its analysis requires departing from the SW assumption of fixed capital requirement. In

Milde and Riley (1988), banks use large loans at high rates which attract less risky borrowers.

Models in which banks induce self-selection of borrowers can also be found in Chan and

Kanatas (1985), who discuss different types of collateral, and Besanko and Thakor (1987b),

where the focus is on the influence of market structure on credit allocation.

Another critical remark about the SW model concerns the equilibrium concept. There

is no game-theoretic foundation which would enable us to establish a market equilibrium as

11An attempt to clarify the differences between the two setups is made by Bernhardt (2000). He shows how
differences in both the algebraic formulation of and the kind of uncertainty about production technology can
explain the over- and underinvestment results.

12We think that the assumption of de Meza and Webb is less realistic than the SW proposal since there is
an ex ante dominance between projects in the model of de Meza and Webb.
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the equilibrium of a game between banks. Freixas and Rochet (2008, p.174) note that “the

implicit rules of the game are that banks are price setters on the credit market and quantity

setters on the deposit market”. An analysis of intermediation in a more general framework is

given by Stahl (1988). He applies strict game-theoretic reasoning to the behavior of merchants

who mediate between suppliers and consumers. One of the main results is that the order of

moves in the game is crucial for the existence of a Walrasian equilibrium. If we interpret

banks as merchants that sell loans to firms and compete for households’ deposits, Stahl’s

result implies that there is a unique Walrasian subgame perfect Nash equilibrium if the credit

subgame precedes the deposit subgame.13

Critics have also argued that the bank-borrower relationship is more complex than it

can be expressed in the static setup of SW. As a reply, Stiglitz and Weiss (1983) introduce

multiperiod relationships to show that credit rationing is still possible. Diamond (1989)

considers the incentive effects of borrower reputation in a dynamic setup. Focussing on the role

of collateral, Bester (1994) analyzes the effects of debt renegotiation on the design of optimal

credit contracts given asymmetric information. Lending relationships are also considered by

Petersen and Rajan (1995), who point out the importance of competition. De Meza and

Webb (2006) allow firms to postpone the realization of projects so that firms can influence

debt capital requirements by accumulating capital resources over time.14 They conclude that

credit rationing only appears under very specific conditions.

By now, the reader might have noticed that, even in such a specific area as equilibrium

credit rationing given asymmetric information, there are many seemingly contradictory re-

sults. For instance, some models show that credit rationing can occur in equilibrium, whereas

others show the contrary. If credit rationing can occur, it might but need not be socially

inefficient, depending on the assumptions of the model. Even though it looks unsatisfactory

at first glance, this is typical of models in the realm of information economics. We concur

with Clemenz (1986, p.199) who notes that “there is only one way of being perfectly informed,

but a myriad of possibilities for information to be incomplete”.

13Based on the papers of Stahl (1988) and Yanelle (1989, 1997), who pioneered double Bertrand competition,
Arnold (2007) applies a rigorous game-theoretic equilibrium concept to the SW model. Given some weak
assumptions on the shape of capital supply and demand, he shows that the two-price equilibrium occurs in
any subgame perfect pure-strategy equilibrium if the credit game precedes the deposit game.

14De Meza and Webb also consider other means to influence debt capital requirements, as for instance the
downscaling of projects.
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The results of SW have many implications.15 Among others, the ‘Law of Supply and

Demand’ and, therefore, standard comparative statics analysis breaks down. Supply and

demand are found to be interdependent and the ‘Law of the Single Price’ is not valid any more

(cf. the description of a two-price equilibrium in SW and in Subsection 2.2.5 of this chapter).

In terms of welfare, asymmetric information might cause inefficient levels of investment16 so

that there might be a case for government intervention. An interesting paper on the role of

governments as lenders of last resort is Mankiw (1986), who finds that the government can

improve on market allocations. However, as noted by Hillier and Ibrahimo (1993, p.288), “it

is dangerous to make strong policy recommendations on the basis of such a simple model”.17

Even though their statement refers to the model of de Meza and Webb, we think it is valid

for most of the models in the domain of credit rationing.

Theory argues that imperfections on capital markets, such as credit rationing, can have

serious macroeconomic consequences. In a discussion of the papers in Part VII of Bhat-

tacharya, Boot, and Thakor (2004), Reichlin (2004) emphasizes the importance of financing

activities, financial market access and the choice of contractual arrangements to a strand of

literature which he calls the “financial structure approach to macroeconomics” (p.856). In

particular, economic growth and development can be crucially affected by the functioning of

financial markets. There are many papers and textbooks on this topic, an excellent survey is

given by Goodhart (2004). Another line of research considers the influence of financial market

arrangements on the business cycle, an example being Greenwald and Stiglitz (1993).

The variety of results mentioned above shows the economic significance of asymmetric

information. The underlying assumptions crucially affect equilibrium outcomes in theoretical

models. However, the economic significance of credit rationing should be empirically validated.

Unfortunately, empirical evidence is scarce due to obvious data restrictions. It is hard to

obtain micro data on the contractual terms of commercial bank loans. Macroeconomic proxies

used include the speed of commercial loan rate convergence,18 and the drawdown of trade

15For a comprehensive description of the implications of the SW model, the reader is referred to Section 4
in Hillier and Ibrahimo (1993).

16We analyze this point in Subsection 2.2.5.
17We know from De Meza and Webb (1992) that rationing need not be inefficient.
18If an increase in open-market rates is not (or only with delay) followed by increasing commercial loan rates,

loan rates are said to be ‘sticky’. This is taken as evidence for credit rationing, even though theory suggests
many other explications of sticky loan rates. Two such studies (with opposing conclusions) using loan rate
stickiness as a proxy are Jaffee (1971) and Slovin and Sushka (1983).
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credits as in Petersen and Rajan (1997). An exception is the paper of Berger and Udell (1992),

which uses a large micro data set from the Federal Reserve System. On the one hand, they

cannot exclude the possibility of information-based credit rationing in equilibrium. However,

they also state that their results do not give support for the hypothesis that information-

based equilibrium credit rationing is an important macroeconomic phenomenon. Clearly,

their findings depend on the design of the investigation and the specific data set. Thus, their

conclusion should not be taken to mean that all theoretical macroeconomic implications are

wrong.

We have pointed to the enormous impact of the paper of SW. During almost thirty years,

their results have been quoted in papers and textbooks. One of their results is that credit

rationing can only occur if the banks’ return function is globally hump-shaped. Bhattacharya

and Thakor (1993, p.16) emphasize this even more noting that “the key result in SW is

that the bank’s expected return could peak at an interior loan interest rate”. However, it is

exactly this result which is inconsistent with the very SW assumptions, as pointed out by the

forthcoming publication of AR. They show that the natural outcome of the SW model is a

two-price equilibrium in which only safe firms are rationed.19 The reason is that the banks’

return function cannot be globally hump-shaped (cf. the last paragraph in Section 2.2.2).

Their paper puts the theory of equilibrium credit rationing under asymmetric information

back on the research agenda.

We build on the model of SW and AR and introduce dependent project revenues as a

central assumption. An implication of dependence of project revenues (and the assumption

that banks pass through risk) is that households face capital risk in their consumption-savings

decision. As a consequence, we have to explicitly analyze households’ behavior,20 thereby

making use of the results of the theory of savings under uncertainty.

We show that there can be an equilibrium with credit rationing when project revenues are

dependent.21 In such a situation, loans are given at a single market interest rate, but some

risky and some safe firms are denied credit. At that rate, safe firms have zero expected profits

whereas risky firms miss a strictly positive expected profit. There is no incentive for banks

19See footnote 13.
20SW and AR assume an exogenous, increasing capital supply.
21AR mention two modifications of the SW assumptions which also make credit rationing à la SW possible:

either a cost for seizing collateral or ‘fraudulent’ borrowers (cf. the AR paper for details).
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to increase the interest rate on loans. This is because safe firms would not demand credit at

higher rates so that there would be only risky firms left. If safe firms were out of the market,

banks could extract all expected rents from active firms by increasing the interest rate on

loans up to the point where risky firms have zero expected profits. As a result, the expected

deposit rate that could be passed through to households would necessarily be higher than the

expected deposit rate implied by the (lower) single market interest rate. However, if project

revenues of the risky firms are dependent, there is more risk in the deposit rate so that such

a deposit rate combination does not necessarily attract households.

As in SW, AR, and much of the other literature on equilibrium credit rationing, a

‘backward-bending’ capital supply is a necessary condition for rationing in our model.22

However, there is a crucial difference. In SW, the banks’ return function must be glob-

ally hump-shaped to get a backward-bending capital supply and, possibly, a credit rationing

equilibrium. As mentioned above, AR have shown that such a shape is inconsistent with the

SW assumptions, so that credit rationing at a single market interest rate cannot occur in the

SW model. We show that a globally hump-shaped return function is not a necessary condition

for a backward-bending capital supply (and, thus, for a credit rationing equilibrium) when

project revenues are dependent.

We choose the simplest modelling approach with only two types of firms: risky and safe

ones. We assume that only the revenues of the risky firms are dependent. In our eyes, it seems

plausible to make this assumption, for the following reasons. Low-risk firms can be thought

of as producers of goods which meet physiological needs. Examples for such low-risk projects

are investments in industries such as foods and beverages, utilities, health care, and so on.

In these industries, risk is fairly low,23 and so is dependence. We resort to portfolio theory

and the separation between market risk and idiosyncratic risk to make the argument clearer.

Idiosyncratic risk is present in every firm. By definition, this kind of risk is independent

22 In fact, capital supply has a discontinuous jump in our model since we work with only two firm types -
as opposed to the continuum of types in SW and AR. Thus, capital supply is not a continuously differentiable
function in our model and is not ‘backward-bending’ in the original sense of the expression. However, the
property of a backward-bending capital supply curve which leads to equilibrium credit rationing is an ‘interior’
maximum, which occurs both in SW/AR and in our model.

23The distinction between low- and high risk industries is just one way to justify differences in risk between
firms. Some descriptive statistics for global industry portfolios can be found in Table 2 in Ferreira and Gama
(2005, p.203). The industries with the lowest volatilities are ‘food producers & processors’, ‘electricity’, ‘invest-
ment companies’, and ‘food & drug retailers’. Volatilities are highest for ‘IT hardware’, ‘software & computer
services’, and ‘tobacco’.
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between firms. The exposure to market risk, however, is highly unequal. We suggest to inter-

pret low-risk firms as the ones which do not face significant market risk. Hence, dependence

between low-risk firms is low, but idiosyncratic risk is prevalent. In contrast, due to market

risk, project revenues in high-risk industries are much more likely to be highly dependent

since they frequently depend on some sort of breakthrough, which might be technological,

political or social in nature.24

The remainder of this chapter is organized as follows. In Section 2.2, we present the

assumptions of our model (2.2.1) focusing on a bank’s return function (2.2.2), which signifi-

cantly differs from the one resulting from independent revenues. We specify the households’

consumption-savings decision in a standard expected utility setup and analyze the firms’ in-

vestment decision (2.2.3). In order to have a benchmark for the assessment of dependence of

project revenues, we analyze possible equilibria when revenues are independent (2.2.4). The

central section of the chapter describes different equilibrium cases and sets up a condition for

social optimality in order to find out equilibrium inefficiencies caused by asymmetric infor-

mation (2.2.5). We present comparative statics (2.2.6) before extending the model in three

directions. First, in Section 2.3, we present a non-expected utility setup which allows us,

amongst other things, to make the propositions from Section 2.2 more general by attributing

results to different preference components. Second, Section 2.4 generalizes the concept of de-

pendence and shows that the main results do not rely on the extreme assumption of perfectly

dependent revenues among risky firms. We implement imperfect dependence as deterministic

(in 2.4.1), stochastic (in 2.4.2) and, going a little further, as stochastic and uncertain (in

2.4.3).25 As a further robustness test, we analyze a different structure of revenue dependence

in Section 2.5. We add dependence of the safe firms’ revenues (intra-type) and an inter-type

dependence in that risky firms can only succeed if safe firms do. The final section will give

some concluding remarks.

24An example where a technological breakthrough caused a whole industry to flourish is the IT sector. A
case in point for a social breakthrough is web technology which flourished, too. Genetic engineering is an
example where we do not know yet if and where a political breakthrough will occur or not.

25We stick to the terminology introduced by Frank Knight in 1921. In Knight (1967, pp.19-20), he writes
that “...‘risk’ means in some cases a quantity susceptible of measurement, while at other times it is something
distinctly not of this character...”. He proposes to use “...the term ‘uncertainty’ to cases of the non-quantitive
type”. In statistical terms, this means that there is ‘risk’ if we have a random variable together with its
distribution. If the distribution (or some parts of the distribution) is unknown, there is ‘uncertainty’. The
reader must be aware that other authors use the terms in a completely different way, e.g., Hubbard (2007,
p.46).
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2.2 The model

2.2.1 Assumptions

There is a continuum of mass NS of safe firms and a continuum of mass NR of risky firms. We

define β ≡ NS
NS+NR

as the share of safe firms. Project revenues R̃ are a binary random variable:

If successful, revenues of safe and risky firms are RS and RR, respectively, where RS < RR.26

In case of failure, payoffs are zero. The probability that a project succeeds is pR for a risky

and pS for a safe firm. Note that ‘safe’ means relatively safe, that is, pR < pS < 1. Both types

of firms have the same expected project revenue pRRR = pSRS = E[R̃]. Projects require B

(< E[R̃]) units of capital which cannot be brought up internally so that firms must rely on

outside funding by banks, which require C (< B) units of collateral. Projects are indivisible

so that the only kind of credit rationing that might possibly arise is ‘type II’ rationing, i.e., a

situation in which some borrowers receive loans, but other, identical borrowers do not.

There is asymmetric information: Firms know their type, but banks cannot observe it.

However, banks know the distribution of types in the economy. Firms have one and only one

project to invest in, which is either a risky or a safe one.27 There is no moral hazard (no

hidden actions). Furthermore, we assume that banks can observe revenues ex post (costless

state verification), i.e., asymmetric information only exists with regard to a firm’s risk type.

A central assumption concerns the dependence of project revenues: In Section 2.2, we

assume that project revenues of risky firms are perfectly dependent (either all risky firms suc-

ceed or none does), whereas revenues of safe firms are independent, both among each other

and w.r.t. risky firms.28 This has consequences for pairwise correlation coefficients: Between

two arbitrary risky (safe) firms, the coefficient equals one (zero). Also, pairwise correlation

between any risky and any safe firm is zero.

We assume that there are many banks which take deposits from households and make

26There are two different types of ‘returns’ in our model: firms’ project revenues (return on investment) and
the rate of return of a bank (return on lending). Since we use the latter far more often, we reserve the more
common symbol R̃ for it.

27Thus, we can speak of project type and firm type interchangeably.
28We relax both the assumption that only revenues of the risky are dependent and the assumption about

perfect dependence, in Sections 2.4 and 2.5.
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loans to firms.29 Intermediation through banks is costless and banks have no equity.30 There-

fore, they go bankrupt (which we model as a payoff of minus infinity) if they cannot serve a

stipulated claim from a deposit contract. As a consequence, banks do not take risks. Instead,

they pass it through to households. They are intermediaries and, thus, active in two markets:

the credit market, where they lend out funds to firms on the one hand, and the deposit mar-

ket, where they collect funds from households on the other. We assume that banks set prices

on the credit market, whereas they are price takers on the deposit market. The reader might

wonder about the use of these two different concepts of market structure. The assumption

is mainly technical in that it facilitates equilibrium analysis. Assuming price setting in both

markets would require a game theoretic foundation which would tremendously increase com-

plexity.31 If banks are price takers, a single bank can choose an arbitrary price for its own

goods (interest rate on money) without influencing any other bank’s price.

The attitudes towards risk are crucial: Households are assumed to be risk-averse, whereas

firms and banks are risk-neutral.32 There are H homogeneous households whose utility is

assumed to exhibit constant relative risk aversion (CRRA). They maximize expected utility

in a two-period setup with exogenous income Y in period 1.33 There is no income in period

2, only the endogenous amount of savings plus interest can be consumed. If there are several

contract offers by banks, we assume that each household only invests in one contract.

Most of the assumptions are identical to the ones in a two-type version of the models of SW

and AR to which we compare our results. However, the assumption of dependence of project

revenues has far-reaching consequences in that it introduces capital risk for households. Thus,

our second main assumption, risk aversion of households, becomes very important, too. Taken

together, explicit modelling of the consumption-savings decision is indispensable.

29Thus, we do not analyze the raison d’être of banks. A seminal paper where bank intermediation is
endogenous is Diamond (1984).

30If we modelled banks with equity, we would have to say much more about their risk attitude and behavior
in the market. However, this shall not be our focus.

31As mentioned in Section 2.1, this has been done by Arnold (2007) for the case of independent project
revenues and a continuum of borrower types. Results do not change.

32Changing risk attitudes of banks and firms does not have significant consequences for the subsequent
analysis.

33Some readers might prefer to speak of a one-period setup since decisions are only taken at one point in
time.
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2.2.2 Return function

The return function of a bank is state-contingent due to dependent revenues of the risky

firms.34 Dependence is perfect so that we have two ‘states (of the world)’.35 In the good one

(probability pR), all risky firms succeed and so does a share pS of the safe firms (if they apply

for capital in the first place). With probability (1 − pR), the bad state occurs. Then, from

the risky firms, banks only get the collateral, whereas of the safe firms, the same share pS is

successful (if they apply).

Expected profits of a firm j (j ∈ {S, R}) as a function of the loan rate r are

Eπfirm
j (r) = (1− pj)(−C) + pj [Rj − (1 + r)B] . (2.1)

Since firms are risk-neutral, they demand credit as long as their expected profits are non-

negative. The respective break-even loan rates for safe and risky firms are

rS =
pSRS − (1− pS)C

pSB
− 1, (2.2)

rR =
pRRR − (1− pR)C

pRB
− 1. (2.3)

A comparison quickly shows that rS < rR ⇔ E[R̃] > C, which is true since E[R̃] > B > C

by assumption. At low interest rates (r ∈ [0; rS ], the ‘first interval’), both firm types demand

credit. At high rates (r ∈ (rS ; rR], the ‘second interval’), only the risky do, i.e., there is adverse

selection. Thus, firms’ expected profits can be illustrated as in Figure 2.1. It is instructive to

look at the state-contingent returns of a bank in the two intervals. In the first interval, both

firm types are active so that the banks’ return on lending in the bad state, ib(r), is

34Mathematically, we should thus not speak of a ‘function’ but of a ‘relation’. We will call it a ‘function’
nonetheless.

35 By calling the two situations ‘states of the world’, we stick to Ingersoll (1987) and neglect Mas-Colell,
Whinston, and Green (1995). The latter define a state of the world as “a complete description of a possible
outcome of uncertainty, the description being sufficiently fine for any two distinct states of the world to be
mutually exclusive” (p.688). Since we work with a continuum of each firm type (and of the safe type in
particular), there is an infinity of states of the world differing in terms of which of the safe firms succeed and
which fail. However, since all possible outcomes of uncertainty regarding the safe firms lead to the same prices
(deposit rates), we decided to follow Ingersoll (1987, p.46) who suggests that “two or more distinguishable
outcomes of nature with the same pattern of prices for the investment assets must be grouped into a single
state”, so that we are left with two states of the world.
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Figure 2.1: Firms’ expected profits.

ib(r) =
NS (pS(1 + r)B + (1− pS)C) + NRC

B(NR + NS)
− 1,

and the return on lending in the good state, ig(r), is

ig(r) =
NS (pS(1 + r)B + (1− pS)C) + NR(1 + r)B

B(NR + NS)
− 1.

These formulas are based on the assumption that the pool of borrowers in the credit portfolio

of each bank is ‘representative’, i.e., that each bank funds the same share of risky and safe

firms. From the safe firms, a share pS is successful and pays back principal plus interest,

(1 + r)B. The remaining share (1− pS) defaults and loses its collateral. This is the same in

both states of the world. By contrast, the average repayment from risky firms differs between

states: (1 + r)B per firm in the good state and C per firm in the bad state. In the second

interval, only risky firms demand capital so that

ib(r) =
C

B
− 1, ig(r) = r.

Expected returns of a bank in state k (k ∈ {g, b}, good or bad) are given by

Eπbank(r|k) =
E[p|k](1 + r)B + (1− E[p|k])C

B
− 1. (2.4)

The expectation E[p|k] is the expected success probability in state k and equals the proportion

of successful firms, due to the law of large numbers. It is a function of the loan rate r. In

Figure 2.2, the thick solid line is the expected success probability in the good state, the thick
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Figure 2.2: Expected success probabilities.

dashed line represents the bad state probability. E[p|k] differs in (two) states and (two)

intervals and can thus take on four different values.

We proceed by characterizing banks’ rates of return. Several properties (of state-contingent

and expected returns) can be pointed out (cf. Figure 2.3):

i) The good state return ig(r) is monotonically increasing in r with a discontinuous

upward jump at rS .

ii) The bad state return ib(r) is monotonically increasing in the first interval, but con-

stant and at its global minimum in the second.

iii) The expected return on lending E[i(r)] is monotonically increasing in r in both

intervals, but jumps downwards at rS .

iv) E[i(r)] attains its global maximum at rR.

v) The variance of the return V ar[i(r)] is monotonically increasing in r.

We prove these properties in Appendix 2.7.1. Property iv) is the result of AR. Intuitively,

there are both risky and safe firms active at rS , and the risky make strictly positive expected

profits. At rR, only risky firms are active and their expected profits are zero. Since safe and

risky firms have the same expected revenues, expected returns of banks must be maximum at

rR.
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Figure 2.3: Banks’ returns given dependent risky projects.

2.2.3 Credit and deposit market

From the above, it is clear that credit demand, D(r), is a step function of the loan rate r,

equal to (NS + NR)B in the first and to NRB in the second interval, and zero for higher

loan rates. This is because all firms have non-negative expected profits in the first interval,

whereas in the second, only the risky have.

The description of the deposit market is more complicated. Since households are identical,

aggregate capital supply is simply the number of households times savings of a representative

household. A household’s optimal amount of savings depends on the deposit rate faced. Since

banks have to make zero profits in a competitive equilibrium (due to the usual downbidding

process) and pass through risk, any equilibrium deposit rate combination must equal the

return on lending, so that we let ib(r) and ig(r) denote both banks’ rates of return and the

state-contingent deposit rates offered to households. We omit the argument r and write ig and

ib unless we talk about deposit rates at a particular loan rate, such as rS or rR. Households

maximize expected utility. Let U denote aggregate utility of consumption over both periods,

and u(ct) be instantaneous utility of consumption in period t. Using the discount factor δ



24 CHAPTER 2. ASYMMETRIC INFORMATION IN CREDIT MARKETS

and additively-separable utility such that U(c1, c2) ≡ u(c1) + δu(c2), optimal savings s∗ solve

max
s

EU = E
[
u(Y − s) + δu(sR̃)

]
, (2.5)

where R̃ is the random gross interest rate on deposits (not to be mixed up with R̃). In

period 1, consumption equals income minus savings. Consumption in period 2 depends on

the realization of the deposit rate. The FOC is

u′(Y − s) = δE
[
u′(sR̃)R̃

]
. (2.6)

We use CRRA utility u(c) = c1−θ

1−θ .36 The parameter θ captures preferences both over con-

sumption in states and in time. Since households are risk-averse, θ is positive. Optimal

savings s∗ can be derived from the FOC of the maximization problem,

s∗ =
Y

1 +
(
δE[R̃1−θ]

)− 1
θ

. (2.7)

We can replace R̃ using the fact that R̃ = 1+ig with probability pR and R̃ = 1+ib otherwise.37

Thus, equation (2.7) becomes

s∗ =
Y

1 + δ−
1
θ [pR(1 + ig)1−θ + (1− pR)(1 + ib)1−θ]−

1
θ

=
Y

1 + (δz)−
1
θ

, (2.8)

where we use the convenient definition

z ≡ E[R̃1−θ] = pR(1 + ig)1−θ + (1− pR)(1 + ib)1−θ. (2.9)

For all r 6= rS , the derivative of z w.r.t. r is

dz

dr
= (1− θ)

[
pR(1 + ig)−θ dig

dr
+ (1− pR)(1 + ib)−θ dib

dr

]
≷ 0 ⇔ θ ≶ 1, (2.10)

since dig
dr > 0 and dib

dr ≥ 0 in each of the intervals (from properties i) and ii)). At rS ,
∆z
∆r ≷ 0 ⇔ θ ≷ 1. To see this, note that we have three discontinuous jumps at rS : 1 + ig goes

36And u(c) = ln(c) for θ = 1. We will focus on θ < 1 later on so that we can omit this special case.
37Thus, R̃ is a function of r, too.
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up, 1 + ib goes down and E[R̃] goes down. Since R̃1−θ is a monotonically increasing concave

transformation of the binary random variable R̃ if θ < 1, its expectation E[R̃1−θ] = z must

decrease at rS . For θ > 1, the transformation is monotonically decreasing and convex so that

E[R̃1−θ] must increase in that case.

We get indirect lifetime utility (LTU) by inserting optimal savings from equation (2.8) into

the right-hand side (RHS) of equation (2.5),

LTU =
Y 1−θ

1− θ

[
(δz)

1
θ + 1

]θ
. (2.11)

Aggregate savings are given by S = Hs∗. Both S and LTU are composite functions and can

be written as S(r) ≡ S(z[ib(r), ig(r)]) and LTU ≡ LTU(z[ib(r), ig(r)]). Thus, they can be

plotted in a graph with the loan rate on the abscissa. This will be important for a graphical

exposition of the equilibrium. The loan rate r determines the deposit rates ib and ig. The

latter two determine optimal savings (and, thus, capital supply) and LTU. They also determine

z, which we only introduce to simplify some proofs. Regarding the difference between capital

supply S and optimal savings s∗, notice that one is only an upscaled version of the other. For

the equilibrium argumentation, we need capital supply, but the properties of capital supply

can also be proven using the formula for optimal savings.

The equilibrium analysis crucially depends on the shape of capital supply and, thus, on

the value of θ. We focus on the case of θ < 1, meaning that the substitution effect outweighs

the income effect in the consumption-savings decision. Thus, if R̃ were riskless, capital supply

would be an increasing function of the deposit rate.38 However, since R̃ is random, the shape

(especially the slope) of capital supply depends on the change in the distribution of R̃.39 A

stylized graph of capital supply, LTU and the deposit rate combinations (equal to banks’ state-

contingent return rates) can be found in Figure 2.4. It clarifies the dependencies: Capital

supply and LTU are both functions of r. There are some general properties of capital supply

and LTU:

38When households face a higher deposit rate, two effects arise. First, since every dollar saved yields higher
interest, the effect of increased savings is that households get much more future consumption in exchange for
a little less current consumption. The second, opposing effect is that households can reduce savings needed for
a given level of income (or consumption) in the second period.

39In our case, this distribution is binary. Different loan rates r yield different values for R̃, but the same
probabilities.
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Figure 2.4: Capital supply, LTU and deposit rates.

Lemma 2.1 If θ < 1, capital supply increases monotonically in r in each of the intervals

[0, rS ] and (rS , rR] and has a discontinuous downward jump at rS.

Proof: The fact that optimal savings s∗ increase in each of the two intervals is implied by a

more general result, namely Proposition 2 in Basu and Ghosh (1993, p.124). Adapting their

result to the expected utility setup, their proposition states that savings are lower in a first-

order stochastically dominated distribution (of deposit rates) if θ < 1. From Figure 2.3 we

can see that a higher loan rate within each interval implies a first-order dominant distribution.

An algebraic proof starts with the fact that dz
dr > 0 ⇔ θ < 1 from equation (2.10) in each of

the two intervals. Moreover, ds∗

dz > 0 ⇔ θ < 1 from equation (2.8). Thus, savings increase in

r in each of the two intervals if θ < 1.

The fact that savings decrease discontinuously at rS follows from the observation that

there must be a deposit rate combination at some loan rate r > rS which constitutes a mean

preserving spread (MPS) of the deposit rate combination at rS .40 Rothschild and Stiglitz

(1971) show that an MPS leads to a decrease in savings if θ < 1. Since savings strictly

40If the probabilities of a binary distribution do not change, an increase in variance at a constant mean is
equivalent to an MPS. For general distributions, this is not true: Any MPS implies a higher variance, but the
reverse is not necessarily true.



2.2. THE MODEL 27

increase within the second interval, savings must then decrease discontinuously at rS . Alge-

braically, it immediately follows from ∆z
∆r |r=rS < 0 ⇔ θ < 1 and ds∗

dz > 0 ⇔ θ < 1. q.e.d.

Lemma 2.2 For all θ, LTU increases monotonically in r in each of the intervals [0, rS ] and

(rS , rR], and has a discontinuous downward jump at rS.

Proof: Differentiating equation (2.11) w.r.t. z and simplifying yields

dLTU

dz
=

Y 1−θ

1− θ

[
(δz)

1
θ + 1

]θ−1
δ

1
θ z

1−θ
θ ≷ 0 ⇔ θ ≶ 1, (2.12)

since Y, θ, δ and z are always positive. From equation (2.10), we know dz
dr in each of the two

intervals: dz
dr ≷ 0 ⇔ θ ≶ 1. Therefore, dLTU

dr > 0 ∀θ in each of the two intervals.

LTU has a discontinuous downward jump at rS since ∆z
∆r |r=rS ≷ 0 ⇔ θ ≷ 1 such that, for

θ < 1, dLTU
dz > 0 and ∆z

∆r |r=rS < 0 and, for θ > 1, dLTU
dz < 0 and ∆z

∆r |r=rS > 0. q.e.d.41

Proposition 2.1 For θ < 1, capital supply and LTU have their global maximum at the same

loan rate, viz., either rS or rR.

Proof: From Lemmas 2.1 and 2.2, we know that both capital supply and LTU are increasing

in each of the two intervals. Therefore, the global maximum of the functions is at rS or

at rR. For θ < 1, ds∗

dz > 0 and dLTU
dz > 0. Suppose that the maximum of capital supply

occurs at rS . Since ds∗

dz > 0, we must have z(rS) > z(rR). Since dLTU
dz > 0, too, we must

have LTU(rS) > LTU(rR), i.e., the maximum of LTU occurs at rS , too. If capital supply is

maximum at rR, z(rR) > z(rS) and LTU(rR) > LTU(rS), i.e., the maximum of LTU occurs

at rR, too. q.e.d.

Corollary: If s∗ is the same at two loan rates, LTU must be the same at these two rates,

too.
41Increasing LTU within each interval also follows from revealed preferences: Since an increase in r leads

to a state-by-state dominant deposit rate combination, a change in s∗ implies that households are better off.
This is because households could be as well off as with the original r, simply by not changing their savings and
just throwing away the additional interest on savings. Thus, the fact that households do change their savings
implies that they are better off.
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Proof: If s∗ is the same at two loan rates, z must also be the same. Since LTU (cf. equation

(2.11)) only depends on z and parameters, it must be the same at these two loan rates, too.

q.e.d.

2.2.4 Independent revenues

Before defining and characterizing equilibria given dependence of project revenues in the

next section, this section establishes the situation with independent project revenues as a

benchmark. All other assumptions from Subsection 2.2.1 are still valid.

First, firms’ decisions are unaffected by the change in the assumption. Dependence be-

tween firms’ project revenues does not influence their individual success probabilities. There-

fore, the break-even loan rates stay the same and adverse selection as indicated in Figure 2.1

takes place, too. Credit demand is unaffected: It is the same function as with dependent

revenues, described at the beginning of Subsection 2.2.3.

On the deposit market, however, independent revenues lead to significant differences. Most

importantly, the LLN implies that the return function of a bank is not state-contingent but

riskless. The assumption of a continuum of both firm types implies that there is no aggregate

risk and that idiosyncratic risks cancel out.

Properties iii) and iv) of the expected return function in Subsection 2.2.2 carry over to

the riskless return function.42 E[i(r)] increases in each of the intervals and attains its global

maximum at rR. Households’ risk aversion does not matter since they do not face capital

risk.43

Maximizing utility is almost identical to (2.5), only using deterministic R instead of R̃.

max
sind

U = u(Y − sind) + δu(sindR), (2.13)

where we use the index ‘ind’ to indicate that the variable is derived under the assumption

42The proofs are identical since the formula for the riskless return function (when revenues are independent)
is identical to the formula for the function of expected returns (when revenues are dependent). Starting from
equation (2.4), one would have to insert unconditional expected success probabilities equal to NSpS+NRpR

NS+NR
in

the first, and to pR in the second interval.
43However, having an endogenous consumption-savings decision in an expected utility setup, we have seen

that the parameter capturing risk aversion also determines households’ willingness to substitute intertemporally.
Thus, changes in θ do change capital supply.
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that project revenues are independent. Optimal savings in equation (2.7) become

s∗ind =
Y

1 + δ−
1
θ R

θ−1
θ

. (2.14)

The deposit rate R is a function of the loan rate r. As in the case with dependent returns, LTU

follows from inserting s∗ind in the objective function on the right-hand side of equation (2.13),

LTUind =
Y 1−θ

1− θ

[
δ

1
θ R

1−θ
θ + 1

]θ
. (2.15)

As with dependent revenues, we focus on the case θ < 1. The only difference in the formulas

for optimal savings and LTU is that the gross deposit rate is random when firms’ revenues

are dependent but riskless when they are independent.44

Defining zind ≡ R1−θ, we see that zind behaves like z (both as functions of r) in that it

increases in each of the intervals but decreases discontinuously at rS for θ < 1. Since s∗ind

and LTUind depend on zind exactly the way s∗ and LTU depend on z, Lemmas 2.1 and 2.2

apply, with analogous formal proofs. However, there is an important difference in terms of

Proposition 1. The fact that the return function i(r) (or, from the households’ point of view,

the gross deposit rate R) and, thus, zind are maximal at rR implies that savings and LTU are

maximal at that rate, too.

The level of capital supply at the higher break-even loan rate rR has another important

property. In the case of independent project revenues, it can be used to determine whether

it is socially desirable to fund all projects. From Subsection 2.2.2, we know that risky firms

have zero expected profits at rR so that the corresponding deposit rate E[R̃]
B − 1 transfers all

economic rents to households. Since safe and risky projects have the same expected revenue,

the same deposit rate could be achieved from safe projects (with r = rS) if there were no

asymmetric information. Thus, S(rR) can be used as a measure of the socially optimal level

of investment. If S(rR) > (NS + NR)B, it is socially optimal to fund all projects.

Figure 2.5 shows possible shapes of capital demand and capital supply (the respective

upper panel), and LTU (the respective lower panel). We know that capital supply and LTU

are increasing in each of the intervals and that they both have a discontinuous downward

44Setting E[R̃1−θ] = R1−θ in the RHS of equations (2.7) and (2.11) gives the RHS of equations (2.14) and
(2.15), respectively.
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jump at rS . We restrict attention to cases where it is socially optimal to fund all projects,

i.e., S(rR) > (NS+NR)B. Since the maxima of both functions then occur at rR, we distinguish

between three qualitatively different shapes of both curves.

As with the variables, the index ‘ind’ indicates the underlying assumption that project

revenues are independent. The numbering of the three cases will become clear in the next

subsection. Case IIIind is characterized by a low capital supply at the lower break-even loan

rate rS . Since capital supply is maximal at rR, there must be a market-clearing loan rate

r > rS . Using the equilibrium concept of SW, the only equilibrium entails giving credit at the

market-clearing loan rate to risky firms only (safe firms do not demand capital at that rate).

In case Vind, capital supply at rS is higher than credit demand at high loan rates, but less

than demand at low rates. Irrespective of there being a market-clearing loan rate (subcases

a) or b)), the only possible equilibrium is a two-price equilibrium (see SW, AR, or the next

subsection of this chapter). In such a situation, credit is given at two loan rates, viz., at rS

and at the loan rate r > rS at which capital supply equals capital supply at rS (LTU is also

the same at both rates). All risky firms receive credit and some safe firms are rationed. In

case V Iind, there is a market-clearing loan rate r < rS , which is the equilibrium loan rate

irrespective of there being another market-clearing loan rate. All firms get funding in that

case, i.e., the social optimum arises.

2.2.5 Equilibrium

We now return to the assumption that project revenues of the risky firms are perfectly de-

pendent so that the deposit rate is risky. As outlined above, any possible equilibrium entails

zero profits for banks. Therefore, we define two different types of equilibrium with a single

interest rate as follows.
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Figure 2.5: Capital supply and LTU with independent revenues.
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Definition 2.1 An ‘equilibrium’ is a loan rate r such that there is no r′ with

LTU
[
ib(r′), ig(r′)

]
> LTU [ib(r), ig(r)] (2.16)

that attracts borrowers. We distinguish between two types of equilibrium. A ‘market-clearing

equilibrium’ has capital supply at (ib(r), ig(r)) equal to credit demand at r. A ‘credit rationing

equilibrium’ has capital demand at r exceeding capital supply at (ib(r), ig(r)).

With regard to inequality (2.16) in Definition 2.1, there is always a profitable deviation for

banks if it holds. If such a state-contingent deposit contract (ib(r′), ig(r′)) exists, households

prefer that contract and a bank can thus offer a similar contract where households’ utility is

still higher than with the original contract, and make a profit.45

Due to Lemmas 2.1 and 2.2 and Proposition 2.1, we can restrict our analysis to six cases.

Since households have no income in period 2 besides their own savings, CRRA utility with

limc→0 u′(c) = ∞ implies that savings are positive. A graphical exposition of all six cases

can be found in Figure 2.6, where the respective upper panel is a capital supply and demand

diagram and the respective lower panel displays LTU, all as functions of the loan rate. Let

us start with three cases in which capital supply at rS is less than NRB.

Case I:

One possibility is to have capital supply (and LTU) maximal at rS . From Definition 2.1, it

is clear that there is no market-clearing equilibrium in this case since demand exceeds supply

at any loan rate r. Instead, there is a credit rationing equilibrium at the loan rate rS . No

other loan rate can be a credit rationing equilibrium since rS yields the highest possible LTU

for depositors.

Case II:

Another possibility arises if the maxima of capital supply (and LTU) are at rR, but capital

supply is still below demand at rR. The unique equilibrium entails credit rationing. All cap-

ital that can be raised at (ib(rR), ig(rR)) is lent out at the loan rate rR. It is a case of credit

rationing since demand exceeds supply and there is no other loan rate with corresponding
45For instance, banks could offer (ib(r

′), ig(r′)− ε).
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Figure 2.6: Capital supply and LTU: six equilibrium cases.
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deposit rates which yield a higher LTU.

Case III:

If capital supply at rS is less than NRB, but exceeds NRB (and is thus maximal) at rR,

LTU is also maximal at rR, and the unique equilibrium entails market clearing at a loan rate

r̆ ∈ (rS , rR] with S(ib(r̆), ig(r̆)) = D(r̆). The conditions of Definition 2.1 hold. Supply equals

demand and the only loan rates r > r̆ with corresponding deposit rates (ib(r), ig(r)) that yield

a higher LTU do not attract borrowers.

Next, consider NRB < S(ib(rS), ig(rS)) < (NS + NR)B. There are two qualitatively dif-

ferent subcases.

Case IV :

In the first subcase, capital supply and LTU are maximal at rS . In this case, there is a credit

rationing equilibrium at the loan rate rS . Demand exceeds supply and there is no other loan

rate with corresponding deposit rates which yields a higher LTU. It is irrelevant whether there

is a higher, market-clearing loan rate or not (cf. the increasing dotted line in Figure 2.6, case

IV , upper panel).

Case V :

In the second subcase, the maxima of capital supply and LTU are at rR. The reader

can check that there is neither a market-clearing nor a credit rationing equilibrium. In

this case, the natural outcome of the model is a two-price equilibrium, as in SW and AR.

To see this, recall from our corollary that there exists a loan rate r2 (cf. Figure 2.4)

such that S(ib(rS), ig(rS)) = S(ib(r2), ig(r2)) and LTU(ib(rS), ig(rS)) = LTU(ib(r2), ig(r2)).

When households face either (ib(rS), ig(rS)) or (ib(r2), ig(r2)), their amount of optimal sav-

ings is the same and so is capital supply. Moreover, since each household can only in-

vest in one contract, a simultaneous offer of both contracts also leads to capital supply
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S(ib(rS), ig(rS)) = S(ib(r2), ig(r2)),46 irrespective of how many households choose either con-

tract. In fact, households are indifferent (ex ante) between the two deposit contracts corre-

sponding to rS and r2, respectively. In analogy to SW and AR, an equilibrium situation with

two loan rates can arise if banks lend out at both loan rates rS and r2. The amounts must

satisfy three requirements. First, the sum of funds lent out at both rates (by all banks) must

be equal to S(ib(rS), ig(rS)) (and, thus, to S(ib(r2), ig(r2))). Second, the amount of funds

lent out (by all banks) at the higher rate r2 must be equal to aggregate residual demand after

credit has been given at the lower rate rS . Banks lend out some funds at rS , at which all

firms apply, and subsequently lend out some funds at r2, at which only the risky firms ask for

capital. In this situation, all risky firms get capital. Some safe firms are rationed (without

missing positive expected profits). Third, every single bank has to make sure that its amount

of credit given at each loan rate equals its amount of deposits collected at the respective

corresponding deposit rate combinations. Otherwise, a bank might not be able to meet its

liabilities and, thus, incur an expected utility of minus infinity. Since households are indif-

ferent between deposit contracts ex ante, banks are able to match loan rates with deposit rates.

Case V I:

If S(ib(rS), ig(rS)) ≥ (NS +NR)B, there is a market-clearing equilibrium at or below the loan

rate rS , irrespective of the shape of capital supply and LTU at higher loan rates.

