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Knowledge-base evolution techniques are shown to be of 
critical importance for the successful application of knowl­
edge-based systems in complex domains. By conceptualiz­
ing knowledge-base evolution as theory revision, we can 
take advantage of the basic findings from different research 
communities. Results from Inductive Logic Programming 
(ILP) and Explanation-Based Learning ( E B L ) provide a set 
of techniques that can be used as a foundation for obtaining 
new knowledge {knowledge-base exploration). Techniques 
from deductive database research might be used for testing 
the correctness of a knowledge base (knowledge base verifi­
cation). By an interactive application of these exploration 
and verification techniques, domain experts and other users 
may similary improve the effectiveness of the knowledge 
base (knowledge validation). The application of such se­
lected techniques is then discussed with respect to the spe­
cific problem of improving production parameters. 

1. Introduction 

It is a long held belief, that micro-worlds, such as 
the blocks world, sorting tasks or chess end games 
are the drosophila of Artificial Intelligence and 
Machine Learning research, where the fundamental 
successes are to be achieved and demonstrated. A 
quote by Amarel [1, p.258] highlights this view. 
'These toy problems provide an excellent para­
digmatic task environment in which essential 
aspects of the representation problem can be studied 
... They are serving as drosophila of research in the 
general area of problem representations, and in the 
study of acquisition of problem solving skills'. 

Although there cannot be any doubt that many 
successes of Machine Learning have been achieved 
in these micro-worlds, the utilization of these 
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achievements in complex real world domains (e.g., 
the industrial applications of Machine Learning) is 
much more difficult than had been originally 
anticipated. Buchanan [10, p.5] for example, 
reports that except for simple classification sys­
tems, knowledge-based systems do not yet employ 
a learning component to construct parts of the 
knowledge bases from libraries of previously 
solved cases. 

It has been pointed out only recently, that real 
world domains have quite different characteristics 
than the micro-words where new machine learning 
techniques are routinely demonstrated. Com­
plexity, continuous innovations and documentation 
as well as incomplete and conflicting knowledge 
are the most eminent characteristics [37]. Because 
of the dynamic character of real world domains, the 
application of knowledge-based systems requires 
that the changes in the field can at least be traced 
(preferably predicted and discovered) by approp­
riately selected machine learning techniques. Such 
updating and revision processes are termed knowl­
edge base evolution. Comparable to the human 
genome project which also requires additional 
resources, above and beyond the discovery of the 
genetic mechanisms with the drosophila, the ILP 
community must therefore also pay more attention 
to applications in complex real world domains. 

In order to develop knowledge-base evolution 
techniques with respect to complex real world 
domains, we first analyzed the requirements of 
product and production planning with new 
materials by using the specific example of the 
manufacturing of bucket seats in the car industry. 
The results are summarized in Section 2 of this 
paper. Section 3 then describes a respective knowl­
edge-base that is currently being developed by an 
iterative application of the CLASSIC methodology 
to knowledge engineering [8]. Section 4 will then 
show how the knowledge evolution can be 
understood as theory revision [33], where the 
knowledge-base evolution system and the user 
cooperate in a way, similar to an apprenticeship 
learning system [40]. 

Theory Revision has recently been proposed as a 



Fig. 1. The manufacturing of a bucket seat with a G M T (reprinted by permission from the l-lastogran GmbH). 

general framework, where Explanation-Based 
Learning (EBL) and Inductive Logic Programming 
(ILP) can be integrated [27]. For mastering the 
knowledge evolution requirements of the specific 
application, we can thus draw upon the basic 
research results from both E B L as well as ILP. 
Furthermore, exploration and verification pro­
cesses will be distinguished. A continuous (in­
teractive) improvement of a knowledge base during 
its entire life-time starting with the first forma­
lizations (knowledge base seed) and still con­
tinuing along its practical use can thus be achieved 
[26]. 

