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An integration of knowledge acquisition techniques
and EBL for real-world production planning

Tromas REINARTZ AND FRANZ SCHMALHOFERY

German Research Center for Artificial Intelligence, Erwin-Schrédinger-Strasse,
67663 Kaiserslautern, Germany

The paper presents an approach to the integration of knowledge acquisition (KA)
techniques and explanation-based learning (EBL). Kunowledge acquisition tech-
niques are used to delineate a problem class hierarchy for different manufacturing
tasks in mechanical engineering. This hierarchy is stepwise formalized into a
terminological representation language. The terminological descriptions are then
combined with cases of specific manufacturing tasks and their solutions (in the form
of production plans). Explanation-based learning is applied to the cases and skeletal
plans are automatically constructed for the terminal classes of the problem class
hierarchy. Such skeletal plans consist of a dependency structure with a sequence of
operators, that can be instantiated to specific plans for all other problems of the
class. An evaluation of the proposed KA/EBL integration demonstrates its strengths
as well as certain limitations of explanation-based generalization.

1. Introduction

Although the fields of machine learning and knowledge acquisition share the
common goal of developing operational knowledge-based systems, there are few
systems where the specific advantages of automatic machine learning methods (e.g.
Mitchell, Keller & Kedar-Cabelli, 1986; DeJong & Mooney, 1986), model-based
knowledge acquisition techniques (e.g. Breuker & Wielinga, 1989) and knowledge
acquisition from human experts (Boose & Gaines, 1989) have been combined.
Apprenticeship learning systems like LEAP (Mitchell, Mahadevan & Steinberg,
1985), DISCIPLE (Kodratoff & Tecuci, 1987, Tecuci & Kodratoff, 1990) and
PROTOS (Porter, Bareiss & Holte, 1990) were already successful in combining
analytic and inductive machine learning procedures with knowledge elicitation tools
and knowledge editors. Apprenticeship learning systems dcquire new knowledge
during the course of problem seclving., They typically consist of a preliminary
knowledge base, a problem solving component and an apprentice learning com-
ponent. The system takes as its input the normal problem-solving actions of a human
expert without any explanations. The solving of a new task is then performed by the
problem solving component of the system and the human expert provides advice.
Alternatively, the human expert may perform a task and the apprentice system
learns through observation.

A Case-Oriented EXpert or COEX architecture (Schmalhofer & Thoben, 1992)
was developed, in which model-based knowledge—engineering techniques (Kithn &
Schmalhofer, 1992; Aitken, Kiihn, Shadboit & Schmalhofer, 1993), explanation-
based learning (Schmaihofer, Bergmann, Kithn & Schmidt, 1991), and knowledge-
acquisition from human experts are integrated in a thoughtful way: rather than
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simply applying some favourite techniques or tools, we thoroughly analysed the
complex application domain of production planning in mechanical engineering.
From the availability of different information sources and the accessibility of human
experts, we then devised an integrated knowledge acquisition method (Schmalhofer,
Kiikn & Schmidt, 1991).

Although there are many similarities to apprenticeship learnirg systems, the
COEX architecture shows a number of important differences to systems like LEAP,
DISCIPLE and PROTOS. Unlike these systems, which learn individual solutions
during the normal use of the problem solving component, in COEX reversed
engineering is applied to completed success cases from the real world. From these
cases solution schemata are obtained, which are then employed for top-down
recasoning to solve future problems. Instead of the very interactive apprentice—
master relation between apprenticeship learning systems and its users, in COEX the
expert is viewed more as an author who instructs the system. The system, one the
other hand, plays the role of an editorial assistant. The human expert and the system
thus cooperate in authoring a knowledge-based system.

In this paper, we will first describe the application and task domain and show how
their characteristics lend themselves to the integration principles of the COEX
architecture. Two major components of the COEX architecture, namely the
Case-Experience Combination Systemn (CECoS) and the Skeletal Plan GENeration
procedure (SP-GEN) are then presented in detail. CECoS is a type of knowledge
editor. Model-based knowledge engineering, a clustering algorithm, global expert
judgments and natural language expressions are jointly used to outline and stepwise
formalize a hierarchy of problem classes into a KL-ONE-like representation
{Brachman and Schmolze, 1985). By employing cxplanation-based learning, SP-
GEN then generates skeletal plans with a dependency structure between its
individual parts for the defined problem classes. As it turns out, $P-GEN is well
suited to comstructing such plans for the terminal classes. However, it is not
appropriate for the non-terminal problem classes which are described in more
abstract terms. This limitation and the integration achieved with CECoS and
SP-GEN will also be evaluated and discussed.

2. Complexity of task and domain

The planning process for the manufacturing of rotational parts is a complex task,
which plays an important role in industry. Companies like the Feldmiihle AG do not
only sell manufacturing machines, but also provide prototypical as well as
customized production plans for different products (Feldmiihle, 1984). Human
experts require several hours to produce an initial plan. A total of 2 days is spent
before it is successfully tested and a qualitatively good plan is obtained. This
complexity arises from the enormous number of technical details which cannot be
neglected and a large number of only vaguely known interdependencies among
these knowledge items. Only human experts have sufficient experience to provide an
appropriate classification of the various problems. We will now exemplify the
complexity of this domain for the task of manufacturing rotational parts.