In analogy to the case of independent returns in the preceding section, we establish a condi-

tion for social desirability in order to detect any inefficiencies.47 A well-established notion of

a social optimum is the level of investment under symmetric information. The idea is that

households own (the same share of all) firms so that they also know about their risk charac-

teristics. The shortcut of using S(rR) to determine social desireability is not available here

since projects differ fundamentally in the aggregate: The risky firms’ project risk is a market

risk and cannot be diversified.

46If we allowed households to invest some share of wealth in each of the contracts, this would usually not be
true.

47The concept of social optimum defined here is just one way of modeling such an optimum. In Arnold,
Reeder, and Trepl (2010), we set up a more sophisticated social optimum.
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Risk-averse households prefer safe projects over risky ones since all projects have the same

expected revenues. Thus, a social optimum can take on different types. It might consist of

safe projects only. It can also consist of all safe and some (or all) risky projects. We use

primes to label variables in a social optimum so that i is a deposit rate offered to households

by banks, whereas i′ is the payoff rate in a social optimum without asymmetric information.

To find the socially optimal allocation, we first maximize utility assuming that households

fund only safe projects.48 If the optimal amount of the safe projects, m, is in the interval

[0, NS ], m is the socially optimal level of investment. However, if the solution m is larger than

NS , the optimal ‘number’ of safe projects is NS .49 Then, we find the amount of risky projects

in a social optimum, n ∈ [0, NR], by maximizing expected utility over n, using m = NS . The

optimization problem in step one is

max
s′m

U = u(Y − s′m) + δu(s′m(1 + i′)), (2.17)

where i′ = E[R̃]
B − 1 is the expected rate of return on a safe project, which results in a riskless

payoff rate in aggregate. Using CRRA utility and solving the FOC for (s′m)∗, the optimal

amount of savings with only safe firms becomes

(s′m)∗ =
Y

1 + [δ(1 + i′)1−θ]−
1
θ

. (2.18)

This is sufficient to carry out

m =
H(s′m)∗

B
(2.19)

safe projects. If m > NS , the optimal amount of savings with both firm types, (s′mn)∗, solves

max
s′mn

EU = u(Y − s′mn) + δ
[
pRu(s′mn(1 + i′g)) + (1− pR)u(s′mn(1 + i′b))

]
. (2.20)

48Note that we maximize utility as opposed to expected utility. If there are only safe projects in a social
optimum, the payoff rate is riskless.

49A negative second derivative of the objective function w.r.t. savings is sufficient to guarantee that carrying
out NS safe projects is better than any other number of safe projects less than NS if m > NS . We have
d2EU
ds2 = u′′(Y − s) + δE[u′′(sR̃′)(R̃′)2] < 0 since u′′(c) = c−θ−1

−θ
< 0 due to risk aversion. The gross payoff rate

R̃′ is only random if the social optimum entails some risky projects.
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The payoff rates depend on n = Hs′mn
B −NS . Using this, we get50

i′g =
NSE[R̃] + nRR

(NS + n)B
− 1 =

NSE[R̃] + (Hs′mn
B −NS)RR

Hs′mn

− 1, (2.21)

i′b =
NSE[R̃]

(NS + n)B
− 1 =

NSE[R̃]
Hs′mn

− 1. (2.22)

Next, using CRRA utility, we derive the FOC which we solve for (s′mn)∗ to get

(s′mn)∗ =
HY −

(
δE[R̃]

B

)− 1
θ
NS(E[R̃]−RR)(

δE[R̃]
B

)− 1
θ HRR

B + H

. (2.23)

This uniquely determines n, i′g and i′b. They all depend on the number of households since an

increase in the number of households results in higher savings which have to be invested in

risky firms. Each household exerts an externality on all other households by making payoff

rates riskier in that case. If n > NR, the social optimum consists of carrying out all projects

available.51

A crucial point of this chapter is the influence of dependence of project revenues on equi-

librium outcomes. The benchmarks are the results of SW and AR, who assume independent

project returns. We define a ‘transition’ as the change in the equilibrium case arising from

the introduction of (perfectly) dependent project revenues, all other things equal, i.e., for a

given parameter constellation. Note that there is a unique equilibrium case for any parame-

ter constellation satisfying the parameter restrictions from Subsection 2.2.1: When project

revenues are dependent, one of the cases from Figure 2.6 obtains. For independent revenues,

Figure 2.5 shows some possible cases.

50We assume that banks are able to transform collateral into consumable income, whereas households are
not. Thus, in contrast to the market outcome, there is no collateral C which households receive in case of
default. The same is true in case a project is successful. In a two-period problem, the reader might have
expected that collateral appears in the payoff rates since firms belong to households and households consume
everything they possess in the second period. The assumption that only banks can transform collateral into
consumable income explains why this is not the case. Instead of a ‘social optimum’, some readers might then
prefer to speak of a ‘constrained social optimum’. If we included collateral in the payoff rates, the ‘insurance
function’ of collateral would exist in the market situation and in our social optimum so that payoff rates in
each state would be unambiguously better in the social optimum.

51Again, the negative second derivative of the objective function w.r.t. savings is sufficient to guarantee this.
This procedure is equivalent to constrained optimization with the constraint n ≤ NR.
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Transition Equilibrium Equilibrium ∆ # total ∆ # safe ∆ # risky
revenues indep. revenues dep.

1 IIIind III no no no

2 Vind V less less no

3 Vind IV less unclear less

4 Vind III less less (all to zero) no

5 V Iind V I no no no

6 V Iind V less less no

7 V Iind IV less less less

8 V Iind III less less (all to zero) no

Table 2.1: Equilibrium transitions and amount of projects.

For now, to get clear-cut results, we focus on cases where it is socially optimal to fund all

projects - both with independent and with dependent project revenues. Then, as explained

in the preceding section, Figure 2.5 shows not only some but all possible equilibrium cases.

Of all cases possibly arising when revenues are dependent, we exclude cases I and II from

consideration. Case I is similar to case IV : Capital supply and LTU are maximal at rS and

both are cases of credit rationing. Whether capital supply and LTU at rS are more or less

than NRB does not influence equilibrium, and neither does the existence of a market-clearing

loan rate (in case IV ). Moreover, case II is similar to case III: Only risky firms get credit.

The difference lies in the number of risky firms in equilibrium and the loan rate charged.

Thus, we are left with eight possible transitions, listed in Table 2.1.

Starting from a situation with independent revenues, the preceding analysis has shown

that dependence makes the deposit rate risky without changing its expected value. Focussing

on θ < 1 implies that the introduction of dependent revenues leads to a decrease in savings

at any loan rate r.52

Therefore, if parameters are such that the equilibrium with independent revenues is of case

IIIind, the introduction of dependent revenues (all other things equal) cannot lead to a case

IV , V or V I equilibrium since capital supply would have to be higher than with independent

returns. Analogously, a case Vind equilibrium cannot become a case V I equilibrium by the

introduction of dependent project revenues.

Transition 1 is not very interesting. The allocation is similar in that only risky projects

are funded. The difference is that the loan rate increases (in order to compensate households

for the risk incurred). Also, transition 5 is trivial in that only the loan rate increases. Both
52Formally, risk leads to an MPS at any loan rate r, so that the result of Rothschild and Stiglitz (1971)

applies.
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allocations (with and without dependence) are socially optimal in their respective environment

since only cases where the social optimum consists of funding all projects are considered. All

other transitions are characterized by a change in the total number of projects funded in

equilibrium. As an example, consider transition 2 in Table 2.1. If the equilibrium with both

independent and dependent revenues is a two-price equilibrium, there must be fewer projects

funded when revenues are dependent. This is because the total amount of funding in a two-

price equilibrium equals capital supply at rS , which is lower when revenues are dependent

(column 4). Furthermore, all risky projects receive funding in every two-price equilibrium, so

that there is no change in the number of risky firms (column six in Table 2.1). Therefore,

the number of safe projects funded decreases (column five). The reader can go through the

remaining cells of Table 2.1 to check their adequacy.

As can be seen from that table, dependence of project revenues might significantly reduce

the equilibrium number of projects in a socially harmful way: While leaving unaffected the

number of risky projects, (some) safe projects might not be funded. The reduction is harmful

in two ways: The overall level of investment is too small and the projects being funded are of

the wrong type.
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Proposition 2.2 There are parameter combinations such that a) the amount of risky projects

in equilibrium is the same with dependent and independent returns, and b) the amount of safe

projects in equilibrium is some strictly positive number with independent returns but less than

that with dependent returns.

Proof: Transitions 2, 4, 6 and 8 are such cases. The following examples prove that the

transitions can occur.

• pS = 0.7, pR = 0.5,RS = 6
0.7 ,RR = 12, NS = 100, NR = 200, C = 0.2, B = 5, Y = 3, δ =

0.9,H = 1200 and γ = 0.2. Then, D(rS) = 1500, D(rR) = 1000, Sind(rS) = 1266.18,

Sind(rR) = 1981.62, i.e., case Vind. Also, S(rS) = 1153.97, S(rR) = 1470.82, i.e., case

V . Thus, transition 2.

• pS = 0.8, pR = 0.2,RS = 5,RR = 20, NS = 25, NR = 275, C = 0.1, B = 3, Y = 2, δ =

0.9,H = 2000 and γ = 0.45. Then, D(rS) = 900, D(rR) = 825, Sind(rS) = 898.64,

Sind(rR) = 2117.14, i.e., case Vind. Also, S(rS) = 658.20, S(rR) = 1017.22, i.e., case

III. Thus, transition 4.

• pS = 0.8, pR = 0.2,RS = 8,RR = 32, NS = 25, NR = 275, C = 0.1, B = 3, Y = 2, δ =

0.9,H = 1700 and γ = 0.45. Then, D(rS) = 900, D(rR) = 825, Sind(rS) = 1136.93,

Sind(rR) = 2265.74, i.e., case V Iind. Also, S(rS) = 848.31, S(rR) = 1215.39, i.e., case

V . Thus, transition 6.

• pS = 0.8, pR = 0.2,RS = 8,RR = 32, NS = 10, NR = 290, C = 0.1, B = 3, Y = 2, δ =

0.9,H = 1800 and γ = 0.45. Then, D(rS) = 900, D(rR) = 870, Sind(rS) = 1088.10,

Sind(rR) = 2399.02, i.e., case V Iind. Also, S(rS) = 667.35, S(rR) = 1286.88, i.e., case

III. Thus, transition 8.

q.e.d.

All parameter constellations lead to social optima with all projects funded, both with inde-

pendent and dependent project revenues.

The most extreme case is transition 8, where all safe projects are funded when revenues

are independent but none when revenues are dependent. Intuitively, households face a trade-

off: loan rate vs. firm type. A loan rate above rS discourages safe firms from lending and
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makes the deposit rate riskier such that risk preferences are crucial to determine equilibrium.

At the same time, such a high loan rate transfers more economic rents from risky firms to

households. With few safe firms present in the economy and/or low risk aversion, the tendency

is to neglect the safe firms and increase the loan rate. This is what we can observe in the

parameter constellations of the proof.

Next, the transitions in Table 2.1 show that dependence of project revenues might lead to

an equilibrium with credit rationing.

Proposition 2.3 There are parameter constellations such that there is credit rationing in

equilibrium with dependent revenues, but market clearing or a two-price equilibrium with in-

dependent revenues.

Proof: Transitions 3 and 7 are such cases. They arise at several parameter specifications, as

for instance:

• pS = 0.8, pR = 0.2,RS = 10,RR = 40, NS = 200, NR = 100, C = 0.2, B = 5, Y = 2, δ =

0.9,H = 1250 and γ = 0.2. Then, D(rS) = 1500, D(rR) = 500, Sind(rS) = 1396.62,

Sind(rR) = 1986.64, i.e., case Vind. Also, S(rS) = 1386.38, S(rR) = 1217.46, i.e., case

IV . Thus, transition 3.

• pR = 0.2, pS = 0.99,RS = 6.4
0.99 ,RR = 6.4

0.2 , NS = 100, NR = 200, C = 0.1, B = 5.5, Y =

2, δ = 0.9,H = 4000 and γ = 0.37. Then, D(rS) = 1650, D(rR) = 1100, Sind(rS) =

1727.46, Sind(rR) = 3946.58, i.e., case V Iind. Also, S(rS) = 1625.20, S(rR) = 1602.80,

i.e., case IV . Thus, transition 7.

q.e.d.

Transition 3 is the case where a two-price equilibrium becomes an equilibrium with credit

rationing, transition 7 has a market-clearing equilibrium turned into a credit rationing equi-

librium. This is particularly interesting in light of the recent result of AR: Credit rationing

as in cases I and IV is impossible in the SW setup.53 Proposition 2.3 shows that the intro-

53Recall from the discussion of case V that a two-price equilibrium has rationing, too. However, only safe
firms are rationed, whereas in a credit rationing equilibrium (at a single interest rate), both firm types are
rationed, and the risky miss a strictly positive expected profit.
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duction of dependence of project revenues might make credit rationing possible again. This

happens in spite of it being socially optimal to fund all projects.

Up to now, we focussed on cases in which the social optimum consists of all projects. We

then compared the situation with and without dependence of project revenues. Next, we look

at cases where the social optimum does not necessarily consist of all projects.54

There are two kinds of inefficiencies: the number of projects in equilibrium and the type

of project.55

Proposition 2.4 With dependent project revenues, the number of safe projects in equilibrium

cannot be higher than in a social optimum.

Proof: We prove this for each equilibrium case separately. For cases II and III, the assertion

is true since the equilibrium in both cases consists of only risky projects and the social optimum

always has some safe projects funded.

For cases I, IV and V I, we only have to look at social optima with m < NS safe projects

since there cannot be more than NS safe firms funded in any equilibrium. We show that

m < NS implies that the total number of projects in equilibrium and, thus, the number of

safe projects in particular, is less than the number of safe projects in the social optimum.

To see this, note that the payoff rate in a social optimum is riskless (and equal to E[R̃]
B −1),

whereas the deposit rate in equilibrium is always risky with a mean below the payoff rate (from

Figure 2.3, recall that E[R̃]
B − 1 is the highest possible deposit rate mean and it only occurs

in equilibrium case II, i.e., E[i(r)] < E[R̃]
B − 1 for r ≤ rS). Since we focus on θ < 1, the

substitution effect outweighs the income effect. Therefore, if the equilibrium expected deposit

rate were riskless, savings in equilibrium would be lower than in a social optimum. The

additional effect of risk reduces equilibrium savings even further, a result well known from

Rothschild and Stiglitz (1971).56

54This can be considered the more natural case since parameter constellations which lead to a social optimum
with funding for all projects in our six cases are rather extreme, especially collateral C is very small relative
to capital requirement B.

55For all equilibrium cases, we give some numerical examples together with the respective amounts of safe
and risky projects both in equilibrium and in the social optimum in Appendix 2.7.2.

56Therefore, instead of repeating this chain of arguments each time we compare two different deposit (or
payoff) rate combinations, we can use mean-variance argumentation as a shortcut in our setup with a binary
distribution of the deposit (or payoff) rate and CRRA utility.
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The same logic is true for case V, the two-price equilibrium: Having a social optimum with

m < NS , the deposit rate combination at either equilibrium loan rate has a mean which is

lower than the riskless payoff rate in optimum (i.e., E[i(r)] < E[R̃]
B −1), and a strictly positive

variance. Thus, total savings in equilibrium and, in particular, the number of safe projects

must be lower. q.e.d.

However, it is interesting to note that this does not imply that the total number of projects

in equilibrium is always lower than in a social optimum. There might be overinvestment.

Proposition 2.5 The equilibrium level of investment in each of the six cases might be higher

than the respective socially optimal level.

Proof: As can be seen from Table 2.4 in Appendix 2.7.2, there are parameter constellations

which yield a social optimum with a lower level of investment than in the respective equilib-

rium for each of the six cases. q.e.d.

If the social optimum consists of m < NS firms, this cannot happen (cf. the argument from

the proof of Proposition 2.4). If n > 0, the mean of the payoff rates in the social optimum

is always (equal to E[R̃]
B − 1 and thus) higher than (or, in case II, equal to) the mean of any

equilibrium deposit rate combination. The variance, however, can also be higher.

The most important determinant of the variance is the composition of the respective loan

portfolio. The more safe firms relative to risky firms, the lower the variance. In equilibrium,

this relationship is NS
NR

in cases I, IV and V I, less than that in case V , and zero in cases II

and III. In the social optimum, this ratio is m
n . If the social optimum consists of only safe

firms, this ratio approaches infinity and is thus higher than in any equilibrium. Even if the

social optimum consists of all risky and all safe firms, this ratio equals NS
NR

. From this point

of view, the variance of payoff rates should never be higher than the variance of deposit rates.

However, there is another important factor, viz., the amount of collateral. A consequence

of our definition of a social optimum is that an increase in collateral leaves the variance (and

the mean anyway) of the payoff rates unaffected but decreases the variance of the deposit

rate combinations. In the market setup, collateral has an insurance function. Therefore, for

parameter constellations with high C and/or high ratio NS
NR

, the variance of the deposit rate
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can be lower than the variance of the payoff rates.57

In sum, the effect of the higher risk in a social optimum can then outweigh the effect of

the higher mean such that, with θ < 1, savings in equilibrium can be higher than in a social

optimum.

Another natural question arises: Can the equilibrium allocation be the one of a social

optimum so that number and type of projects coincide, i.e., is there an efficient equilibrium?

Proposition 2.6 Market clearing at a loan rate r ≤ rS is a necessary (but not sufficient)

condition for a socially efficient equilibrium.

Proof: In case V I, all firms get funding in equilibrium. If the social optimum consists of all

projects, the equilibrium allocation is efficient. Otherwise, it is not. The former occurs, for

instance, when parameters are as in line 11 in Table 2.3 in Appendix 2.7.2, the latter occurs,

e.g., for parameters as in line 12 (the allocations can be found in the respective lines in Table

2.4 in Appendix 2.7.2.).

Evidently, cases II and III cannot be socially efficient since only risky firms are funded.

The equilibrium in cases I, IV and V cannot be efficient if m = NS since there is always

rationing of safe firms. If m < NS , the arguments in the proof of Proposition 2.4 can be used

to see that the number of safe firms in equilibrium is lower than the number of safe firms in

a social optimum. q.e.d.

We conclude this subsection with a short summary. First, we defined equilibrium and de-

scribed possible cases. Next, the concept of social desirability was developed for the case of

dependent project revenues. Assuming that it is socially optimal to fund all projects, we found

that dependence of project revenues can have two significant effects: First, it might reduce

the number of safe firms in equilibrium and, second, it can lead to credit rationing in equi-

librium. We stressed the importance of a closer examination of number and type of projects

in a social optimum. The interplay between asymmetric information and dependent project

revenues can have serious consequences: The number of safe firms in equilibrium is never

higher than the socially optimal amount. However, it is possible to have an equilibrium with

57The reader is invited to check this statement with the parameter constellations in Table 2.4 in Appendix
2.7.2.
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more projects than in a social optimum. The only efficient equilibrium is a market-clearing

one with all firms active.

2.2.6 Comparative statics

Two important assumptions underlying our model are dependent revenues and households’

risk aversion. We have analyzed the influence of perfectly dependent revenues for given degrees

of risk aversion (and intertemporal substitution preferences at the same time). The aim of this

subsection is to see how changes in θ influence the equilibrium, given perfect dependence of

project revenues (of the risky firms). An increase in θ has two effects: higher risk aversion and

stronger preferences for intertemporally smooth consumption.58 As a consequence, changes in

capital supply and LTU might cause changes in equilibrium. In Figure 2.6, we have seen that

the question of whether the maximum of capital supply (and LTU) occurs at rS or rR is of

utmost importance for the equilibrium. If S(rR)− S(rS) is positive (⇔ s∗(rR)− s∗(rS) > 0),

the maxima occur at rR, and vice versa.

At θ = 0, the difference s∗(rR)− s∗(rS) is either 0 or Y (see Figure 2.7). θ = 0 means risk

neutrality so that only the expected deposit rate matters for the consumption-savings decision.

Furthermore, the marginal utility of consumption is finite and equal to 1 for all consumption

levels, in particular u′(0) = 1 in both periods. Therefore, the FOC (2.6) for θ = 0 becomes

1 = δ(1 + E[i]). There is a critical E[i] from which on (discounted) marginal utility in period

two will be higher than in period 1 so that households will save Y for E[i] > E[i] and nothing

otherwise. Since E[i(rS)] < E[i(rR)] (property iv) in Subsection 2.2.2), s∗(rR)− s∗(rS) starts

at either 0 or Y .59 The former occurs if E[i] < E[i(rS)] or E[i] > E[i(rR)], the latter if

E[i(rS)] < E[i] < E[i(rR)]. For different parameter constellations, we get four qualitatively

58θ is the Arrow-Pratt measure of relative risk aversion and the inverse of the elasticity of intertemporal
substitution.

59In a non-generic case, namely E[i] = E[i(rS)], the difference at θ = 0 can be anything between 0 and Y .
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Figure 2.7: Four different shapes of s∗(rR)− s∗(rS).

different shapes for s∗(rR)− s∗(rS) (as a function of θ) which we plot in Figure 2.7.

1. The curve starts at 0, increases up to a local maximum, decreases to a negative local

minimum and becomes zero at θ = 1.

2. It starts at 0, increases up to a local maximum, decreases to a root at θ = 1 so that

there is no intersection with the abscissa for θ < 1.

3. It starts at Y , decreases to a (negative) local minimum and becomes zero at θ = 1.

4. It starts at Y and decreases to a root at θ = 1 so that there is no intersection with the

abscissa for θ < 1.

The root at θ = 1 always occurs since θ = 1 means log utility with the well-known property of

a constant amount of savings (cf. footnote 36). With most parameter constellations, we get

shape 1 or 3, i.e., there is a critical θ < 1 above which the maximum of capital supply (and

LTU) occurs at rS . However, shapes 2 and 4 show that such a critical θ does not necessarily

exist.60 If it were possible to vary risk aversion alone, an educated guess would be to always
60An exemplary parameter constellation which leads to shape 2 is: pS = 0.9, pR = 0.1,RS = 10,RR =

90, NS = 200, NR = 280, C = 2, B = 5, Y = 2, δ = 0.5 and arbitrary H. For shape 4: pS = 0.9, pR = 0.1,RS =
10,RR = 90, NS = 200, NR = 280, C = 2, B = 5, Y = 2, δ = 0.9 and arbitrary H.
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have a critical value from which on the high risk at rR leads to S(rR) < S(rS). This is the

most important drawback of the preceding analysis: We cannot vary risk aversion keeping

all other things equal. A change in risk aversion also changes time preferences since both

are governed by the same parameter, θ. Therefore, we present a non-expected utility setup

(non-EU) in the next section.

2.3 Extension I: non-expected utility

Fortunately, there is a way to separate risk aversion and intertemporal preferences. Selden

(1978, 1979) implemented the two-period consumption-savings decision with two parameters,

each measuring one of the two preference components.61

2.3.1 Capital supply, lifetime utility and equilibrium

Selden proposes to use the certainty equivalent of uncertain62 consumption in the second

period to maximize overall utility. He calls his approach the ordinary certainty equivalent

representation of preferences. Agents solve

max
s

U = {u(Y − s) + δu(ĉ2)}, (2.24)

where ĉ2 is the certainty equivalent of consumption defined by v(ĉ2) = E[v(sR̃)], so that

ĉ2 = v−1(E[v(sR̃)]). As before, sR̃ is the uncertain income (and consumption) flow in the

second period. The function v(·) is another utility function introduced to determine the

certainty equivalent of random consumption in the second period and is assumed to be of

the CRRA type: v(c) = c1−γ

1−γ . Due to households’ risk aversion, γ > 0. Note that we

impose no upper bound on γ, in particular, it might exceed one. Instantaneous utility in the

respective period is u(c) = c1−α

1−α , which implies constant elasticity of substitution (CES) time

preferences.63 The optimization problem as a whole is a non-expected utility approach since

61Among others, Selden’s work prompted the often-quoted paper by Epstein and Zin (1989), which might
be more familiar to readers. However, Epstein and Zin work with an infinite horizon, which does not fit in the
model structure chosen in this chapter.

62As will become clear later on in this Subsection, households are assumed to know the distribution of the
deposit rate so that, sticking to Knight’s distinction between risk and uncertainty, we should rather speak of
‘risky consumption’, see footnote 25.

63The same mathematical function displays both CRRA and CES. We omit the special cases of u(c) = ln c
for α = 1 since we restrict our attention to α < 1 later on, and do not look at v(c) = ln c for γ = 1 either,
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the objective function is in general not linear in probabilities.64 Households have a desire

for smooth consumption so that α > 0. High γ indicates high risk aversion, whereas high

α indicates a low intertemporal elasticity of substitution, i.e., there is a strong desire for a

smooth consumption path. Using the above utility functionals and the definition of ĉ2, we

get the FOC of equation (2.24),

(Y − s)−α = δE[(sR̃)−γ ]E[R̃]
[
s(E[R̃1−γ ])

1
1−γ

]γ−α
. (2.25)

Solving for optimal savings s∗ yields

s∗ =
Y

1 + δ−
1
α R̂

α−1
α

, (2.26)

where

R̂ =
(
E[R̃1−γ ]

) 1
1−γ (2.27)

is the certainty equivalent interest rate. This is the riskless interest rate which makes an agent

with CRRA as well off as the uncertain payoff R̃. Plugging s∗ into the RHS of equation (2.24)

and using ĉ2 = R̂s∗, simplification of the resulting expression yields LTU as a function of R̂,

LTU =
Y 1−α

1− α

(
δ

1
α R̂

1−α
α + 1

)α
. (2.28)

Lemma 2.3 Using non-expected utility, LTU and, if α < 1, capital supply increase monoton-

ically in r in each of the intervals [0, rS ] and (rS , rR] with a discontinuous downward jump at

rS. If α < 1, capital supply and LTU have their global maximum at the same loan rate, viz.

either rS or rR. If s∗ is the same at two loan rates, LTU must be the same at these two rates,

too.

In Appendix 2.7.3, we prove all these properties. The assertions in Lemma 2.3 correspond

to Lemma 2.1, Lemma 2.2, Proposition 2.1 and its corollary in the expected utility setup in

Subsection 2.2.3. Thus, we can see that the parameter for intertemporal substitution (α) alone

except if necessary in mathematical proofs.
64Setting γ = α = θ, we are back in the expected utility case as in Section 2.2. Note that the definition of

the certainty equivalent follows pure expected utility theory.
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is responsible for the slope of capital supply. As long as α < 1, capital supply is increasing in

r in each of the two intervals with a downward jump at rS , irrespective of γ, the parameter

capturing risk aversion. However, at the same time,

Lemma 2.4 Whether the maximum of capital supply and LTU occurs at rS or rR does not

depend on the intertemporal substitution parameter α.

The proof of this lemma is also delegated to Appendix 2.7.3. As in the expected utility setup

in the previous section, we focus on an increasing capital supply. Thus, we only look at

α < 1. As a consequence, we get the same six equilibrium cases as in the expected utility

setup, depicted in Figure 2.6.

2.3.2 Comparative statics

Proposition 2.7 If α < 1, an increase in households’ risk aversion decreases optimal savings

at any combination of ib and ig.

Proof: First, from Basu and Ghosh (1993), we know that a decrease in R̂ implies a reduction

in savings if α < 1. This can be seen from differentiating optimal savings in (2.26) w.r.t. R̂,

ds∗

dR̂
= Y

 δ
1
α R̂

1−2α
α(

1 + δ
1
α R̂

1−α
α

)2

1− α

α

 . (2.29)

Therefore, it is sufficient to show that dR̂
dγ < 0 for α < 1. Since the logarithm is a monotonic

transformation, this is equivalent to showing that d ln R̂
dγ < 0. From the definition of R̂ in

equation (2.27), it follows that

ln R̂ =
1

1− γ
lnE[R̃1−γ ].

Using the product rule and applying logarithmic differentiation, the derivative becomes

d ln R̂

dγ
=

lnE[R̃1−γ ]
(1− γ)2

− 1
1− γ

E[R̃1−γ ln R̃]
E[R̃1−γ ]

.

Defining φ ≡ R̃1−γ , this equation can be written as
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d ln R̂

dγ
=

lnE[φ]
(1− γ)2

− 1
1− γ

E[φ 1
1−γ lnφ]

E[φ]
=

1
(1− γ)2E[φ]

{E[φ] ln(E[φ])− E[φ ln(φ)]} .

The difference in braces on the far RHS of the above equation is decisive since the factor

in front of it is positive. Defining a new function f(φ) ≡ φ ln(φ), the term in braces is

negative if f is strictly convex in φ. This is because a strictly convex function f satisfies

E[f(φ)] > f(E[φ]). Since f ′(φ) = ln(φ) + 1 and f ′′(φ) = φ−1 > 0, f is convex. q.e.d.

This proof holds for arbitrary distributions of R̃. So if risk aversion increases, optimal savings

decrease at any (combination of deposit rates corresponding to a) loan rate r. We can also

say something about the location of the maxima of capital supply and LTU, which is crucial

to determine the equilibrium.

Proposition 2.8 Capital supply and LTU attain their respective maxima at rS for sufficiently

high risk aversion. For risk aversion sufficiently low, capital supply and LTU attain their

respective maxima at rR.

Proof: Let f(γ) ≡ s∗(γ)|r=rR − s∗(γ)|r=rS . From AR, we know that the expected return

function attains its global maximum at rR. This implies that, given α < 1, capital supply

must be maximum at rR for risk-neutral households (γ = 0) so that f(0) > 0. The other

extreme is an infinitely high aversion to risk. In this case, we can see that savings are higher

at rS by looking at the limit of the difference in savings,

lim
γ→∞

f(γ) = lim
γ→∞

[
Y

1 + δ−1/α(R̂(rR))
α−1

α

− Y

1 + δ−1/α(R̂(rS))
α−1

α

]
,

where R̂(rj) is the certainty equivalent interest rate for the state-contingent deposit rates

ig(rj) and ib(rj) (j ∈ {S, R}) with their corresponding probabilities pR and (1− pR). Since γ

appears only in R̂, we only have to look at the limits of R̂ at rR and rS . R̂ decreases in γ (cf.

the proof of Proposition 2.7), and is applied to a Bernoulli lottery. For higher risk aversion,

the certainty equivalent interest rate approaches the worse of the two lottery outcomes. In

the limit, R̂(rj) = (1− ib(rj)), i.e., in order to avoid risk, a maximally risk-averse household
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Figure 2.8: Two examples of shapes of f(γ).

accepts the worse of the two lottery outcomes.65 Since ib(rR) < ib(rS) (cf. property ii) in

Subsection 2.2.2), we get

(1 + ib(rR))
α−1

α > (1 + ib(rS))
α−1

α ,

given that α < 1. Therefore, the above limit is negative, and its algebraic form can be ob-

tained by substituting (1 + ib(ri)) for R̂(ri). q.e.d.

Thus, f(γ) starts at some positive value for γ = 0 and asymptotically approaches the negative

limit for γ → ∞, either from above or from below. Different possible shapes of f(γ) can be

seen in Figure 2.8. Note that we show two examples without being exhaustive.66 Since f(γ)

is a continuous function, there is at least one root. From the graphs in Figure 2.8,67 it seems

that there is only one critical value of γ from which on the maximum of capital supply occurs

at rS . For a rigorous proof, we would have to preclude the possibility of more than one root,

which is not straightforward (and which we were not able to achieve).

We illustrate Proposition 2.8 in Figure 2.9. Capital supply and LTU are plotted for three

65The opposite is also true: For maximum risk lovers, i.e., γ → −∞, the better of the two outcomes,
(1 + ig(rj)), is the certainty equivalent interest rate.

66For extreme parameter constellations, we found cases where f ′(0) is positive, i.e., the maximum of the
difference in savings might occur at a positive value of γ.

67Apart, we tried a large amount of numerical examples. In none of these, there was more than one root.
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Figure 2.9: Capital supply and LTU for different values of γ.

different values of γ, as indicated in that figure. We keep all other parameters constant.68 The

upper panel depicts capital supply and demand, the lower panel shows LTU, both depending

on the loan rate r. For a high value of γ, both capital supply and LTU have their maximum at

rS (the dashed curves). For low γ, both maxima occur at rR (the solid curves). At γ ≈ 0.39,

capital supply (and LTU) are the same at rS and rR (the dotted curves).

Proposition 2.8 and the graphs in Figure 2.8 support the guess we were making in Sub-

section 2.2.6: There is a critical value for the risk-aversion parameter from which on the

maximum occurs at rS , so that the type of equilibrium might change. Apart from this, the

non-expected utility setup has further convenient features: On the one hand, it is a genuine

generalization since setting α = γ = θ yields the expected utility setup. This added flexibility

allows to vary two preference components separately. In particular, we are able to vary the

degree of risk aversion to arbitrarily high values without changing the sign of the slope of

capital supply. On the other hand, the empirical literature shows that there is no unani-

mous relationship between risk aversion and the intertemporal elasticity of substitution. In

particular, the hypothesis of an inverse relationship as implied by the expected utility setup

68We use pS = 0.8, pR = 0.2, RS = 10, RR = 40, NS = 100, NR = 100, C = 2, B = 5, Y = 2, H = 500,
α = 0.5 and δ = 0.9.
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is rejected. However, there is dissent regarding the plausible magnitudes of α and γ. In

an empirical study, Attanasio and Weber (1989) get α < 1 and γ > 1, which could not be

considered using an expected utility setup.69

2.4 Extension II: imperfect dependence

When we were talking about dependent project revenues in the above analysis, we considered

perfect dependence: Either all risky firms succeed or all fail. This is the most extreme sort

of dependence. In this section we introduce a random variable q̃ with support [0, 1] to allow

for variations in the degree of dependence. Let f(q̃) be its density. We can interpret q̃ as

an aggregate shock which determines capital risk for households.70 The extreme realization

q = 0 means that all risky (and, thus, all) firms’ revenues are independent, such that we get

the SW setup with a riskless deposit rate. The other extreme realization q = 1 means that

all risky firms have perfectly dependent revenues (as in the previous section). Intermediate

values of q yield imperfect dependence among the risky firms. For example, if q = 0.5, half the

risky firms have independent revenues, but the other half will either succeed or fail altogether.

Throughout this chapter, the revenues of the safe firms are independent so that a share pS of

them succeeds. The timing of this new model structure is illustrated in Figure 2.10.

The analysis in this section is based on expected utility maximization of households as in

Section 2.2.

2.4.1 Deterministic degree of dependence

In this subsection, we assume that households take the consumption-savings decision after

q̃ has been realized. Evidently, credit demand of firms is unaffected. The realization of q̃

only changes aggregate risk and, thus, the deposit rates. Banks act as before, i.e., they pass

through risk and make zero profits in any potential equilibrium. Thus, the good and bad

state deposit rates, which still occur with probabilities pR and (1− pR), become

69We do not want to omit contrary studies. Hall (1987) and Epstein and Zin (1991) estimate values of α > 1.
If α > 1, the whole SW and AR analysis which is based on an increasing capital supply breaks down.

70The project revenue is another sort of random variable which can be interpreted as a shock to each
individual firm.



54 CHAPTER 2. ASYMMETRIC INFORMATION IN CREDIT MARKETS

Figure 2.10: Timing of the new model structure.

ib(q) = (1− q)E[i] + qib, ig(q) = (1− q)E[i] + qig. (2.30)

As in Subsection 2.2.3, ib and ig are the deposit rates for perfectly dependent revenues and

E[i] is the expected deposit rate. Also, ib, ig, and E[i] depend on r which we again omit, unless

stated otherwise. The optimal amount of savings resulting from expected utility maximization

becomes a function of q.

s∗(z(q)) =
Y

1 + (δz(q))−
1
θ

, (2.31)

where z(q) ≡ pR(1 + (1− q)E[i] + qig)1−θ + (1− pR)(1 + (1− q)E[i] + qib)1−θ, in analogy to

the definition of z in Subsection 2.2.3. Instead of being a function of z, optimal savings are a

function of z(q). The same is true for indirect lifetime utility: Take equation (2.11) and write

z(q) instead of z to get LTU(z(q)).

For the equilibrium analysis, we need to know how capital supply and LTU behave as

functions of r. They depend on the shape of the deposit rate combinations as functions of

r (cf. Figure 2.3). We can determine capital supply and LTU looking at the influence of a

change in q at a given r. A decrease in q does not change the expectation of the deposit rate,

but decreases its variance.



2.4. EXTENSION II: IMPERFECT DEPENDENCE 55

Figure 2.11: Density functions of deposit rates depending on q.

E[i(q)] = pR ((1− q)E[i] + qig) + (1− pR) ((1− q)E[i] + qib) = E[i], (2.32)

and

V ar[i(q)] = pR ((1− q)E[i] + qig − E[i])2

+ (1− pR) ((1− q)E[i] + qib − E[i])2

= pR (q(ig − E[i]))2 + (1− pR) (q(ib − E[i]))2 = q2V ar(i),

(2.33)

where V ar(i) is the variance of the deposit rate if project revenues are perfectly dependent.

This is illustrated in Figure 2.11, where we show density functions of the deposit rates, con-

tingent on the realization of q.71

Given our binary random variable q̃, we have already shown that an increase in the variance

71Note that we used pR = 2
3

so that E[i] is closer to ig than to ib. The three vertical dashed lines indicate the
worst possible bad deposit rate, the expected deposit rate and the best possible good deposit rate, respectively.
The actual deposit rates after q̃ has been realized are functions of q and occur where the thick bars are drawn.
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at a constant mean is an MPS. Therefore, comparing ib(q), ig(q) for q < 1 with ib and ig (i.e.,

with ib(q) and ig(q) for q = 1), the latter is an MPS of the former at any loan rate r. Thus,

Rothschild and Stiglitz (1971) applies:

Proposition 2.9 A higher degree of dependence amongst risky firms as measured by q de-

creases households’ savings at any loan rate r.

The deposit rates (as functions of r as in Figure 2.3) change as follows. Not all of the properties

i) to v) in Subsection 2.2.2 generally apply. The jump of ig(q) at rS (property i)) does not

need to be upward. For q sufficiently close to 0, it is a downward jump. The bad state deposit

rate ib(q) is monotonically increasing in r in each of the two intervals for q < 1 (property ii)).

Properties iii), iv) and v) are unaltered. In particular, the expected deposit rate attains its

global maximum at rR and the variance of the deposit rate is monotonically increasing in r.

The latter fact can be seen from equation (2.33): V ar(i) increases monotonically (property

v)) so that q2V ar(i) does so, too.

The reader can check that the arguments in the proofs of Lemmas 2.1 and 2.2, as well

as in Proposition 2.1 and its corollary stay the same. In particular, capital supply and LTU

both have their maximum either at rS or at rR, irrespective of q. Thus, there are the same

six equilibrium cases (cf. Figure 2.6).

The degree of dependence of project revenues might crucially influence equilibrium out-

comes in the model. This result is not new, it is only a reformulation of Proposition 2.3.

However, the change from independent project revenues to perfectly dependent revenues as

in Subsection 2.2.5 is rather extreme.

Proposition 2.10 There is financial fragility.72 A small change in a parameter can change

the type of equilibrium.

Proof: One such parameter is the degree of revenue dependence as measured by q. Using

pS = 0.8, pR = 0.2, RS = 10, RR = 40, NS = 200, NR = 200, C = 2, B = 5, Y = 2, δ = 0.9,

H = 1030, θ = 0.40 and changing q from q = 0.48 to q = 0.49 decreases capital supply at any

given r such that there is a case V equilibrium (with two loan rates) for q = 0.48 but a case

72See Mankiw (1986), who first characterized financial fragility.
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III market-clearing equilibrium for q = 0.49.73. q.e.d.

2.4.2 Stochastic degree of dependence

Instead of assuming that q̃ has already been realized when households decide about consump-

tion and savings, as we did in the previous subsection, we now assume that q̃ has not been

realized yet when they decide. We assume that households know the distribution of q̃. Using

the terminology of Knight (1967),74 there is risk in the degree of dependence, but no uncer-

tainty. In contrast to Subsection 2.4.1, the two state-contingent deposit rates are not known

any longer since they depend on the realization of q̃. Therefore, as long as the distribution

of q̃ is not degenerate, the deposit rate distribution is not a binary one before q̃ has been

realized.

For the consumption-savings decision, we must know the expectation E[i(q̃)] and variance

V ar(i(q̃)) of i before q̃ has realized.75 Households take expectations before any random

variable has been realized. We get

E[i(q̃)] = pRE [(1− q̃)E[i] + q̃ig] + (1− pR)E [(1− q̃)E[i] + q̃ib]

= E[i] + E[q̃] (E[i]− E[i]) = E[i].

(2.34)

Since V ar(X) = E[X2]−E[X]2, we get the variance by finding the expectation of the squared

deposit rate,

73Although such a marginal change in a parameter changes the equilibrium case, the allocation is not
drastically different. In the given example, the two-price equilibrium has almost no safe firm funded and most
of the risky firms get credit at a high loan rate anyway. The difference in the case III equilibrium is that these
few safe firms do not get credit and the risky firms have to pay a slightly higher loan rate.

74See footnote 25.
75This does not mean that we are conducting mean-variance analysis. However, looking at the mean and

the variance is sufficient for our purpose as can be seen later on.
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E[i(q̃)2] = pRE
[
((1− q̃)E[i] + q̃ig)2

]
+ (1− pR)E

[
((1− q̃)E[i] + q̃ib)2

]
= E[i]2 + 2E[i]E[q̃] (E[i]− E[i]) + E[q̃2]V ar(i)

= E[i]2 + E[q̃2]V ar(i).