Expert knowledge from the application domain 
is used for constraining the exploration processes, 
so that an efficient implementation can be ob­
tained. Expert knowledge will be employed to 
determine the representation bias (also known as 
'restricted hypothesis space bias') and search bias 
(also known as 'preference bias') of induction [32]. 
More specifically, domain knowledge is used to 
specify the representational bias and metaknowl­
edge to determine the search bias. The paper will be 
concluded with a general discussion of the role of 
knowledge-base evolution for the quality of prac­
tical knowledge bases. 

2. Product and Production Planning 

In the car industry, like in other modern in­
dustries, the innovation cycles have become 
increasingly shorter. Driven by the objectives of 

environmental protection laws, hazardous manu­
facturing materials must be replaced by more 
adequate new materials. Equally important is the 
reduction of cost while the highest possible quality 
standard is being maintained. In many branches, 
new materials such as glass mat reinforced thermo­
plastics (GMT) are currently introduced and in­
creasingly more used for manufacturing products, 
and thereby replacing steel and metal construc­
tions. A G M T is a composite consisting of two 
components, namely a thermoplastic rein-forced 
by glass fiber. An example is the manu-facturing of 
car seats. The high security standards and other 
requirements (e.g., concerning wear and tear) can 
now be satisfied by using GMTs. For example, the 
rear part of a bucket seat for a car can now be 
manufactured with GMT, instead of more costly 
metal constructions. 

Figure 1 shows the production process with 
GMTs. It consists of a preparation phase, a pressing 
phase and a finishing phase. In the preparation 
phase the raw material is put on a conveyer belt that 
moves it through the tunnel kiln, where it is heated. 
In order to avoid an undesired cooling, the material 
is then immediately put into the hydraulic press, 
where the geometry of the car seat is pressed before 
it is cooled off so that its form is maintained. 
During the finishing phase unwanted bumps must 
be removed. 

The pressing of the material depends on a 
number of parameters with complex interrelation­
ships. The temperature of the material influences 
the volume per unit time which is responsible that 
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Fig. 2. Overall structure of the RPPP knowledge base. 

the material reaches every part of the pressing 
form. As soon as the material is put into the press, 
the press is closed with a speed of about 800 mm/s. 
As soon as the press reaches the material the speed 
is reduced to a value between 5 and 15 mm/s. After 
the press is closed a constant pressing force is 
exerted on the material for some duration. After 
that, the material is left in the press for some time 
to cool off. The duration of cooling depends on the 
temperature of the material and the tool, the tool 
geometry, the topology of the cooling capillaries of 
the tool, etc. 

In product and production planning, 'system 
development' and 'parameter optimization' are 
distinguished as two separate phases, which can 
also be called primary and secondary engineering 
[23]. In the primary phase, a prototype of the 
product and the corresponding manufacturing 
process is developed. In some previous research it 
was already shown how machine learning tech­
niques can be applied for supporting the primary 
engineering phase [31]. More specifically, it was 
shown how an explanation based abstraction 
method [36] can be used for abstracting planning 
schemata from success cases of the real world [37]. 
In the secondary phase, appropiate parameters 
must be found for the respective primary design. In 
this paper, we are solely concerned with this 
secondary design phase. In particular, we propose a 
knowledge base and knowledge evolution tech­
niques for documenting and maintaining all 
available information and knowledge. This knowl­
edge concerns the various parameters and how they 

determine the desired characteristics of the 
product. 

3. A Recycling-Oriented Product and Pro­
duction Planning Knowledge Base 

In some previous work, the selection of recy­
clable materials in product design and the process 
planning for manufacturing and recycling such 
products were identified as a promising application 
domain for knowledge base evolution. In [3] a 
materials knowledge base is discussed as an in­
tegral part of a declarative knowledge base for 
recycling-oriented product and production plan­
ning (RPPP). The overall structure of this knowl­
edge base consists of a module representing the 
materials, a second one representing production 
and recycling knowledge and a third module 
containing products that have been manufactured 
from these materials (see Fig. 2). 