(2.35)

As E[q̃2] = V ar(q̃) + E[q̃]2, we get

V ar[i(q̃)] = E[i(q̃)2]− E[i(q̃)]2 = E[i]2 + E[q̃2]V ar(i)− E[i]2

= E[q̃2]V ar(i) =
(
V ar(q̃) + E[q̃]2

)
V ar(i).

(2.36)

From equations (2.34) and (2.36),

Lemma 2.5 For all f(q̃) defined on the unit interval, the mean of the distribution of deposit

rates is the same and the variance is less than with perfectly dependent project revenues.

Proof: The first part of the lemma follows immediately from equation (2.34). From equation

(2.36), E[q̃2] < 1 as long as q̃ has support [0, 1], irrespective of the distribution. Therefore,

V ar[i(q̃)] < V ar(i). q.e.d.

Lemma 2.6 A change in the distribution of q̃ influences savings at a given loan rate r. An

increase in either expectation or variance (or both, or any change such that V ar(q̃) + (E[q̃])2

increases) of the distribution of dependence of project revenues decreases savings, and vice

versa.

Proof: Equation (2.36) implies that the variance of the deposit rate increases due to the

changes in the distribution of q̃ indicated in the proposition. Since the mean remains the

same, such changes constitute an MPS of the distribution of the deposit rate. Furthermore,

since we assumed θ < 1, we know from Rothschild and Stiglitz (1971) that an MPS decreases
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savings in an expected utility setup with CRRA utility. q.e.d.

We should now go through all the lemmas and propositions in Section 2.2 to check if they still

hold. This task is more complex but results in the same consequences for the crucial functions,

capital supply and LTU: If θ < 1, savings increase with the well-known discontinuous down-

ward jump, and so does LTU. Again, their maxima occur at the same loan rate, rS or rR (just

define z(q̃) in an analogous way and apply the same arguments). In the terminology of this

subsection, the case of perfect dependence of project revenues can be seen as a special case of

stochastic dependence with a degenerate distribution and all probability mass on q = 1. It is

convenient to resort to the extreme cases of degenerate distributions (q = 0 vs. q = 1, with

probability one each) to see that a change in the distribution of q̃ might crucially influence

equilibrium outcomes in our model by changing whether the maximum of capital supply and

LTU occurs at rS or at rR. Referring back to the transitions in Table 2.1, it is clear that all

of these can be caused by a change in the distribution of dependence of project revenues (all

other things equal). In particular,

Proposition 2.11 Given two parameter constellations which differ only in the density f(q̃)

of project revenues, it is possible that one leads to an equilibrium with market clearing and

the other leads to credit rationing.

Proof: Consider the two degenerate distributions q̃ = 0 and q̃ = 1 with certainty (all other

parameters equal). The proposition then follows from Proposition 2.3. q.e.d.

Proposition 2.11 also holds for non-degenerate distributions. In fact, all transitions from

Subsection 2.2.5 can occur from changes in non-degenerate distributions of the dependence

of project revenues. The influence of a change in the distribution on capital supply, LTU

and, thus, equilibrium can be illustrated considering the (simple and discrete) distributions

in Table 2.2.

The graphs in Figure 2.12 are based on these distributions. The other parameters are:

pS = 0.6, pR = 0.4, RS = 40
3 , RR = 20, NS = 100, NR = 100, C = 2, B = 5, Y = 2, γ = 0.8

and δ = 0.9. On the abscissa appears the loan rate r, and the break-even loan rates are 1.4

and 2.4. The ordinate displays the optimal amount of savings. Going from distribution a)
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distribution qj p(qj) E[q̃] V ar(q̃) V ar(q̃) + E[q̃]2

a) 0 1 0 0 0
b) 0.5 1 0.5 0 0.25
c) 0.75 0.5

0.5 1
16 0.3125

0.25 0.5
d) 0.9 0.5

0.7 1
25 0.53

0.5 0.5
e) 1 1 1 0 1

Table 2.2: Various (discrete) distributions of q̃ and some respective characteristics.

Figure 2.12: Capital supply for distinct distributions of q̃ in one graph.
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to e) in Figure 2.12, we can observe what Lemma 2.6 predicts. Any change in expectation

and/or variance of the distribution of q̃ that increases the sum of the variance and the squared

expectation decreases savings. For distributions a), b) and c), the maximum of capital supply

occurs at rR, whereas distributions d) and e) yield maxima at rS . LTU also has its maximum

at the respective loan rate and the equilibrium outcomes in cases a), b) and c) are different

from the equilibrium in cases d) and e).

Having a stochastic q̃ is a useful tool which enables us to go one step further, namely to

introduce uncertainty.

2.4.3 Stochastic and uncertain degree of dependence - self-fulfilling expec-

tations

We now assume that households have a common prior about the distribution of the degree of

dependence, which might or might not be correct. The correct distribution is unknown, i.e.,

there is uncertainty (using Knight’s terminology, see footnote 25). As in Subsection 2.4.2,

households take the consumption-savings decision before q̃ has been realized.

Proposition 2.12 There can be self-fulfilling expectations: If households expect a high degree

of dependence among the risky firms, the equilibrium might be characterized by a high degree

of dependence.

Proof: If the households’ prior on q̃ has a very high mean and a very low variance, i.e.,

households are convinced that there will be a high degree of dependence, savings will be

quite low. For a prior with a very low mean and a very low variance, savings could be much

higher. As a proof to the proposition, assume the two most extreme cases: a prior of a

degenerate distribution of q̃ = 1 with probability 1 vs. a prior of q̃ = 0 with probability 1.

Then, for suitable parameter constellations, transition 8 in Proposition 2.2 can occur,76 i.e.,

if households expect a low degree of dependence, the equilibrium could be characterized by

market clearing with all projects funded (case V I). By contrast, if they expect a high degree

of dependence, the equilibrium can be characterized by market clearing with all risky projects

but no safe projects funded (case III).

76One such constellation is given in the proof of Proposition 2.2.
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We measure the degree of dependence with regard to all firms active in equilibrium, i.e.,

in relative terms. There is a share q(1− β) of firms with (perfectly) dependent revenues in a

case V I equilibrium, but a share q of firms with (perfectly) dependent revenues in a case III

equilibrium. Since β = NS
NS+NR

, (1− β)q < q. q.e.d.77

2.5 Extension III: intra- and inter-type dependence

Even though we have argued in favor of the assumption that only the risky firms’ project

revenues are dependent, we show that this is not an indispensable assumption of the model.

In this section, we use another sort of dependence. First, we add (perfect) dependence among

the safe firms, i.e., in the aggregate, all safe firms will either succeed or fail. Second, we

consider inter-type dependence: We assume that risky firms can only succeed if the safe firms

succeed.78 Therefore, the risky firms’ success probability is a conditional one. All other

assumptions are as in Section 2.2. This section can be considered a robustness test since we

show that the main results from Subsection 2.2.5 obtain with these assumptions, too.

The individual success probability of a safe firm does not change, it is still pS . For the

risky firms, we define p′R as the success probability conditional on the safe firms’ success.

Let Sj be two Bernoulli random variables which take on the value ‘1’ if all firms of type j

succeed, and ‘0’ otherwise (j ∈ {R,S}). The four conditional probabilities for the risky firms

are: P (SR = 1|SS = 1) = p′R, P (SR = 1|SS = 0) = 0, P (SR = 0|SS = 1) = 1 − p′R and

P (SR = 0|SS = 0) = 1.

77Clearly, the degree of dependence as measured by the realization of q̃ is exogenous.
78In Arnold, Reeder, and Trepl (2010), this correlation structure is assumed throughout. Major differences

to the exhibition in this chapter occur in the definition of a social optimum and in the corresponding welfare
analysis.
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Figure 2.13: State-contingent return function.

The four states of the world79 occur with the following probabilities:

P (SR = 0 ∩ SS = 0) = P (SR = 0|SS = 0) · P (SS = 0) = 1 · (1− pS) = 1− pS ,

P (SR = 1 ∩ SS = 0) = P (SR = 1|SS = 0) · P (SS = 0) = 0 · (1− pS) = 0,

P (SR = 0 ∩ SS = 1) = P (SR = 0|SS = 1) · P (SS = 1) = (1− p′R) · pS ,

P (SR = 1 ∩ SS = 1) = P (SR = 1|SS = 1) · P (SS = 1) = p′R · pS .

Omitting the zero probability case and defining pR ≡ p′R · pS , we have three remaining states.

1. All firms fail. This happens with probability (1− pS). The banks’ return on lending is

i1 = C
B − 1 for all r ≤ rR.

2. The safe firms succeed but the risky fail. This happens with probability (pS − pR).

Returns are i2 = βr + (1− β)
(

C
B − 1

)
for r ≤ rS and i2 = C

B − 1 for rS < r ≤ rR.

3. All firms succeed. This happens with probability pR. Returns are i3 = r for all r ≤ rR.

Note that pR gives both the probability that all firms succeed and the unconditional success

probability of the risky firms. Figure 2.13 shows a stylized graph of the return function. The

worst deposit rate (i1) is negative and equal to C
B − 1, irrespective of the loan rate. The

79This time, our use of a ‘state of the world’ also satisfies the definition of Mas-Colell, Whinston, and Green
(1995), cf. footnote 35.
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Figure 2.14: Expected return function.

deposit rate in state 2, i2 is strictly increasing up to rS , but equal to the worst deposit rate

for higher loan rates (since there are no safe firms in the market for loan rates beyond rS , the

rate in the ‘safe succeed but risky fail’ state equals the rate in the ‘all fail’ state). The best

deposit rate, i3 is continuous and monotonically increasing in the loan rate with a slope equal

to one. The state-contingent returns lead to an expected return function as in Figure 2.14.

In analogy to properties iii) and iv) in Subsection 2.2.2, the expected return function is

strictly increasing in each of the two intervals with a discontinuous downward jump at rS , and

the maximum occurs at rR. A formal proof can be found in Appendix 2.7.4. The intuitive

explanation is the same as in Section 2.2, the AR result.

Property v) from Section 2.2 does not hold any more. Even though the variance increases

monotonically within each of the intervals, it need not increase at rS . Thus, it must be asked

whether savings still decrease discontinuously at rS . After all, the lower mean and the lower

variance point to opposite directions (for risk-averse households). We argue that savings

increase in each of the two intervals for θ < 1, and still decrease discontinuously at rS .

Let znew ≡ E[R̃1−θ] = (1− pS)(1 + i1)1−θ + (pS − pR)(1 + i2)1−θ + pR(1 + i3)1−θ. Then,

optimal savings are as in equation (2.8) and LTU is as in equation (2.11) if we replace z

by znew in these formulas. Moreover znew increases within each of the intervals if θ < 1,

whereas it decreases discontinuously at rS . This follows from the properties of the state-

contingent returns (cf. Figure 2.14) and the definition of znew: Within each interval, the

deposit rates weakly increase for all states of the world and raising them to some positive
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power is a monotonic transformation. At rS , i1 does not change, i3 increases marginally, but

i2 decreases discontinuously, so that znew decreases discontinuously. Since the derivatives of

optimal savings and LTU w.r.t. znew are positive for θ < 1, it follows that capital supply

and LTU increase within each of the intervals but decrease discontinuously at rS . In fact, for

r > rS , z = znew and, thus, capital supply and LTU are identical to the case where only the

risky firms’ revenues are dependent. This is because the new assumption implies that there

is no change for the risky firms, and because safe firms are not active for r > rS .

Therefore, the proofs regarding shape and maxima of capital supply and LTU are also

valid given the dependence structure of this section.

Proposition 2.13 With intra- and inter-type dependence, all six equilibrium cases from Fig-

ure 2.6 are possible. In particular, credit rationing might occur.

Proof: Plugging the new formula for znew into optimal savings and LTU, the parameter con-

stellations in Table 2.3 in Appendix 2.7.2 again lead to the same six equilibrium cases. q.e.d.

The fact that the equilibrium case is the same under both dependence structures for our

chosen parameters does not mean that there is no difference at all. Using θ = 0.45 instead

of θ = 0.47 in the first two lines in Table 2.3 in Appendix 2.7.2 leads to different equilibrium

cases with the two sorts of dependence. With intra- and inter-type dependence, these are of

type II, whereas with only the revenues of the risky firms dependent, the equilibrium cases

are of type I.

In general, in a comparison to the case of independent revenues as in SW, both types of de-

pendence lead to lower capital supply and LTU at any given loan rate r (with consequences for

the type of equilibrium). For capital supply, this follows from Rothschild and Stiglitz (1971)

since the new deposit rate has the same mean but is now risky and, thus, constitutes an MPS

of the riskless deposit rate from SW. Comparing our two different dependence structures, we

have pointed out that there is no change at all for high loan rates, since only risky firms are

active at these rates. For low loan rates, i.e., when both firm types are active, the dependence

assumption of this section implies higher aggregate risk. In consequence, deposit rates are

more risky such that capital supply at any loan rate r is still lower than with dependence of

only the risky firms’ revenues.
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2.6 Conclusion

Aggregate risk due to the dependence of project revenues has not been analyzed exhaustively

in models of the credit market. This is surprising since its consideration can have far-reaching

consequences both in a theoretical model and in reality. In a setup similar to the seminal

SW model, we have shown that the type of equilibrium can crucially depend on the degree of

dependence of project revenues. Since aggregate payoffs become risky, households face capital

risk in our setup. Therefore, risk aversion of households becomes a parameter of utmost

importance since it influences households’ consumption-savings decision. Thus, although the

expected deposit rate is maximum at the highest loan rate accepted by borrowers (the AR

result), capital supply and LTU do not have to be maximum at that rate. Capital risk deters

households from saving so that there might be a credit rationing equilibrium at a lower loan

rate. To make this point stronger, we have shown that credit rationing can occur even if

a social optimum requires funding of all projects. The definition and analysis of the social

optimum significantly differs from a situation with independent project revenues. The new

social optimum is characterized both by the number and the type of the projects funded.

We distinguished six different equilibrium cases. We found that dependence of the risky

firms’ project revenues might reduce the number of safe projects in equilibrium in a socially

harmful way. Thus, dependence of project revenues can aggravate adverse selection. Another,

non-obvious result in terms of welfare is that the interplay of asymmetric information and

dependence of project revenues can lead to an equilibrium with more projects than in the

social optimum.

Using a non-expected utility setup to separate aversion against risk per se and aversion

against differences in consumption over time, we were able to show that the degree of risk

aversion alone is responsible for whether the maximum of capital supply and LTU occur at a

lower or higher loan rate. Thus, the equilibrium outcome crucially depends on risk aversion

on the one hand and the degree of dependence of project revenues on the other. The latter

was made even more clear by showing that leaving aside the restrictive assumption of perfect

dependence does not change the conclusion.
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As a final robustness check, we showed that our results are not an artifact of our chosen

way of modeling dependence of project revenues. In addition to dependence of risky firms’

projects, having safe firms’ project revenues depending on each other and assuming inter-type

dependence at the same time does not change the results.

Our analysis points out that dependence of project revenues is an important factor in

the determination of credit market outcomes. We suggest further research on dependence of

project revenues in other theoretical models, especially in the area of credit markets. One

particular model to analyze is De Meza and Webb (1987), where expected project revenues

of safe and risky firms are not the same.

However, aggregate risk has often been neglected or not fully understood in many areas of

the theoretical literature in finance. Therefore, we strongly suggest to consider dependencies

in areas adjacent to credit markets, too.

In this chapter, we have seen how market frictions can lead to inefficient market outcomes.

Asymmetric information can cause credit rationing under certain circumstances. In Section

2.1, we have mentioned some literature which suggests that using collateral to secure loans

can mitigate many of these inefficiencies. However, potential borrowers in some economies

do not have suitable assets to collateralize loans. Moreover, asymmetric information might

not be the most severe market friction. Problems of imperfect enforcement might constitute

a much bigger threat to economic efficiency. Given that collateral is scarce, sophisticated

contractual arrangements have been proposed as collateral substitutes. Therefore, we consider

the performance of such group lending contracts in a market characterized by enforcement

problems in the next chapter.
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2.7 Appendix

2.7.1 Proof: shape of return function

We successively prove properties i) to v) in Subsection 2.2.2.

i) In the good state, all risky firms and, if they apply for capital in the first place, a proportion

pS of the safe firms succeed. Within both intervals, the composition of the firms with funding

is unaffected by a change in r. At rS , safe firms stop applying for capital so that only risky

firms are left in the market in the second interval.

In the first interval, E[p|g] = βpS + (1 − β) from a bank’s point of view. In the second

interval, E[p|g] = 1. From equation (2.4), an increase in r will increase the expected good

state return of a bank by E[p|g] which is strictly positive (and smaller than one) in the first

interval and equal to one in the second. Therefore, the good state rate is monotonically

increasing within both intervals.

To see that there must be a discontinuous upward jump in the good state rate at rS ,

note that, in the good state, banks’ returns equal the RHS of equation (2.4) with E[p|g] =

βpS + (1− β)(< 1) in the first interval. In the second interval, banks’ returns are equal to r.

The RHS of equation (2.4) is smaller than r for any E[p|g] < 1 since C < (1 + r)B for any

r > C
B − 1, and, thus, in particular for r = rS .

ii) In the bad state, none of the risky firms, but a fraction pS of the safe firms, succeed. In

the first interval, E[p|b] equals βpS(> 0), whereas E[p|b] = 0 in the second interval. Again,

the composition of borrowers does not change within each of the intervals, so that an increase

in r will increase expected returns in the bad state by E[p|b]. This expression is positive in

the first interval, but equal to zero in the second.

To see that the bad state rate is at its global minimum in the second interval, note that

banks’ returns from equation (2.4) become C
B − 1 in the second interval. In the first, at r = 0,

it must be larger than that since B > C, and, thus, any weighted average of C and B (in the

numerator of the fraction in equation (2.4)) must be larger than C.

iii) Since the expected rate of return is a probability weighted average of the good and bad
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state rates, the fact that it is increasing within both intervals follows from i) and ii).

To see that there is a discontinuous downward jump at rS , consider an infinitesimal in-

crease in r from rS to rS + ε. All other things equal, this change in r marginally increases the

banks’ returns. However, since all the safe firms drop out of the market, the average success

probability falls discontinuously. While it is equal to βpS + (1− β)pR in the first interval, it

equals pR in the second. Since pS > pR, the latter expression, pR, is smaller than the for-

mer for ε sufficiently small, which proves that expected returns decrease discontinuously at rS .

iv) The expected rates of return at rS and rR are

E[i(rS)] =
(1− β)

(
pRE[R̃] + C(pS − pR)

)
+ βE[R̃]pS

BpS
− 1,

E[i(rR)] =
E[R̃]

B
− 1.

Doing some algebra on these two expressions shows that the former is smaller than the latter

iff E[R̃] > C, which is true by assumption.

v) We prove that the variance increases in each of the two intervals by showing that (ig − ib)

increases in r. This is sufficient for the proof since

V ar(i) = pR(ig − E[i])2 + (1− pR)(ib − E[i])2

= pR(ig − (pRig + (1− pR)ib))2 + (1− pR)(ib − (pRig + (1− pR)ib))2

= pR(1− pR)(ig − ib)2.

(2.37)

Note that these probabilies pR in the good state and (1− pR) in the bad state are the same

in both intervals. From properties i) and ii), we know that an increase in r increases ig by

E[p|g] = βpS +(1−β) and ib by E[p|b] = βpS in the first interval. Since βpS +(1−β) > βpS ,

ig − ib increases in the first interval. We further know that an increase in r increases ig by
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E[p|g] = r and ib by E[p|b] = 0 in the second interval wo that ig − ib also increases in that

interval. Finally, since ig is increased discontinuously at rS , whereas ib is decreased discon-

tinuously, (ig − ib) increases in r both within the intervals and at rS .

2.7.2 Numerical results for social optima

constellation pS RS pR RR NS NR C B Y H δ θ

1 0.8 8 0.2 32 80 220 0.2 6 2 1500 0.9 0.47

2 0.8 8 0.2 32 80 220 0.2 6 2 2600 0.9 0.47

3 0.8 8 0.2 32 80 220 0.2 6 2 2600 0.9 0.40

4 0.8 8 0.2 32 80 220 0.5 6 2 2600 0.9 0.40

5 0.8 10 0.2 40 100 200 2 5 2 1225 0.9 0.30

6 0.8 10 0.2 40 50 250 2 5 2 1600 0.9 0.30

7 0.8 10 0.2 40 200 100 2 5 2 1000 0.9 0.30

8 0.8 10 0.2 40 200 100 2 5 2 1200 0.9 0.30

9 0.8 10 0.2 40 200 100 2 5 2 1000 0.9 0.20

10 0.8 10 0.2 40 120 180 4.5 5 2 1000 0.9 0.25

11 0.8 10 0.2 40 200 100 2 5 2 1500 0.9 0.20

12 0.8 10 0.2 40 200 100 2 5 2 1500 0.9 0.30

Table 2.3: List of parameters.

Table 2.3 shows some parameter specifications which we use to generate Table 2.4. In this

latter table, we give the socially optimal levels of investment in both safe and risky firms,

as well as the respective equilibrium levels for each of the 12 parameter constellations. We

chose parameters in Table 2.3 to get all six equilibrium cases twice: once with the amount

of projects funded in equilibrium less than in a social optimum and the other way round,

with one exception. By definition of case V I, there cannot be underinvestment since the

case #all SO # all E diff # safe SO # safe E diff # risky SO # risky E diff

I 127, 96 122, 57 −5, 38 80, 00 32, 69 −47, 31 47, 96 89, 89 41, 93

I 181, 74 212, 46 30, 72 80, 00 56, 65 −23, 35 101, 74 155, 80 54, 06

II 180, 22 175, 29 −4, 93 80, 00 0, 00 −80, 00 100, 22 175, 29 75, 07

II 180, 22 210, 69 30, 47 80, 00 0, 00 −80, 00 100, 22 210, 69 110, 47

III 201, 57 200, 00 −1, 57 100, 00 0, 00 −100, 00 101, 57 200, 00 98, 43

III 217, 91 250, 00 32, 09 50, 00 0, 00 −50, 00 167, 91 250, 00 82, 09

IV 231, 16 225, 20 −5, 96 200, 00 150, 14 −49, 86 31, 16 75, 07 43, 91

IV 254, 88 270, 24 15, 36 200, 00 180, 16 −19, 84 54, 88 90, 08 35, 20

V 264, 71 250, 29 −14, 42 200, 00 150, 29 −49, 71 64, 71 100, 00 35, 29

V 202, 27 231, 89 29, 62 120, 00 51, 89 −68, 11 82, 27 180, 00 97, 73

V I 300, 00 300, 00 0, 00 200, 00 200, 00 0, 00 100, 00 100, 00 0, 00

V I 290, 47 300, 00 9, 53 200, 00 200, 00 0, 00 90, 47 100, 00 9, 53

Table 2.4: Inefficiency results.
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equilibrium consists of all projects. Thus, there is a zero in line 11, column 4, instead of some

negative number.

There are ten columns in Table 2.4. The first one indicates the type of equilibrium (cf.

Figure 2.6). The second (fifth, eighth) column gives the total number of (number of safe,

number of risky) projects funded in a social optimum, whereas the third (sixth, ninth) column

gives the total number (safe, risky) in the respective equilibrium. Column four (seven, ten)

is the difference between the former two.

2.7.3 Proof: Lemmas 2.3 and 2.4

The structure of the proofs is identical to the expected utility setup, only using R̂ instead of

z. Using γ instead of θ in the definition of z, we have z
1

1−γ = R̂.

Proof of Lemma 2.3:

1. If α < 1, capital supply increases monotonically in r in each of the intervals [0, rS ] and

(rS , rR] with a discontinuous downward jump at rS .

2. Irrespective of α and γ, LTU increases monotonically in r in each of the intervals [0, rS ]

and (rS , rR] with a discontinuous downward jump at rS .

3. For α < 1, capital supply and LTU have their global maximum at the same loan rate,

viz. either rS or rR.

4. If s∗ is the same at two loan rates, LTU must be the same at these two rates, too.

Proof of 1.

The fact that capital supply increases in each of the two intervals directly follows from Basu

and Ghosh (1993, p.124) (Proposition 2). From our equation (2.29), we know that ds∗

dR̂
> 0

since α < 1. The derivative of R̂ w.r.t. r is

dR̂

dr
=

(E[R̃1−γ ])
γ

1−γ

1− γ

(
pR

1− γ

(1 + ig)γ

dig
dr

+ (1− pR)
1− γ

(1 + ib)γ

dib
dr

)
, (2.38)
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which is positive for all γ > 0. Therefore, for α < 1, we have ds∗

dR̂
> 0 and dR̂

dr > 0 so that
ds∗

dr > 0, too.

To prove that there is a downward jump at rS , we apply the same argument as in the

expected utility case in Lemma 2.1, whose proof was based on Rothschild and Stiglitz (1971).

The corresponding argument in the non-EU case was made by Selden (1979): An MPS de-

creases savings in a non-expected utility setup iff α < 1. The fact that there is an MPS at

r > rS together with an increasing capital supply in the second interval completes the proof.

Proof of 2.

Differentiating equation (2.28) w.r.t. R̂ and simplifying yields

dLTU

dR̂
=

Y 1−α(
1 + δ

1
α R̂

1−α
α

)3−α
αR̂

[
δ

1
α R̂

1−α
α α + δ

2
α R̂

2−2α
α 2α + δ

3
α R̂

3−3α
α α

]
. (2.39)

Since Y, α, δ and R̂ are positive, the derivative itself is positive. Since dR̂
dr > 0 in each of the

two intervals, dLTU
dr > 0 in each of the two intervals. Since ∆R̂

∆r < 0 at rS ,80 ∆LTU
∆r < 0 at rS .

Again, the signs do not depend on α or γ. Therefore, LTU increases monotonically in each

of the two intervals with a discontinuous downward jump at rS , irrespective of γ and α.

Proof of 3.

The structure of the proof is as with expected utility: From 1. and 2., and for α < 1, the

global maximum of LTU and capital supply can only be either at rS or at rR. If savings are

higher at rS , R̂ must also be higher at rS since ds∗

dR̂
> 0 (for α < 1), from equation (2.29).

Since, from equation (2.39), we also have dLTU
dR̂

> 0, LTU(rS) > LTU(rR). An analogous

argument applies if the maximum occurs at rR.

Proof of 4.

80R̂ decreases at rS since capital supply decreases discontinuously at rS and ds∗

dR̂
> 0 (for α < 1).
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The same argument (as for expected utility) applies: If savings are the same at two loan

rates, R̂ must also be the same. Since LTU in equation (2.28) only depends on s∗, R̂ and

parameters, LTU must be the same at these two loan rates, too.

Proof of Lemma 2.4:

From equation (2.29), we know that ds∗

dR̂
> 0 for α < 1. Therefore, the maximum of capital

supply occurs where R̂ is maximum. From the definition of R̂ = (E[R̃1−γ ])
1

1−γ , we know that

the maximum value of R̂ (and, thus, whether it occurs at rS or rR) does not depend on α.

A change in α influences the absolute amount of savings (as can be seen from its appearance

in equation (2.26)). However, whether the maximum occurs at rS or at rR is independent of α.

2.7.4 Proof: maximum of expected returns for extension III

In the first interval, i.e., for r ≤ rS , expected returns are

Eπbank(r) = (1− pS)
(

C

B
− 1
)

+ (pS − pR)
[
βr + (1− β)

(
C

B
− 1
)]

+ pRr

= (1− x)
(

C

B
− 1
)

+ xr,

(2.40)

where the last line uses the definition x ≡ (1−β)pR+βpS , x ∈ [pR, pS ]. In the second interval,

i.e., for rS < r ≤ rR, expected returns do not depend on β,

Eπbank(r) = (1− pR)
(

C

B
− 1
)

+ pRr. (2.41)

Setting β = 0, we have
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Eπbank(rS) = (1− pR)
(

C

B
− 1
)

+ pRrS

< (1− pR)
(

C

B
− 1
)

+ pRrR = Eπbank(rR),

(2.42)

since rS < rR.81 Setting β = 1 and using x = pS , we need to plug rS and rR from equations

(2.2) and (2.3) into equations (2.40) and (2.41), respectively, to see that they are equal.82

Since expected returns at rR do not depend on β, the proof is complete if the derivative of

expected returns w.r.t. β is positive at rS . From equation (2.40), we get

dEπbank(r)
dβ

= −
(

C

B
− 1
)

dx

dβ
+ r

dx

dβ
= (pS − pR)

(
r + 1− C

B

)
,

for all r ≤ rS , which is positive for all positive r since C < B.

81This makes perfect sense since β = 0 means that there are only risky firms in the market. Since returns
equal project revenue less firm profits, they must be maximum where expected firm profits are minimum, i.e.,
at rR.

82Which makes sense since β = 1 means that there are only safe firms in the market such that a loan rate
of rS also extracts all rents from projects.



Chapter 3

Enforcement Problems in

Microcredit Markets

This chapter is based on joint work with Susanne Steger and Lutz Arnold. It contains ele-

ments of both Arnold, Reeder, and Steger (2009) and Reeder and Steger (2008). The notation

is independent of Chapter 2.

75
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3.1 Motivation and the literature

The aim of this chapter is to contribute to the discussion on group lending as opposed to

individual lending (IL). Group lending is seen to be one of the main reasons for the success

of microfinance, which has in turn been described as one of the most promising attempts to

reduce poverty. In a sample of microfinance institutions (MFIs) studied by Cull, Demirgüç-

Kunt, and Morduch (2009), 210 out of 315 institutions use some sort of group lending. Giné

and Karlan (2009, p.5) distinguish between ‘group lending’ and ‘group liability’: “‘Group

liability’ refers to the terms of the actual contract, whereby individuals are both borrowers

and simultaneously guarantors of other clients’ loans. ‘Group lending’ merely means there

is some group aspect to the process or program, perhaps only logistical, like the sharing of

a common meeting time and place to make payments”. Our focus is on group lending with

joint liability (GL) and if we refer to some other aspect of a group, we explicitly say so.

Cull, Demirgüç-Kunt, and Morduch (2009, p.167) describe microfinance as “a vision of

poverty reduction that centers on self-help rather than direct income redistribution”. The idea

of microfinance is to provide poor households in less developed regions with basic financial

services which enable them to start productive activities in order to escape poverty based on

their own endeavors.1 These services include the provision of saving accounts, the possibility

to take a loan, and ways to ensure against risks. The literature has labeled these three basic

services as ‘microsavings’, ‘microcredit’, and ‘microinsurance’, respectively. The focus of this

chapter is on microcredit, i.e., the provision of small-scale loans to poor households.2 As

a starting point into the very young literature on microinsurance, see Morduch (2006) and

Chapter 6 in Armendáriz de Aghion and Morduch (2005), where the latter also describes the

process of saving in ‘household economies’ typical of less developed regions.

However, we should note that the conceptual distinction between the three services does

1An excellent survey of the circumstances under which the poor make economic choices is given by Banerjee
and Duflo (2007). They describe consumption patterns, the way income is generated, and the access to
markets and public infrastructure. Before going into the theoretical literature, we recommend the reading of
such a survey in order to be able to properly assess the models’ assumptions which describe the behavior or
environment of the poor. It is mainly the kind of institutions which influence economic choices that are very
different from the ones in developed countries. Family, trust, reciprocity and reputation play a much more
important role. The literature describes these institutions as ‘social capital’. We come back to this point
throughout the chapter.

2Microfinance is not per se restricted to people in less developed countries (LDCs). Part III in the collection
of essays in Carr and Tong (2002) provides three papers on microfinance in the US. Chapter 10 in Yunus (2003)
discusses microfinance in the US and in other wealthy countries.
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not imply their independence. Among practitioners, it is a widely accepted consensus that the

success of microfinance is based on the entirety of financial services. Rhyne (2009) has coined

the term ‘inclusive finance’ to stress three facts: First, she notes that the success of microcredit

hinges on the interdependence with other financial services. This view is supported by a

recent theoretical paper by Ahlin and Jiang (2008), which suggests the complementarity of

financial services if the focus is on the long-term success of microcredit. The idea is that

the accumulation of wealth depends on the ability to save. The authors find that, although

microcredit alone can help break the poverty trap by allowing the poor to harness their

productive abilities, microsavings might be crucial to break the ‘mid-income trap’, i.e., to

guarantee continuous and lasting income growth. Second, it is not only the poorest of the

poor which should be the target of financial service provision. According to Rhyne, there are

four billion people who live on less than US$ 3,000 a year (2009, p.3). Third, issues arise not

only at the last mile, i.e., between MFIs and borrowers. In the microcredit channel, there

are many participants and relationships with conflicts of interest, e.g., MFIs and their loan

officers, equity and debt holders of MFIs, public and private investors in MFIs, as well as

issues of government involvement. However, it is particularly important to understand the

relationship between MFIs and borrowers, on which we focus in this chapter.

The success of microfinance has become known to the wider public when Muhammad

Yunus was awarded the Nobel Peace Prize in 2006. More than 30 years ago, Yunus founded

the Grameen Bank, one of the world’s largest MFIs, to provide the poor in Bangladesh

with capital. Yunus, a professor of economics, questioned conventional wisdom not to lend

to ‘the unbankable’. Yunus and his successors proved that collateralizing loans with assets

is not a necessary condition for lending. He started lending 27 dollars to 42 people (see

Yunus, 2003, p.50). At this stage, Rhyne (2009, p.ix) mentions estimates of the number

of active microfinance borrowers “between 60 and 130 million borrowers, depending on who

is counting”.3 We take her latter statement not only as an allusion to special interests in

particularly low or high numbers of borrowers, but also to the fact that the microfinance

landscape is highly heterogeneous and that there is no canonical definition of an MFI, so

that determining the number of (borrowers of) MFIs is subject to some discretion. After

3Cull, Demirgüç-Kunt, and Morduch (2009) point to the fact that the number of people concerned is a
multiple of this number since most of the borrowers have families.
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all, although small scale of a loan is frequently taken to indicate a microcredit, there is no

clear-cut threshold in terms of loan size. The average loan balance of Badan Kredit Desa of

Indonesia is $38 (see Morduch, 2000, p.618), whereas others, also labeled MFIs, give average

loans of several thousand dollars (Bolivia’s BancoSol, for instance).

Apart from differences in the size of loans given, there are large variations in political,

geographical, economic and social settings. First, MFIs differ in terms of their legal status and

profit status. Cull, Demirgüç-Kunt, and Morduch (2009, p.174) use five different categories:

banks, NGOs, nonbank financial institutions (NBFIs), credit unions, and rural banks (75 %

of the institutions in their sample are either NGOs or NBFIs). Second, MFIs operate in very

different geographic areas all over the world. Clearly, conditions in Bangladesh differ from the

ones in sub-Saharan Africa, Eastern Europe, South America or Asia. On a country level, some

are frequently hit by natural disasters, whereas others are located in rather stable climatic

regions. Moreover, cultural habits, religion, and values and virtues strongly differ between

regions. Third, intentions and use of microloans can differ considerably. Ahlin and Jiang

(2008, p.1) stress the investment character of microloans, defining them as “small amounts

of capital (...) to facilitate income-generating self-employment activities”. By contrast, some

MFIs also give loans for urgent consumption needs. A directly connected feature is that

some MFIs commit the disbursement of loans to particular purposes. This points to, fourth,

differences in the lender-borrower relationship. Some MFIs restrict to operative banking

functions like procurement of funds, disbursement of loans, management of staff and collection

of interest payments, and appropriate enforcement techniques. Others accompany borrowers

throughout the process of investing and even provide them with basic education and advice.

This heterogeneity gives a ‘raison d’être’ for the immense amount of country studies some-

times classified as being part of the rather descriptive ‘development practitioner’s literature’.

It also questions the ‘best practice’ approach frequently pursued by international donor insti-

tutions.

From basic economic theory, one can question why capital does not ‘naturally’ flow to the

poor, as Armendáriz de Aghion and Morduch (2005) do in their Section 1.2. The law of di-

minishing marginal returns to capital would predict that the least endowed individuals are the

most productive so that investors should be expected to compete for the privilege to serve the

poorest of the poor. Of course, this comparison is flawed since the law has been formulated on
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ceteris paribus grounds, i.e., holding everything else equal. In fact, infrastructure and human

capital (and many other factors that influence productivity) are highly unequal between and

also within countries. Not only do little infrastructure and low levels of education influence

marginal productivity, they also increase the cost of lending.

This cost can be divided into operating costs, capital costs and loan loss provisions. Ac-

cording to Cull, Demirgüç-Kunt, and Morduch (2009, p.183), capital costs and loan loss

provisions are rather constant among the five categories of MFIs mentioned above, but op-

erating costs differ considerably (cf. their Figure 2). This is not a big surprise given the

above mentioned heterogeneity of the microfinance landscape. Operating costs arise from

administration as well as from risk appraisal, where the latter is directly connected to the

information asymmetries lenders face, and the difficulties to deal with them. However, the

most important cost factor is the lack of scale economies, which might arise from two different

sources. On the one hand, the cost of lending tends to decrease as the MFI grows larger. On

the other hand, the size of loans reduces the relative cost per loan. A main result of Gonzalez

(2007, p.39) is that the cost reduction resulting from an MFI’s scale disappears from 2,000

borrowers on. Thus, it is the small size of loans which crucially causes operating cost and,

thus, total transaction cost to be much higher than in traditional economies.

High transaction costs have frequently been used to justify subsidies for MFIs.4 Morduch

(2000) explains the ‘subsidy trap’5 and discusses some cases of conventional wisdom with

respect to subsidies. For instance, it is appealing to think that subsidies reduce efficiency

and, thus, profitability. However, Morduch points out that aiming at profits is a sufficient but

not necessary condition for efficiency. It is more important to have hard budget constraints.6

For the purpose of our analysis later in this chapter, the most important claim Morduch

invalidates is that financial self-sufficiency, which only few MFIs exhibit, is necessary to attract

commercial funds. He concludes that the “chief constraint is not subsidization per se, but

4Subsidies come from various sources and at different conditions, ranging from NGO donations to govern-
ment loans at preferential loan rates.

5He describes the problem as a vicious circle. Poorly managed subsidized credit programs imply exorbitant
default rates. This releases borrowers from the shame of defaulting since everybody else is doing so. By
receiving ample fresh capital from governments to cover losses, incentives to mobilize savings are low, too,
which weakens the process of development further since it is the entirety of financial services that fosters
steady income growth. Clearly, incentives to improve on efficiency are also low in these programs.

6Other commonly held claims Morduch puts into perspective include the fear that subsidized credit ends
up in the hands of the non-poor, that government involvement is detrimental, and that subsidies limit savings
mobilization.
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the ability to limit perceived riskiness” (p.623). Thus, it seems reasonable to assume that

the majority of MFIs turns to global capital markets for funding, even though very few are

financially sustainable. Another justification for subsidies is based on outreach and impact

of the supported MFIs. The idea is that some of the poorest borrowers cannot be served in

a financially sustainable manner so that subsidies are necessary to provide these people with

access to financial services. In Chapter 4, we will have much more to say about the trade-off

between financial returns and outreach.

Before analyzing how MFIs channel funds to their borrowers, in particular by determining

which of the two lending types (IL vs. GL) occurs in equilibrium, we want to briefly review

other factors which have been assigned crucial roles for the success of microfinance, and whose

relative importance is subject to significant debate. They all have an effect on the cost of

lending, either by reducing operating costs or by reducing loan default through increased

repayment rates.

Operating costs are reduced by the introduction of new management techniques, as for

instance the requirement that loan disbursement and repayment take place at some central

venue. Borrowers are expected to assemble there, so that a loan officer saves traveling cost

and time.7 Another frequently mentioned fact, especially for the high repayment rates, is

that most MFIs focus on female customers, which are considered more reliable and diligent

borrowers.

Other features provide MFIs with information otherwise unavailable. For instance, MFIs

rely on tough repayment schedules, some requiring borrowers to make small repayments every

week. Thus, loan officers can quickly build credit histories and learn about potential risks.

These risks are further reduced by ‘progressive lending’, i.e., by providing borrowers with

small loans initially and only handing over larger sums in case borrowers prove their reliability.

Moreover, weekly meetings allow loan officers to establish personal relationships to borrowers.

All these features can significantly increase repayment rates.

A central issue for lenders in developing countries is the problem of collateral, which

is related to the problems of enforcement. Limited wealth is certainly the main obstacle

for collateralization, sometimes due to limited property rights. However, even if there were

7However, readers familiar with the traveling salesman problem would agree that this shift of effort from
loan officers to borrowers will have a negative effect in overall distance, although it certainly decreases the
bank’s cost.
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suitable assets to use, poorly functioning legal systems make enforcement one of the main

problems. Bond and Rai (2002) discuss two approaches to mitigate the problem: dynamic

incentives and social sanctions. The former refers to the threat of future credit denial in case

of default, the latter to the use of ‘peer sanctioning’ based on the existence of ‘social capital’.

For instance, repayment is generally done in public which gives borrowers incentives to work

hard in order to avoid social stigmatization. Putnam (1993) defines social capital as “features

of social organization, such as networks, norms, and trust, that facilitate coordination and

cooperation for mutual benefit”. In the realm of microcredit, social capital mainly refers to

three facts within close-knit communities. In comparison to industrialized societies, people

living in such communities are assumed to know more about each other, to be in a better

position to observe actions of their peers, and to have more powerful, informal sanctioning

mechanisms, i.e., the cost of peer screening, peer monitoring, and peer sanctioning is low in

developing countries. In our formal model, we start from a situation without social sanctions

and then see their crucial influence on equilibrium.

Before that, we review some of the literature more closely related to the effects of joint

liability in groups, which has mainly taken place in the strongly interconnected subfields of

information economics, contract theory, and mechanism design.8 When the GL contracts of

Grameen Bank and other MFIs became widely known to the academic community, the lit-

erature on contract theory had extended principal-agent models to consider principals facing

several agents. These multi-agent environments consider a wide range of contracts and ask

which one is optimal. Thus, the contracting problem can be divided in two steps: the de-

scription of the set of available contracts and the choice of the optimal contract. Typically,

endogenous parameters in the choice of an optimal contract include the loan rate, the amount

of collateral (if there is some), the penalty in case of default, and the degree of joint liability.

When a principal faces several agents, possible interactions between agents are of utmost

importance to design incentive compatible contracts. In the terminology of contract theory,

the degree of possible side trades (or side contracts) matters a lot. Holmström and Milgrom

(1990, p.335) define side trades as “implicit or explicit exchanges between the agents which

the principal cannot control directly because he cannot observe them”. They further specify

8Most of the current literature on contracts and mechanism design is based on the assumption of asymmetric
information.
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two key sorts of side trades: collusion and cooperation. Whereas collusion are trades that

harm the organization (which the principal and agents are assumed to belong to), cooperation

are trades that help the organization. However, they also admit that “very similar trades can

be labeled as cooperation or collusion depending on the context and the interest of the trade”

(p.335). Most of the more recent papers we present below find optimal contracts given one

or another form of side contracting.

However, let us start with some results based on models which try to explain how GL

can be beneficial at all, as opposed to the mechanism design literature which determines how

contracts can be most beneficial. In terms of mitigating problems arising from asymmetric

information, GL can help to reduce adverse selection and moral hazard.

In the realm of adverse selection models, Armendáriz de Aghion and Gollier (2000) consider

two channels through which GL can increase efficiency, a ‘collateral effect’ and a ‘self-selection

effect’. In their model, inefficiencies arise in the case of IL contracts if cross-subsidization

from safe to risky borrowers discourages safe borrowers with socially desirable projects from

applying for credit. GL can restore efficiency by lowering equilibrium loan rates. In both cases,

there is asymmetric information in that the bank cannot observe the types of borrowers it

faces. Borrowers are either safe or risky and are protected by limited liability. The collateral

effect can work even if borrowers do not know each other’s type, which implies the existence

of groups with borrowers of the same type, as well as with different types. Risky borrowers

have higher payoffs if they succeed so that they can always shoulder a partner’s default if they

succeed themselves. By contrast, safe borrowers are assumed to have payoffs insufficient to

repay the whole group loan. Thus, by limited liability, the externality from a risky partner’s

default is not fully borne by a safe borrower. GL reduces the probability of default and can

then lead to lower equilibrium loan rates such that both types of borrowers apply for loans (see

the presentation in Armendáriz de Aghion and Morduch, 2005, pp.94-96). Efficiency can be

restored without relying to the informational advantage poor borrowers are usually assumed

to have over lenders. By assuming that borrowers know each other’s type, Armendáriz de

Aghion and Gollier (2000) show the self-selection effect (also known as ‘assortative matching’)

of GL. Safe borrowers are shown to match with safe borrowers so that the risky will have to

form groups among each other. In that case, even though banks cannot observe the types

in a group, GL might restore efficiency by the equilibrium loan rate channel again: Whereas
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cross-subsidization deters safe borrowers from lending with IL contracts, joint liability leads

to lower equilibrium loan rates for both types. Note that, even though both types of groups

pay the same nominal loan rate, there is no cross-subsidization since safe borrowers pay lower

effective loan rates - they have to repay for their partners less often.

Ghatak (1999) also derives the self-selection effect and proves that the assortative matching

result survives if side payments are allowed. In Ghatak (2000), he shows an interesting

consequence of assortative matching, namely that banks can use GL as a screening device.

The separating equilibrium entails two kinds of contracts,9 one with a low loan rate but a high

degree of joint liability, and the other with high loan rates but a low degree of joint liability.

Risky groups would choose the latter, whereas safe borrowers would opt for the former since

the probability that the joint liability clause applies is low.10 Thus, a first-best allocation

can be achieved, charging risk-adjusted rates to both types. Van Tassel (1999) has shown

another case of screening by joint liability. He derives a slightly different result: If borrowers

can choose between IL and GL contracts, safe borrowers match and choose group contracts.

Risky borrowers could then group with each other and choose group contracts, but opt for IL

contracts instead.

In another adverse selection model, Laffont and N’Guessan (2000) point out the impor-

tance of social ties. If borrowers do not know each other, the collateral effect of joint liability

does not work.11 If they do know each other, group lending contracts are shown to be efficient.

Varying the possible extent of side trades, simple GL contracts are not collusion-proof. The

authors also provide a description of contracts which are robust to collusion.

One of the early papers on the effects of GL on moral hazard is Stiglitz (1990). It is

one of the four models which Ahlin and Townsend (2007) in terms of their predictive power

for repayment rates, the other models being Banerjee, Besley, and Guinnane (1994), Besley

and Coate (1995, BC) and the above mentioned Ghatak (1999). Ahlin and Townsend choose

these four models since they are among the most widely cited. Stiglitz (1990) describes ‘peer

monitoring’ among borrowers in a group in a situation with problems of ex ante moral hazard

9Cf. the concept of separating equilibria in Bester (1985) and Stiglitz (1977).
10Safe borrowers having selected safe peers need to stand in for their group members only if their partner

defaults and they are successful themselves.
11This contradicts Armendáriz de Aghion and Gollier (2000). However, comparing both models, the as-

sumptions necessary to derive the collateral effect in Armendáriz de Aghion and Gollier (2000) seem rather
artificial.
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with side-contracting. By joint liability, borrowers suffer from default of a group member so

that they have the proper incentives to monitor each other’s efforts. Via higher repayment

rates, equilibrium loan rates can be reduced. In Stiglitz’ model, GL also has a negative effect.

It transfers risk from the bank to the cosigner. However, in the type of equilibrium considered,

Stiglitz shows that the overall effect is positive.

Another ex ante moral hazard problem is analyzed by Varian (1990). He considers a

principal facing several agents in a setup where information is costly. The crucial assumption

is that agents can obtain information about (the actions of) their peers at a lower cost than

the principal, as is common for village economies targeted by MFIs. Varian does not consider

joint liability GL, but focuses on the nature of supervision delegated to agents, as well as on

the desirability of side trades from the principal’s point of view. The side trades considered

include optimal supervision and mutual insurance.12

Banerjee, Besley, and Guinnane (1994) set up an optimal contract framework to consider

IL contracts with a cosigner. Similar as in Stiglitz (1990), there is an ex ante moral hazard

problem. Borrowers are protected by limited liability, so that they are tempted to undertake

riskier projects. In contrast to Stiglitz, monitoring of the borrower is costly to the cosigner

and a prerequisite for punishment. The endogenous parameters are the degree of internal

project funding, the degree of the cosigner’s liability and the loan rate. They find that the

borrower’s incentives to take risks can be reduced since the cosigner’s liability makes him

threaten the borrower with punishment.

Other models have focused on enforcement problems, which are particularly present in de-

veloping countries and constitute a major obstacle for welfare-enhancing trade. The standard

reference is the model of BC.13 It is one of the few models which do not use contract theory.

Incomplete enforcement is expressed by the lender’s inability to enforce contractual claims.

Thus, if a bank anticipates that it cannot enforce repayment from borrowers, even if the lat-

ters’ projects are highly profitable, it might not consider lending funds. BC investigate the

impact of joint liability in borrower groups on loan repayment rates.14 For that purpose, they

set up the ‘repayment game’, in which borrowers non-cooperatively decide about whether

12He also points to group formation issues as treated in more detail by Armendáriz de Aghion and Gollier
(2000), and Ghatak (1999, 2000), see above.

13As of 05.12.2009, Google Scholar gives 554 citations.
14See also Ghatak and Guinnane (1999, p.209) and Armendáriz de Aghion and Morduch (2005, pp.297-298).
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to repay or not. Returns are sufficient to repay with certainty in their model, but due to

enforcement problems, borrowers do not repay unless the penalty for default weighs heavier

than the burden of repayment. GL, as opposed to IL, has two effects on repayment rates

then. For one thing, it enhances repayment when one borrower is able and willing to stand in

for a member of a group who does not repay. For another, liability for the repayment of the

other group member potentially discourages a borrower from repaying at all when he would

have repaid an individual loan. BC’s first key result is that, when payoffs are independently

and uniformly distributed and penalties for default are proportional to payoffs, GL leads to

a higher repayment rate when the loan rate is sufficiently low, while the repayment rate is

higher with IL when the loan rate is high. Their second main result is that social sanctions

imposed on group members who refrain from making their contribution to the contractual

repayment reduce the drawback of GL. If the sanctions are severe enough, GL always (i.e.,

for all loan rates) yields the higher repayment rate.

These are important results which shed much light on the important issue of repayment

rates given non-cooperative behavior of borrowers. However, as called for by Townsend (2003),

the recent literature tends to analyze microcredit in mechanism design frameworks.

Laffont (2003) analyzes the effects of correlated project returns in an adverse selection

model with limited liability. In particular, he analyzes the performance of GL contracts in

different classes of contracts and finds positive effects when returns are correlated but points

out that GL contracts are not necessarily optimal, depending on the degree of possible side

trades and the class of mechanisms considered.

Laffont and Rey (2003) challenge the claim that banks benefit from collusion between

borrowers when the latter observe each other’s effort. The authors separate information

sharing from collusion. They point out that information sharing is good, even if it entails

collusion, but that collusion per se is bad.

Rai and Sjöström (2004) analyze a model with ex post moral hazard, i.e., with asymmetric

information regarding project revenues. Since banks cannot observe borrowers’ project rev-

enues, borrowers have incentives for strategic default. Inefficiencies arise from (non-pecuniary)

penalties banks can impose. Thus, the optimal contract minimizes expected punishments.

From the assumptions of the model, it follows quite trivially that complete insurance (side)

contracts are optimal when ex ante side contracting is possible. In such a situation, IL con-



86 CHAPTER 3. ENFORCEMENT PROBLEMS IN MICROCREDIT MARKETS

tracts are efficient so that there is no room for improvement using group lending contracts.

However, assuming that only interim side payments are possible, they exclude state-contingent

side contracts and, thus, efficiency of individual loans. In their analysis of group lending, the

authors distinguish between two group contracts: simple joint liability (i.e., GL) contracts

and cross-reporting mechanisms. While GL contracts induce mutual insurance, they are not

efficient since the deadweight loss of a high penalty applies if the projects of both borrowers

fail. The authors are able to show how cross-reporting15 achieves a reduction of punishment if

both borrowers’ projects go awry without influencing repayment incentives in the other cases.

In an interesting contribution, Conning (2005) assumes a monitoring technology which

both peers and delegates can use. In a framework with moral hazard and limited liability,

he compares three lending mechanisms. Lending via (collateralized) IL contracts, GL, and

IL accompanied by delegated monitoring which is subject to moral hazard, too. He finds

an advantage of GL which rests on an ‘incentive diversification effect’ when compared to a

delegated monitoring agreement. With the latter lending type, a lender has to cede two rents

to ensure proper incentives for both agents, whereas the former allows to economize on the

cost of aligning incentives.

The starting point for Bhole and Ogden (2009) are several papers finding a negative

influence of GL under certain circumstances. We discuss some arguments against GL before

presenting their results. We have already mentioned Stiglitz’ assertion that joint liability

transfers risk from banks to borrowers. Furthermore, Giné and Karlan (2009, p.5) describe

how joint liability can cause different kinds of tensions between borrowers in a group. Social

sanctions and peer monitoring, the panaceas in terms of economic theory, can have serious

negative consequences for interpersonal institutions like trust or reciprocity. The same is true

for free-riding, which occurs when a successful borrower does not contribute to the group

repayment expecting other members to shoulder his debt. The effect is explained in detail in

our formal model below. Over time, GL might face further difficulties. If new members with

looser social ties enter (cf. the result of Laffont and N’Guessan, 2000), GL might perform

worse. Moreover, changes in individual credit demand over time can lead to diversion of credit

needs. Borrowers with smaller loans dislike liability for peers with larger loans. In terms of

repayment rates, we have already explained the result of BC, who find that joint liability can

15A group member sends a report specifying his partner’s repayment ability to the bank.
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discourage a borrower from repaying at all when he would have repaid an individual loan.

Another motivation for the Bhole and Ogden (2009) paper is dissent with the cross-

reporting mechanisms in Rai and Sjöström (2004), in particular since they are not widely

observed in reality. In an attempt to explain why such mechanisms are not observed, we con-

cur with Bhole and Ogden in that these messages could create tensions between borrowers.

As a consequence, borrowers might want to keep as much of their private information, thus

inhibiting knowledge spillovers. Far worse, such systems which implicitly suggest that bor-

rowers shirk and cheat might destroy one of the most important resource of the poor, social

capital. In order to get incentives right by creating sophisticated extrinsic reward and pun-

ishment systems, intrinsic motivation of borrowers might be destroyed. We further comment

on this problem in the conclusion of this chapter.

Bhole and Ogden consider three crucial endogenous variables of group lending contracts:

the degree of joint liability, the possibility to renegotiate on repayments and a non-pecuniary

penalty. They assume asymmetric information and enforcement problems, i.e., banks do

not observe project revenues and cannot extract payments from borrowers if borrowers are

unwilling to repay.16 The main contribution of Bhole and Ogden (2009) is to show how

contractual deficiencies of simple GL contracts as in BC and other papers can make GL worse

than IL.

The results of the mechanism design literature are important in that they describe how

contracts should be designed in order to maximize borrower welfare. In our equilibrium

analysis, we also use borrower welfare as the crucial determinant of the equilibrium contract.

Since we assume perfect competition, our analysis is similar to an optimal contract approach

with two endogenous variables, lending type and loan rate. Before we explain in detail what

we do and find, we give a motivation for our approach, in particular in light of the results of

the mechanism design literature.

Although the literature is well aware of the missing equilibrium analysis of the BC model,17

our analysis as it is (i.e., with an exogenous, proportional penalty function) shows that re-

payment rates are not a good indicator to predict equilibrium outcomes. We also apply an

16It is not unambiguously clear if there are enforcement problems in their model. On the one hand, banks
cannot ‘directly’ extract payments from borrowers. On the other hand, the non-pecuniary penalty a bank can
impose is so high that a borrower prefers to pay back all of his project revenue in order to avoid the penalty.
We further comment on this fact below.

17See footnote 2 in Ahlin and Townsend (2002, p.6).
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analysis of the allocation problems from the imperfect information literature to microcredit

markets with enforcement problems.

We acknowledge the power of mechanism design frameworks compared to an equilibrium

analysis. In a market model with perfect competition, there is not much need to set up an

equilibrium model. In fact, as Hart and Holmström (1987, p.74) argue, considering a problem

of optimal contracts has advantages over an equilibrium analysis since “[m]ethods for solving

optimization exercises are substantially more advanced than methods for solving equilibrium

models”. In particular, “the fact that market forces reduce to simple constraints on expected

utilities greatly facilitates equilibrium analysis”.

Conning (2005) considers a large variety of circumstances in his mechanism design ap-

proach and explains the merits of his model in terms of an equilibrium analysis as follows:

“Putting all of the variants of the model together ends up providing a rich set of predictions

regarding the shape of market structures that may emerge on a competitive loan market with

heterogeneous borrowers who differ in terms of initial collateral asset holdings and project

characteristics and how financial intermediaries expand and transform the set of trades that

can take place. Some borrowers are offered, and will choose, joint liability loans, other may

prefer individual liability contracts with or without delegated monitors. Yet others will remain

excluded from the loan market” (p.5).

In our formal model in this chapter, we analyze heterogeneity regarding the degree of the

enforcement problem in Subsection 3.4.5. Our result on redlining confirms his statement.

As powerful as mechanism design is, Hart and Holmström (1987) also recognize the limits

of the theory of optimal contracts in case these contracts become “monstrous state-contingent

prescriptions” (p.74). They also note that “substituting an optimization analysis for an

equilibrium analysis is not always economically meaningful”. We argue that our equilibrium

analysis of the BC model does make sense even though the contracts involved (IL, simple

GL, and GL with social sanctions) are rather restrictive, in particular due to an exogenous

penalty function and the requirement that repayment is an all-or-nothing decision.

Both Bhole and Ogden (2009) and Rai and Sjöström (2004) do not have to put up with

criticism that inefficiencies arise from non-optimal contracts. However, any optimal contract

framework must make assumptions about the specific form of these penalties. In a way,

endogenizing the penalty function thus shifts optimality to the discretion of the economist
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who sets up the model. For instance, Bhole and Ogden (2009) assume binary penalties which

come about randomly, i.e., the penalty occurs with a certain probability and no punishment

occurs otherwise. This might not be feasible in reality. Borrowers would probably doubt that

it was more than chance which freed their neighbor from penalty but imposed a major penalty

on themselves. Thus, it is not unambiguously clear that an endogenous penalty function is

the superior assumption. Moreover, penalties in both of the aforementioned papers can be

very high. In fact, both assume that penalties can be higher than the best possible project

payoff, which is at odds with our understanding of an enforcement problem. Furthermore,

both assume that penalties are completely non-pecuniary. In our analysis, we also look at the

effects of a penalty which is in part pecuniary.

Another argument in favor of an exogenous penalty function is based on Conning (2005,

p.2) who finds that “the group methodology is often rigid and poorly adapted to borrowers’

changing needs”. This supports considering group lending in its purest form and to avoid

complex contractual structures as in Rai and Sjöström (2004). Mechanism design results are

important to show how contracts should be shaped, but as long as contracts are not what

they should be, an equilibrium analysis given some actually used contracts might make much

sense.

As another advantage of our model, and in contrast to Bhole and Ogden (2009) and Rai

and Sjöström (2004) who assume that projects either succeed or fail, we assume that project

revenues are distributed on some interval. Thus, we can derive a more realistic return function

to describe the kind of market failures known from the asymmetric information literature.

The focus on enforcement problems in our model is supported by Giné and Karlan (2009),

who find “that peer monitoring or peer pressure are unimportant [for repayment]”. Moreover,

there is some empirical evidence that is supportive of the BC model and its basic mechanisms.

Ahlin and Townsend (2007, p.F42) study the Thai BAAC and find that “the Besley

and Coate model of social sanctions that prevent strategic default performs remarkably well,

especially in the low-infrastructure northeast region”. Their more general finding that no

single model is able to capture the observed diversity of different microcredit programs, may

also help explain why the BC model fares worse in other studies.18

BC themselves recognize that their results “should not be taken as implying that group

18For instance, see Cassar, Crowley, and Wydick (2007, p.F101), and Giné and Karlan (2009, p.13).
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lending is better or worse than individual lending in any broader sense than repayment rates”

(p. 16), so “a more comprehensive analysis of the differences between the two lending schemes

is an interesting subject for further research” (p. 16). This “requires a richer framework than

provided by the model of this paper” (p. 15). The aim of the present paper is to supplement

the BC model with a minimum set of additional assumptions that enables us to study the

nature of equilibrium and the welfare effects of the different lending schemes.

The analysis is further motivated by the recent huge inflow of private investors and the

surge in the use of market instruments in the market for funding microfinance institutions

(MFIs). According to Reille and Forster (2008, p.1), “[t]he entry of private investors is the

most notable change in the microfinance investment marketplace. (. . . ) Individuals and in-

stitutional investors – including international retail banks, investment banks, pension funds,

and private equity funds – are all looking for ways to channel capital into microfinance, and

investment banking techniques are being introduced to create investment vehicle alternatives

that appeal to an increasingly broad range of investors.” The total volume of the microfinance

market is estimated at US$ 25 billion in 2006. According to Dieckmann (2007, pp.6-7), the

top 150 MFIs are by now mature, mostly regulated, and profitable institutions, and a further

800 are set to follow. These MFIs increasingly attract funds from individual and institutional

investors, other sources of funds being development finance institutions (DFIs).19 In particu-

lar, private investors make up for more than 50 percent of the US$ 4 billion foreign investment

in MFIs. A similar percentage of the cross-border investments is made not directly but via

specialized microfinance investment vehicles (MIVs). Except blended-value funds (BVFs),

Reille and Forster (2008, Figure 1, p.2, and Table 1, p.7) find that most MIVs meet return

expectations of about 5 percent. Investment banks have started to securitize MFI claims in

the form of CDOs. Dieckmann (2007, p.10) suggests a back-of-the-envelope calculation that

highlights the vast growth potential of the microcredit market: “While MFIs currently serve

an estimated 100 million micro-borrowers, the total potential demand is roughly estimated

at 1 bn” (given low penetration rates of below 3 percent in large markets such as India and

Brazil). So this US$ 25 billion market may grow ten-fold if it attracts the required funds. Ex-

hausting this growth potential necessitates a continuation of private capital inflows attracted

by decent returns. So there is little doubt that the recent trend toward private investments

19Our definitions of MFIs and DFIs follow Reille and Forster (2008).
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and market instruments will continue over the foreseeable future.

The equilibrium analysis of the BC model brings forth several interesting results. To begin

with, we consider the model without social sanctions. The equilibrium loan contract max-

imizes expected borrower utility subject to the constraint that the MFIs break even. We

demonstrate that an equilibrium exists. In equilibrium, the borrowers get the finance needed

for their projects or not, depending on the level of expected returns and the nature and sever-

ity of the penalties. Our first main result is that in an equilibrium with IL, it may be possible

for MFIs to offer a GL contract that has a lower loan rate, increases the repayment rate, and

breaks even – but no borrower accepts this low-interest offer. The reason is that GL with non-

cooperative behavior in the repayment game of BC entails potentially large penalties, which

are not only threatened, but also exerted. Theoretically, this shows that repayment rates are

an imperfect indicator for the viability of lending types in equilibrium, systematically biased

toward GL.

Furthermore, we find that the return function (that relates the return on lending to the

loan rate) is a hump-shaped function over the relevant range of loan rates, so that there

are different kinds of market failure. The equilibrium may be characterized by financial

fragility, in that a small increase in the rate of return required by the investors (viz., a rise

beyond the maximum of the return function) leads to a complete breakdown of the market

(cf. Mankiw, 1986). From a cross-sectional perspective, when there are several microcredit

markets of the BC type, redlining as in Riley (1987) may occur: All borrowers get loans in

some markets (those where the maximum of the return function is no less than the rate of

return required by the investors), while no-one gets credit in other markets. This result may

be helpful in understanding why microfinance works well in some places but not in others.

It implies that in order to maximize the total volume of credit given, DFIs should target the

least profitable markets consistent with their return expectations, leaving the more profitable

segments to private investors. Credit rationing may also arise: In a given market, some

borrowers get funds, while other, indistinguishable borrowers do not. In sum, our second

main result is that, irrespective of whether GL or individual lending arises as the equilibrium

mode of finance, microcredit markets with problems of enforcing repayments are likely to

be characterized by the usual types of allocation problems encountered in loan markets with
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asymmetric information.

We also consider the case of cooperative behavior of borrowers. As expected, the counter-

intuitive result that IL might be the equilibrium lending type even though GL has a higher

repayment rate and a lower equilibrium loan rate disappears. We are able to show that re-

payment rates and expected repayments are higher with GL than with IL when borrowers in

groups cooperate and the banks’ penalties are non-pecuniary. We show that GL becomes the

unique equilibrium mode of finance.

We also analyze the model with social sanctions and are able to show that GL is the

unique equilibrium mode of finance when borrowers do not cooperate in the repayment game

but apply (sufficiently large) appropriate sanctions to each other. Interestingly, since we

assume that borrowers are always able to repay loans by selling their belongings, GL with

social sanctions can have negative effects. It might force borrowers to sell their belongings

and repay in order to avoid social sanctions. In terms of the market equilibrium, borrowers do

not demand loans at any loan rate since their utility from doing so can be negative. However,

when the banks’ penalties are non-pecuniary, all loan rates that banks subject to competition

could offer attract borrowers if borrowers are risk-neutral.

The allocation problems identified in the model without sanctions persist. That is, social

sanctions ameliorate, but do not eliminate, the negative impact of enforcement problems on

equilibria in microcredit markets. In terms of the power of joint liability, we conclude that

there need to be other factors to guarantee the success of group lending.

The remainder of the chapter is organized as follows. Section 3.2 describes the model

without social sanctions. Section 3.3 summarizes BC’s results on repayment rates. In Section

3.4, we go on to characterize the model equilibrium (details of the derivations are delegated

to the appendix of this chapter, 3.8). Social sanctions are introduced in Section 3.6. Section

3.7 concludes. We use several numerical examples to illustrate our results. In order to see the

effects of the changing assumptions in the different sections most clearly, we use one example

(‘example 1’) where parameters are the same. In other examples, parameters are chosen ad

hoc in order to get nice graphs.
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3.2 The model

This section describes the assumptions of the model. All propositions in this chapter are de-

rived assuming uniformly distributed payoffs and penalties for default which are proportional

to project payoffs. Throughout this chapter, we assume that project payoffs are independent.

In Section 3.3, we show the first of two main results of BC. The additional assumptions we

make are highlighted as Assumptions 1-3. The more specific Assumptions 4, 5 and 6 are in-

troduced where needed, in Subsection 3.4.1, Section 3.5 and Section 3.6, respectively. Section

3.6 analyzes social sanctions, whose effects are the second main result of BC.

A given finite mass m (> 0) of risk-neutral borrowers without internal funds are endowed

with one project each. The project requires an input of one unit of capital and projects

are indivisible. The payoffs θ are independently and uniformly distributed: The distribution

function is given by F (θ) = 0 for θ < θ, F (θ) = (θ− θ)/(θ̄− θ) for θ ∈ [θ, θ̄], and F (θ) = 1 for

θ > θ̄, where

θ̄

2
> θ > 0.

The first inequality ensures a minimum degree of variation of project payoffs. The second

inequality means that there is some positive payoff even in the worst case. In particular,

payoffs can never be negative. As is typical of microcredit markets, we assume that MFIs

offer loans without requiring collateral. At the time a loan is made, the payoff θ itself is

unknown, but the distribution of payoffs is known to borrowers and banks. Once realized,

the project payoff θ is common knowledge. Borrowers can neither choose between different

projects nor can they influence project payoffs by the effort they spend. Thus, there is no

asymmetric information: Borrowers and banks share the same information at all points in

time (no hidden information).

We consider two types of contracts. With an IL contract, the borrower receives a loan of

size 1 and has to make a gross repayment (principal plus loan rate) r after payoff realization.20

A GL contract consists of a loan of size 2 to a group of two borrowers and repayment 2r. The

timing under IL and GL can be seen in Figure 3.1.

When the repayment decision is made, borrowers are endowed with sufficiently high income

20Note the difference in notation. In Chapter 2, r is the net interest rate on loans.
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Figure 3.1: Timing of both lending schemes

so that they are able to repay.21 We assume some exogenous second-period income a borrower

could generate once returns are realized. This income can be justified by the fact that most

borrowers have the possibility to sell their belongings.

However, even though borrowers are always able to repay, they do not always repay. The

reason is that banks cannot perfectly enforce their claims, so that borrowers choose between

repaying or not. As is common for many MFIs, repayment is an all-or-nothing decision. Thus,

if a borrower with an IL contract decides to pay back, he repays r. If two borrowers with a

GL contract decide to pay back, they repay 2r as a group or nothing at all, i.e., there are

no partial repayments. If an IL borrower decides not to repay, the bank punishes him. The

penalty for default is p(θ) = θ/β,22 where

β > max {1, θ} .23

21Thus, we follow BC who “ignore the possibility that a borrower has insufficient funds to repay his loan”
(p.4, footnote 7).

22There is an obvious tension between the assumptions about repayment ability on the one hand and penalties
on the other hand: The penalty is independent of the value of the exogenous second-period income. As
mentioned in the main text, one interpretation is that a borrower could mobilize enough money to repay by
selling his belongings, but the MFI does not expect him to do this and so does not condition the penalty on the
value of his belongings. An often quoted argument is the influence on banks’ reputation, which makes banks
reluctant to enforce such claims on the few assets of the poorest of the poor. In some countries, there are laws
which prohibit seizure of basic goods.

23This condition captures the idea that borrowers prefer the penalty over repayment in the case of minimum
project return even at zero interest: θ/β < r = 1 (cf. BC, p.8). Given this inequality, our former assumption
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If the group defaults, the group members will be punished. It is important to note that the

punishment of any one borrower does not depend on the payoff of the partner: If payoffs of

two group members are θi and θj , respectively, borrower i’s punishment is p(θi) and borrower

j’s is p(θj).

BC assume that the penalty consists of “two components”, “a monetary loss due to seizure

of income or assets” and “a non-pecuniary cost resulting from being ‘hassled’ by the bank, from

loss of reputation, and so forth” (p.4). Their focus on repayment rates makes an assumption

with regard to the relative magnitudes of the two components dispensable. We assume that

each of the two components is a constant proportion of the penalty:

Assumption 1: Of the penalty p(θ), a fraction α (∈ [0, 1]) is pecuniary and accrues to the

MFI. The remainder of the penalty is a deadweight loss.

Note that α might also be negative. Exclusion from future credit as one of the most common

punishments available to MFIs can cause a cost. Since, in addition, the seizure of assets to

compensate for this cost is not always possible, α < 0 is not impossible. Most of the papers

on GL focus on the case α = 0 (cf. Rai and Sjöström (2004) and Bhole and Ogden (2009)),

i.e., they assume non-pecuniary penalties. Therefore, our main results are also based on this

assumption. However, α > 0 has interesting implications and might become important when

the MFIs’ clientele matures.24

The two borrowers in a group (i, j) play a two-stage repayment game. The extensive

form representation can be seen in Figure 3.2. At the first stage, strategies are: contribute

r to the joint repayment 2r (play ‘c’) or not (play ‘n’). Both borrowers have to announce

their decisions simultaneously. That is why the broken line connects nodes 2 and 3 in Figure

3.2. Together, they are an information set of borrower j.25 When playing at the first stage,

borrower j does not know what borrower i does, vice versa. If both choose to contribute,

payoffs are θi − r and θj − r. If both choose not to contribute, payoffs are θi − p(θi) and

θj − p(θj), as indicated above. If borrower i chooses to contribute and j (6= i) does not, i

θ̄/2 > θ is implied by BC’s (p.8) somewhat stronger condition θ̄/2 > β. Without this former assumption, the
potential advantage of GL would not materialize, and IL would be unambiguously better.

24Using our model for a clientele with assets requires that the process of maturation is not accompanied by
an elimination of the enforcement problem.

25We number the important nodes from 1 to 5. Information sets in the present game are, for borrower i:
node 1 and node 5, for borrower j: nodes 2 and 3, node 4. Note that, since one of borrower j’s information
sets is not singleton, we are in a game of imperfect information.
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Figure 3.2: Repayment game.
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decides, at stage 2, whether he repays 2r alone (play ‘R’) or not (play ‘D’). If he repays, the

whole group loan is repaid and he gets θi−2r, whereas j gets θj . If not, there is group default

and payoffs are θi − p(θi) and θj − p(θj).

We can distinguish nine strategies, which are depicted in Table 3.1.26 This set can be

searched for equilibrium strategies, contingent on the realization of payoffs.

strategy profile (i | j) repayment?
(c,R | c,R) yes
(c,R | c,D) yes
(c,D | c,R) yes
(c,D | c,D) yes
(n | c,R) yes
(n | c,D) no
(c,R | n) yes
(c,D | n) no
(n | n) no

Table 3.1: Strategy profiles and repayment decisions.

The supply of funds to MFIs is perfectly elastic. That is, the MFIs’ cost of capital is exoge-

nously given. One may think either of private investors with a given required rate of return or

of DFIs or BVFs that can do with a below market rate of return.27 Let q denote loan supply

from MFIs to borrowers.

Assumption 2: MFIs can raise any amount of capital q ∈ [0,m] at the constant cost of

capital ρ (≥ 1).

The equilibrium contract maximizes expected borrower utility. In the case of funding by

return-seeking investors, this is due to perfect competition among MFIs. For an MFI funded

by a DFI, this is a natural objective.

26There is a difference between (c, R | c, R) and (c, D | c, D) or (c, D | c, R). Mas-Colell, Whinston, and
Green (1995, p.229) define a strategy as “a complete contingent plan that says what a player will do at each
of her information sets if she is called on to play there”. Thus, even though both (c, R | c, R) and (c, D | c, D)
lead to repayment such that every borrower contributes his share, the strategies are formally different. To be
fully rigorous, we would have to split up the strategies where ‘n’ appears and specify what a borrower would
have played if he had not chosen ‘n’ at the first stage, i.e., there would be a difference between (n, D) and
(n, R). However, playing ‘n’ in the first stage precludes the possibility to be called on to play in the second
stage, so that we omit this distinction.

27Given the small proportion of microcredit markets in financial markets, an exogenous cost of capital is a
natural assumption. The main results go through with an upward-sloping loan supply curve as well, and we
will briefly tackle this case when we come to credit rationing in Subsection 3.4.6.
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Assumption 3: The MFIs offer the (IL or GL) contract that maximizes borrowers’ expected

utility subject to the constraint that it breaks even.

3.3 Repayment rates

This section gives a brief summary of BC’s results on repayment probabilities with IL and

GL.

We can distinguish four qualitatively different loan rate intervals. Very low rates r < θ/β,

low rates θ/β ≤ r ≤ θ̄/(2β), high rates θ̄/(2β) < r ≤ θ̄/β and very high rates θ̄/β < r. How-

ever, for both IL and GL, very low and very high rates are trivial to analyze in that repayment

(default) occurs with certainty for very low (high) rates. This becomes clear if we set up the

condition for repayment.

Individual lending

When payoffs are realized, an IL borrower decides whether to repay or default. If the penalty

which would be implied by the decision to default outweighs the amount to repay (i.e., if

p(θ) ≥ r),28 the borrower prefers to repay the loan. Conversely, the borrower prefers to

default if the penalty is less than the contractual repayment (i.e., if p(θ) < r). From the

definition of the penalty function, we can also state these conditions in terms of critical

payoffs. Since p(θ) = θ/β, an IL borrower decides to repay if, and only if, θ ≥ βr. Default

occurs if, and only if, θ < βr.

Thus, if the loan rate is very low (r < θ/β), an IL borrower always pays back since

the penalty is higher than the loan rate for all possible payoffs (even if the worst payoff θ

is realized, the penalty is higher than r since r < θ/β = p(θ)). For very high loan rates

(θ̄/β < r), an IL borrower always defaults since p(θ̄) = θ̄/β < r, i.e., the penalty is lower than

the loan rate even if the highest possible payoff is realized.

Therefore, we only consider loan rates θ/β ≤ r ≤ θ̄/β. It is convenient to define the

‘default interval’

28Thus, we assume that repayment occurs if penalty and amount of repayment are equal.
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Figure 3.3: Repayment (shaded) vs. default (non-shaded), cases L (left), H (right).

A = [θ, βr).

As seen above, borrower i defaults if, and only if, p(θi) = θi/β < r, i.e., θi ∈ A. So the

repayment rate (i.e., the probability of repayment) is

ΠI(r) = 1− F (βr) =
θ̄ − βr

θ̄ − θ
, θ/β ≤ r ≤ θ̄/β. (3.1)

This confirms the above argument about the focus on low and high loan rates in case of IL. A

loan rate of r = θ̄/β implies a zero repayment rate: ΠI(θ̄/β) = 0. Evidently, the repayment

rate is zero for all r > θ̄/β since F (βr) = 1 in that case. So without loss of generality, we

can confine attention to loan rates r ≤ θ̄/β. For 0 < r ≤ θ/β, the ‘default interval’ A is not

well defined, the borrower repays for all θ. Such loan rates cannot arise in equilibrium, since

repayment to the MFI falls short of ρ with certainty: r ≤ θ/β < 1 ≤ ρ.

Group lending

Again, we restrict attention to loan rates such that θ/β ≤ r ≤ θ̄/β.29 By definition, p(θi) =

29We shall see below (in footnote 39) that, as with IL, lenders’ expected return falls short of ρ for loan rates
0 < r ≤ θ/β.
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θi/β < r for θi ∈ A, so borrower i prefers the penalty over repayment. We formally distinguish

between two cases: the low-interest case

case L:
θ

β
≤ r ≤ θ̄

2β
,

and the high-interest case

case H:
θ̄

2β
< r ≤ θ̄

β

(see the left and right panel of Figure 3.3, respectively). Let

B =

 [βr, 2βr) , case L,[
βr, θ̄

]
, case H.

For θi ∈ B, borrower i is willing to repay an individual loan (since r ≤ p(θi) = θi/β) but not

a group loan (since θi/β < 2r). Finally, let

C =
[
2βr, θ̄

]
, case L.

For θi ∈ C, i prefers to repay 2r rather than default.

BC (p.17) characterize the subgame-perfect Nash equilibria (SPNE) of the repayment

game (cf. Figure 3.2 for the extensive form of the game including payoffs, and Table 3.1 for

possible strategy profiles). We go through all possible payoff combinations and determine the

equilibrium strategy profiles and the repayment decision entailed. To find the equilibrium, we

first look for SPNE. If there is no unique SPNE, we sort out those SPNE with Pareto-inferior

payoffs. If there is no Pareto dominance in payoffs, we exclude equilibria in which (at least)

one borrower plays a (weakly) dominated strategy.30

(AA) For (θi, θj) ∈ A× A (cf. Figure 3.3), both borrowers have payoffs such that neither of

them wants to contribute his share and (n | n) is the only equilibrium. There is no (unilateral)

incentive to deviate from (n | n). To see this, consider one of the two borrowers (the game is

30The order is only important in the case with social sanctions, see below. In this section, we could also
first look for equilibria in dominant strategies, and apply the concept of SPNE only in case there is no such
equilibrium.



3.3. REPAYMENT RATES 101

symmetric), borrower i, say. From the payoffs at the bottom of Figure 3.2, we can see that

there is only one strategy profile which would make him better off, viz., (n | c,R). In that

case, his payoff would be θi, which is higher than θi − p(θi). However, for borrower i to get

there, borrower j would have to change his strategy. Nothing borrower i can unilaterally do

leads to his preferred outcome (the same is true for borrower j), i.e., (n | n) is a (subgame

perfect)31 Nash equilibrium. To see that it is unique, we have to check all other strategy

profiles. For instance, consider (n | c,R). Borrower j has a unilateral incentive to deviate

by playing ‘n’ instead of ‘c’ at the first stage since his payoff would change from θj − 2r to

θj − p(θj) (> θj − 2r in case (AA)). The reader is invited to check that no other strategy

profile is an SPNE either. The unique SPNE is (n | n) so that the group defaults.

(BB) For (θi, θj) ∈ B ×B, both borrowers choosing to contribute is a Nash equilibrium and

(c,D | c,D) is subgame perfect (cf. footnote 31). Strategy pair (n | n), i.e., both borrowers

deciding not to contribute, is also an SPNE, which is however ruled out by BC (p.7) on the

grounds that it is Pareto-inferior. An alternative way to get rid of this ‘bad’ equilibrium is

elimination of weakly dominated strategies: The strategy not to contribute at the first stage

is weakly dominated by the strategy to contribute.32 Thus, case (BB) leads to repayment.

(CC) For (θi, θj) ∈ C × C, which is only possible in case L, the only Nash equilibrium is

that one borrower repays 2r and the other free-rides. This is an interesting case. Intuitively,

one might guess that both borrowers contribute their shares in equilibrium. This is not the

case. There are two SPNE, (n | c,R) and (c,R | n). Consider the wrong equilibrium guess

(c,R | c,R). Each borrower has an incentive to play ‘n’ at the first stage since he knows that

his partner is going to play ‘R’ at the second stage.33

31Considering complete strategies in case (n | n) for the moment, (n, D | n, D) is subgame perfect, whereas
(n, R | n, R), (n, R | n, D), and (n, D | n, R) are not. If a borrower has a payoff too low to be willing to
contribute his own share, he will never be willing to repay both shares, i.e., he will never play ‘R’ at the second
stage.

32 Since borrowers know each other’s payoffs when they play the game, we use backward induction to
anticipate second-stage moves before determining strategies that are dominated. Otherwise (cf. Mas-Colell,
Whinston, and Green (1995, p.237)), ‘c’ is not weakly dominant since (n | c, R) would yield a higher payoff,
viz., θi.

33So, if both try to free-ride playing ‘n’ in the first stage, the group might end up defaulting even though each
borrower would have preferred to repay the whole loan all by himself. However, it is not a Nash equilibrium
since both borrowers would have the unilateral incentive to play (c, R). Bhole and Ogden (2009, p.4, footnote
20) explain how payment reminders from the bank after stage one rule out this kind of asymmetric equilibrium.
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(BC) For (θi, θj) ∈ (B × C) ∪ (C ×B), which is only possible in case L, the borrower i with

θi ∈ C repays 2r and borrower j with θj ∈ B free-rides. Borrower j wants to contribute his

part of the loan rather than incur the penalty, but he prefers the penalty to a repayment of

2r. The payoff of borrower i is so high that he would rather repay the whole loan than incur

the penalty. Since both know each other’s payoffs, the only SPNE is (c,R | n), borrower j

free-rides on borrower i. The penalty is the worst that could happen to borrower i. Since he

knows that the payoff of borrower j is insufficient to induce borrower j to repay 2r, he will

always play ‘c’ at the first stage. Borrower j knows that and can decide whether he wants to

contribute his share r, or stay with all of his payoff. He will not contribute his part since he

knows that borrower i will rather repay 2r than incur the penalty. The equilibrium strategy

profile implies repayment.

In all these cases, the repayment received by the MFI is the same as with two IL contracts:

2r if the group (or both IL borrowers) repays, and α(θi + θj)/β, the monetary part of the

sum of the penalties, in case (AA).