3.1. The Materials Knowledge Base 

Materials constitute the substance of production 
and recycling. Materials can bedivided into fun­
damental and composite materials. The main 
problem when building a knowledge base is 
'finding the right way to break the domain into 
objects and their relationships'. One solution 
approach is given by the 'Knowledge Engineering 
Methodology for C L A S S I C [8]. This metho­
dology suggests to formalize the domain 
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Fig. 3. A taxonomy of materials. 

knowledge using some kind of terminological 
knowledge represen-tation in the spirit of K L - O N E 
[7] or a frame-like, object-centered knowledge 
represen-tation system using an inheritance hier­
archy. The methodology consists of a sequence of 
design steps. We are using an iterative application 
of this methodology by allowing multiple iterations 
of two or more of the following consecutive steps: 

1. Relevant object types are enumerated. As a re­
sult the relevant objects are determined to be 
particular plastics and composite materials, 
classes of such materials, qualitative and quan­
titative properties of the materials, numbers etc. 

2. The obtained descriptions are divided into ob­
jects and properties, which are later mapped to 
concepts and roles. In our case, classes of mate­
rials are concepts, whereas most of the proper­
ties correspond to roles. 

3. Concepts are organized into a taxonomy. This 
step yielded the hierarchy of the fundamental 
and composite materials. Part of this hierarchy 
is presented in Fig. 3. 

4. Then, the key individuals are isolated and asso­
ciated to the concepts they belong to. 

5. In order to obtain the internal structure of the 
concepts, a list of relevant properties must be 
determined for each concept. These properties 
include intrinsic and extrinsic properties and 
part-of relations. In this step, the properties of 
the plastics have been adopted from the exist­
ing C A M P U S database [9], which contains all 

the plastics produced by 22 European chemical 
industries. An important property for G M T is 
the modulus of elasticity (e-modulus). 
The part-of relation is the main relation for dis­
tinguishing composite materials. A G M T con­
sists of a thermoplastic which is reinforced with 
glass fibers to enhance its e-modulus. There are 
two types of glass fibers in the form of papers 
or mats and two types of thermoplastics poly­
propylene and polyamid. Thus we get four 
types of GMTs. The e-modulus increases as the 
percentage of glass fibers increases. 

6. In the remaining steps of the CLASSIC meth­
odology, the restrictions of the properties for 
each concept are acquired in detail. As a result 
of this step, the particular types of possible val­
ues and the cardinality of values have been de­
termined. 

For the representation of the materials knowl­
edge base we propose a respective hierarchical rep­
resentation in a terminological representation lan­
guage. 

3.2. The Product Knowledge Base as Case Base 

The Product Knowledge Base is a Case Base. It 
contains the actual parameters of the success cases 
of manufacturing car seats with different materials. 
It also represents cases, where certain quality 
requirements have not been satisfied by the prod­
uct of the industrial manufacturing process. These 
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where k is an index for referencing the specific 
case and / identifies that the case resulted from 
indus-trial experience. 

In addition to these industrial cases, the results 
from systematic experimentation, that is performed 
in material sciences research institutes, should also 
be stored in the Product Knowledge Base. In order 
to determine the thermodynamic behavior of 
GMTs during the pressing process, researchers 
may for instance perform experiments, where 
several different parameters are systematically 
manipulated to determine their influence upon 
some criterion variable. Such scientific research 
may determine, 'which influences different pro­
duction parameters have on the work done on the 
material and what kind of flow characteristics 
different GMT-materials show' [22]. Such experi­
ments may investigate how the closing speed of the 
tools, the press force and the specific material 
determine the size of the pressed material. The 
experimental results can provide very useful 
information for the product engineer, who is 
interested in manufacturing some specific car seat. 
The actual data from such experiments should 
therefore also be stored in the case base. We denote 
such cases from scientific experimentation by e+

k, 
where the index s indicates that this result was 
achieved by science research and k is an index that 
denotes the specific experiment. 