(AB) For (θi, θj) ∈ (A×B) ∪ (B ×A), the group defaults. This is the drawback of GL: The

borrower i with θi ∈ B would repay a single loan but is discouraged from paying back anything

by joint liability. In this case, BC claim that (n | n) is the unique equilibrium. Although we

concur with the claim that (AB) is a clear case of group default, there is another equilibrium

strategy profile, viz., (c,D | n).34 Consider Figure 3.2 to verify this. Borrower j with θj ∈ A

has no incentive to change his decision at stage one since he would have to contribute r instead

of (the lower) p(θj). In comparison to payoffs when playing (c,D), borrower i would neither

gain anything from playing ‘n’ at the first stage nor from playing ‘R’ at the second.35 In any

case, (AB) will lead to group default.

(AC) For (θi, θj) ∈ (A× C) ∪ (C × A), which is only possible in case L, the borrower i with

34To be more precise, (c, D | n, D) would be the SPNE, cf. footnote 31.
35Note that (n | n) is not Pareto-inferior to (c, D | n, D). If we used elimination of (weakly) dominated

strategies, (n | n) would not even be an equilibrium. This is because (c, D) is a weakly dominant strategy
(after backward induction) of borrower i. In case borrower j played ‘c’, borrower i would be better off, whereas
he does not experience a loss if borrower j plays ‘n’ and he then, at the second stage, plays ‘D’ himself.
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bi/bj probability equilibria repayment?

(aA) [F (βr)]2 (n | n) no

(aB) F (βr)[F (β2r)− F (βr)] [(n | n)] [no]
(n | c,D) no

(aC) F (βr)[1− F (β2r)] (n | c,R) yes

(bA) [F (β2r)− F (βr)]F (βr) [(n | n)] [no]
(n | c,D) no

(bB) [F (β2r)− F (βr)]2 (c,D | c,D) yes
[(n | n)] [no]

(bC) [F (β2r)− F (βr)][1− F (β2r)] (n | c,R) yes

(cA) F (βr)[1− F (β2r)] (c,R | n) yes

(cB) [1− F (β2r)][F (β2r)− F (βr)] (c,R | n) yes

(cC) [1− F (β2r)]2 (n | c,R) yes
(c,R | n) yes

Table 3.2: Payoff combinations, probabilities, equilibrium strategies and repayment decision.

θi ∈ C repays 2r. This is the advantage of GL: Borrower i stands in for his fellow group

member. The borrower j with θj ∈ A has no incentive to contribute his share, so he will play

‘n’ at stage one. Borrower i prefers repaying the whole loan to defaulting and incurring his

individual penalty p(θi). The only equilibrium is (c,R | n) so that there is group repayment.

Table 3.2 summarizes all possible payoff combinations36 with the respective probabilities and

shows the equilibrium (or equilibria), as well as the group’s repayment decision for each payoff

combination. In columns three and four, we put in brackets the equilibria and repayment

decisions which we can exclude using either Pareto dominance or elimination of (weakly)

dominated strategies. The table is valid for case L. In case H, only cases (aA), (aB), (bA), and

(bB) are possible. The corresponding probabilities in case H follow from using F (β2r) = 1.37

36We split up (AB) into (aB) and (bA), thus not making use of the symmetry of the game for the sake of
clarity in terms of the equilibrium strategy profiles in column three.

37In Table 3.2, note that F (β2r) = 1 implies that the probabilities of the cases which cannot occur in case
H become zero.
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In case L, the repayment rate is equal to the cumulated probability of cases BB, CC, BC,

and AC38:

ΠG(r) = 2[1− F (2βr)]F (βr) + [1− F (βr)]2 =
−3β2r2 + 4βθr + θ̄2 − 2θθ̄

(θ̄ − θ)2
, case L. (3.2)

In case H, the repayment rate is the probability of case (BB):

ΠG(r) = [1− F (βr)]2 =
(

θ̄ − βr

θ̄ − θ

)2

, case H. (3.3)

As with IL, we can confine attention to r ≤ θ̄/β, because all higher loan rates imply a zero

repayment rate.39

The BC result

BC’s (p.8) main result for the model without social sanctions is that if θ̄/(3β) > 1, then GL

dominates IL in terms of repayment rates for low loan rates r < θ̄/(3β), and vice versa. This

follows from equations (3.1), (3.2), and (3.3): ΠG(r) > ΠI(r) for r ∈ [1, θ̄/(3β)) (note that

r ≤ θ̄/(3β) is case L) and ΠI(r) > ΠG(r) for r ∈ (θ̄/(3β), θ̄/β]. If θ̄/(3β) ≤ 1, IL yields an

unambiguously higher repayment rate.

Let us note a conceptual problem comparing ΠI and ΠG: They do not measure the same

thing. The former is the probability that a single borrower repays one unit of capital plus

interest (= r). In contrast, the latter is the probability that a group of two borrowers repays

two units of capital plus interest (= 2r). It is tempting to simply think of an IL borrower as

taking a loan of size 2 such that his revenues would be in the interval [2θ, 2θ]. However, this

would contradict one of the basic assumptions of the model: Investment opportunities are

assumed to be of fixed size in that they require one unit of capital (no up- or downscaling),

and that each borrower has one such project. The correct benchmark for GL is the situation

38Or, using the case distinctions in Table 3.2, the cumulated probability of cases bB, cC, bC, cB, aC, and
cA.

39Loan rates 0 < r < θ/β cannot occur in equilibrium with GL. The interval A is not well defined in this
case, so only cases (BB), (BC), and (CC) can arise. The repayment rate is unity in each of these cases, so the
MFIs are unable to break even: r < θ/β < 1 ≤ ρ.
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with two independent IL borrowers, both receiving a loan of size one. In this case, it is possible

that only one of the two repays his loan, whereas partial repayment is excluded for groups.

We can find the probability that both loans are repaid under two IL contracts. Due

to independence of project revenues, it is simply the product of the individual repayment

probabilities, i.e., Π2
I . However, this cannot be compared to ΠG since we would neglect the

probability that one IL borrower repays his loan. We could account for this using Π2
I +2ΠI(1−

ΠI) as the probability to compare to ΠG. Unfortunately, this is still a comparison of apples

and oranges since we would compare the probability P(‘two IL borrowers pay back their loans

or one of them pays back his loan’) to the probability P(‘a group pays back the whole loan’).

Therefore, in general, the comparison of BC is conceptually questionable, with one excep-

tion: As long as the penalty is completely non-pecuniary, we can derive expected repayment

with GL as ΠG2r, and with IL as Π2
I2r+2ΠI(1−ΠI)r+(1−ΠI)0 = ΠI2r. In this case, the BC

comparison of ΠI and ΠG is the same as a comparison of expected repayments. We conclude

that the BC proposition should rather be: If penalties are non-pecuniary, GL dominates IL

in terms of expected repayment for low loan rates r < θ̄/(3β), and vice versa.

3.4 Equilibrium

This section analyzes the equilibrium of the BC model supplemented with Assumptions 1-3.

We show that an equilibrium exists, consider several interesting special cases, and highlight

the allocation failures that potentially arise in equilibrium.

3.4.1 Definition of equilibrium

Given the penalty function p(θ) = θ/β and β > 1, all borrowers demand loans at any loan

rate, so loan demand is constant. This is because the cost of a loan (i.e., either principal plus

interest repayment or penalty) is less than the payoff in every state of nature: min{p(θ), r} =

min{θ/β, r} < θ.

In order to determine borrowers’ expected utility, we have to make an assumption about

the probability of being the borrower who repays or the free rider in case (CC). The natural

assumption is that each borrower has an equal chance of being the free rider:
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Assumption 4: The probability of being a borrower who repays when (θ1, θ2) ∈ C × C in

case L under GL is 1/2 for each borrower.40

Let θI = θ and θG = (θ, θ′). Denote the set of realizations of θt that trigger default with

lending type tL (t ∈ {I, G}) as Dt: DI = A and DG = (A×A) ∪ (A×B) ∪ (B ×A) (see the

non-shaded areas in Figure 3.3). The binary complement of Dt (i.e., the set of realizations

that trigger repayment) is denoted St: SI = [θ, θ̄]\DI and SG = ([θ, θ̄]× [θ, θ̄])\DG (see the

shaded areas in Figure 3.3). ΠI(r) and ΠG(r) are the probabilities of θ ∈ SI and (θ1, θ2) ∈ SG,

respectively. Then, using Assumption 1, the MFIs’ expected repayment per dollar lent with

lending type tL is

Rt(r) = Πt(r)r + [1−Πt(r)]αE [p(θ)|θt ∈ Dt] , t ∈ {I, G}. (3.4)

For IL, the formula is easy to understand. Expected repayment is simply the probability

of repayment, ΠI(r), times the amount to be repaid in that case, r, plus the probability of

default times the monetary part of the expected penalty conditional on default. For GL, the

formula does not immediately arise. It should consist of the probability of group repayment,

ΠG(r), times the amount to be repaid in that case, 2r, plus the probability of group default

times the monetary part of the group’s expected penalty conditional on default. Formally,

RG(r) = ΠG(r)2r + [1−ΠG(r)]αE [p(θi) + p(θj)|θG ∈ DG] . (3.5)

Since project revenues are independent, the conditional expectation of the sum of penalties

equals the sum of the conditional expectations of penalties, i.e., E [p(θi) + p(θj)|θG ∈ DG]

equals E [p(θi)|θG ∈ DG] + E [p(θj)|θG ∈ DG]. Since the penalty function is linear, the sum

of the expectations of penalties can be written as the sum of the penalties of the expecta-

tions, both conditional on group default, i.e., E [p(θi)|θG ∈ DG] + E [p(θj)|θG ∈ DG] equals

p(E [θi|θG ∈ DG]) + p(E [θj |θG ∈ DG]). Moreover, θi and θj are identically distributed so

that their expectations (conditional on the same event) are identical. Writing them as

E[θ|θG ∈ DG] and again using the linearity of the penalty function, the sum of the penalties

of the expectations can be written as 2E [p(θ)|θG ∈ DG]. Substituting in equation (3.5), the
40Since the number of borrowers who repay is equal to the number of borrowers who free-ride, the proba-

bility is necessarily 1/2 on average. Any mechanism that randomly assigns these roles to borrowers implies a
probability of 1/2 for everyone.
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latter becomes

RG(r) = ΠG(r)2r + [1−ΠG(r)]α2E [p(θ)|θG ∈ DG] .

After division by two to get expected repayment per borrower, equation (3.4) obtains for

t = G.

Using Assumption 4, expected utility of a borrower who finances his project with tL is

Ut(r) = Πt(r)E[θ − r|θt ∈ St] + [1−Πt(r)]E [θ − p(θ)|θt ∈ Dt] , t ∈ {I, G}. (3.6)

As with expected repayments, the formula for expected utility is easy to understand for IL.

Expected utility is the probability of repayment times expected net41 revenue given repayment,

plus the probability of default times expected net revenue given default. For GL, this is less

clear. For a group, we should have

UG(r) = ΠG(r)E [θi + θj − 2r|θG ∈ DG] + [1−Πt(r)]E [θi − p(θi) + θj − p(θj)|θG ∈ DG] .

(3.7)

However, similar rearrangements as with RG(r) yield expected utility per group member in

equation (3.6) for t = G.

We have to distinguish between two types of equilibria:

Definition 3.1 A lending type, a loan rate, and a quantity of loans (tL, r, q) are a loan market

equilibrium with market clearing (also: trade equilibrium) if

(1) the amount of loans made is equal to demand: q = m;

(2) MFIs make zero profit: Rt(r) = ρ;

(3) no alternative contract that attracts borrowers yields positive profit: There is no (t′L, r′) 6=

(tL, r) such that Rt′(r′) > ρ and Ut′(r′) ≥ Ut(r).

Definition 3.2 A loan market equilibrium without trade (also: no trade equilibrium) pre-

vails if there is no contract that breaks even: Rt(r) < ρ for all (tL, r).
41In case of repayment, ‘net revenues’ are project revenues after debt redemption. In case of default, ‘net

revenues’ refers to project revenues after punishment.
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3.4.2 Existence of equilibrium

Expected repayment and expected utility can be written as functions of the loan rate for both

IL and GL. This is extensive algebra based on equations (3.1),(3.2),(3.3), using the facts that

project revenues are uniformly distributed and that penalties are p(θ) = θ/β. We do this in

Appendix 3.8.1. We get

RI(r) =
−β(2− α)r2 + 2θ̄r − αθ2

β

2(θ̄ − θ)
, (3.8)

UI(r) =
βr2 − 2θ̄r + θ̄2 −

(
1− 1

β

)
θ2

2(θ̄ − θ)
, (3.9)

for IL, and

RG(r) =
−β2(6− 5α)r3 + 4βθ(2− α)r2 + 2(θ̄2 − 2θθ̄ − αθ2)r + αθ3

β

2(θ̄ − θ)2
, case L, (3.10)

UG(r) =
β2r3 − 4βθr2 + (2θ2 − 2θ̄2 + 4θθ̄)r + θ̄3 − θθ̄2 − θ2θ̄ +

(
1− 1

β

)
θ3

2(θ̄ − θ)2
, case L, (3.11)

and

RG(r) =
β2(2− α)r3 − βθ̄(4− α)r2 + θ̄2(2 + α)r − α

β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
, case H, (3.12)

UG(r) =
−β2r3 + 3βθ̄r2 − 3θ̄2r + θ̄3 −

(
1− 1

β

)
(θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
, case H, (3.13)

for GL. Notice that RG(r) is continuous at r = θ̄/(2β) (see Appendix 3.8.2 for the alge-

bra). Moreover, RI(θ/β) = RG(θ/β) = θ/β and RI(θ̄/β) = RG(θ̄/β) = (α/β)(θ̄ + θ)/2 (see

Appendix 3.8.3 for the algebra).

Let us explain the impact of an increase in α at this point. From the above formulas

for expected utility, it can be seen that α does not directly affect utility. This is because
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the penalty function is assumed to capture all direct effects from defaulting on borrowers.

However, there is an indirect effect which makes higher α a good thing. It decreases the

deadweight loss from non-pecuniary penalties so that the equilibrium loan rates are lower,

all other things - the cost of capital in particular - being equal. Thus, equilibrium expected

utility as a function of the MFIs’ cost of capital depends on α whereas expected utility as a

function of the loan rate does not.

Equations (3.8)-(3.13) will be used to characterize the equilibria of the types defined in

Definitions 3.1 and 3.2. To pave the way for our equilibrium analysis of the BC model, we

first prove the existence of an equilibrium:

Proposition 3.1 Either a loan market equilibrium with market clearing or a loan market

equilibrium without trade exists.

Proof: For lending type t, let rt denote the minimum loan rate in the interval [θ/β, θ̄/β]

such that Rt(r) = ρ (see Figures 3.4 and 3.8 below), and Rmax
t be the maximum expected

repayment. Since Rt(θ/β) = θ/β < 1 ≤ ρ and the Rt(r) functions are polynomials, if

maxr,t Rt(r) ≥ ρ, then rt exists for at least one t ∈ {I, G}. If rt exists for exactly one lending

type tL, denote this type as t′L. If both rI and rG exist, let t′L be the lending type that yields

higher borrower utility Ut′(rt′) (if the borrower utilities are identical, pick t′L arbitrarily).

We assert that (t′L, rt′ ,m) is an equilibrium with market clearing. Conditions (1) and (2) in

Definition 3.1 are satisfied. Clearly, if rt′ = θ̄/β, it is not possible to raise expected repayment

beyond ρ. So consider rt′ < θ̄/β. By construction, Rt′(r̃) > ρ requires r̃ > rt′ . From (3.9),

(3.11), and (3.13), U ′
t(r) < 0 for all r < θ̄/β and for t ∈ {I, G} (see Appendix 3.8.4). So

Ut′(r̃) < Ut′(rt′) whenever Rt′(r̃) > ρ. That is, MFIs cannot make a positive profit with

lending type t′. If rt, t 6= t′, exists (i.e., if it is possible to break even with the other lending

type as well), to make a profit Rt(r̄) > ρ with lending type tL, MFIs must set r̄ > rt. As

U ′
t(r) < 0, this implies Ut(r̄) < Ut(rt) ≤ Ut′(rt′). This proves condition (3) in Definition 3.1.

If maxr,t Rt(r) < ρ, from Definition 3.2, there is a loan market equilibrium without trade.

q.e.d.

Proposition 3.1 ensures that an equilibrium exists for all admissible parameter values. More

importantly, the proof of the proposition is constructive: Equilibria with market clearing
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are found by looking for the minimum break-even loan rates for the two lending types and

comparing the corresponding expected utilities of borrowers.

3.4.3 Special cases

We have already commented on the comparison of repayment rates in BC. At the end of Sec-

tion 3.3, we asserted the appropriateness of the BC comparison if penalties p(θ) are completely

non-pecuniary, i.e., if α = 0. In this special case, equation (3.4) becomes Rt(r) = Πt(r)r, so

the lending type tL that yields the higher repayment rate at r also yields the higher expected

repayment at r. However, even so, it is not straightforward to determine the optimal lending

type. To see this, consider the following example:

Example 1: α = 0, θ = 0.6, θ̄ = 5.5, β = 1.2, ρ = 1.1. The minimum break-even loan

rate is lower with GL than with IL: rG ≈ 1.3331 < 1.4198 ≈ rI (see Figure 3.4). Since

rG ≈ 1.3331 < 2.2917 = θ̄
2β , we are in case L. The repayment rate with GL (3.2) is higher

than with IL (3.1): ΠG(rG) ≈ 82.52% > ΠI(rI) ≈ 77.47%. However, the associated borrower

expected utilities satisfy UI(rI) = 1.7338 > 1.7176 = UG(rG). Thus, the equilibrium entails

IL, even though MFIs can break even with GL at a lower loan rate. Put differently, the

equilibrium deadweight loss E[θ]−Ut(rt)−Rt(rt) caused by the non-pecuniary nature of the

penalty is higher with GL (0.2324) than with IL (0.2162). We are in case L and case (AB),

in which GL is disadvantageous, occurs with probability (2F (βr)[F (2βr)−F (βr)] =) 0.1332.

In that case, with GL, the expected penalty for the borrower with θ ∈ B is (E[θ| θ ∈ B]/β =)

1.9997 – way beyond the contractual repayment. As a result, the expected penalty averaged

over both borrowers is (E[θ|θG ∈ DG]/β =) 1.4581 and still exceeds the loan rate rG = 1.3331.

This compares with an expected penalty of 0.91655 with IL. This inefficiency is a result of

the group members’ non-cooperative behavior in the repayment game. Another consequence

is that repayment rates are rather low compared to reported rates in reality, which well ex-

ceed 90 %. We will see how this changes when we consider cooperative behavior and social

sanctions.

The example proves:
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Figure 3.4: Example 1: expected repayment with non-pecuniary penalties.

Proposition 3.2 There exist parameter values such that (IL, rI ,m) is a loan market equilib-

rium with market clearing, even though rG < rI .

Example 1 demonstrates that the fact that GL breaks even at a lower loan rate does not

mean that it occurs in equilibrium. This raises the question of whether repayment rates as

an indicator of market outcomes are systematically biased in favor of GL. To answer this, we

ask over which range of deposit rates ρ IL is the equilibrium mode of finance despite having

the higher break-even loan rate. We address this question in two steps. First, we generalize

Example 1. Then we conduct a systematic analysis of the parameter space.

Example 1 (ctd.): Let the parameters except ρ be as in Example 1. The maximum expected

repayment that can be generated with GL is 1.1462 (at a loan rate of 1.5912, see Appendix

3.8.5). As can be seen from Figure 3.4, for all ρ < 1.1432, GL has the lower break-even loan

rate. By contrast, the comparison of expected borrower utilities shows that GL occurs in

equilibrium only for deposit rates up to ρ = 1.0798. Figure 3.5 shows this graphically. The

upper panel depicts the break-even loan rate as a function of the cost of capital, ρ, for IL and

GL. The lower panel shows expected utility for IL and GL at their respective break-even loan
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rate.

For ρ > 1.2861, there is a no trade equilibrium. For 1.1462 < ρ < 1.2861 (area ‘d’ in

Figure 3.5), only IL is possible. For 1.1432 < ρ < 1.1462 (area ‘c’), MFIs can break even

with both lending types, but IL has the lower equilibrium loan rate and is the equilibrium

contract. The case mentioned in Proposition 3.2 occurs in area ‘b’. For 1.0798 < ρ < 1.1432,

GL leads to the lower break-even loan rate, but the equilibrium consists of IL contracts, as

can be seen in the lower panel of Figure 3.5: UI(rI) > UG(rG) in area ‘b’. In quantitative

terms, for ((1.1432 − 1.0798)/(1.1432 − 1) =) 44.27% of the range of ρ for which GL breaks

even at a lower loan rate, IL is still the equilibrium mode of finance.

Going one step further, is the result of Proposition 3.2 an artifact of the parameters chosen in

Example 1? To investigate this issue, we consider a wide array of model parameters. We pick

θ, θ̄, and β from specified intervals, maintaining the assumption α = 0. Consider θ-values in

[0.01, 1], β-values in [1.01, 3], and θ̄-values in [2.01, 5]. From each of these intervals, we choose

eleven values, viz.,

θ ∈ {0.01, 0.1, 0.2, . . . , 0.9, 1.0},

θ̄ ∈ {2.01, 2.3, 2.6, . . . , 4.7, 5.0},

β ∈ {1.01, 1.2, 1.4, . . . , 2.8, 3.0}.

We choose the values in each set to be ordered and equidistant, except the respective distance

between the first and the second value (in order to always comply with the inequality assump-

tions on parameters dictated by the model). We build all possible triples, where each element

of a triple must belong to a different one of the three sets. This gives (113 =) 1, 331 cases.

For each case, we compute the interval of cost of capital ρ ≥ 1 (if it exists) which gives rise

to rG < rI and the subinterval for which IL is nonetheless used in equilibrium. Comparing

the length of the latter subinterval to the length of the former interval gives the proportion of

values of cost of capital with IL in equilibrium conditional on GL having the lower break-even

loan rate for the given case (i.e, the figure comparable to the 44.27% reported for Example

1). Averaging over the cases gives the mean proportion of instances in which IL occurs in
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Figure 3.5: Upper panel: equilibrium loan rates, lower panel: equilibrium expected utilities.
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Figure 3.6: A distribution of percentages of IL equilibria in spite of rG < rI .

equilibrium despite the higher equilibrium loan rate. In 1, 219 of the 1, 331 cases, there is

no trade in equilibrium. This is because projects are not good enough (low θ and/or low

θ̄), and/or because the enforcement problem is too strong (high β). In 47 cases, there is an

equilibrium with trade for some ρ > 1, but there is no ρ > 1 such that MFIs can break even

with GL contracts. In another 7 cases, there is no ρ > 1 such that rG < rI and, thus,42

the equilibrium consists of IL contracts for all ρ ∈ [1, Rmax
I ), even though MFIs can break

even with GL contracts for some ρ > 1 (Rmax
t is the maximum expected repayment with

lending type t). The remaining 58 cases are of interest concerning Proposition 3.2. In all 58

cases, there are some ρ > 1 such that rG < rI . The proportion of ρ with IL in equilibrium

conditional on GL having the lower break-even loan rate is shown in Table 3.3 in column four.

Figure 3.6 shows a distribution of these percentages, grouping values into intervals of length

0.1, with one additional group, viz., values of 100%. The average over all 58 cases is 61.7%,

even more than 44.27%.

Clearly, there is some arbitrariness in the choice of the intervals. Using θ ∈ [0.01, 1],

42Note that UI(r) > UG(r) in cases L and H (see Appendix 3.8.7) and that U ′
t(r) < 0 for all r < θ̄/β and

for t ∈ {I, G} (see Appendix 3.8.4).
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Table 3.3: Numerical results.
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Figure 3.7: Another distribution of percentages of IL equilibria in spite of rG < rI .

θ̄ ∈ [2.01, 9], and β ∈ [1.01, 4] (eleven equidistant values again), we get 1,049 cases where

there is no trade in equilibrium. In 65 cases, there is trade for some ρ > 1, but only with IL

contracts. In 2 cases, trade is possible with both lending types for some ρ > 1, but there is no

ρ > 1 such that GL occurs in equilibrium. In 215 cases, we have both IL and GL equilibria

for some ρ > 1 each. In each of these 215 cases, we can calculate our percentage of interest

concerning Proposition 3.2. The distribution of these percentages can be found in Figure 3.7.

The average percentage is 39.5% in this case.

By now, we have a feel on the generality of the surprising result that the equilibrium

consists of IL even though GL breaks even at a lower loan rate. From this analysis, we can

conclude that this phenomenon is more than just an artifact of some weird parameter con-

stellation. However, it is striking that these cases only occur when the enforcement problem

is weak (β close to one).

Another interesting special case is α = 1. In this case, the penalties are 100 percent pecu-

niary, so there is no deadweight loss, and all zero-profit contracts are equally good from the
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Figure 3.8: Example 2: expected repayment with pecuniary penalties (α = 0.99).

perspective of the borrowers: Rt(r) + Ut(r) = E[θ] and Ut(r) = E[θ] − ρ when Rt(r) = ρ.

From (3.8), (3.10), and (3.12), it follows that RG(r) > RI(r) for all θ/β < r < θ̄/β when

α = 1 (an algebraic proof of this statement can be found in Appendix 3.8.6). That is, the GL

break-even rate rG is lower than the IL break-even rate rI for all ρ that give rise to loan mar-

ket clearing (i.e., ρ < (θ̄ + θ)/(2β), the maximum of both RI and RG if α = 1). From the fact

that RI(θ/β) = RG(θ/β) and RI(θ̄/β) = RG(θ̄/β) for all α and continuity of the functions

on the right-hand sides of (3.8), (3.10), and (3.12) in α, it follows that for α sufficiently close

to unity, if it is possible to break even with both lending types, then GL generally entails the

lower break-even loan rate. One might suspect that, therefore, GL is unambiguously better

than IL for α large. Interestingly, however, the assertion of Proposition 3.2 also holds true

for α close to one, as the following example shows.

Example 2: α = 0.99, θ = 1.2, θ̄ = 4, β = 1.5, ρ = 1.02. The zero-profit loan rates are

rG = 0.9997 and rI = 1.0361 (see Figure 3.8). The fact that rG < 1 is interesting by itself:

it shows that since (as pointed out in Example 1) the expected penalty may exceed the loan

rate, a loan rate r < 1 may suffice to make a return ρ > 1. The associated expected utility

levels for borrowers are UG = 1.5785 and UI = 1.5788.
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We now turn to the allocation failures that might afflict market equilibria.

3.4.4 Financial fragility

There is ‘financial fragility’ as in Mankiw (1986), in that a small increase in the cost of capital

potentially induces a complete breakdown of the loan market. This follows immediately from

the proof of Proposition 3.1: For maxr,t Rt(r) = ρ, an equilibrium with loan market clearing

exists; as soon as ρ rises, we have maxr,t Rt(r) < ρ, and the equilibrium entails no trade.

For instance, in Example 1, maxr,t Rt(r) = 1.2861, so the market collapses when the lenders

require a return in excess of 28.61 percent. More generally, in the case α = 0, the maximum

required return beyond which the market collapses can be calculated explicitly:

Proposition 3.3 Suppose α = 0. Then

max
r,t

Rt(r) =
θ̄2

4β(θ̄ − θ)
. (3.14)

When ρ rises above this value, the unique equilibrium becomes one without trade.

Proof: From (3.8) with α = 0, RI(r) attains its maximum at r = θ̄/(2β), and the maximum

value is given by the right-hand side of (3.14). It can be shown that the functions on the

right-hand sides of (3.10) and (3.12) fall short of this value in cases L and H, respectively. We

do the algebra in Appendix 3.8.8. q.e.d.

The final two paragraphs of this section deal with two slight variations of the model, which

give rise to redlining and rationing.

3.4.5 Redlining

Assume there is a (non-empty) finite set J of observationally distinguishable classes of bor-

rowers of the type introduced in Section 3.2. Parameters, variables, and functions referring

to class j ∈ J are distinguished by a superscript j. For instance, Rj
t (r) gives the expected

repayment at a loan rate r with lending type t to type-j borrowers. Let m =
∑

j∈J mj , so

that Assumption 2 states that the supply of capital at ρ is sufficient to finance all projects of

all classes. An equilibrium prevails if for each type j ∈ J , the conditions of either Definition
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3.1 or Definition 3.2 are satisfied. Redlining is said to prevail when there is an equilibrium

with market clearing for some types j and a no trade equilibrium for others.

Proposition 3.4 Redlining prevails if, and only if,

min
j

max
r,t

Rj
t (r) < ρ ≤ max

j
max

r,t
Rj

t (r).

Proof: The equilibrium lending type, loan rate, and loan volume for each class are found

following the same steps as in the proof of Proposition 3.1. Types j with ρ ≤ maxr,t Rj
t (r)

get a loan via IL or GL, and at an equilibrium loan rate specific to that class of borrowers.

Types j with maxr,t Rj
t (r) < ρ do not. So the condition in Proposition 3.4 ensures that some

classes get loans, while others do not. q.e.d.

The most interesting case arises when classes differ not with regard to payoffs but with regard

to the nature and magnitude of the penalties: θj = θ and θ̄j = θ̄ for all j, but the αj ’s and/or

βj ’s differ. In this case, if the condition of the proposition is satisfied, some borrowers do not

get credit, even though others with equally good projects do.

Example 3: There are three classes: J = {1, 2, 3}. Penalties are non-pecuniary, the cost of

capital and the payoff boundaries are: ρ = 1.02, αj = 0, θ̄j = 6, and θj = 1 for all j. The

penalty parameters are β1 = 1.25, β2 = 1.5, and β3 = 2. Class-1 borrowers get loans with

GL at r1
G = 1.0613. Borrowers of type j = 2 get individual loans at r2

I = 1.2254. For class 3,

there is no way to break even: maxr,t R3
t (r) = 0.9. Due to the limited scope for punishment

after non-repayment, borrowers in this class are redlined.

The model with observationally distinguishable borrower classes has an important implication

for the roles of for-profit organizations and of DFIs which can do with lower returns: To

maximize the amount of credit given, DFIs have to direct their funds under management to

banks that finance classes with maximum expected repayment just above the MFIs’ required

gross return, while private investors target the high-yield market segments, for otherwise the

DFIs would crowd out private investment.
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Figure 3.9: Example 4: credit rationing.

3.4.6 Credit rationing

In Chapter 2, we have seen how excess demand for credit can be an equilibrium phenomenon.

By considering capital supply with uncertain interest, we have shown that a globally hump-

shaped return function is not necessary for credit rationing. In the model of this chapter,

there is neither project dependence nor capital risk. However, we have seen in Figure 3.4 that

the return function can be hump-shaped. We now show how credit rationing can arise.

Going back to the one-class case, assume now, instead of Assumption 2, that the loan

supply is a real-valued, strictly increasing function s(ρ). A lending type, a loan rate, and a

quantity of loans (tL, r, q) are a credit rationing equilibrium if (1) 0 < q < m, (2) and (3)

in Definition 3.1 are satisfied, and (4) q = s(ρ). A credit rationing equilibrium occurs when

the supply of funds at the loan rate which maximizes expected repayment falls short of the

demand for credit:

Proposition 3.5 If s [maxr,t Rt(r)] < m, a credit rationing equilibrium occurs.

Example 4: Let α = 0, θ = 1, θ̄ = 5, and β = 1.5. Further, let m = 1 and s(ρ) = 0.8ρ. The
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maximum expected repayment maxr,t Rt(r) = 1.0417 is obtained with IL at rI = 1.6667. The

corresponding loan supply is s(1.0417) = 0.8334. So in equilibrium, MFIs make individual

loans to 83.34 percent of the borrowers at the loan rate rI = 1.6667 (see Figure 3.9). The

projects’ expected revenue (i.e., (θ̄ + θ)/2 = 3) is far beyond the level needed to induce savers

to supply enough capital to finance all projects (viz., ρ = 1.25), but the enforcement problem

leads to credit rationing. In Figure 3.9, the panel on the right shows the familiar graph of

expected repayment as a function of the loan rate. In the panel on the left, capital supply is

depicted as a function of ρ, where the independent variable, ρ, is on the ordinate. The thin

decreasing (or, from right to left: increasing) line in the left panel is the 45-degree line, i.e.,

capital supply if we had s(ρ) = ρ. Since the abscissa on the left is a function of the ordinate,

s(ρ) = 0.8ρ, the thick decreasing (increasing) line, must be steeper than the 45-degree line.

In equilibrium, MFIs make zero profits so that maxr,t Rt(r) equals ρ. Drawing a horizontal

line from maximum expected repayment into the left panel yields an intersection with capital

supply. The value of the intersection on the abscissa gives us equilibrium capital supply. Since

credit demand is normalized to one, the difference (1 − 0.83 =) 0.17 is the amount of credit

rationing (‘CR’ in Figure 3.9).43 MFIs have no incentive to increase the loan rate since this

would decrease repayment rates such that expected repayments to the MFIs would be lower.

3.5 Cooperative behavior

The analysis so far lends support to the widely held view that the scope for GL is rather

limited if the sole characteristic of GL is joint liability. In Section 3.1, we have explained

the important concept of side trades. Up to now, we have only considered contracts between

a bank and (one or two) borrowers. In this section, we follow Ahlin and Townsend (2007,

Subsection 1.3.2) and assume that borrowers play the repayment game cooperatively rather

than non-cooperatively.

3.5.1 Repayment game and expected repayments

Assumption 5: The borrowers 1 and 2 in a group repay iff 2r ≤ p(θ1) + p(θ2). They share

the net payoffs θ1 + θ2−min{2r, p(θ1) + p(θ2)} such that both have the same expected utility.
43In Chapter 2, we have seen the distinction of credit rationing types by Keeton (1979). As in Chapter 2,

the assumption of indivisibility of projects implies that rationing is of type II.
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Figure 3.10: Repayment (shaded) vs. default (non-shaded) with cooperative behavior

Using p(θ) = θ/β, Assumption 5 implies that the members of a group repay whenever θ1+θ2 ≥

2βr. Equal expected utilities could be achieved, for example, by sharing θ1+θ2−min{2r, (θ1+

θ2)/β} equally for all possible realizations (θ1, θ2).

In terms of Figure 3.10, the two members of a group repay for (θ1, θ2) on and above

the line with slope −1 through (βr, βr). As in the non-cooperative repayment game, the

members of a group repay nothing in case (AA) and 2r in cases (BB), (BC), (CC) and (AC).

Cooperation is conducive to the repayment rate under GL because in the fields corresponding

to case (AB) in Figure 3.10, they default only in the area below the line θ1 + θ2 = 2βr. One

can infer from Figure 3.10 that the expected repayment with GL is higher than with IL: The

repayments with GL or IL are the same in cases (AA), (BB), (BC), and (CC). With GL, both

group members repay in field (AB) above the line θ1 + θ2 = 2βr and in field (AC), whereas

both default in field (AB) below the line θ1 + θ2 = 2βr. With IL, by contrast, one of two

borrowers repays in cases (AB) and (AC). Since the area of the non-shaded ‘default triangle’

(the non-shaded area less (AA)) with GL is less than half the total area of fields (AB) and

(AC), given the uniform distribution of (θ1, θ2), the expected repayment is higher with GL

than with IL (cf. Ahlin and Townsend, 2007, Proposition 8, p.F24). This is true as long as
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θ
β < r < θ̄+θ

2β .

We focus on the case of non-pecuniary penalties, i.e., α = 0. Thus, the repayment rate is

1− [(2βr − θ)− θ]2/[2(θ̄ − θ)2], and the expected repayment is

RC(r) =
(θ̄ − θ)2 − 2(βr − θ)2

(θ̄ − θ)2
r (3.15)

for

θ

β
≤ r ≤ θ̄ + θ

2β
. (3.16)

RC(r) has the familiar hump shape (see Appendix 3.8.9). The loan rate that maximizes the

expected repayment is denoted as rmax
C and the corresponding expected repayment as Rmax

C

(≡ RC(rmax
C )). In the main text, we restrict attention to loan rates that satisfy (3.16) so that

we avoid the distinction between cases L and H. In Appendix 3.8.10 we show that the analysis

readily extends to loan rates r > (θ̄ + θ)/(2β). Notice that θ
β ≤ r ≤ θ̄+θ

2β implies θ
β ≤ r ≤ θ̄

2β

since (θ̄ + θ)/(2β) < θ̄/β. From (3.8) and (3.15), RC(r) ≥ RI(r) for all r such that (3.16)

holds (see Appendix 3.8.9). Let rC be the minimum break-even loan rate with GL (provided

that Rmax
C ≥ ρ). The fact that RC(r) ≥ RI(r) implies rC ≤ rI whenever break-even with IL

is possible (i.e., whenever Rmax
I ≥ ρ).

3.5.2 Equilibrium

Proposition 3.6 When borrowers act cooperatively in the repayment game, (GL, rC , m) is

the unique equilibrium whenever Rmax
C ≥ ρ.

Proof: As in case of non-cooperative behavior in the repayment game, borrowers demand

loans at any loan rate. With either IL or GL, they could always default and be better off

than without having done the project(s). Thus, q = m whenever there is a loan rate that

allows MFIs to break even. In what follows, we distinguish between Part I and Part II (cf.

the upper and lower panel of Figure 3.11, respectively).

Part I : θ̄ < 7.2749 · θ
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Figure 3.11: Deadweight loss difference with cooperative behavior.

For ρ such that Rmax
C ≥ ρ > Rmax

I , GL is used in equilibrium because IL does not break even

(and the loan rate is rC as will become clear below). So we can focus on the case Rmax
I ≥ ρ.

We derive the deadweight loss with GL, DC(r), for θ
β < r < θ̄+θ

2β . From Figure 3.10, it can be

seen to be

2DC(r) =
∫ 2βr−θ

θ

1
θ̄ − θ

∫ 2βr−θ1

θ

θ1
β + θ2

β

θ̄ − θ
dθ2dθ1 =

4β3r3 − 6β2θr2 + 2θ3

3β(θ̄ − θ)2
, (3.17)

so that we have

D′
C(r) =

4β(βr − θ)r
(θ̄ − θ)2

> 0

for r > θ/β. DC(r) satisfies

E[θ]−DC(r) = UC(r) + RC(r). (3.18)

For r = rC , this becomes E[θ] −DC(rC) = UC(rC) + ρ. To achieve RC(r̃) > ρ and UC(r̃) ≥

UC(rC) with GL at r̃ 6= rC , the deadweight loss must be smaller, DC(r̃) < DC(rC). However,
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since rC is the minimum break-even loan rate, RC(r̃) > ρ requires r̃ > rC . Since D′
C(r) > 0

for all r > θ/β, we have DC(r̃) > DC(rC), a contradiction. So there is no profitable GL

contract that attracts borrowers (which also proofs the use of rC if banks can only break even

with GL, see above).

Similarly, an IL contract with RI(r̄) > ρ and UI(r̄) ≥ UC(rC) must satisfy DI(r̄) < DC(rC)

and, as rI is the minimum break-even loan rate, r̄ > rI . We derive a contradiction. Without

loss of generality, we can assume r ≤ θ̄/(2β). This is because for any loan rate above θ̄/(2β)

that breaks even, there is a lower loan rate that yields the same expected repayment but a

lower deadweight loss. The latter follows from

DI(r) =
β2r2 − θ2

2β(θ̄ − θ)
, (3.19)

which implies that D′
I(r) > 0 for all r > 0. Using r̄ > rI ≥ rC and D′

I(r) > 0, DI(r) ≥ DC(r)

is sufficient to prove that there is no profitable IL contract, since it implies that

DI(r̄) > DI(rI) ≥ DI(rC) ≥ DC(rC),

a contradiction. So it remains to show that DC(r) ≤ DI(r) for all r ≤ θ̄/(2β). Let ∆(r) ≡

DI(r) −DC(r). We have to show that ∆(r) ≥ 0 for r ≤ θ̄/(2β). Substituting for DI(r) and

DC(r) from (3.19) and (3.17), respectively, gives

∆(r) =
−8β3r3 + 3β2(θ̄ + 3θ)r2 − θ2(3θ̄ + θ)

6β(θ̄ − θ)2
.

The polynomial on the right-hand side has a local minimum at r = 0, a root at r = θ/β, and

a local maximum at r = (θ̄ + 3θ)/(4β). So

∆
(

θ̄

2β

)
= θ3

−
(

θ̄
θ

)3
+ 9

(
θ̄
θ

)2
− 4

(
3 θ̄

θ + 1
)

24β(θ̄ − θ)2
≥ 0

is sufficient for ∆(r) ≥ 0 for r in the interval [θ/β, θ̄/(2β)]. The third-order polynomial in θ̄/θ

in the numerator on the right-hand side has roots −0.2749, 2, and 7.2749. So the conditions

θ̄/2 > θ and θ̄/7.2749 < θ ensure ∆(r) ≥ 0.
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Part II : θ̄ > 7.2749 · θ

∆(r) has the shape indicated in the lower panel of Figure 3.11. In particular, there is a loan

rate ra < θ̄
2β such that ∆(ra) = ∆( θ

β ). The sufficient condition from Part I, DI(r) ≥ DC(r)

for all r < θ̄
2β , is not necessary. It suffices to have DI(rC) > DC(rC). So, in terms of the

lower panel of Figure 3.11, if θ
β < rC < rI < ra < θ̄

2β , and even if θ
β < rC < ra < rI < θ̄

2β , we

have DI(rI) > DI(rC) > DC(rC), so that the chain of arguments of Part I applies (recall that

D′
I(r) > 0 and rC < rI). However, if θ

β < ra < rC < rI < θ̄
2β , we have to resort to another

proof.

The idea is simple but the algebra is tedious: We show that θ
β < ra < rC < rI < θ̄

2β contradicts

the assumption θ̄ > 7.2749 · θ. Suppose θ
β < ra < rC < rI < θ̄

2β holds. Interestingly, the loan

rate ra can be obtained as the larger root of ∆(r)

(r− θ
β

)
. This is

ra =
1

16β

(
3θ̄ + θ +

√
33θ2 + 102θ̄θ + 9θ̄2

)
.

We have

512β(θ̄ − θ)2 (RC(ra)−Rmax
I )

=
√

33θ2 + 102θ̄θ + 9θ̄2
(
23θ̄2 − 46θ̄θ − 25θ2

)
− 131θ̄2θ − 59θ̄3 + 551θ̄θ2 + 215θ3.

Using θ̄ = xθ, we do not change the sign if we divide by θ3 to get the RHS as an expression

in x only, viz.,

φ(x) ≡ 1
(x− 1)2

(√
33 + 102x + 9x2(23x2 − 46x− 25)− 131x2 − 59x3 + 551x + 215

)
.

This function is strictly increasing for x > 1 and has a root at x ≈ 3.01 (cf. the solid lines in

Figure 3.12).44 Since RC(ra)−Rmax
I > 0 for θ̄ > 3.01 · θ and, thus, for θ̄ > 7.2749 · θ, we have

a contradiction:

ρ = RC(rC) > RC(ra) > Rmax
I ,

44The dashed line in Figure 3.12 is the slant asymptote of φ(x). Its algebraic form is 142 + 10x.
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Figure 3.12: Upper panel: φ(x), lower panel: φ(x) and asymptote (dashed).

i.e., rI does not exist.45 q.e.d.

The proof goes through without modification when we allow for r > (θ̄+θ)/(2β) (see Appendix

3.8.10). So with cooperative behavior, GL not only yields the higher repayment rate but also

becomes the equilibrium lending type. This result lends support to the view that other

mechanisms besides joint liability are needed to fully exploit the potential of group lending.

The market equilibrium is potentially characterized by the market failures discussed in

the preceding section. This follows immediately from the fact that the expected repayment

function RC(r) has the familiar hump shape, so that borrowers cease to get funds when ρ

rises beyond Rmax
C , and positive excess demand at rmax

C does not lead to an increase in the

loan rate (when the supply of capital is imperfectly elastic). Thus, GL with cooperative re-

payment behavior does not eliminate the market failures introduced in the preceding section.

However, since Rmax
C > Rmax

I , the level of the cost of capital at which lending breaks down

45RC(rC) > RC(ra) holds since we supposed θ
β

< ra < rC < rI < θ̄
2β

and since R′
C(r) > 0 for θ

β
< r < rmax

C ,
and rC < rmax

C by the definition of rC .
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Figure 3.13: Example: IL versus GL with cooperative behavior

and the supply of capital in a rationing equilibrium are higher with GL (given positively and

imperfectly elastic supply). In this sense, GL ameliorates the market failures.

Example 1 (ctd.): With θ = 0.6, θ̄ = 5.5, β = 1.2, and ρ = 1.1, the equilibrium loan rate is

rC = 1.1608. While the repayment rate and expected utility with GL were equal to 82.52%

and 1.7338 with non-cooperative behavior (cf. example 1), they rise to 94.76% and 1.9007,

respectively. RC(r) achieves its maximum Rmax
C = 1.4603 at rmax

C = 2.0087. While with non-

cooperative behavior the market breaks down when ρ rises beyond 1.2861, an equilibrium

exists for costs of capital up to 1.4603 here (see Figure 3.13).

3.6 Social sanctions

Following BC (Section 4), we introduce social sanctions to the model. This is motivated by the

fact that borrowers in a joint liability group might affect each other’s payoffs. For instance, if

borrower ‘Jane’ wants to repay under an IL contract, but the decision of her group member

‘John’ discourages her from repaying anything (so that she has to incur a penalty), she is

worse off than with the IL contract. BC discuss three forms of social sanctions, all based on
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strong social ties between community members. First, Jane might directly admonish John if

John’s repayment decision negatively affects her payoff. Second, since borrowers in close-knit

communities usually interact in areas distinct from lending groups, too, Jane might change

her behavior toward John in general. Third, Jane might tell others in that community that

John behaved selfishly at her expense, so that John’s reputation suffers.

The extent of social sanctions depends on several parameters of the model. BC distinguish

between two main factors: the extent of harm done to the borrower who suffers and the

reasonableness of the decision not to contribute. In particular, they assume that the decision

not to contribute does not entail social sanctions if there is no harm done to the partner.

Furthermore, there are no social sanctions for a borrower with the worst possible payoff θ.

BC assume that social sanctions are an increasing function of both the harm done to the

contributing borrower and the payoff of the borrower who does not contribute.

BC’s main result in this regard is that if social sanctions are severe enough, GL yields a

higher repayment rate than IL (BC, Proposition 3, p.12). We adopt a simple specification

of social sanctions and show that, if penalties from the bank are non-pecuniary and social

sanctions are strong enough, GL has a higher repayment rate than IL and that GL is the

unique mode of finance. However, the loan market equilibrium still displays the allocation

problems analyzed in Subsections 3.4.4-3.4.6.

3.6.1 Repayment game and expected repayments

To analyze the effects of social sanctions, we go back to the case of non-cooperative behavior

in the repayment game.

Assumption 6: If a borrower i in a group decides to contribute at stage 1 of the repayment

game, then if his fellow group member j decides not to contribute, i imposes a sanction s > r

on him. No sanctions are imposed otherwise.

That is, a social sanction is imposed when one borrower’s decision not to contribute forces

his fellow group member to choose between repaying the group loan alone or accepting the

penalty despite his declared willingness to repay his part of the loan.46 As for the severity

46The assumption that no sanctions are imposed otherwise is immaterial. Adding sanctions in other instances
as well strengthens our conclusions. For the sake of clarity of exposition, we choose just the minimal set of
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Figure 3.14: Repayment game with social sanctions.

of the sanctions, since, as before, we can focus on loan rates r ≤ θ̄/β, we could alternatively

assume s > θ̄/β, so that the sanction simply has to be ‘sufficiently large’ relative to model

parameters, irrespective of its specific dependence on r, θi, and θj .47

In contrast to part ii) of Assumption 1 in BC (p.10), an implication of our assumption

about social sanctions is that a borrower has to incur social sanctions even if his payoff is the

worst possible. This makes sense since we explicitly assume that borrowers are always able

to repay, if not from project payoffs then from exogenous second-period income.

The presence of social sanctions strengthens the incentives to contribute in the repayment

game. Figure 3.14 shows the modified repayment game in a group with social sanctions. It is

similar to Figure 3.2, only the payoffs differ for some strategy profiles. Setting s > r (Assump-

tion 6), the payoffs at the bottom of Figure 3.14 become as in Table 3.4. We use the same

steps as in Section 3.3 to find the equilibrium (1. SPNE, 2. Pareto dominance, 3. Elimination

of weakly dominated strategies). For the cases defined in Section 3.3, the following equilibria

arise:

(AA) There are two SPNE, viz., (n | n) and (c,D | c,D). This is interesting since neither

sanctions that make GL become the dominant mode of finance.
47In particular, the sanction may or may not differ depending on whether i repays 2r or accepts p(θi) at

stage 2.
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(i | j) (n | c,R) (n | c,D) (n | n) (c | c) (c,R | n) (c,D | n)
i < (θi − r) < (θi − p(θi)− r) θi − p(θi) θi − r θi − 2r θi − p(θi)
j θj − 2r θj − p(θj) θj − p(θj) θj − r < (θj − r) < (θj − p(θj)− r)

Table 3.4: Strategy profiles (i | j) and payoffs of the game with social sanctions.

borrower would repay an individual loan. Without social sanctions, (c,D | c,D) is not an

equilibrium since either borrower prefers to play ‘n’, incurring the (small) penalty instead of

the contribution r. However, a deviation from the strategy ‘c’ at stage 1 would imply penalty

and sanction s when there are social sanctions. Since there are multiple equilibria, we apply

our second criterion, Pareto dominance in payoffs. Comparing payoffs in columns 4 and 5

in Table 3.4, we can exclude strategy profile (c,D | c,D) from the set of SPNE, so that the

equilibrium entails group default.48

(AB) This is the critical case for GL. With social sanctions, there are two SPNE, viz., (n | n)

and (c,D | c,D). However, in contrast to case (AA), we cannot rank these SPNE using the

Pareto dominance criterion since the borrower i with θi ∈ A is better off with strategy profile

(n | n), whereas the borrower j with θj ∈ B prefers strategy profile (c,D | c,D). Thus, we use

elimination of dominated strategies to find a unique equilibrium. Since playing ‘n’ at stage

1 involves the risk of sanctions, contribution at stage 1 is weakly dominant (after backward

induction, cf. footnote 32) for both borrowers. Thus, we rule out (n | n) and are left with an

equilibrium which entails group repayment.

(AC) As without social sanctions, the unique SPNE entails group repayment. However,

whereas the borrower i with θi ∈ A was free-riding without social sanctions, the unique equi-

librium with social sanctions is (c,D | c,R) so that both borrowers contribute their share.

(BB) There are two SPNE, viz., (n | n) and (c,D | c,D). However, (n | n) is Pareto-inferior
48Note the similarity to the famous prisoners’ dilemma. Due to the nature of social sanctions introduced in

Assumption 6, it is a weakly dominant strategy for both borrowers to contribute at stage 1. This is because
playing ‘n’ at stage 1 involves the risk of being sanctioned. Thus, (c, D | c, D) is an equilibrium in weakly
dominant strategies, even though it is Pareto-inferior to (n | n). This is the above-mentioned case where the
order in which we use refinement criteria plays a role. In essence, our chosen order has one crucial effect, namely
to solve the coordination problem in the prisoners’ dilemma. It reflects the fact that two borrowers are not like
two prisoners kept imprisoned in separate cells. Note that requirements for coordination differ between our
situation and the prisoners’ dilemma. In our case, coordination only needs to achieve a Pareto-superior Nash
equilibrium, whereas the Pareto-superior strategy profile in the prisoners’ dilemma is not a Nash equilibrium.
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(and (c,D) is also a weakly dominant strategy for each borrower). Thus, the group repays.

(BC) As in case (AC), social sanctions avoid free-riding. The unique SPNE (c,D | c,R) entails

group repayment.

(CC) As in cases (AC) and (BC), social sanctions avoid free-riding. The unique SPNE

(c,R | c,R) entails group repayment.

Assumption 6 thus eliminates the drawback of GL: Borrowers repay unless case (AA) occurs.

The repayment rate becomes

ΠS(r) = 1− F (βr)2 =
−β2r2 + 2βθr + θ̄2 − 2θθ̄

(θ̄ − θ)2
(3.20)

(there is no need to distinguish between cases L and H). GL dominates IL in that it brings

about group repayment in cases (AC) and (BC), where one of the two individual benchmark

borrowers defaults. Accordingly, from (3.1) and (3.20), ΠS(r) > ΠI(r) whenever F (βr) < 1,

i.e., r < θ̄/β.49 However, we want to remind the reader of the conceptual problems comparing

individual and group repayment rates, cf. Section 3.3. Thus, the result itself is less interesting

than its implications for a comparison of expected repayments.

As before, we can confine attention to r ≤ θ̄/β because Πt(r) = 0 for r > θ̄/β (t ∈ {I, S}).

First, let us restrict attention to the case α = 0, so that penalties are completely non-pecuniary

and RS(r) ≡ ΠS(r)r > ΠI(r)r = RI(r) for r < θ̄/β. The function RS(r) has the characteristic

hump shape over the interval (θ/β, θ̄/β) (see Appendix 3.8.11).

3.6.2 Equilibrium

In order to determine the credit market equilibrium, we need to talk about credit demand.

Recall that borrowers demand loans at any loan rate when there are no social sanctions. Given

non-cooperative behavior, the cost of a loan (i.e., either principal plus interest repayment or

penalty) is less than the payoff in every state of nature: min{p(θ), r} = min{θ/β, r} <

θ. In case of cooperative behavior, groups can always decide to default so that imperfect

491− F (βr) < 1− [F (βr)]2 ⇔ F (βr) < 1 ⇔ βr − θ < θ̄ − θ ⇔ r < θ̄/β.
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enforcement implies that expected utility of any borrower is positive at all loan rates.

Interestingly, this is not true when there are social sanctions. Social sanctions might force

borrowers to use exogenous second-period income to contribute their share of the group loan

if θ is very low. For instance, let θ be close to zero. If θi = θ ∈ A and θj ∈ B are realized (case

(AB)), both borrowers contribute r in equilibrium. For most loan rates, borrower i is not able

to contribute r using his project payoff alone. However, instead of incurring social sanctions,

he will use second-period income to contribute his share. For now, we continue to assume that

borrowers are risk-neutral, but not without mentioning a critical feature of this assumption.

Contrary to the case where borrowers do neither cooperate nor sanction each other, borrowers

might actually use second-period income. Thus, assuming risk neutrality means that the loss

of (all of) their belongings bothers borrowers as much as earning the same amount of money.

This is not necessarily true and we comment on the theoretical effects of ‘loss aversion’ further

below. With risk neutrality, borrowers demand loans if their expected utility from doing so

is positive at the stipulated loan rate.

Letting rS denote the minimum loan rate that allows MFIs to break even, and Rmax
S the

maximum expected repayment with GL and social sanctions, we can show the following

Proposition 3.7 Let α = 0. If Rmax
S ≥ ρ, the unique equilibrium is (GL, rS ,m). Otherwise

the unique equilibrium entails no trade.

Proof: With social sanctions and α = 0, expected borrower utility with lending type t is

Ut(r) = Πt(r)E[θ − r|θt ∈ St] + (1−Πt(r))E
[
θ − θ

β

∣∣∣∣ θt ∈ Dt

]
= E[θ]−Πt(r)r −

1
β

(1−Πt(r))E[θ|θt ∈ Dt].

With E[θ] = (θ̄+θ)/2, RS(r) = ΠS(r)r using equation (3.20), and E[θ|θG ∈ DG] = (βr+θ)/2,

we get

US(r) =
1

2β(θ̄ − θ)2
{
β3r3 − 3θβ2r2 + βr(−2θ̄2 + 4θ̄θ + θ2)− θ3 + β[(θ̄2 − θ2)(θ̄ − θ)]

}
.

(3.21)
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The derivative w.r.t. r is

U ′
S(r) =

1
2β(θ̄ − θ)2

[
3β3r2 − 6θβ2r + β(−2θ̄2 + 4θ̄θ + θ2)

]
. (3.22)

Setting this derivative equal to zero, we get two roots

r1 =
1
2β

(
2θ −

√
8
3
(θ̄ − θ)

)
, r2 =

1
2β

(
2θ +

√
8
3
(θ̄ − θ)

)
, (3.23)

where r1 < θ
β and θ

β < r2 < θ̄
β . Moreover, US( θ

β ) > 0 and US( θ̄
β ) > 0. Thus, a GL borrower’s

expected utility has one of the two shapes indicated in the two panels of Figure 3.15. It is

interesting to see that, first, expected utility is not decreasing all over the interval ( θ
β , θ̄

β ), so

that borrowers might prefer higher loan rates. Second, regarding the lower panel, expected

utility might be negative for some loan rates. It can be shown that there are parameter

constellations where expected utility is indeed negative for some loan rate.50 However, we

show that loan rates leading to negative expected utility can never occur in equilibrium - not

because there is no demand (note the tautology), but because MFIs would never offer such

loan rates.

In Figure 3.15, rb is defined as the loan rate r > θ
β such that US(rb) = US( θ̄

β ). The

structure of the remainder of the proof is this: First, we show that the equilibrium loan rate

with GL can never exceed rmax
S . Second, starting from rS , we show that there is no other GL

contract that attracts borrowers and yields profits for banks. Third, we show that there is no

such IL contract either. Fourth, we show that borrower demand is m for all possible r < rmax
S .

1. Since RS(r) is hump-shaped with α = 0 (see Appendix 3.8.11), RS(rmax
S ) > RS(r)

for all r ∈ (rmax
S , θ̄

β ]. We now show that US(rmax
S ) > US(r) for all r ∈ (rmax

S , θ̄
β ] so that the

equilibrium loan rate cannot be larger than rmax
S . If it were, there would be a contract which

borrowers prefer and with profits for banks, viz., (GL, rmax
S ).

rmax
S is the larger root of R′S(r):

50We comment on this phenomenon further below.
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Figure 3.15: Expected utility under GL with social sanctions.

rmax
S =

1
3β

(
2θ +

√
4θ2 + 3θ̄2 − 6θ̄θ

)
. (3.24)

It seems impossible to show US(rmax
S ) > US( θ̄

β ) which would be sufficient due to the shape

of US(r). Instead, we show that another sufficient condition for US(rmax
S ) > US(r) for all

r ∈ (rmax
S , θ̄

β ] holds, viz., rmax
S < rb.51 Interestingly, we get an algebraic expression for rb by

solving [US(r)− US( θ̄
β )]/(r − θ̄

β ) for its larger root, since US(r)− US( θ̄
β ) has a root at θ̄

β . We

get

rb =
1
2β

(
−θ̄ + 3θ + (θ̄ − θ)

√
5
)

. (3.25)

We have rmax
S < rb if and only if

16θ2 + 12θ̄2 − 24θ̄θ <
[
θ̄(3
√

5− 3) + θ(5− 3
√

5)
]2

. (3.26)

This inequality holds for all θ̄ > θ, and, thus, since θ̄ > 2θ, for all admissible parameter values.

51If rmax
S < rb, US(rmax

S ) > US(rb) ≡ US( θ̄
β
) since U ′

S(r) < 0 for r < rb < r2.
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2. Due to 1., we only have to look at r < rmax
S . Since U ′

S(r) < 0 and R′S(r) > 0 for these

r, loan rates r < rS do not allow banks to break even, and loan rates r > rS do not attract

borrowers.

3. From all IL contracts, rI , if it exists, is the only possible equilibrium contract since

U ′
I(r) < 0 for all r < θ̄

β (cf. the proof of Proposition 3.1). Since RS(r) > RI(r) for all r < θ̄
β ,

we have rI > rS . The deadweight loss with GL is

DS(r) =
β3r3 − β2θr2 − βθ2r + θ3

2β(θ̄ − θ)2
, (3.27)

so that

D′
S(r) =

3β3r2 − 2β2θr − βθ2

2β(θ̄ − θ)2
, (3.28)

which is positive for all r > θ/β. Furthermore, since

DI(r) =
β2r2 − θ2

2β(θ̄ − θ)
, (3.29)

we have DS(r) < DI(r) for all r.52 Therefore,

DS(rS) < DS(rI) < DI(rI).

Using RS(rS) = RI(rI) = ρ, we have Dt(rt) = E[θ]− ρ− Ut(rt) for r = {S, I} and, thus

DS(rS) < DI(rI)

E[θ]− ρ− US(rS) < E[θ]− ρ− UI(rI)

US(rS) > UI(rI).

Thus, starting from rS , there is no profitable IL contract that attracts borrowers.

52Note that the RHS of equation (3.27) can be written as (βr−θ)(β2r2−θ2)

2β(θ̄−θ)2
.
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Figure 3.16: Expected repayments with social sanctions.

4. We have shown that the equilibrium loan rate is rS ≤ rmax
S . It follows that q = m, i.e.,

all borrowers demand loans, since US(r) > 0 for (not only, but in particular) all θ
β < r ≤ rmax

S

(cf. Figure 3.15). q.e.d.

Example 1 (ctd.): In our example with θ = 0.6, θ̄ = 5.5, β = 1.2, and ρ = 1.1, the equilib-

rium loan rate is rS = 1.1265. The repayment rate and expected utility rise to 97.65% and

1.9203, respectively. RS(r) achieves its maximum Rmax
S = 1.9163 at rmax

S = 2.6967, so that

an equilibrium exists for costs of capital up to 1.9163 here (see Figure 3.16).

3.6.3 Discussion of social sanctions

Let us come back to the fact that US(r) might be negative, as depicted in the lower panel

of Figure 3.15. We have already said that it is the use of second-period income to repay

which might make projects under GL with social sanctions unattractive. In the left panel of

Figure 3.17, we have a rather large loan rate and some positive β. In the shaded area (AB-

1), project payoffs are below the loan rate for one borrower, but social sanctions make both
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Figure 3.17: Cases of negative expected utility, left panel: β > 1, right panel: β = 1.

borrowers contribute r, one of the two using alternative, second-period income (borrower 1 in

the shaded area in the upper left). We construct a situation with negative expected utility.

Let β approach one (see the right panel in Figure 3.17). Thus, in the limit, βr ⇒ r, and

area (AB-2) disappears. Since there is default in area (AA), borrowers’ actual net payoff is

θ − p(θ) = θ − θ = 0 in that area. In area (BB), both contribute their share and are left

with some small positive net payoff. In area (AB-1), one borrower has a tiny positive payoff,

whereas the other might have to use an immense amount of second-period income to contribute

r. Thus, parameter constellations with β sufficiently close to one imply the existence of rather

high loan rates such that borrowers’ expected utility is negative.53 However, a result of the

proof of Proposition 3.7 is that these loan rates are not offered by banks.

Proposition 3.7 shows that the disadvantage of GL, which potentially makes IL the equi-

librium mode of finance despite the higher break-even loan rate (cf. Proposition 3.2), can be

overcome by means of social sanctions: With social sanctions obeying Assumption 6, lending

takes place using a GL contract whenever projects are such that banks can break even at

some loan rate. This does not mean, however, that GL helps to get rid of the market failures

due to enforcement problems altogether: The fact that expected repayment RS(r) is hump-

shaped implies that the allocation problems encountered in Subsections 3.4.4 - 3.4.6 continue

53For instance, using β = 1.01, θ = 0.6, θ̄ = 5.5, and α = 0 yields a negative expected utility for all
3.67 < r < 5.38.
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to be prevalent. That is, there is financial fragility in that the market collapses when ρ rises

beyond Rmax
S ; if there are several borrower classes j, those with Rmax,j

S < ρ are redlined; and

if capital supply is a strictly increasing function s(ρ), credit rationing arises if s(Rmax
S ) < m

(cf. Propositions 3.3-3.5).

Moreover, the use of social sanctions is not without cost: Borrowers might end up in

deeper poverty if they accept a group loan. The existence of social sanctions might force

them to sell their belongings in order to avoid peer punishment. Our proof that expected

utility is always positive in any potential equilibrium with GL and social sanctions crucially

hinges on two assumptions.

First, and more importantly, we assumed that borrowers are risk-neutral. However, our

motivation to introduce exogenous second-period income in the first place was to account for

the fact that borrowers could even sell the last of the little they have. Thus, it would be more

appropriate to assume loss aversion regarding second-period income. The perceived loss for

a borrower who becomes homeless probably outweighs his perceived increase in utility from

being able to afford new trousers. It is not difficult to see how our model yields negative

expected utility if borrowers are loss-averse. In its most extreme form,54 we could assume an

infinite negative payoff from having to use exogenous second-period income.55 In that case,

there cannot be an equilibrium with GL contracts at loan rates such that the probability for

case (AB-1) is positive, since demand is zero.56

Second, we have assumed that penalties are non-pecuniary. This is in line with most of

the literature on (optimal) GL contracts. Our results confirm what most of the studies have

found: When social sanctions are in place, GL improves on IL, either in terms of repayment

rates or borrower utility. However, let us repeat that BC point out that penalties are partly

“a monetary loss due to seizure of income or assets” (p.4). In our model, using α > 0 can

lead to negative expected utility of borrowers at loan rates that banks would offer. This can

most easily be seen setting α = 1 and doing some numerical calculations. For instance, using

ρ = 1.4, θ = 0.6, θ̄ = 2.1 β = 1.01 and α = 1, expected utility becomes negative at rS , the

former equilibrium loan rate.

54Recall the bank’s infinite negative payoff from default, which we used in Chapter 2.
55Note that sanctions must then also be infinitely high to leave repayment behavior in a group unchanged.
56As a consequence, given that Rmax

S > ρ, the credit market might break down if Rmax
I < ρ.
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3.7 Conclusion

BC analyze repayment rates in a GL model with enforcement problems. The recent trend to-

ward private investments and market instruments in microfinance markets raises the question

of what equilibrium in the BC model looks like. This chapter shows that the joint liability

feature of GL in combination with non-cooperative behavior of borrowers does not generally

make GL the equilibrium mode of finance (which yields the higher borrower utility). We

have shown how cooperation eliminates the surprising result that GL might have the higher

repayment rate, be feasible at the lower contractual loan rate, but nevertheless not be the

equilibrium mode of finance. More than that, we have shown that GL is the unique equi-

librium mode of finance when borrowers cooperate in the repayment game and penalties are

non-pecuniary. When borrowers use social sanctions, non-pecuniary penalties also make GL

the unique equilibrium mode of finance if borrowers are risk-neutral both regarding project

payoffs and with regard to what they possess. In particular, even though borrowers might be

worse-off from taking a loan ex post, they always demand loans ex ante. The reason is that

all loan rates MFIs can offer (given competition) are such that borrowers’ expected utility

from borrowing is positive. This is not necessarily true if penalties are partly pecuniary or if

borrowers are risk-averse regarding the loss of their belongings.

Irrespective of the type of contract used, and, if it is GL, irrespective of the existence of

social sanctions and of whether borrowers cooperate or not, the market equilibrium suffers

from the usual allocation problems known from the imperfect information literature. This

means that the prospective growth of the market for microcredit is unlikely to be a frictionless

process. MFIs will have to continue to take due care that borrowers have proper incentives to

repay. If the DFIs’ objective is to maximize the loan volume, they should target MFIs active

in the less profitable segments of the market and leave the more profitable business to private

investors.

Even though economic analysis is an important source of scientific knowledge, we want

to mention the importance of results from adjacent sciences, in particular when they con-

cern phenomena in communities where incentives are strongly based on social capital. For

instance, the moral hazard literature assumes that borrowers can influence project payoffs,

which is usually modeled as an increase in the projects’ success probability. The terminology
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of the economic literature seems to suggest that borrowers are intrinsically bad and shirk if

not properly monitored or threatened with sanctions. Thus, the performance of group lend-

ing is frequently attributed to ‘peer monitoring’ or ‘peer sanctioning’. However, based on our

reading on group lending in general and the performance of groups in particular, we want to

stress some results from psychology and sociology. Being part of a ‘greater something’ (like a

lending group) might spur productivity (and well-being). It is not only the fear of sanctions

that makes borrowers work hard, but the desire to contribute to the success of the group.

‘Identity theory’ and its focus on individualistic outcomes of identity-related processes (to be

distinguished from ‘social identity theory’) can help explain the idea. In an attempt to describe

differences and commonalities of both theories, Hogg, Terry, and White (1995, p.257) contend

that “[t]he perception that one is enacting a role satisfactorily should enhance feelings of

self-esteem, whereas perceptions of poor role performance may engender doubts about one’s

self-worth, and may even produce symptoms of psychological distress”. We are convinced

that the link to increased productivity is not too far-fetched. In their analysis ‘social identity

and individual productivity within groups’, Worchel, Rothgerber, Day, Hart, and Butemeyer

(1998) confirm this link. Many studies find a positive influence of group lending on project

revenues. For instance, Gomez and Santor (2003, p.v) find that borrowers in a group spend

more effort than their individual lending counterparts. Clearly, it is hard, if not impossible,

to disentangle the effects on effort and productivity that come from extrinsic incentives like

the existence of sanctions from those that arise due to our postulated intrinsic channel based

on ‘identity theory’.57 The distinction between intrinsic motivation and extrinsic incentives

is not new, but increasingly recognized as an important area of economic research. Kreps

(1997, p.363) contends that this will “involve activities unfamiliar to economics”, which are

nonetheless “important and must be pursued”.

In this chapter, we have focused on the last mile of microcredit. However, we partly motivated

our investigation from the capital supply side. Reille, Glisovic-Mezieres, Berthouzoz, and

Milverton (2009, p.1) claim that “[f]oreign capital investments in microfinance passed the

US $10 billion mark in December 2008. More than half of this cross-border investment is

57In a first stage, one would have to make sure that differences in productivity do not stem from selection
effects: More productive borrowers might choose group lending, see the study of Van Tassel (1999), who
analyzes this point for different risk types.
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managed by MIVs. This new and fast-growing segment of the emerging market asset class

is attracting a broad range of socially oriented investors.” This naturally poses the question

of how socially oriented investors behave. If they do not maximize financial returns, there

must be some other approach to take investment and portfolio decisions, probably based on

some social dimension. Can the behavior of socially oriented investors be quantified? Morduch

(1999, p.1572) writes that “[t]he promise of MF was founded on innovation: new management

structures, new contracts, and new attitudes”. This chapter has focused on new management

techniques and contracts. The next chapter will consider new attitudes in the particular

context of portfolio choice.
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3.8 Appendix

3.8.1 Expected repayment and expected utility in cases L and H

1. Expected repayment and expected utility in case L:

The expected penalty conditional on default is necessary to calculate expected repayment

(cf. equation (3.4)). Since p(θ) = θ
β , the expected penalty is expected payoff divided by β.

Expected payoff conditional on default is the sum of expected payoffs conditional on θ ∈ A

and θ ∈ B, respectively, weighted by their respective probabilities

E[θ|θG ∈ DG] =
1

1−ΠG(r)

(∫ 2βr

θ

1
θ̄ − θ

∫ βr

θ

θ

θ̄ − θ
dθ dθ′ +

∫ βr

θ

1
θ̄ − θ

∫ 2βr

βr

θ

θ̄ − θ
dθ dθ′

)
=

1
1−ΠG(r)

[
F (2βr)
θ̄ − θ

∫ βr

θ
θ dθ +

F (βr)
θ̄ − θ

∫ 2βr

βr
θ dθ

]
=

1
1−ΠG(r)

[
2βr − θ

(θ̄ − θ)2
β2r2 − θ2

2
+

βr − θ

(θ̄ − θ)2
3β2r2

2

]
=

1
1−ΠG(r)

5β3r3 − 4β2θr2 − 2βθ2r + θ3

2(θ̄ − θ)2
.

Using this together with ΠG(r) from equation (3.2), expected repayment becomes

RG(r) = ΠG(r)r + [1−ΠG(r)]αE

(
θ

β

∣∣∣∣θG ∈ DG

)
=

1
2(θ̄ − θ)2

[
(−6β2r2 + 8βθr + 2θ̄2 − 4θθ̄)r +

α

β
(5β3r3 − 4β2θr2 − 2βθ2r + θ3)

]

=
−β2(6− 5α)r3 + 4βθ(2− α)r2 + 2(θ̄2 − 2θθ̄ − αθ2)r + αθ3

β

2(θ̄ − θ)2
.

To derive expected utility as in equation (3.6), we need to know both E[θ|θG ∈ DG] and

ΠG(r)E[θ − r|θG ∈ SG]. We have already found the former. Since

θ̄ + θ

2
= E[θ] = ΠG(r)E[θ|θG ∈ SG] + (1−ΠG(r))E[θ|θG ∈ DG], (3.30)

the latter is
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ΠG(r)E[θ|θG ∈ SG] =
θ̄ + θ

2
− (1−ΠG(r))E[θ|θG ∈ DG]

=
θ̄ + θ

2
− 5β3r3 − 4β2θr2 − 2βθ2r + θ3

2(θ̄ − θ)2

=
−5β3r3 + 4β2θr2 + 2βθ2r + θ̄3 − θθ̄2 − θ2θ̄

2(θ̄ − θ)2
.

Expected utility becomes

UG(r) = ΠG(r)E[θ − r|θG ∈ SG] + (1−ΠG(r))E
[
θ − θ

β

∣∣∣∣θG ∈ DG

]
=

−5β3r3 + 4β2θr2 + 2βθ2r + θ̄3 − θθ̄2 − θ2θ̄

2(θ̄ − θ)2

−−3β2r2 + 4βθr + θ̄2 − 2θθ̄

(θ̄ − θ)2
r

+
(

1− 1
β

)
5β3r3 − 4β2θr2 − 2βθ2r + θ3

2(θ̄ − θ)2

=
β2r3 − 4βθr2 + (2θ2 − 2θ̄2 + 4θθ̄)r + θ̄3 − θθ̄2 − θ2θ̄ +

(
1− 1

β

)
θ3

2(θ̄ − θ)2
.

2. Expected repayment and expected utility in case H:

In analogy to case L, we calculate expected payoffs conditional on default.

E[θ|θG ∈ DG] =
1

1−ΠG(r)

(∫ θ̄

θ

1
θ̄ − θ

∫ βr

θ

θ

θ̄ − θ
dθ dθ′ +

∫ βr

θ

1
θ̄ − θ

∫ θ̄

βr

θ

θ̄ − θ
dθ dθ′

)

=
1

1−ΠG(r)

[
1

θ̄ − θ

∫ βr

θ
θ dθ +

F (βr)
θ̄ − θ

∫ θ̄

βr
θ dθ

]

=
1

1−ΠG(r)

[
1

θ̄ − θ

β2r2 − θ2

2
+

βr − θ

(θ̄ − θ)2
θ̄2 − β2r2

2

]
=

1
1−ΠG(r)

−β3r3 + β2θ̄r2 + βθ̄2r − θ2θ̄ − θθ̄2 + θ3

2(θ̄ − θ)2
.
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Using the above and ΠG(r) from equation (3.3), we get expected repayment:

RG(r) = ΠG(r)r + [1−ΠG(r)]αE

(
θ

β

∣∣∣∣θG ∈ DG

)
=

(
θ̄ − βr

θ̄ − θ

)2

r +
α

β

−β3r3 + β2θ̄r2 + βθ̄2r − θ2θ̄ − θθ̄2 + θ3

2(θ̄ − θ)2

=
β2(2− α)r3 − βθ̄(4− α)r2 + θ̄2(2 + α)r − α

β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
.

Equation (3.30) is valid in case H, too. Using ΠG(r) from equation (3.3), we have

ΠG(r)E[θ|θG ∈ SG] =
θ̄ + θ

2
− (1−ΠG(r))E[θ|θG ∈ DG]

=
θ̄ + θ

2
− −β3r3 + β2θ̄r2 + βθ̄2r − θ2θ̄ − θθ̄2 + θ3

2(θ̄ − θ)2

=
β3r3 − β2θ̄ − βθ̄2r + θ̄3

2(θ̄ − θ)2
,

so that expected utility becomes

UG(r) = ΠG(r)E[θ − r|θG ∈ SG] + [1−ΠG(r)]E
[
θ − θ

β

∣∣∣∣θG ∈ DG

]
=

β3r3 − β2θ̄r2 − βθ̄2r + θ̄3

2(θ̄ − θ)2
−
(

θ̄ − βr

θ̄ − θ

)2

r

+
(

1− 1
β

)
−β3r3 + β2θ̄r2 + βθ̄2r − θ2θ̄ − θθ̄ + θ3

2(θ̄ − θ)2

=
θ̄3

2(θ̄ − θ)2
− 2θ̄2r − 4βθ̄r2 + 2β2r3

2(θ̄ − θ)2

+
−θ2θ̄ − θθ̄2 + θ3 + β2r3 − βθ̄r2 − θ̄2r + 1

β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2

=
−β2r3 + 3βθ̄r2 − 3θ̄2r + θ̄3 −

(
1− 1

β

)
(θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
.
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3.8.2 Proof: RG(r) continuous at θ̄
2β

Expected repayment at r = θ̄
2β , the threshold between cases L and H, is

RG

(
θ̄

2β

)
L

=
−β2(6− 5α)( θ̄

2β )3 + 4βθ(2− α)( θ̄
2β )2 + 2(θ̄2 − 2θθ̄ − αθ2) θ̄

2β + αθ3

β

2(θ̄ − θ)2
,

for case L, and

RG

(
θ̄

2β

)
H

=
β2(2− α)( θ̄

2β )3 − βθ̄(4− α)( θ̄
2β )2 + θ̄2(2 + α) θ̄

2β −
α
β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
,

for case H. We have to show that the difference between both expressions is zero. Multiplying

by 2β(θ̄ − θ)2 and rearranging yields

RG

(
θ̄

2β

)
L

−RG

(
θ̄

2β

)
H

= −6θ̄3

8
+

5αθ̄3

8
+ 2θ̄2θ − αθ̄2θ + θ̄3 − 2θ̄2θ − αθ2θ̄ + αθ3 − θ̄3

4
+

αθ̄3

8

+θ̄3 − αθ̄3

4
− θ̄3 − αθ̄3

2
+ αθ̄θ2 + αθ̄2θ − αθ3

= θ̄3

(
−3

4
− 1

4
+

5α

8
+

α

8
+ 1− α

4
− α

2

)
= 0.

3.8.3 Intersections of RI(r) and RG(r)

1. Proof that RI(θ/β) = RG(θ/β) = θ/β:

For IL, inserting r = θ
β into equation (3.1) yields

RI

(
θ

β

)
=
− θ2

β + 2 θθ̄
β − θ2

β

2(θ̄ − θ)
=

θ
β (θ̄ − θ)

θ̄ − θ
=

θ

β
.

For GL, inserting r = θ
β (case L) into equation (3.10) yields



3.8. APPENDIX 147

RG

(
θ

β

)
=

−β2(6− 5α) θ3

β3 + 4βθ(2− α) θ2

β2 + 2(θ̄2 − 2θθ̄ − αθ2) θ
β + α θ3

β

2(θ̄ − θ)2

=
2 θ3

β + 2 θ
β (θ̄2 − 2θθ̄)

2(θ̄ − θ)2
=

θ

β

θ2 − 2θθ̄ + θ̄2

(θ̄ − θ)2
=

θ

β
.

2. Proof that RI(θ̄/β) = RG(θ̄/β) = (α/β)(θ̄ + θ)/2:

For IL, inserting r = θ̄
β into equation (3.1) yields

RI

(
θ̄

β

)
=
−β(2− α)

(
θ̄
β

)2
+ 2θ̄ θ̄

β − α θ2

β

2(θ̄ − θ)
=

α θ̄2

β − α θ2

β

2(θ̄ − θ)
=

α

β

θ̄ + θ

2
.

For GL, inserting r = θ̄
β (case H) into equation (3.12) yields

RG

(
θ̄

β

)
=

β2(2− α)
(

θ̄
β

)3
+ βθ̄(4− α)

(
θ̄
β

)2
+ θ̄2(2 + α) θ̄

β −
α
β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2

=
(2− α) θ̄3

β − (4− α) θ̄3

β + (2 + α) θ̄3

β − α
β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2

=
α

β

θ̄3 − θ2θ̄ − θθ̄2 + θ3

2(θ̄ − θ)2
=

α

β

θ̄2(θ̄ − θ)− θ2(θ̄ − θ)
2(θ̄ − θ)2

=
α

β

θ̄2 − θ2

2(θ̄ − θ)
=

α

β

θ̄ + θ

2
.

3.8.4 Proof that U ′
t(r) < 0 for r < θ̄/β, t ∈ {I, G}

1. Individual lending

From (3.9),

U ′
I(r) =

βr − θ̄

θ̄ − θ
< 0 ⇔ r <

θ̄

β
.

2. Group lending
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a) Case L

Let UGL(r) denote the function on the right-hand side of (3.11). Differentiating with respect

to r yields

U ′
GL(r) =

3β2r2 − 8βθr + (2θ2 − 2θ̄2 + 4θθ̄)
2(θ̄ − θ)2

=
3β2

(
r2 − 8

3
θ
β r + 2

3
θ2−θ̄2+2θθ̄

β2

)
2(θ̄ − θ)2

< 0 ⇔ 0 > r2 − 8
3

θ

β
r +

2
3

θ2 − θ̄2 + 2θθ̄

β2
.

Let x ≡ θ̄/(2θ) > 1. The roots of the polynomial on the right-hand side of the last inequality

are

r1/2 =
4
3

θ

β
±

{
16
9

(
θ

β

)2

− 2
3

(
θ

β

)2
[
1−

(
θ̄

θ

)2

+ 2
θ̄

θ

]} 1
2

=
4
3

θ

β

[
1±

(
3
2
x2 − 3

2
x +

5
8

) 1
2

]
.

Since x > 1, the discriminant is positive, so there are two real roots. The smaller root r1 is

less than θ/β iff

4
3

θ

β

[
1−

(
3
2
x2 − 3

2
x +

5
8

) 1
2

]
<

θ

β

⇔ 4
3

[
1−

(
3
2
x2 − 3

2
x +

5
8

) 1
2

]
< 1.

Since x > 1, a sufficient condition for the validity of this inequality is

1 >
4
3

[
1−

(
5
8

) 1
2

]
≈ 0.2792.

The bigger root r2 is greater than θ̄/(2β) iff
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4
3

θ

β

[
1 +

(
3
2
x2 − 3

2
x +

5
8

) 1
2

]
>

θ̄

2β
⇔ x <

4
3

[
1 +

(
3
2
x2 − 3

2
x +

5
8

) 1
2

]
≡ f(x). (3.31)

The function f(x) is larger than x for all x ≥ 1:

�

�
x

x

�

1

1

�

f(x)

4
3

[
1 +

(
5
8

)1/2
]

This follows from the fact that

f(1) =
4
3

[
1 +

(
5
8

) 1
2

]
> 1,

and f ′(x) > 1 for all x ≥ 1:

f ′(x) =
4
3

(
3x− 3

2

)
1
2

(
3
2
x2 − 3

2
x +

5
8

)− 1
2

> 1 ⇔

12x− 6 > 6
(

3
2
x2 − 3

2
x +

5
8

) 1
2

2x− 1 >

(
3
2
x2 − 3

2
x +

5
8

) 1
2

4x2 − 4x + 1 >
3
2
x2 − 3

2
x +

5
8

5
2
x(x− 1) +

3
8

> 0.