5.3. The Production Knowledge Base 

The pressing of materials depends on a large 
number of parameters. There are complex relation­
ships among these parameters, as well as between 
these parameters and the material and the quality 
requirements. As already mentioned in Section 2, 
there is relatively little knowledge available about 
which parameter values achieve the desired result. 
Even for an expert it is nearly impossible to find 
exact adjustments at once. To find the depen­
dencies between various parameters, the product 
engineer usually tries several possibilities. The 
results of these trials are represented in the Product 
Knowledge Base. In the Production Knowledge 
Base, we will thus represent the regularities which 
are (supposedly) valid for the production process, 
in general. More specifically, we are concerned 
with the different parameter values for manu­

facturing G M T products with a hydraulic press 
(see Fig. 1). 

The results of such scientific experiments are 
most often summarized by a linear equation, that is 
obtained by a regression analysis or by an Analysis 
of Variance [23]. Such an equation may for instance 
take the form: 

Although such numeric equations are quite 
useful and have a broad field of application in 
research and industrial practice, there are also a few 
disadvantages, which can be compensated by a 
more abstract and qualitative description. One 
problem lies in the fact, the each experiment yields 
a new equation and it may be quite difficult for any 
practitioner (and even researcher) to derive a set of 
general regularities from the various equations. 
Secondly, these equations hold only within certain 
limits.This is, however, not directly represented by 
the equation. For instance, increasing the pressing 
force beyond certain limits wil l not increase the 
surface area in the way that is predicted by the 
linear equation, but may instead damage the press. 
In other words, there is an upper and lower bound 
on the parameters as well as on the values of the 
criterion variable (e.g., the surface area). 

In addition to such numerical representations, we 
therefore propose a more abstract and qualitative 
description for representing the general knowledge 
from the various cases. Unlike the numerical 
equation, we assume upper and lower bounds for 
the criterion variable, whose values are denoted 
qualitatively, like for instance by Targe', 'medium' 
or 'small'. In other words, there is for instance no 
value that is smaller than 'very small' and no value 
that is larger than 'very large'. As a consequence of 
these bounds, the qualitative addition operation, 
which we denote by ©, can no longer be a closed 
operation. In order to embody these limitations, we 
define the qualitative addition operation in the 
following way. Let A denote a set of qualitative de­
scriptors, like a 9ava3 ... an, which we could for 
instance also call <z =very small, a2=small, a3= 
medium, ... a=very large. We postulate that the set 
A is weakly ordered. Since the cartesian product 
A x A contains all logically possible qualitative 
additions of the form a®b, where a and b are in A, 
those that can actually be formed must constitute a 
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Fig. 4. Formation and revision of the production knowledge base. 

subset B of A *A. Thus, i f (a,ft) is in 5, then a and b 
can be qualitatively added and so a®b is in A. This 
means that the operation © is a function from B into 
A. In order to account for the fact, that not all 
qualitative additions are possible, we define a 
qualitative structure <A,y,B,®>, where associa­
tivity and monotonicity are somewhat modified. In 
order to accomplish this, we impose the following 
limitations on A and B: If a yb, we assert the exis­
tence of a c in A such that (c,ft) is in B and a >-c®b. 
The requirements on the proposed qualitative 
structure, which are summarized in the following 
definition, provide important integrity constraints 
for the production knowledge base (Fig. 4). 

Integrity constraints for qualitative structures. 
Let A be a nonempty set of qualitative descriptors 
(such as 'small', 'medium', 'large') or avav...,an, 

a binary relation on A, B a nonempty subset of A 
x A and © a binary function from B into A. The qua­
druple <A,>z,B9®> is a qualitative structure if the 
following six conditions are satisfied for all a, ft, c 
e A: 

1. <Ay >z > is a weak order. 
2. If (a9b) e B and (a®b,c) e 5, then (ft,c) e 5, (a, 

ft © c) G 5, and (a © ft) © c >= a © (6 © c). 
3. If € 5 and a t ft, then (c,ft) G 5 and a © c 

>= c ® ft. 

4. If a >- ft, then there exists G /I such that (ft,*:/) 
G 5 and # — b ® d. 

5. If (a,ft) G fl, then a © ftW/. 
6. a ;>... G /4 is a strictly bounded and finite 

standard sequence if for n~2 an = a ; j 

and it is only strictly bounded if for some ft G A 
and for all an in the sequence, ft>- an. 

4. Knowledge Base Evolution as Theory Revision 

4.1. The Knowledge Base Evolution Scenario 

Knowledge base evolution covers not only the 
maintenance of an existing K B [13], but also the 
continous improvement of the K B , its structure and 
content. Knowledge-base evolution operates on the 
K B of a knowledge-based system. Thus, for an 
overall description of knowledge base evolution in 
the RPPP context we distinguish two main units 
(Fig. 5): the knowledgebase itself (RPPP) and the 
knowledge-evolution system (KES). 

The KES operates as a meta-level system on the 
object level K B . Reasoning in the knowledge 
evolution system is performed by the exploration 
and verification components. 

- Similar to discovery systems the knowledge ex­
plorer scans the K B in search for interesting 
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Fig. 5. The RPPP knowledge base evolution architecture. 

patterns. Exploration can be seen as an iterative 
process starting with the generation of a pattern 
hypothesis, proceeding with a search for the 
pattern in the K B , and resulting in a possible 
interactive assimilation of the discovered pat­
tern into the K B . Thus, inductive techniques 
play a major role for knowledge exploration. 

- The knowledge verifier can perform verification 
and with appropriate user assistance also vali­
dation. It examines the K B to detect structural 
or functional defects. Validation and verifica­
tion can also be seen as an iterative process 
starting with the generation of a defect suspi­
cion, proceeding with a check for a defect w.r.t. 
the suspicion in the K B , and resulting in a pos­
sible defect description or repair suggestion. 
Here, techniques for checking integrity con­
straints become most relevant. 

The iteration cycles can be arbitrarily inter­
leaved, permitting evolution to consist of dual 
verification and exploration processes. Together 
they form a heuristic, approximative process that 
alternates focusing and processing phases and 
improves the K B any time a sufficient amount of 
knowledge for an update (i.e., assimilation or 
repair) is accumulated within the KES or provided 
by the user. For example, assume that the verifier 
has identified a rule whose premises cannot be 
satisfied in a given K B . The explorer could then try 

to generalize that particular rule or to complete the 
missing knowledge reachable from its premises. 
Conversely, after the explorer has discovered a 
pattern (e.g., a new or generalized rule) the verifier 
may be asked to verify the K B , focused on the 
assimilated pattern. 

4.2. Theory Revision 

The problem of building up a knowledge base 
(knowledge acquisition) can be seen as a two-phase 
process [16]: In the first phase the knowledge 
engineer builds an initial model (i.e., the seeding of 
the knowledge base). In the second phase this 
initial knowledge base is refined or revised into a 
high performance knowledge base. During the 
further practical use of the knowledge-base, the 
dynamically changing world may cause the 
knowledge base to become invalid in one of the 
following senses: 

- New developments may cause new problem 
cases not being covered by the knowledge base. 
This results in the K B S not being able to solve 
these problems. For example, neglecting the ef­
fects of changing parameter values determined 
by recent experiments would leave the RPPP 
system incapable to find the best production 
process. 

- Some knowledge stored in the knowledge base 
may become out of date and should no longer 
be used as it would lead to solutions that for 
some reasons are no longer valid in the current 
application environment. For example, a fluent 
additive that has become known to be noxious 
should no longer be used or be used only in 
closed-circle production and recycling proc­
esses. 

In the first situation we have a new application 
case (i.e., a positive example) that is not yet 
derivable from the knowledge base. In the second 
situation, we can derive a specific solution from the 
knowledge base which is no longer admissible 
(e.g., because of new environmental protection 
laws). This is consequently called a negative 
example. 

From a more formal point of view, this means 
that a given knowledge base KB has to be revised 
using positive examples E+ (positive experiments to 
be included) and/or negative examples E (failing 
experiments to be excluded), such that all the 