So the r-values consistent with the definition of case L form a subset of the r-values such that

U ′
GL(r) < 0:

[
θ

β
,

θ̄

2β

]
⊂ (r1, r2).

The following graph shows U ′
GL(r):
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�
r

�

� �

r1 r2

θ
β

θ̄
2β

This proves U ′
G(r) < 0 in case L.

b) case H

Letting UGH(r) denote the function on the right-hand side of (3.13), we have:

U ′
GH(r) =

−3β2r2 + 6βθ̄r − 3θ̄2

2(θ̄ − θ)2

=
−3β2

[
r2 − 2 θ̄

β r +
(

θ̄
β

)2
]

2(θ̄ − θ)2

=
−3β2

(
r − θ̄

β

)2

2(θ̄ − θ)2
< 0.

So U ′
G(r) < 0 in case H, too.

3.8.5 Proof: maximum expected repayment in example 1.

Using equation (3.34) from Appendix 3.8.8 below, we get

R′GL0

(
θ̄

2β

)
= −

5
2 θ̄
(
θ̄ − 8

5θ
)

2(θ̄ − θ)2
< 0

(recall that we assume θ̄/2 > θ). From Appendix 3.8.8 below, we know that R′GL0(θ̄/(3β)) > 0

so that RGL0(r) attains a maximum between r = θ̄/(3β) and r = θ̄/(2β). The maximizing

r-value can be calculated explicitly:
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0 = R′GL0(r)

0 = −18β2r2 + 16βθr + 2(θ̄2 − 2θθ̄)

0 = r2 − 8
9

θ

β
r − θ̄2 − 2θθ̄

9β2

r1/2 =
4
9

θ

β
±

[
1
4

(
8
9

θ

β

)2

+
θ̄2 − 2θθ̄

9β2

] 1
2

=
4
9

θ

β

[
1±

(
1 +

9
16

θ̄2 − 2θθ̄

θ2

) 1
2

]
.

The smaller root is negative, the larger positive: r1 < 0 < r2. Using parameters as in example

1, viz., θ̄ = 5.5, θ = 0.6, and β = 1.2, r2 ≈ 1.5912. Inserting this into RGL0(r) in equation

(3.32) gives a maximum expected repayment under GL of 1.1462.

3.8.6 Proof: RG(r) > RI(r) in L,H when α = 1

We want to show that expected repayment under GL is higher than expected repayment

under IL if penalties are 100 % pecuniary. The range of loan rates we have to consider is

θ/β < r < θ̄/β. We prove this property separately for cases L and H.

a) Case L

Let RI1(r) and RGL1(r) denote the functions on the right-hand sides of (3.8) and (3.10) for

α = 1, respectively:

RI1(r) =
−βr2 + 2θ̄r − θ2

β

2(θ̄ − θ)
,

RGL1(r) =
−β2r3 + 4βθr2 + 2(θ̄2 − 2θθ̄ − θ2)r + θ3

β

2(θ̄ − θ)2
.

As shown in Appendix 3.8.3,

RI1

(
θ

β

)
= RGL1

(
θ

β

)
=

θ

β
.
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Differentiating RI1(r) and RGL1(r) with respect to r gives

R′I1(r) =
−2βr + 2θ̄

2(θ̄ − θ)
,

R′GL1(r) =
−3β2r2 + 8βθr + 2(θ̄2 − 2θθ̄ − θ2)

2(θ̄ − θ)2
.

Evaluating the derivatives at r = θ/β yields

R′I1

(
θ

β

)
=

−2θ + 2θ̄

2(θ̄ − θ)
= 1,

R′GL1

(
θ

β

)
=

−3θ2 + 8θ2 + 2θ̄2 − 4θθ̄ − 2θ2

2(θ̄ − θ)2
=

3θ2 + 2θ̄2 − 4θθ̄

2(θ̄ − θ)2
.

It follows that R′GL1(θ/β) > R′I1(θ/β) since

R′GL1

(
θ

β

)
> R′I1

(
θ

β

)
3θ2 + 2θ̄2 − 4θθ̄

2(θ̄ − θ)2
> 1

3θ2 + 2θ̄2 − 4θθ̄ > 2(θ̄ − θ)2 = 2θ̄2 − 4θθ̄ + 2θ2

θ2 > 0.

That is, RGL1(r) intersects RI1(r) from below at r = θ/β. Since

RGL1(0) =
θ3

2β(θ̄ − θ)2
> 0 > − θ2

2β(θ̄ − θ)
= RI1(0),

there is an intersection of RGL1(r) and RI1(r) at some r between 0 and θ/β. Furthermore,

we have

RI1

(
θ̄

β

)
=

1
β

θ̄ + θ

2
,

RGL1

(
θ̄

β

)
=

− θ̄3

β + 4 θθ̄2

β + 2 θ̄3

β − 4 θθ̄2

β − 2 θ2θ̄
β + θ3

β

2(θ̄ − θ)2
=

1
β

θ̄3 + θ3 − 2θ2θ̄

2(θ̄ − θ)2
=

1
β

θ̄2 − θ2 + θθ̄

2(θ̄ − θ)
.
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So RGL1(θ̄/β) > RI1(θ̄/β) since

RGL1

(
θ̄

β

)
> RI1

(
θ̄

β

)
1
β

θ̄2 − θ2 + θθ̄

2(θ̄ − θ)
>

1
β

θ̄2 − θ2

2(θ̄ − θ)
θ̄2 − θ2 + θθ̄ > θ̄2 − θ2

θθ̄ > 0.

Since RGL1(r) < RI1(r) as r grows large, there is an intersection of RGL1(r) and RI1(r) at

some r > θ̄/β. So we have identified three points of intersection of RI1(r) and RGL1(r). Since

RI1(r) and RGL1(r) are second-order and third-order polynomials, respectively, there cannot

be any further intersections, so that

RGL1(r) > RI1(r),
θ

β
< r ≤ θ̄

β
.

From the definition of case L (i.e., θ/β ≤ r ≤ θ̄/(2β)), it follows that except at the lower

boundary r = θ/β, we have

RG(r) > RI(r), case L.

An example is illustrated in Figure 3.18.

b) Case H

Let RGH1(r) denote the function on the the right-hand side of (3.12) for α = 1:

RGH1(r) =
β2r3 − βθ̄3r2 + θ̄23r − 1

β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
.

Evaluating RGH1(r) at r = θ/β yields



154 CHAPTER 3. ENFORCEMENT PROBLEMS IN MICROCREDIT MARKETS

Figure 3.18: Exemplary expected repayment functions for α = 1, case L.

RGH1

(
θ

β

)
=

β2
(

θ
β

)3
− 3βθ̄

(
θ
β

)2
+ 3θ̄2 θ

β −
1
β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2

=
θ

β

θ2 − 3θθ̄ + 3θ̄2 − θθ̄ − θ̄2 + θ2

2(θ̄ − θ)2
=

θ

β

2θ2 + 2θ̄2 − 4θθ̄

2(θ̄ − θ)2
=

θ

β
,

which equals RI1

(
θ
β

)
. We have seen in the main text (and in the second part of Appendix

3.8.3) that

RGH1

(
θ̄

β

)
= RI1

(
θ̄

β

)
=

1
β

θ + θ̄

2
.

Differentiating RGH1(r) with respect to r gives

R′GH1(r) =
3β2r2 − 6βθ̄r + 3θ̄2

2(θ̄ − θ)2
=

3β2
(
r − θ̄

β

)2

2(θ̄ − θ)2
.

Evaluating R′I1(r) and R′GH1(r) at r = θ̄/β gives

R′I1

(
θ̄

β

)
= R′GH1

(
θ̄

β

)
= 0.
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Figure 3.19: Exemplary expected repayment functions for α = 1, case H.

So RI1(r) and RGH1(r) have one intersection at r = θ/β and a ‘double intersection’ at r = θ̄/β.

Given that RI1(r) and RGH1(r) are second-order and third-order polynomials, respectively,

there are no further intersections. It follows that

RGH1(r) > RI1(r),
θ

β
< r <

θ̄

β
.

So, except at r = θ̄/β, we have

RG(r) > RI(r), case H.

An example is illustrated in Figure 3.19. Taken together, we have proven that RG(r) > RI(r)

for θ
β < r < θ̄

β when α = 1.

3.8.7 Proof: UI(r) > UG(r) for cases L and H.

We abstain from an algebraic proof, but provide a verbal proof instead. This proof is more

intuitive. It is based on Figure 3.3 and we do it for case L. It will become clear that this also
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proves case H. We compare the expected utility of two IL borrowers to the expected utility

of two borrowers with a GL contract. The proof is done for the same r so that the payoff

distribution in Figure 3.3 applies to the joint liability group and to both IL borrowers.

First, joint liability does not affect utility in cases (AA) and (BB) since payoffs per bor-

rower are identical for the group and the two IL borrowers. In case (BC), one of the group

members repays 2r and the other free-rides. Each of the two IL borrowers repays r. Since

borrowers are risk-neutral and the game is symmetric, expected utility is the same for the

group and the IL borrowers. The latter thought also applies to case (CC) (cf. Assumption

4). Thus, we are left with cases (AB) and (AC).

Consider case (AB). The two IL borrowers have payoffs θ1 − p(θ1) and θ2 − r (if θ1 ∈

A and θ2 ∈ B). Due to symmetry, expected utility in case (AB) for an IL borrower is
1
2(θ1 − p(θ1) + θ2 − r). By contrast, the group has payoffs θ1 − p(θ1) and θ2 − p(θ2), and

expected utility 1
2(θ1 − p(θ1) + θ2 − p(θ2)) per borrower. Since p(θ2) > r, non-cooperative

behavior and the inability to make partial repayments cause the expected utility of a borrower

in a group to be lower.

Thus, we have already proven case H. To complete the proof for case L, consider case

(AC). The two IL borrowers have payoffs θ1− p(θ1) and θ2− r (if θ1 ∈ A and θ2 ∈ C), so that

expected utility in (AC) for an IL borrower is 1
2(θ1 − p(θ1) + θ2 − r). By contrast, the group

has payoffs θ1 and θ2− 2r, and expected utility 1
2(θ1 + θ2− 2r). Since p(θ1) < r, the expected

utility of a borrower in a group is lower.

3.8.8 Proof of Proposition 3.3

First, we have to show that θ̄2

4β(θ̄−θ)
is indeed the maximum under IL when α = 0. Define

the right-hand side of (3.8) for α = 0, expected repayment under IL when penalties are

non-pecuniary, as RI0(r), and its derivative with respect to r as R′I0(r):

RI0(r) =
−2βr2 + 2θ̄r

2(θ̄ − θ)
,

R′I0(r) =
−4βr + 2θ̄

2(θ̄ − θ)
.
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The loan rate r = θ̄/(2β) maximizes RI0(r). The maximum value is

RI0

(
θ̄

2β

)
=
−2β

(
θ̄
2β

)2
+ 2θ̄

(
θ̄
2β

)
2(θ̄ − θ)

=
θ̄2

4β(θ̄ − θ)
.

To prove Proposition 3.3, it remains to show that maximum expected repayment under GL

is less than that for cases L and H.

a) Case L

Let RGL0(r) denote the right-hand side of (3.10) for α = 0:

RGL0(r) =
−6β2r3 + 8βθr2 + 2(θ̄2 − 2θθ̄)r

2(θ̄ − θ)2
. (3.32)

We have to show that

RGL0(r) <
θ̄2

4β(θ̄ − θ)
.

Notice that

RI0(0) = RGL0(0) = 0.

We have RGL0(r) < RI0(r) iff

−6β2r3 + 8βθr2 + 2(θ̄2 − 2θθ̄)r
2(θ̄ − θ)2

<
−2βr2 + 2θ̄r

2(θ̄ − θ)
−6β2r2 + 8βθr + 2(θ̄2 − 2θθ̄) < (−2βr + 2θ̄)(θ̄ − θ) = −2β(θ̄ − θ)r + 2(θ̄2 − θθ̄)

−6β2r2 + 8βθr − 2θθ̄ < −2β(θ̄ − θ)r

6β2r2 − 2β(θ̄ + 3θ)r + 2θθ̄ > 0

r2 − θ̄ + 3θ

3β
r +

θθ̄

3β2
> 0. (3.33)

The roots of the polynomial on the left-hand side are:
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r1/2 =
θ̄ + 3θ

6β
±

√
1
4

(
θ̄ + 3θ

3β

)2

− θθ̄

3β2
=

θ̄ + 3θ

6β
± 1

6β

√
θ̄2 − 6θθ̄ + 9θ2

=
θ̄ + 3θ

6β
± 1

6β

√
(θ̄ − 3θ)2 =

(θ̄ + 3θ)± (θ̄ − 3θ)
6β

=
{

θ

β
,

θ̄

3β

}
<

θ̄

2β
.

So the three intersections of RGL0(r) and RI0(r) occur at r = 0, r = r1 = θ/β, and r = r2 =

θ̄/(3β). An example can be seen in the following graph:

Suppose first that θ̄ ≤ 3θ, so that

r2 =
θ̄

3β
<

θ

β
= r1.

Then

RGL0(r) < RI0(r), r >
θ

β
,

since θ
β is the largest intersection and RGL0(r) < RI0(r) for large r (cf. inequality (3.33)).

Next, consider the case θ̄ > 3θ, in which r2 = θ̄/(3β) > θ/β = r1. Differentiating RGL0(r)

with respect to r gives

R′GL0(r) =
−18β2r2 + 16βθr + 2(θ̄2 − 2θθ̄)

2(θ̄ − θ)2
. (3.34)
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So

R′GL0(0) =
θ̄(θ̄ − 2θ)
(θ̄ − θ)2

> 0,

R′GL0

(
θ̄

3β

)
=

−18β2
(

θ̄
3β

)2
+ 16βθ θ̄

3β + 2(θ̄2 − 2θθ̄)

2(θ̄ − θ)2

=
−2θ̄2 + 16

3 θ̄θ + 2θ̄2 − 4θ̄θ

2(θ̄ − θ)2
=

2θ̄θ

3(θ̄ − θ)2
> 0.

The fact that RGL0(r), a cubic polynomial with negative leading coefficient (viz., −6β2

2(θ̄−θ)2
), is

upward-sloping at r = 0 and at r = θ̄/(3β) implies that it is upward-sloping in between. It

follows that

RGL0(r) < RGL0

(
θ̄

3β

)
= RI0

(
θ̄

3β

)
, r <

θ̄

3β
,

and, since θ
β is the largest intersection and RGL0(r) < RI0(r) for large r (cf. inequality (3.33)),

RGL0(r) < RI0(r), r >
θ̄

3β
.

This completes the proof that

RGL0(r) <
θ̄2

4β(θ̄ − θ)
, case L.

b) Case H

Let RGH0(r) denote the right-hand side of (3.12) for α = 0 and R′GH0(r) its derivative with

respect to r:

RGH0(r) =
2β2r3 − 4βθ̄r2 + 2θ̄2r

2(θ̄ − θ)2
,

R′GH0(r) =
6β2r2 − 8βθ̄r + 2θ̄2

2(θ̄ − θ)2
.
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We have R′GH0(r) = 0 iff

0 = 6β2r2 − 8βθ̄r + 2θ̄2

0 = r2 − 4
3

θ̄

β
r +

1
3

(
θ̄

β

)2

r1/2 =
2
3

θ̄

β
±

√
4
9

(
θ̄

β

)2

− 1
3

(
θ̄

β

)2

=
2
3

θ̄

β
± 1

3
θ̄

β
=
{

θ̄

3β
,

θ̄

β

}
.

RGH0(r) is downward-sloping in the interval (θ̄/(3β), θ̄/β) since it is a cubic polynomial with

positive leading coefficient (viz., β2

(θ̄−θ)2
) and extrema at θ̄

3β and θ̄
β . Since θ̄

3β < θ̄
2β < θ̄

β ,

RGH0(r) ≤ RGH0

(
θ̄

2β

)
,

From continuity of RG(r) between cases L and H (cf. Appendix 3.8.2),

RGH0

(
θ̄

2β

)
= RGL0

(
θ̄

2β

)
.

Using the fact that, in case L,

RGL0

(
θ̄

2β

)
<

θ̄2

4β(θ̄ − θ)
,

it follows that

RGH0(r) <
θ̄2

4β(θ̄ − θ)
, case H.

This completes the proof.

3.8.9 Proof that RC(r) is hump-shaped, and RC(r) ≥ RI(r)

The hump-shape occurs over the interval defined in (3.16). Differentiating the expression for

RC(r) in (3.15) yields

R′C(r) =
−6β2r2 + 8βθr + (θ̄2 − 2θ̄θ − θ2)

(θ̄ − θ)2
.
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So

R′C

(
θ

β

)
= 1 > 0, R′C

(
θ̄ + θ

2β

)
= −(θ̄2 − θ2) + 2θ(θ̄ − θ)

2(θ̄ − θ)2
< 0.

As RC(r) is a cubic polynomial with negative leading coefficient, it follows that it is hump-

shaped over the interval [θ/β, (θ̄ + θ)/(2β)]. Note that θ/β < (θ̄ + θ)/(2β) since θ̄
2 > θ.

Proof that RC(r) ≥ RI(r) when (3.16) is satisfied:

From (3.8) and (3.15), RC(r) ≥ RI(r) exactly if

r2 − θ̄ + 3θ

2β
r +

θ(θ̄ + θ)
2β2

≤ 0.

The roots of the quadratic equation on the left-hand side are r = θ/β and r = (θ̄ + θ)/(2β).

So RC(r) ≥ RI(r) between these loan rates.

3.8.10 Proof: Proposition 3.6 for large r

It suffices to show that with GL and r > (θ̄ + θ)/(2β), the expected repayment falls short of

Rmax
C and the deadweight loss is an increasing function of the loan rate. For r > (θ̄ + θ)/(2β),

cases (AC), (BC), and (CC) drop out, and the repayment function becomes

R̃C(r) =
2β2r3 − 4βθ̄r2 + 2θ̄2r

(θ̄ − θ)2
.

Using (3.15), we have

R̃C

(
θ̄ + θ

2β

)
=

θ̄ + θ

4β
= RC

(
θ̄ + θ

2β

)
,

so the expected repayment function with GL is continuous. Differentiating R̃C(r) gives

R̃′C(r) =
6β2r2 − 8βθ̄r + 2θ̄2

(θ̄ − θ)2
.

The roots of the quadratic equation on the right-hand side are θ̄/(3β) and θ̄/β. R̃C(r)

takes on its local maximum and minimum, respectively, at these loan rates. It follows that
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R̃C(r) is downward-sloping between (θ̄ + θ)/(2β) and θ̄/β. Taken together, it follows that

R̃C(r) < Rmax
C for (θ̄ + θ)/(2β) < r < θ̄/β. The deadweight loss is

D̃C(r) =
−8β3r3 + 12β2θ̄r2 − θ̄3 − 3θ̄2θ − 3θ̄θ2 + 3θ3

6β(θ̄ − θ)2

for r > (θ̄ + θ)/(2β). The deadweight loss is a continuous function of the loan rate:

D̃C

(
θ̄ + θ

2β

)
=

θ̄3 − 3θ̄θ2 + 2θ3

6β(θ̄ − θ)2
= DC

(
θ̄ + θ

2β

)
.

It increases as the loan rate rises:

D̃′
C(r) =

4βr(θ̄ − βr)
(θ̄ − θ)2

> 0

for all r < θ̄/β.

3.8.11 Proof that RS(r) is hump-shaped with social sanctions and α = 0

Using equation (3.20), expected repayment is

RS(r) = ΠS(r)r =
−β2r3 + 2βθr2 + (θ̄2 − 2θθ̄)r

(θ̄ − θ)2
.

Its derivative with respect to r is

R′S(r) =
−3β2r2 + 4βθr + θ̄2 − 2θθ̄

(θ̄ − θ)2
.

At r = θ
β , expected repayment becomes

RS

(
θ

β

)
=
− θ3

β + 2 θ3

β + θθ̄2

β − 2 θ2θ̄
β

(θ̄ − θ)2
=

θ

β(θ̄ − θ)2
(θ2 + θ̄2−2θ̄θ) =

θ

β(θ̄ − θ)2
(θ̄− θ)2 =

θ

β
> 0.

The derivative at r = θ
β is

R′S

(
θ

β

)
=
−3β2

(
θ
β

)2
+ 4βθ θ

β + θ̄2 − 2θθ̄

(θ̄ − θ)2
=
−3θ2 + 4θ2 + θ̄2 − 2θθ̄

(θ̄ − θ)2
=

(θ̄ − θ)2

(θ̄ − θ)2
= 1 > 0.
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Figure 3.20: Expected repayments under GL with social sanctions and α = 0.

Furthermore, expected repayment at r = θ̄
β is

RS

(
θ̄

β

)
=
−β2 θ̄3

β3 + 2βθ θ̄2

β2 + (θ̄2 − 2θ̄θ) θ̄
β

(θ̄ − θ)2
=

θ̄3

β + 2θθ̄2

β − θ̄3

β − 2θθ̄2

β

(θ̄ − θ)2
= 0.

Since RS(r) is a cubic polynomial with negative leading coefficient, the fact that it is positive

and upward sloping at r = θ
β and zero at r = θ̄

β implies that it has no root in the interval

( θ
β , θ̄

β ). That is, expected repayment is positive and takes on a unique local maximum in the

interval. In other words, expected repayments under GL with social sanctions and α = 0 are

hump-shaped. Figure 3.20 illustrates this.





Chapter 4

Portfolio Choice with Social

Returns

This chapter is based on joint work with Michaela Leidl and Gregor Dorfleitner. It contains

elements of Dorfleitner, Leidl, and Reeder (2009).
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4.1 Motivation and the literature

The financial crisis has led many to question their investments. Apart from rethinking the

risks involved, non-financial objectives have gained in importance. The terms ‘Social Business’

and ‘Socially Responsible Investing’ (SRI) are currently under discussion both in the general

public and between researchers of various fields.1 Even though indisputable definitions are

missing, the bottom line seems clear: Many people care about more than just financial returns.

From a practical point of view, many of these people have too limited a circle of influence to

actively engage in fostering social business. Apart from voluntary work in their leisure time,

these people might express their preferences by taking into account the social dimension in

their investment decisions. This tendency has brought up ‘social funds’, e.g., microfinance

investment funds (MFIFs), renewable energy funds, and the like. The aim of these funds is

to combine social and financial returns to attract investors.

Among other things, the findings of Markowitz (1952) prompted the implementation of

mutual funds. His work is surely one of the most influential papers in the finance literature.

However, Markowitz’ setup exclusively relies on financial returns. Is it possible to build a

theory which explains the existence and the composition of social funds not by resorting to

irrational social investors, but by assuming rational optimization of investors? This is the aim

of the current chapter.

In doing so, we strongly build on Markowitz (1952). Apart from being a very ambitious

task, it would be well beyond the scope of this chapter to enumerate and classify all research

based on Markowitz’ work in this literature survey,2 especially since our model directly extends

his work. Nevertheless, apart from presenting his main results, we want to give a sketch of

the finance literature following his early work since we hope to be able to extend our model

in similar ways in the future, for instance to apply it to the realm of asset pricing.

In his seminal work ‘Portfolio Selection’ Markowitz (1952) recognized the crucial role of risk

and proposed to use the statistical concept of an asset’s variance as an appropriate measure

for risk. This measure is used until today, although other measures have been proposed,

e.g., ‘value at risk’ (mainly in judging risks of credit portfolios) or ‘downside risk’. The

1A good starting point into the literature on SRI is the categorization of Hoepner (2007). The term ‘social
business’ is strongly coined by Nobel Peace Prize winner Muhammad Yunus, e.g., see Yunus (2007). Yunus is
also engaged in the yearly summit on social business organized by the Berlin-based Genisis institute.

2As of 05.12.2009, Google Scholar shows 8500 papers which quote Markowitz (1952).
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latter concept is theoretically appealing since it separates downside risk and upside potential.

Clearly, it is only downside variations which investors dislike. Grootveld and Hallerbach

(1999) compare different measures of downside risk to the variance, both theoretically and

based on their implications for optimal asset allocation. In terms of theory, they show that

the performance of different measures for downside risk varies considerably when compared

to the variance, and that only a few of those measures perform strictly better. Against the

background of their findings, it is no big surprise that the variance is still a commonly used

risk measure, and we use it in this chapter, too.

Another key insight of Markowitz concerns the effects of diversification. Dependencies of

returns of individual assets among each other crucially influence the volatility of a portfolio

built from these assets. Thus, an appropriate choice of assets can reduce a portfolio’s risk

without diminishing expected returns. Moreover, Markowitz’ suggestions allowed to formulate

the decision making process of portfolio choice as an optimization problem. He suggested that

investors should3 maximize the expected return of a portfolio and minimize its variance. The

implied behavior of investors can be seen as an alternative approach to decision making under

uncertainty, i.e., as an alternative (in fact, it is a special case) to the expected utility criterion

proposed by von Neumann and Morgenstern (1944).

A result directly related to Markowitz’ findings is the concept of ‘two fund separation’,

sometimes called ‘mutual fund separation’, or ‘Tobin separation’ alluding to James Tobin

(1958) who first proposed the idea. We will have much to say about this phenomenon in the

remainder of this chapter. In fact, two of our main results are directly related to Tobin’s

findings. Tobin analyzed investors that face a set of risky assets as well as a riskless asset and

decide about how to allocate funds using a mean-variance objective function. He showed that

the optimal portfolio of risky assets has the same composition for all investors, irrespective

of their risk aversion. Thus, differences in risk aversion among investors only lead to different

shares of wealth invested in that same portfolio, the remaining share of wealth being invested

in the riskless asset.

Based on Tobin’s findings, a natural question arose: If all investors choose the same

portfolio of risky assets, can this information about the demand for assets be used to determine

3The original aim of Markowitz was to provide investors with an investment recipe and, thus, rather
normative.
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asset prices? The answer to that question is the famous capital asset pricing model (CAPM),

which is mainly ascribed to Sharpe (1964), Lintner (1965), and Mossin (1966). These authors

suggested to ask for conditions that must be met so that the optimal, tangent portfolio is an

equilibrium. From these conditions they derive that the crucial determinant of asset prices

is the expected return of the market and the comovement of an asset with the market. We

abstain from a discussion on the advantages and inconveniences of the model here, but refer

the reader to Chapter 8 in Cochrane (2005) for a detailed analysis in an advanced formal

setup.

The idea of the CAPM was extended by Merton (1971, 1973) to a continuous time setup

with dynamic portfolio choice, called the intertemporal capital asset pricing model (ICAPM).

Arbitrage pricing theory (APT) as first proposed by Ross (1976) belongs to the class of multi-

factor pricing models. While the CAPM determines asset prices by their relative performance

compared to just one factor, viz., the market, APT allows to include several (e.g., macro-

economic) factors to account for systematic risk. In fact, Ross, Westerfield, and Jaffe (2005,

p.309-10) claim that the CAPM can be treated as a one-factor special case of the APT in

terms of its implications, although both approaches differ considerably in terms of their origin

and application. A multi-factor model which has received much attention in the literature is

the ‘three-factor model’ by Fama and French (1995) which adds the size of the firm underlying

an asset and the book-to-market ratio to the market variable in order to predict excess re-

turns. They find an empirically significant influence for all three variables, which contradicts

the CAPM predictions. However, empirical tests are not conclusive neither in accepting nor

rejecting the CAPM.

Another approach to asset pricing known as the consumption capital asset pricing model

(CCAPM) is ascribed to Lucas (1978) and Breeden (1979). In analogy to the CAPM, it uses

an indicator of risk to determine the excess return of an asset. In contrast to the CAPM,

which measures risk as the covariance of an asset’s return with the market (the ‘market β’),

the CCAPM measures risk as the comovement of an asset’s returns with consumption (the

‘consumption β’).

All these models are based on the assumption that the price of an asset is determined by

its financial characteristics. The ultimate aim of our research is to extend standard portfolio

theory in order to propose a theory of asset pricing similar to the CAPM. As Luenberger
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(1998, p.222) notes, “Markowitz and the CAPM are beautiful theories that ushered in an era

of quantitative analysis and have provided an elegant foundation to support further work”.

In this chapter and the corresponding paper, we extend standard mean-variance theory by

adding a social dimension.

Clearly, we are not the first to suggest the use of social returns. The most common method

to include a social dimension into investment choice is screening.4 The idea is simple: From

all available assets, investors choose the subset of assets they are willing to invest in. ‘Positive

screening’ picks out the assets to invest in, whereas ‘negative screening’ excludes assets which

the investor does not want to fund under any circumstances. Screening usually takes place

prior to any kind of optimization (if there is one).5 The optimization after screening could

be done à la Markowitz, i.e., only depending on financial characteristics. In that case, once

the subset of acceptable assets is chosen, there is no quantification of social returns. The

combined procedure of screening and standard portfolio optimization might be considered a

bounded rationality approach in that investors optimize only after having greatly reduced the

complexity of the problem by having limited their choices available. Dupré, Girerd-Potin, and

Kassoua (2004) apply screening to a large set of assets, determine the pre- and post-screening

efficient frontiers and confirm intuition: By reduced diversification possibilities, the efficient

portfolios after screening are financially worse than the ones before screening.6

Social returns of individual assets differ considerably and might even be considered sto-

chastic, as already noted by Dupré, Girerd-Potin, and Kassoua (2004). These authors point

to variations of companies’ social behavior over time, which we consider a valid reason to

model social returns as stochastic.7

The starting point for both the deterministic and the stochastic analysis is a metric scale to

measure social returns. Once such a metric exists, empirical estimates for statistical moments

of social returns, in particular means, variances, and covariances can be derived. Thus, assets

4For instance, see D’Antonio and Johnsen (1997); D’Antonio, Johnsen, and Hutton (2000); Renneboog, Ter
Horst, and Zhang (2008).

5Screening is not necessarily done before anything else. One could imagine a repeated optimization-screening
pattern. After an initial optimization à la Markowitz, the optimal weights of assets could be checked and the
assets (or amount of assets) incompatible with the investor’s preferences could be sorted out. The remaining
assets could then be subjected to another round of optimization.

6Technically, finding the efficient frontier after screening boils down to imposing additional constraints on
a maximization problem.

7They mention imperfect measurability as another reason.
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do no longer have to be reduced to their financial characteristics, but have both financial

and social returns. Dependency structures between social returns of different assets can be

estimated, as well as covariances between financial returns of one asset and social returns of

another. Apart from these inter-asset dependencies, some investments can have significant

intra-asset covariances: A high financial performance goes at the expense of a low social

performance, and vice versa. Also, financial and social returns of an asset might depend

positively on each other: A high financial performance is accompanied by a high social return.

Since uncertainty about financial returns can be accompanied by uncertainty about social

returns, we consider stochastic social returns along with stochastic financial returns in our

most general setup in Subsection 4.2.1. In Subsection 4.2.2, we confine the analysis to a less

complicated maximization problem. This latter problem can be interpreted as representing

one of two situations: In the first, social returns are deterministic. In the second, they are

stochastic, but investors do not care about variations of social returns (the investors could then

be called ‘risk-neutral regarding social returns’). Although considerably different conceptually,

both situations are mathematically similar, in fact almost identical. Another reason why we

consider the restricted problem in Subsection 4.2.2 is that estimates for variations in social

returns are rather unreliable due to data restrictions.8

Deterministic optimization problems similar to our proposal have already been proposed

and applied by Dupré, Girerd-Potin, and Kassoua (2004). However, they do neither present

nor interpret any of the theoretical results we derive in Subsection 4.2.2. Furthermore, the

efficient frontier they discuss is the standard two-dimensional financial mean-variance concept,

although portfolios are assigned three dimensions. While we define, discuss and apply the

concept of the efficient frontier in a five-dimensional space in the stochastic setup, we give

a more intuitive discussion of the efficient frontier for deterministic social returns in three-

dimensional space. In that respect, we want to mention Dunn (2006) who took an educated

guess on the shape of a three-dimensional efficient frontier. We will confirm some general

properties of his proposal in the deterministic setup, but add many others.

8We do not work with real world data in this chapter, except when we construct the graph of the three-
dimensional efficient frontier in Appendix 4.4.1. However, it is one of the main objectives of Dorfleitner, Leidl,
and Reeder (2009) to bring the model of this chapter to the data.
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4.2 Theory

As in standard portfolio theory, we consider a one-period investment problem, i.e., an investor

at two points in time, where decisions are only taken at the first. This decision is about asset

allocation: The investor decides about how much to invest in which assets. At the second

point in time, two types of returns accrue: financial returns R and social returns S. Investors’

preferences are formulated in terms of simple returns. This means that an investor allocating

an initial wealth of v0 gets a financial payoff of v0 · (1 + R) plus a social ‘payoff’ of v0 · S

at the end of the period.9 However, note that both payoffs are not directly transferable into

each other. Financial returns are measured in terms of money per unit invested, whereas the

social return is a non-monetary value per unit invested. The measurement of social returns

is a problem in reality which we ignore in this chapter.10 As in standard mean-variance

analysis, using rates of return instead of absolute financial and social wealth levels implies

that wealth effects have to be captured by the coefficients of the objective function to be

defined further below. We assume that there is a metric for social returns which allows us

to rank alternative investments in terms of social returns. This might be a (continuous or

discrete) scale from some negative to some positive value, using zero as an average, e.g., for

investments in the riskless asset. We could also use a non-negative support for social returns,

having some positive number as the average.11

With N assets, each asset i can be represented by a tuple of financial and social return,

(Ri, Si). From all assets available, the investor builds the portfolio that maximizes his objec-

tive function. Let µRi be the expected financial return of asset i, σ2
Ri

its variance and σRi,Rj

the covariance between financial returns of assets i and j. RP denotes the financial return of

the portfolio and SP its social return.

RP =
N∑

i=1

xiRi and SP =
N∑

i=1

xiSi, (4.1)

9We claim that there are objective criteria to measure social returns. Thus, the ‘warm glow’ is only a minor
reason to consider social returns. In particular, the social return is then proportional to initial wealth. If
the social return comes from the fact that a poor person gets a loan and improves his life (as with a typical
investment into microfinance), and the average loan size is a hundred dollar, then one hundred dollars give half
the social return of two hundred dollars.

10In Dorfleitner, Leidl, and Reeder (2009), we apply the model to real world data and exercise due care
regarding social returns. We also comment on the problem when we conclude in Section 4.3.

11It does not matter how we scale social returns since they enter the objective function additively, see below.
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where the vector ~x = (x1, . . . , xN )T contains the portfolio weights of the assets with
∑

i xi = 1.

4.2.1 Stochastic social returns

In the introduction, we have argued that, apart from inter-asset dependencies between finan-

cial returns, there might be significant inter-asset dependencies of social returns, as well as

inter-asset dependencies of financial and social returns. We have also claimed that intra-asset

dependencies between financial and social returns of an asset might be strong. A case in point

for a negative intra-asset relationship is microfinance. The idea of the trade-off is that mi-

crofinance borrowers are heterogeneous in quality so that high repayment rates and expected

returns are more likely with less poor borrowers. Cull, Demirgüç-Kunt, and Morduch (2007)

try to empirically verify the hypothesis of the trade-off and find some evidence in favor of it.12

In a recent study, Cull, Demirgüç-Kunt, and Morduch (2009, p. 182) write that “[d]ebate

also persists on the extent to which trade-offs exist between pursuing profit and reaching

the poorest customers. The data here suggests that this trade-off is very real”. They also

mention the “fear that [...] institutions will sacrifice part of their social missions if subsidies

are reduced sharply.”

One might object at this point that, even though the trade-off exists, there need not be a

stochastic element in it. If MFIs have different strategic orientations - some serving middle-

class borrowers, others the very poor - there might only be differences in financial returns

and in (deterministic) social returns. However, there is another characteristic feature of the

microfinance industry, namely that many MFIs13 depend on donations.14 This source of

income is highly uncertain in the future and the financial uncertainty might also make social

returns risky. An MFI which operates in a market environment and ceases to get funds from

donors might be forced to give up on social returns to compensate for the loss of financial

returns in order to stay attractive for MFIFs and other investors.15 In practice, this would be

achieved by giving larger loans to less poor people, neglecting the very poor. This has at least

12However, having disaggregated data, the authors are able to show that the strength and even the direction
of the trade-off depends on institutional design and strategic orientation of the lender.

13In principle, the same logic applies to other firms in the realm of donation- or subsidy-receiving industries,
as most renewable energy companies, for instance.

14From Table 4 in Cull, Demirgüç-Kunt, and Morduch (2009, p. 186), of the 289 MFIs in their sample, the
average share of funds that come from donations is 26%.

15This chain of arguments assumes the aforementioned trade-off between financial sustainability and out-
reach.
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two theoretical effects which increase financial returns. First, the less poor (and supposedly

more educated and productive) clientele might repay more often, and second, giving larger

loans reduces transaction costs. The first channel is supported by Morduch (2000, p. 621)

who asserts that “[p]roducing and selling goods requires more than just capital. It requires

skills, other materials, information, connections, transportation, etc. Since richer households

tend to have more of these inputs, marginal returns to capital are often far higher for them

than for poorer households”.

The concept of ‘sin stocks’ gives further support to our two central assumptions, namely

that social returns matter and that they might have a considerable stochastic component.

The literature in this field mainly focuses on whether these allegedly morally doubtful stocks

are able to outperform in terms of financial returns. Fabozzi, Ma, and Oliphant (2008)

present “empirical evidence that shows sin stocks have outperformed the market on a risk-

adjusted basis”.16 First, this result implies that investors do care about social returns. Sin

stocks have to offer investors a financial premium to compensate for the ‘social harm’ done

by the investment, vice versa for ‘virtue investments’. Second, if a high financial yield of

such a company stems from high turnover, their social returns are low when financial returns

are high, i.e., there is a negative (intra-asset) covariance, which is an argument in favor of

modeling stochastic social returns. This ‘success channel’ also works the other way round for

virtue investing: A solar energy producer has high social returns when output, turnover and

profits are high, i.e., a positive intra-asset covariance.

Therefore, we can justify stochastic social returns. But, as mentioned in the introduction,

do investors care about variations in social returns? To answer this question, we use the dis-

tinction between intrinsic and extrinsic motivation for altruism, as stressed by Sen (1987), for

instance. If socially oriented investors are intrinsically motivated, they will care about varia-

tions in social returns. After all, they derive utility from the actual results of their investment.

Our theoretical model also allows for investors that do care about the expected social return,

but not about variations in it (the ‘risk-neutral regarding social returns’ investors). This

type of investor is extrinsically motivated, investing socially in order to tell colleagues, friends

16There are also studies rejecting the outperformance hypothesis. Lobe, Roithmeier, and Walkshäusl (2009,
p.2) find “results [which] suggest that sin indexes do not offer abnormal returns”. An interesting debate about
abnormal returns of ‘sin stocks’ arises in light of the efficient market hypothesis. There should not be an
outperformance of sin stocks under rather weak assumptions if markets are efficient. However, this is not the
subject of the current paper.
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and family about themselves being good guys. In case of corporate investment, it is about

telling the public. Their utility stems from telling others, and it arises before (social) returns

are actually realized. Therefore, taking the risk of an extreme negative outcome would not

decrease their utility much.

Formally, if social returns are stochastic, an investor’s objective function depends on two

random variables: financial return RP and social return SP . In analogy to the financial

variables, let µSi be the expected social return of asset i, σ2
Si

its social variance and σSi,Sj the

covariance between social returns of assets i and j. If social returns are stochastic, we have

cross covariances between financial returns of asset i and social returns of asset j, denoted by

σRi,Sj . As with individual assets, we use µRP
as the expected financial return of the portfolio,

µSP
as its expected social return and σ2

RP
and σ2

SP
as the respective variances of the portfolio.

The portfolio covariance is σRP ,SP
.

Investors’ preferences

Consider an investor facing two portfolios. We assume that, first, if both portfolios have

identical financial and social means and variances and the same covariance, the investor is

indifferent between them, i.e., portfolio choice does not depend on anything else than these

five moments. Second, if two portfolios differ only in financial mean, a rational investor prefers

the one with the higher mean. Third, the one with the higher social mean is preferred if the

portfolios differ only in social mean. Fourth, risk-averse investors choose the portfolio with

the lower financial variance if all other things are equal and, fifth, the same is true for two

portfolios differing only in social variance. Sixth, since both financial and social returns are

a good thing, it makes sense to assume correlation aversion as in Epstein and Tanny (1980).

This means that an investor facing two portfolios with the same means and variances prefers

the one with the lower (more negative) covariance between financial and social returns. A

portfolio with a strong positive covariance is dominated since it pays a low social return

exactly when financial returns are low, too. If the covariance is negative, an investor can take

comfort in high social returns in times of low financial returns.

Since portfolio choice is an ex ante choice, actual financial and social returns of the portfolio

cannot be used to determine the shares of wealth invested in the assets, so that we work with

statistical moments. From the literature on the theory of choice under uncertainty, the most
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common approach is to specify a utility function and then let investors maximize expected

utility. This approach is based on the von Neumann-Morgenstern axiomatization, but proves

inadequate for many practical applications. As a special case of expected utility maximization,

mean-variance analysis gets by with less sophisticated empirical estimates and enjoys great

popularity in the finance literature. As is well known, there are ways to guarantee consistency

between expected utility and mean-variance in a univariate decision framework. In Appendix

4.4.2, we review these conditions for the univariate case and make a proposal on how to align

them in case of a bivariate choice problem, as encountered in our model.

In traditional portfolio theory with only financial returns, Markowitz (1952, p. 82) de-

fines the efficient frontier as the subset of all those mean-variance (E-V) combinations “...with

minimum V for given E or more and maximum E for given V or less”. Given our assumptions

on preferences, we can define the new efficient frontier as follows.

Definition 4.1 Portfolio A is ‘µR-µS-σS-σR-σR,S-efficient’ if there is no portfolio B with

µRA
≤ µRB

,

µSA
≤ µSB

,

σRA
≥ σRB

,

σSA
≥ σSB

,

σRA,SA
≥ σRB ,SB

,

and at least one inequality strict.

In words, portfolio A is efficient if there is no other portfolio B with at least as high a financial

return, at least as high a social return, at most as high a financial risk, at most as high a

social risk, and at most as high an R-S covariance, at least one variable of portfolio B strictly

better. In other words, a portfolio is efficient if there is no other, dominant portfolio.17

17Of course, this definition hinges on the preferences we assume. However, without any assumptions on
preferences, an efficient portfolio could be defined as “a portfolio which can be optimal for some kind of
preferences”, so that every portfolio could be established as an efficient one.
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Definition 4.2 The ‘efficient frontier (with stochastic social returns)’ is the set of all µR-

µS-σS-σR-σR,S-efficient portfolios.

The investor’s optimization problem

Given Definition 4.1, the most intuitive way of translating it into an objective function is

to simply sum up the five variables and attach weights to them, i.e., to set up an additive

preference function18

β1µRP
(~x) + β2µSP

(~x)− β3σ
2
RP

(~x)− β4σ
2
SP

(~x)− β5σRP ,SP
(~x), (4.2)

with βi ≥ 0.19 Variations in βi represent changes in preferences. In particular, we have

β2 = β4 = β5 = 0: representing a Markowitz investor, social blindness,

β1 = β3 = β5 = 0: representing an altruist, social fanatic,

β1 = β2 = β4 = β5 = 0, β3 6= 0: representing maximum financial risk aversion.

Consider the following maximization problem

max
~x
{β1µRP

(~x) + β2µSP
(~x)− β3σ

2
RP

(~x)− β4σ
2
SP

(~x)− β5σRP ,SP
(~x)}, (4.3)

s.t.
N∑

i=1

xi = 1.

The variables in (4.3) follow from applying standard variance and covariance techniques to

the financial and social returns of the portfolio in equation (4.1):

µRP
=
∑

i

xiµRi and µSP
=
∑

i

xiµSi , (4.4)

18We use ‘preference function’ instead of ‘utility function’ since the latter term is usually defined as a function
which represents preferences over a set of (deterministic) alternatives, cf. Mas-Colell, Whinston, and Green
(1995, p.9). However, some authors talk about ‘mean-variance utility’, defining a utility function over a set of
statistical moments.

19The preference function is over-parameterized, but we keep all five parameters for ease of interpretation
at this point.
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σ2
RP

= ~xT ΣR~x and σ2
SP

= ~xT ΣS~x, (4.5)

σRP ,SP
= ~xT ΣRS~x. (4.6)

The matrices ΣR and ΣS are the covariance matrices

ΣR :=

 σR1,R1 . . . σR1,RN

...
. . .

...
σRN ,R1 . . . σRN ,RN

 , ΣS :=

 σS1,S1 . . . σS1,SN

...
. . .

...
σSN ,S1 . . . σSN ,SN

 .

ΣRS :=

 σR1,S1 . . . σR1,SN

...
. . .

...
σRN ,S1 . . . σRN ,SN

 .

The formula for σRP ,SP
deserves special attention. Apart from the vector ~x, it consists

of ΣRS , which is a matrix containing two sorts of covariances: intra-asset covariances and

inter-asset cross covariances. The diagonal elements σRi,Si of the matrix ΣRS are the intra-

asset covariances, which give the dependency between financial and social returns of assets

i = 1, ..., N . Having called the covariance between financial (or social) returns of different

assets the ‘normal inter-asset covariance’, the off-diagonal elements of ΣRS can be called

‘inter-asset cross covariances’. They give the (degree of linear) dependency between social

returns of one asset and financial returns of another. In the case of two assets, there are six

covariances in total, as shown in Figure 4.1. Note that the normal inter-asset covariances

σS1,S2 and σR1,R2 enter the formulas for the portfolio’s financial variance and social variance,

respectively.

The solution to our maximization problem in (4.3) is a vector ~x, which determines the

five preference dimensions (financial and social mean, financial and social variance and co-

variance). Since ~x is a function of the five preference coefficients βi, the resulting quintuple

is a parameterization of the efficient frontier. We use the Lagrangian
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Figure 4.1: All covariances with 2 assets.

L(~x, λ) ≡ β1µRP
(~x)+β2µSP

(~x)−β3σ
2
RP

(~x)−β4σ
2
SP

(~x)−β5σRP ,SP
(~x)−λ

(
N∑

i=1

xi − 1

)
, (4.7)

which can be written as

L(~x, λ) = β1

N∑
i=1

xiµRi + β2

N∑
i=1

xiµSi − β3

N∑
i=1

N∑
j=1

xixjσRi,Rj (4.8)

− β4

N∑
i=1

N∑
j=1

xixjσSi,Sj − β5

N∑
i=1

N∑
j=1

xixjσRi,Sj − λ

(
N∑

i=1

xi − 1

)
.

The first-order condition (FOC) w.r.t. xi is

∂L

∂xi
= β1µRi+β2µSi−2β3

N∑
j=1

xjσRi,Rj−2β4

N∑
j=1

xjσSi,Sj−β5

 N∑
j=1

xjσRi,Sj +
N∑

j=1

xjσRj ,Si

−λ,

(4.9)

which must be equal to zero for all assets i. The last FOC, ∂L
∂λ , is the constraint. Let ~x∗ be

the vector that contains the optimal asset weights in the portfolio and λ, so that

~x∗ := (x∗1, . . . , x
∗
2, λ)T . (4.10)
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Moreover, let

~y := (β1µR1 + β2µS1 , . . . , β1µRN
+ β2µSN

, 1)T , (4.11)

and

M := CR + CS + CRS + CT
RS . (4.12)

The matrices CR, CS and CRS are basically the matrices ΣR, ΣS and ΣRS with an additional

row and column each, due to the constraint, and the ‘preference coefficients’.20

CR :=


2β3σR1,R1 . . . 2β3σR1,RN

1
...

. . .
...

...
2β3σRN ,R1 . . . 2β3σRN ,RN

1
1 . . . 1 0

 , CS :=


2β4σS1,S1 . . . 2β4σS1,SN

0
...

. . .
...

...
2β4σSN ,S1 . . . 2β4σSN ,SN

0
0 . . . 0 0

 ,

CRS :=


β5σR1,S1 . . . β5σR1,SN

0
...

. . .
...

...
β5σRN ,S1 . . . β5σRN ,SN

0
0 . . . 0 0

 .

Proposition 4.1 If M is invertible, then

~x∗ = M−1~y (4.13)

is the unique solution to (4.3).

Proof: The matrix M is quadratic, symmetric and of dimension N + 1. Given that M is

invertible, it can be seen that (4.13) is the solution of (4.3). Multiplying equation (4.13) with

M from the left and transforming the resulting equation to the underlying system of equations

gives the (N + 1) FOCs. q.e.d.

The efficient frontier (contingent on our assumptions about preferences) is given in parametric

form in equation (4.13). As can be seen from equations (4.11) and (4.12), the solution depends
20We could have added the row and column filled with ‘1’ in CR to any of the other two matrices.
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on the five preference parameters β1, ..., β5. Let P = R5
+ be the Cartesian product of the sets

of preference coefficients, where each of the five sets of preference coefficients is the set of

positive real numbers. Thus, inserting ~x∗ into the five preference dimensions is a mapping

from P to E, the latter being the set of efficient portfolios (with E ⊂ R5). If we were able

to plot five-dimensional graphs, we could vary all five parameters from zero to some large

number to get a picture of the efficient frontier. In Section 4.2.2, we assume deterministic

social returns. This allows us to derive graphs of the efficient frontier.

Liquidity constraints

Usually, investors have some amount of wealth which is free to invest, whereas the majority

of their funds is already invested and frequently locked in. In this case, a completely new

allocation between assets would have to include transaction costs from premature cancelation.

This could be done by subtracting these costs from the financial means. In many other cases,

this cost might be prohibitively high. Sometimes, it is not even possible to reallocate, as

would be the case for donations (which can also be considered an asset). In these cases, our

optimization approach is still applicable, but with modifications concerning the constraints.

The ownership of a house worth half a million dollar out of a total wealth of one million pins

down, say, x1 to be one half. The financial and social characteristics of the house must be

determined.21 These values not only pin down x1 but also impose restrictions on the (financial

and social) characteristics of the portfolio. Optimization will then be done over xi, i = 2, ..., N .

The change in the objective function can be illustrated with financial mean. Instead of having

µRP
=
∑

i xiµRi for all i, we would have to use µRP
= 0.5 · 0.02 +

∑
i xiµRi , i = 2, ..., N if

the estimate for the financial mean of the increase in the price of the house is 0.02. The fact

that someone has donated money can be incorporated by fixing the respective share (e.g.,

x2 to 0.05 for donating $10, 000 out of a total wealth of $200, 000), using a financial mean

of µR2 = −1, financial risk of zero (the second row and column in ΣR are zero then) and

probably the highest value available of social returns.22 In the stochastic setup, we should

also find variations in social returns of the charitable organization.

21In terms of financial returns, this is rather straightforward. Social returns might depend on whether it is
a low energy house, how many people live in it per square feet, and so on. Social returns would mainly consist
of ecological returns in that case.

22Donating money to political parties might have different social returns than giving money to charity.
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4.2.2 Deterministic social returns

In this section, we consider a simplified version of the optimization problem (4.3), namely

with deterministic social returns. As indicated in the introduction, the resulting problem is

similar to the special case of (4.3) which results from setting both β4 and β5 equal to zero.

This special case would describe an investor that faces stochastic social returns but does not

condition its optimal decision on the volatility of social returns. Above, we have called this

type of investor ‘risk-neutral regarding social returns’.

Preferences with deterministic social returns

Compared to efficiency as defined in Definition 4.1, the search for the efficient frontier becomes

easier.

Definition 4.3 Portfolio A is ‘µ-S-σ efficient’ if there is no portfolio B with

µA ≤ µB,

SA ≤ SB,

σA ≥ σB,

and at least one inequality strict.

Definition 4.4 The ‘efficient frontier (with deterministic social returns)’ is the set of all

µ-S-σ-efficient portfolios.

Now, the financial mean and variance of the portfolio are called µP and σP , respectively. The

preference function we use is

β1µP (~x) + β2SP (~x)− σ2
P (~x),

normalizing the financial risk coefficient, β3 = 1. We write SP instead of µSP
to stress the fact

that social returns are deterministic (whereas the aforementioned special case of the stochastic

optimization problem (4.3) with β4 = β5 = 0 would use µSP
).
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As in Subsection 4.2.1, we can describe different types of investors by varying the two

preference coefficients. In this subsection, risk aversion is unambiguously related to financial

risk aversion. Even if there is no canonical or straightforward measure of risk aversion in this

setup, we can define the notion of one individual being more risk averse than another in the

following way: A tuple T = (β1, β2) represents higher risk aversion than a tuple T ′ = (β′1, β
′
2)

if β1 ≤ β′1 and β2 ≤ β′2, with strict inequality for one of them. Thus, preferences we are able

to model include

β1 = 0: financial mean blindness,

β2 = 0: social blindness,

β1 = β2 = 0: maximum risk aversion,

β1 →∞ and/or β2 →∞: risk neutrality.

The set of all possible preference coefficient combinations is now two-dimensional so that the

optimal solution ~x∗ becomes a mapping from two- into three-dimensional space. This enables

us to plot the efficient frontier (see Appendix 4.4.1).

To find the efficient frontier, we consider the simplified optimization problem

max
~x
{β1µP (~x) + β2SP (~x)− σ2

P (~x)}, (4.14)

s.t.
N∑

i=1

xi = 1.

The solution is given in equation (4.13). The matrix M becomes the matrix CR with β3 = 1

since CS and CRS consist of only zeros in the deterministic case (or, if investors do not care

about variations in social returns, β4 = β5 = 0 make them consist of only zeros).

The vector ~x∗ is a function of the remaining two preference coefficients β1 and β2. Inserting

the optimal solution ~x∗ (without x∗N+1 = λ) into the three portfolio dimensions financial mean,

social return and financial risk, the optimal portfolio is a triple depending on two parameters,

β1 and β2.
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The general procedure of optimization also allows for a riskless asset, simply by choosing

the characteristics of one of the assets such that it equals the riskless asset, i.e., zero risk and

some positive financial return (and a suitable social return). Another way to include a riskless

asset is to reformulate the optimization problem. We do this in Appendix 4.4.3.

Tobin-like separation

Definition 4.5 Preferences of two investors, represented by two tuples T = (β1, β2) and

T ′ = (β′1, β
′
2) are said to ‘only differ in risk aversion’ if, and only if, β1

β2
= β′1

β′2
and βj 6= β′j for

j = 1, 2.

Let

C−1
R := K :=


k1,1 . . . k1,N+1

...
. . .

...

kN+1,1 . . . kN+1,N+1


be the inverse of CR. Thus, we can write the components of the vector ~x∗, which maximizes

(4.14), as

x∗i =
N∑

j=1

ki,j(β1µRj + β2Sj) + ki,N+1. (4.15)

The formula is also valid for x∗N+1 = λ.

This paragraph is concerned with Tobin-like separation properties, i.e., the division of

wealth into investment in a riskless asset on the one hand and a risky portfolio on the other.

Tobin (1958) considered investors with mean-variance preferences facing a set of risky assets

and a riskless asset. Not surprisingly, investors with different attitudes towards risk invest

different shares of their total wealth into each of the assets available. However, Tobin was

able to show that the portfolio consisting of the risky assets is the same for all investors with

µ-σ-preferences, irrespective of their attitudes toward risk. Since this optimal portfolio can be

derived as the point of tangency between the riskless asset and the efficient frontier in mean-

standard deviation space, Tobin labeled that common optimal portfolio the ‘tangent portfolio’.
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Proposition 4.2 There is no single tangent portfolio. The composition of the optimal port-

folio of risky assets depends on preferences.

Proof: Let x1 be the share of wealth invested in the riskless asset. This determines some values

in the matrices CR and K = C−1
R . Clearly, since there is no variation in the return of asset 1,

its variance and the covariance with all other assets is zero. Therefore, σR1,Rj = σRi,R1 = 0

for all i, j = 1, ..., N . These changes also affect the inverse of CR: ki,N+1 = kN+1,j = 0 for all

i, j ≥ 2 and k1,N+1 = kN+1,1 = 1. Also, we take the riskless asset to have a social return of

zero so that S1 = 0.

The portfolio of risky assets consists of the assets i = 2, ..., N . The weight of each indi-

vidual asset in that portfolio can be calculated as

xTP
i =

∑N
j=1 ki,j(β1µRj + β2Sj) + ki,N+1∑N

m=2

∑N
j=1 km,j(β1µRj + β2Sj) + km,N+1

. (4.16)

for i ≥ 2. It is important to note that normalizing β3 to unity implies that neither CR nor K

depends on preference coefficients. We can see that variations in β1 and β2 affect the weights

of the risky assets in the tangent portfolio. q.e.d.

Proposition 4.3 There is a single optimal portfolio whose composition is identical for in-

vestors that only differ in risk aversion.

Proof: Since ki,N+1 = 0 for all i ≥ 2, rearranging equation (4.16), namely by separating sums

and dividing numerator and denominator by β2(> 0), yields:

xTP
i =

β1

β2

∑N
j=1 ki,jµRj +

∑N
j=1 ki,jSj

β1

β2

∑N
m=2

∑N
j=1 km,jµRj +

∑N
m=2

∑N
j=1 km,jSj

. (4.17)

Thus, variations in β1 and β2 can clearly change the weights in the tangent portfolio. However,

a change only in risk aversion according to Definition 4.5 means that we scale both β1 and β2

up or down by a constant so that the ratio β1

β2
does not change. From equation (4.17), it is only

this ratio which influences the weights in the tangent portfolio, not their absolute values. q.e.d.

Proposition 4.3 does not imply that the absolute levels of wealth invested in each of the risky

assets do not change. Only the relative weights of the risky assets within the optimal portfolio
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of risky assets do not change. To see the latter point more clearly, consider the share of total

wealth invested in the riskless asset.

x1 =
N∑

j=1

k1,j(β1µj + β2Sj) + 1 = 1 + β1

N∑
j=1

k1,jµj + β2

N∑
j=1

k1,jSj , (4.18)

since k1,N+1 = 1. If we scale both β1 and β2 up or down such that their ratio β1

β2
does not

change, x1 does change. To summarize, even in the deterministic setup, there is no single opti-

mal portfolio, but a set of optimal portfolios instead. Each portfolio in this set represents the

optimal portfolio for some type of investor, the type being determined by the preferences in

terms of financial returns, risk and social returns. However, we could speak of a conditionally

optimal portfolio, conditionality with respect to the relative financial mean and social return

preferences: Fixing the ratio β1

β2
leads to a single optimal portfolio of risky assets, irrespective

of changes in risk aversion. Given such a ratio, asset allocation is a dichotomic problem: What

does the optimal portfolio of risky assets look like and how should total wealth be allocated

between that portfolio and the riskless asset.

We have seen that Tobin separation breaks down if we include social returns and differences

in preferences for social returns into the objective function. In the remainder of this section,

we try to give an intuition at the expense of formal rigor. In doing so, we suggest to consider

the non-existence of Tobin separation as natural and ask why Tobin separation still obtains

if investors only differ in risk aversion.

Consider two types of investors with different preferences. Investors of type 1 do not

care about social returns, i.e., β2 = 0 while β1 > 0. This is the case of standard portfolio

theory. By contrast, investors of type 2 have a strong social orientation, such that β1 = 0

while β2 > 0.23 Accepting some risk allows both types of investors to gain a premium,

both in terms of expected financial returns and social returns. Investor 1 will try to gain a

maximal financial premium (at whatever social return) for additional risk, whereas investor 2

will focus on a social premium (at whatever expected financial return) as a compensation for

23Some readers might dislike this combination since such investors dislike financial risk, but do not care
about the mean of their investment. However, first, we only use this constellation to make our point most clear
intuitively, and second, this constellation of preference parameters is analogous to what is assumed to derive
the minimum-variance portfolio in standard portfolio theory with only financial returns.
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risk. Hence, except for nongeneric cases (e.g., if there is just one risky asset available), their

optimal portfolios will differ and Tobin separation breaks down.

We go on to consider three special cases in which Tobin separation obtains nevertheless.

First, we consider different investors of type 1, i.e., investors with β2 = 0 but different β1 > 0.

Second, we analyze different investors of type 2, i.e., with β1 = 0 but different β2 > 0. Third,

we generalize by looking at different investors with both β1 > 0 and β2 > 0. Let these last

investors be of type 3.

Type 1 investors are standard Markowitz investors, focusing only on financial returns. It

is well known that the optimal portfolio of such an investor maximizes the Sharpe ratio, which

is defined as the expected excess return from a portfolio in relation to the portfolio’s risk: For

any unit of risk borne, the investor tries to get as much additional expected financial return.

Let µPall
denote the expected financial return of an investor’s optimal portfolio constructed

from all risky assets and the riskless asset. Also, let σPall
denote that portfolio’s standard

deviation. With the riskless rate r, the Sharpe ratio is

µPall
− r

σPall

.

Both numerator and denominator approach zero for investment in the riskless asset only.

Shifting funds toward some portfolio of risky assets changes both numerator and denominator.

Since these changes occur linearly for both numerator and denominator, the Sharpe ratio does

not change. Thus, different attitudes toward risk (i.e., different β1 > 0) make investors of type

1 choose between the portfolio that gives the highest financial premium for a given amount

of risk, and the riskless asset. Choosing any other combination of the riskless and/or risky

assets leads to a lower Sharpe ratio.24 This is exactly the reason why Tobin separation holds

in a Markowitz world.

Second, consider investors of type 2, the social fanatics. For a given amount of risk, this

investor tries to maximize the social premium. Assigning a social return equal to zero to the

riskless asset, we can define the ‘social Sharpe ratio’ as the social excess return per unit of

risk,

24In fact, the efficient frontier might have linear segments so that there might be infinitely many optimal
portfolios. Since this happens in nongeneric cases only, we ignore this subtlety.
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SPall

σPall

.

As with the Sharpe ratio, numerator and denominator approach zero for investment in the

riskless asset only, but change linearly when funds are shifted between some portfolio and the

riskless asset. Assuming that there is a portfolio that maximizes the ‘social Sharpe ratio’,

different social investors of type 2 (with different β2) will all invest in the same portfolio of

risky assets, only the shares of total wealth invested in that portfolio will differ. Thus, we

have another special case in which Tobin separation obtains.

Given a social return of the riskless asset equal to zero, we think it is noteworthy that

either the financial or the social premium of the optimal portfolio might be negative - but not

both at the same time. To see this, consider the extreme situation in which there is only one

asset with a positive social return. Then, if this ‘social asset’ has a financial mean below the

riskless rate,25 an investor of type 2 would choose a portfolio with a high social return at the

expense of accepting a negative financial premium and some positive risk. Similar reasoning

applies to the financially minded investor 1. However, instead of incurring both negative

financial and negative social premia, every investor would prefer to invest in the riskless asset

only.

So we have seen that the composition of the optimal portfolios of investors of type 1 and

type 2 usually differ. However, we have also seen an intuitive explanation for Tobin separation

for different investors of types 1 or 2. Note that both of the above intra-type comparisons

can be seen as comparisons of investors that differ in risk aversion only: Since one of the two

preference coefficients was assumed to be zero (β2 for type 1 and β1 for type 2), changing the

absolute value of the other, non-zero preference coefficient does not change the ratio of the

two (which is zero or infinity).

Third, let us consider the most interesting type of investors, viz., type 3. We focus on the

case of two type-3 investors which only differ in risk aversion. Such investors have different

preference coefficients whose ratios are identical though (cf. Definition 4.5). As seen above

and independently of the type of investor, additional risk carries two premia, a financial and

a social premium. Investors try to maximize the ‘social plus financial Sharpe ratio’

25This constellation is completely unrealistic and only chosen for ease of exposition. The argument also holds
for more realistic situations.
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SFSR =
β1(µPall

− r) + β2(SPall
− 0)

σPall

,

which is a weighted sum of (expected) excess returns per unit of risk incurred. To see why

investors maximize this expression, note that investment only in the riskless asset yields a

value of the objective function (4.14) of β1r. Increases in risk must be traded-off against

increases in the terms which enter the objective function positively. The premium for risk is

then β1µPall
+ β2SPall

− β1r − β20,26 or, after rearranging, the numerator of SFSR.

All linear combinations of µPall
and SPall

, as well as σPall
are again linear functions of the

share of wealth invested in the riskless asset. Thus, for given β1 and β2, shifting funds between

the riskless asset and a given portfolio does not change the ‘utility premium’ per unit of risk.

Assuming there is a portfolio which maximizes SFSR,27 differences only in risk aversion will

lead to reallocation of funds between the riskless asset and that portfolio. To see this, notice

that differences only in risk aversion imply that β1 and β2 change such that their ratio does

not change. Then, the ‘new’ SFSR is only a multiple of the ‘old’ SFSR. Therefore, the

‘old’ optimal portfolio also maximizes the ‘new’ SFSR and investors which differ only in risk

aversion will all invest in that portfolio and the riskless asset, only the respective shares of

wealth differ.

Thus, the concepts of Sharpe ratio and ‘social Sharpe ratio’ are special cases of the SFSR.

Each of the former two can be considered independently of preference coefficients. Including

coefficients would only lead to maximization of some multiple of the original ratio, so that

the same optimal portfolio would follow. However, once there are several terms entering the

objective function positively and with potentially different coefficients, including preference

parameters in order to consider a utility premium becomes indispensable.28

4.3 Research outlook and conclusion

What we have done so far can probably be extended to more than just portfolio choice. As

mentioned in the introduction to this chapter, we hope to be able to apply the model to asset
26Recall that the social return for the riskless asset is assumed to be zero.
27Recall that Proposition 4.1 guarantees a unique solution only if the matrix M is invertible.
28As a result, interpreting social returns simply as an additional payoff and maximizing α(µP + SP )− γσ2

P

would again lead to Tobin separation. After all, changing α or γ (or both) would only be a special case of
investors differing in risk aversion only.
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pricing. One way to tractably apply our theoretical results could be to divide investors into

two classes: Some purely financially minded, others with some preference for social returns.

As a consequence, even if both types of investors differ considerably in terms of risk aversion

(only), there would be two optimal portfolios. In the spirit of the CAPM, one could then look

for conditions which must hold in order to have an equilibrium in which all investors invest in

their respective optimal portfolio of risky assets. Our hope is to be able to derive asset-specific

discount factors which can then be applied to future cash-flows in order to predict current

market prices. Social returns could then influence asset prices in two possible ways. First,

they could be used to derive discount factors which are then applied to financial cash flows

(cf. Cochrane, 2005, Ch.1). Second, the standard model of discounting future financial cash-

flows could be extended to include both financial and social future cash flows which are then

discounted by a financial and social discount factor, respectively. The price of an asset could

then be calculated as some mixture between both discounted future cash-flows. However,

we have not brought these ideas into a formal framework yet, and it is probably a long way

to go from the status quo. In terms of the current model, several interesting extensions

are worth further investigations. In terms of economic theory, a desirable robustness check

would consist of incorporating measures of risk other than variance. Also, one should impose

short-selling restrictions, i.e., add the constraint xi ≥ 0 for some i since (in Dorfleitner, Leidl,

Reeder, 2009) the theory is applied to investments some of which cannot easily be shorted in

reality. This requires the development of an algorithm as in Markowitz (1987). Furthermore,

we think that the inclusion of initial wealth of the investor might yield interesting results.

The consideration of wealth levels could be such that higher wealth implies less (financial)

risk-aversion and more social concern.29

Besides further theoretical research, there are interesting applications of the model. To

make it more suitable for actual investment decisions, we could transfer modern portfolio

techniques like the Black and Litterman (1992) model30 to the case with social returns.

When putting the model to the data, it is most straightforward to consider MFIFs and
29A case in point are the high net worth individuals headed by Bill Gates who started to do financially

sustainable investment in the past, but mostly change their behavior going into charity.
30The authors recognize the problems associated with the CAPM, namely the need to estimate parameters

for all assets available. While asset managers usually have profound knowledge of some assets, they might
be completely uninformed about others. Therefore, Black and Litterman develop a technique which allows to
specify estimates for only some assets, and then uses CAPM logic to determine estimates for the remaining
assets.
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other industry-specific funds,31 where the model can be a guide to help asset managers who

have to determine ‘the’ optimal structure of their products, given a socially-oriented clientele.

Another possible field of interest where investors put emphasis on non-financial objectives

is the area of government funds. At this juncture, we might replace the term ‘social returns’

simply by ‘non-financial returns’ since governments have a huge range of objectives. Many

are concerned with securing stable prices for resources. Most government funds have strategic

objectives which include securing future access to resources in foreign countries, or fostering

certain industries with special importance.

However, in all areas, the measurement of social returns is still very imperfect and difficult.

In some industries, people have proposed scales to measure them. In a very small subset of

these, there are also data available. The biggest challenge remains the comparison of social

returns between industries. Our model in its most general form with stochastic returns is based

on a metric scale of social returns. But comparing social returns of an arms manufacturer

and an MFI is very difficult: How bad is it to produce a hundred of guns and how good is it

to provide 100 poor children with basic education? And how do we judge all the intermediate

companies? Where do we put a software company? How close is the development of an e-

learning platform to a microfinance investment? And how far away is the software company

programming and distributing ego shooters? These are highly normative questions which

cannot be answered using a positive analysis of portfolio choice.

At the same time, we are confident that there will be progress on social metrics. More

and more firms become more transparent with regard to social performance. Clearly, firms

have an incentive to report on good social performance. The issue then becomes one of proper

supervision. Financial intermediaries seeking refinancing from socially oriented investors are

putting pressure on their target groups. Reille and Forster (2008, p.15) write that “Triodos [a

‘social bank’] is already pushing MFIs to be more transparent about their social impact, lend-

ing practices, and environmental policies”. The authors also point to the “Global Reporting

Initiative” (p.15), which describes itself as “a network-based organization that has pioneered

the development of the world’s most widely used sustainability reporting framework and is

committed to its continuous improvement”.32

31We do this in Dorfleitner, Leidl, and Reeder (2009).
32See http://www.globalreporting.org/AboutGRI/WhatIsGRI.
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In a way, the burgeoning initiatives on the measurement of social returns reflect our

conviction that the paradigm shift of many investors goes on.33 Thus, the issue of social

returns becomes more and more important. In order to properly describe the investment

behavior of a growing segment of the market, new economic models are necessary. The model

of this chapter can hopefully provide a first step in that direction.

33However, we admit that, even if it is possible to measure and compare social returns, it will still be hard to
incorporate them into the objective function of an actual investor. One way to derive estimates for the values
of βk is to ask people sophisticated questions which make them reveal their preferences for social returns.
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4.4 Appendix

4.4.1 Three-dimensional efficient frontier

Figure 4.2 shows a graph of a three-dimensional efficient frontier.

Figure 4.2: Efficient frontier with social returns.

Note that the shape of the efficient frontier is highly sensitive to the set of underlying assets.

We used three assets to derive the graph in Figure 4.2: equities (Dow Jones EuroStoxx), bonds

(EuroMTS Global Index), and microfinance (responsAbility Global Microfinance Fund). Our

estimates for the financial moments can be found in Table 4.1. The equity fund has the

highest expected return, viz., 11.01%. The bond fund return is 4.58% and the MFIF’s return

is only slightly below at 4.05%. In terms of financial risk, the equity fund was most risky
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with a volatility of 18.52% followed by the bond fund’s 3.44% and the MFIF’s 1.29%. Both

the bond fund and the MFIF exhibit a negative correlation to the equity fund and a positive

correlation between each other.

equity fund bond fund MFIF
µRi 0.1101 0.0458 0.0405
Si 0 0 0.01
σRi 0.1853 0.0344 0.0129

Correlations
equity fund 1 -0.2117 -0.3217
bond fund -0.2117 1 0.1027

MFIF -0.3217 0.1027 1

Table 4.1: Descriptive statistics.

We vary β1 and β2 in the interval [0, 0.1] to get the three-dimensional efficient frontier. The

large upper panel in Figure 4.2 shows this surface. The three smaller graphs in the lower

panel show the same efficient frontier if we turn it such that one dimension disappears. The

first small graph is the three-dimensional efficient frontier in two-dimensional standard mean-

variance space. Its outer boundary on the left side resembles the Markowitz frontier. In

a Markowitz world, the inner portfolios in that graph would not be efficient since there

are portfolios with more return for the same amount of risk and portfolios with less risk

for the same return. Even though these ‘Markowitz-dominating’ portfolios exist here, too,

the ‘Markowitz-dominated’ portfolios can be efficient nonetheless. The reason is that these

portfolios have higher social returns than the portfolios on the upper left in the small graph in

the lower panel. For instance, consider portfolio A which we have marked in all four graphs.

It has a low expected return and a rather high risk. However, it is the portfolio with the

highest social return on the surface depicted. Thus, it is the optimal portfolio for an investor

with a strong social orientation, i.e., the one characterized by β1 = 0 and β2 = 0.1.

4.4.2 Expected utility vs. mean-variance

Two excellent surveys about mean-variance justifications can be found in Chapter 4 and

6 in Chavas (2004), and in Chapter 3 in Huang and Litzenberger (1988). For univariate

optimization, there are three ways to guarantee consistency of mean-variance and expected
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utility optimization.

First, consider quadratic utility

u(x) = a + bx + cx2

with b > 0 and c < 0 (risk aversion). Taking expectations yields expected utility

EU(x) = a + bE[x] + cE[x2] = a + bE[x] + c
(
E[x]2 + V ar[x]

)
,

which is a function of mean and variance of x only. Clearly, quadratic utility has its drawbacks.

For consistency with positive marginal utility, x has to be smaller than −b
2c . Also, risk aversion

requires c < 0 which implies increasing absolute risk aversion (IARA), a highly implausible

assumption. On the other hand, quadratic utility is a useful proxy for many other utility

functions since a second-order Taylor approximation of any differentiable utility function

yields a quadratic function.

The second way assumes a specific distribution of returns. Chamberlain (1983) charac-

terizes distribution functions which imply equivalence. Ingersoll (1987, p.96-97) shows that a

sufficient condition for equivalence is that returns are multivariate normally distributed.

The third way also assumes a particular distribution. However, it is only the (univariate)

portfolio return which needs to be normally distributed. In addition, a specific utility is

assumed, namely exponential utility

u(x) = −e−γx, γ > 0.

This function displays the property of constant absolute risk aversion (CARA), which is more

realistic than IARA (as with quadratic utility).

Let µ = E[X] and σ2 = V ar[X] be the first two moments of the normally distrib-

uted portfolio return x. Since −γx is also normally distributed with E[−γX] = −γµ and

V ar[−γX] = γ2σ2 the term e−γX is log-normally distributed. Therefore, the expected utility

of X is

E[−e−γX ] = −e−
1
2
(−γ2σ2+2γµ) = −e−γ(µ− γ

2
σ2). (4.19)
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The last term in the above equation is an increasing function of µ − γ
2σ2. Therefore, maxi-

mization of µ− γ
2σ2 is equivalent to maximizing expected utility. The latter case can also be

expanded into the social return dimension when using a biattributive utility function of the

form

u(x1, x2) = −e−γ1x1 · e−γ2x2 = −e−γ1x1−γ2x2 .

This utility function is of the class u ◦ l with u representing a univariate utility function

and l a linear form. This class has the comfortable property that the two most important

biattributive risk aversion concepts coincide (see Dorfleitner and Krapp (2007)). Assuming a

normal distribution of x1 and x2, −γ1x1− γ2x2 is also normally distributed with expectation

−γ1µ1 − γ2µ2 and variance γ2
1σ2

1 + γ2
2σ2

2 + 2γ1γ2σ1,2.34 Thus, expected utility can be written

as

Eu(x1, x2) = −e−γ1µ1−γ2µ2+ 1
2
γ2
1σ2

1+ 1
2
γ2
2σ2

2+γ1γ2σ1,2 .

Since −e−γx is an increasing transformation of x, maximization of γ1µ1 + γ2µ2 − 1
2γ2

1σ2
1 −

1
2γ2

2σ2
2 − γ1γ2σ1,2 is identical to maximization of expected utility.

4.4.3 Tobin separation: an alternative approach

We again make the simplifying assumption of deterministic social returns.

Instead of interpreting one of the assets in our above optimization problem as the riskless

one, explicit modeling is even easier. So let x0 be the share of wealth invested in the riskless

asset, with x0 = 1 −
∑N

i=1 xi being the residual share. As in the above section, apart from

having a variance of zero per se, we assume that the riskless asset has no social return, i.e.,

S0 = 0.

The portfolio financial mean µP becomes

µP = r +
N∑

i=1

xi(µi − r) .

The optimization problem is

34µj and σ2
j are the expectation and variance of xj , respectively. σ1,2 is the covariance between x1 and x2.
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max
x1,...,xN

β1r + β1

N∑
i=1

xi(µi − r) + β2

N∑
i=1

xiSi −
N∑

i=1

N∑
j=1

xixjσRi,Rj .

We do not need a constraint on the sum of the asset weights in the portfolio. By construction,

optimal weights x0, ..., xN add up to one. Again differentiating w.r.t. the weights ~x, optimal

weights are

~x∗ = C−1 × ~z ,

where ~x∗ is now of dimension N since there is no constraint. We use

~z := (β1(µ1 − r) + β2S1, . . . , β1(µN − r) + β2SN )T

(of dimension N , too) and the (N ×N) matrix

C :=


2C11 . . . 2C1N

...
. . .

...

2CN1 . . . 2CNN

 = 2ΣR .

Let

C−1 = K :=


k11 . . . k1N

...
. . .

...

kN1 . . . kNN

 ,

so that the weights xi for i = 1, ..., N follow

xi = β1

N∑
j=1

kij(µj − r) + β2

N∑
j=1

kijSj .

Excluding the case of β2 = 0 (the Markowitz case), we get

xTP
i =

β1

β2

∑N
j=1 kij(µj − r) +

∑N
j=1 kijSj

β1

β2

∑N
m,j=1 kmj(µj − r) +

∑N
m,j=1 kmjSj

.

The share of asset i in the optimal portfolio of risky assets only depends on the ratio β1

β2
.
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Conclusion

This dissertation is the result of three years of research. Prior to and during that time, we have

observed three facts which seemed to be underrepresented in economic theory. First, markets

in general and financial markets in particular seem to be characterized by the existence of im-

mense aggregate risks. Second, formal credit markets in developing countries grew, and many

MFIs became able to detach themselves from governments and donor agencies, seeking market

refinancing instead. Third, and certainly not independent from the previous fact, the emer-

gence of ‘social funds’ suggested that investors increasingly take into account non-financial

objectives when they decide about how to invest. Our aim was to develop a microeconomic

foundation which more closely represents these stylized facts. In order to do so, we resorted

to three well-established formal frameworks.

In Chapter 2, we extended the seminal Stiglitz and Weiss (1981) model by introducing

dependent project revenues of risky firms. We have pointed out the conditions under which

households react in one way or another to the capital risk implied by the dependency of firms’

revenues. We have seen that the households’ risk attitude is crucial to determine the credit

market equilibrium. Establishing a notion of social optimum in the presence of aggregate risk,

we were able to show that both overinvestment and underinvestment are possible in the market

equilibrium. In a comparison to the SW model with independent project revenues, we have

seen that project dependency can aggravate adverse selection in that it reduces the amount of

active safe firms. In light of the forthcoming publication of Arnold and Riley (2009), we found

another interesting relationship. The impossibility of a globally hump-shaped expected return

197
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function does not imply that credit rationing is impossible in equilibrium, i.e., a hump-shaped

return function is not a necessary condition for credit rationing.

Chapter 3 is based on one of the most often cited models in the realm of microfinance,

viz., the strategic default model of Besley and Coate (1995). In a first step, we took their

repayment game as it is, i.e., with non-cooperative behavior of borrowers, and analyzed its

performance in a credit market equilibrium. We have seen that the equilibrium might consist

of both individual and group lending contracts at the same time if penalties are completely

pecuniary. Considering the more natural assumption of non-pecuniary penalties, we found

a counterintuitive result: The equilibrium might be characterized by individual lending con-

tracts even though group lending contracts would yield the higher repayment rate and could

be offered at lower loan rates. As an explanation to this phenomenon, we identified ineffi-

ciently high penalties through banks, which can be attributed to borrowers’ non-cooperative

behavior. Assuming that borrowers cooperate in the repayment game, this odd result dis-

appeared. More than that, we were able to show that group lending is the unique mode

of finance when penalties are non-pecuniary and borrowers cooperate. We also considered

the effects of social sanctions. Even though sanctions increase the repayment rate of group

lending both compared to individual lending and to group lending without sanctions, they

can have critical implications. In order to avoid stigmatization through social sanctions, bor-

rowers might sell their belongings to repay a group loan, even though the bank is unable to

force borrowers to do so. In that sense, social sanctions can undermine limited liability. The

acceptance of a group lending contract might then drive borrowers into deeper poverty. If

borrowers are risk-averse, they might refuse such contracts with consequences for the mar-

ket equilibrium. This can also happen if a part of the penalty is pecuniary. By contrast, if

borrowers are risk-neutral and if penalties are non-pecuniary, we have shown that any loan

rate that banks would possibly offer in equilibrium implies the use of group lending contracts

and the participation of borrowers. As a general result, our model suggests that the kind of

market failures known from the literature on asymmetric information are also present in the

microcredit market characterized by enforcement problems, irrespective of both the degree of

cooperation between borrowers and the existence of social sanctions. Cooperation and social

sanctions ameliorate but do not eliminate these market failures.

In Chapter 4, we extended Markowitz (1952) to include a social dimension. We argued in



199

favor of including social returns into an investor’s objective function and solved the resulting

optimization problem, both for stochastic and deterministic social returns. We defined the

new efficient frontier and derived two interesting properties: In general, optimal portfolios

of different investors are not the same if the investors’ preferences are represented by the

extended mean-variance function. However, if investors only differ in risk aversion, we have

seen that there is a single optimal portfolio for all such investors. The optimal solution

as a function of the investors’ preferences allowed us to determine the optimal structure of

different investors’ portfolios. Moreover, asset managers of social funds can use the solution

of the model with stochastic social returns to determine an optimal allocation of wealth. For

given investor preferences, the solution shows how individual assets should be combined in

order to maximize utility arising as a combination of social and financial returns, taking into

account correlations between social and financial returns of the assets.

It was interesting to see how our understanding of the phenomena considered has evolved

over time. Some of our results confirm what would have been expected intuitively. When

we started thinking about aggregate risks in the SW model, we were convinced that credit

rationing is a likely outcome. However, the number of channels and mechanisms involved grew

steadily. We were fascinated by the diversity of results following a small change in the utility

function or in the assumptions regarding the social optimum. We hope to have provided an

exposition which helps the reader understand the subtleties involved when thinking about the

effects of aggregate risks in a credit market equilibrium. We expect to see further research on

this topic in more advanced models.

By contrast, while thinking about the incorporation of social returns in a model of port-

folio choice, we had no expectations as to where we would go. We have developed a simple

framework which we can hopefully extend to answer questions related to asset pricing. This

becomes particularly important if microfinance continues to grow at current rates. In order to

ensure that the global fight against poverty is advancing as quickly and efficiently as possible,

further research on microcredit markets is highly desirable.
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