Rotational parts or workpieces are manufactured by putting some more or less
cylindrical piece of metal {mold) into a fixture (i.e. chucking) of a3 manufacturing
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FIGURE 1. Graphical representation of a typical production plan (From *Examples for application™ p. 22,
Plochingen Neckar, Germany: Feldmithle AG. Copyright 1984 by Feldmiihle AG. Reprinted by
permission.)

machine (CNC machine). The chucking fixture together with the attached mold is
then rotated at a relatively high speed, with the longitudinal axis of the cylinder as
the rotation center. The rotational axis and all movements of a specific cutting tool
(movements which perform a cut as well as movements which only position the tool)
lie in the plane. While the chucking fixture and the attached mold are rotated, a
cutting tool moves along some contour and removes material according to a given
production plan. thereby the desired geometric shape of the workpiece is obtained.
As a result of this processing, axle shafts, drive shafts or bevel wheels may be
produced.

Figure 1 shows the graphica! representation of a typical production plan
(Feldmiihle, 1984).1 In this figure the initial mold (shaded grey area) and the
desired goal workpiece are overlayed. The chucking fixture is indicated by black
areas on the left and right hand of the workpiece. Each different cutting step to
manufacture this workpicce is numbered from 1 to 7 and also presented including its
detailed specifications. For example the first rough cut is done by tool “CSSNL 3232
C15 SNGN151016T030307 (cutting material SN80, namely silicium) by a rotation
speed of v.,—=450mmin~', a feed of f=0-45mmU"' and a cutting depth of
ap, =5 mm. In addition a complete production plan would contain more technologi-
cal data of the workpiece (surface roughness, material, tolerances, etc.} and precise
workshop data (CNC machines with their rotation power, number of tools and
revolvers, etc.). This plan is relatively simple in comparison to the planning
processes by which it was generated. The following facts may explain why these
planning processes are so time consuming.

Theoretically 1-8* 107 toolholders and 1-5% 10® tool inserts can be specified within

t Throughout the paper, this case will be denoted by g5wld3.
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the corresponding ISO norms 5608 and 1832. Although not every possible
combination is useful, this fact points out the large number of alternatives from
which human experts have to choose the appropriate specifications. Typically a
medium sized company will apply 5000 different tools in their production. Some
highly specialized cutting tools may in addition specifically be constructed for the
manufacturing of some workpiece. A single workplan uses about 6 to 16 tools. Since
a number of parameters have to be determined from a continuum (chucking force,
cutting speed, feed and path, etc.) the number of possible alternatives can be even
considered arbitrarily large.

Moreover, different turning machines with different characterizaticns are available
in most companies. For each company the CNC machines are individually
configured from a set of different components. The configuration of a machine
depends on the spectrum of workpieces to be manufactured and the lot size which
the company expects to produce. Therefore rarely two lathe machines of a company
arc completely identical.

There are a lot of interdependencies among the tools, the CNC machines and the
workpieces to be manufactured. For example the CNC machine must have a large
enough revolver to keep all the necessary tools, and the machine power has to be
sufficient to achieve the required cutting speed specified in the production plan. It is
therefore not surprising that much time and effort must be invested by human
experts in order to develop a qualitatively and economically good production plan.

3. Integration principle

Using a model-based knowledge-engineering approach (Breuker & Wiclinga, 1989),
hierarchical skeletal plan refinement (Kithn & Schmalhofer, 1992; Aitken er al.,
1993) was developed as a KADS-interpretation model. This model assumes a
hierarchy of problem classes, where skeletal plans are associated with each class in
the hiearachy. A set of prototypical cases which delineates the desired competence
of the future knowledge base and the judgments of a domain expert about their
relatedness are used to build a problem class hierarchy by conceptual clustering.
Unlike COBWEB (Fisher, 1987) where the clustering is performed on the basis of
the descriptions of the specific cases, our clustering relies upon the expert judgement
about deep relationships. The surface form of the case description does therefore
not bear much consequence. The formation of the class hierarchy is thus
independent of any incidental selection of a specific representation language but
grounded in an expert’s understanding of the domain.

A representation of the individual cases and the problem classes are subsequently
produced by a stepwise formalization of the expert’s natural language descriptions of
cases and problem classes. These descriptions consist of lists of features that are
attributed to the different problem classes. Several templates are used to establish an
adequate and more fine-grained semantic structure of the various features. The
templates were constructed so that each template can be independently translated
into the terminological language TAXON (Hanschke, Abecker & Drollinger, 1991).
With the inference services of this KL-ONE-like representation language the class
hierarchy is verified and new preduction problems can be classified.

In a similar vein, a class hierarchy is established for various operators which occur
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FIGURE 2. Schematic diagram of how the proposed integration of machine learning and knowledge
acquisition techniques has been applied in the COEX architecture.

in the different production plans. After the knowledge base has been established so
far, explanation-based learning is applied to generate skeletal plans for the various
problem classes. Specific cases serve as the examples.

The proposed integration of knowledge acquisition techniques and machine
learning is supported by the model of hierarchical skeletal plan refinement, the
knowledge acquisition tool CECoS (Reinartz, 1991; Tschaitschian, 1991), and the
machine learning tool SP-GEN (Schmalhofer ez 4/, 1991). The integration of these
tools for developing a case-oriented knowledge-based system is shown in Figure 2
and further described by Schmalhofer and Thoben (1992). Figure 2 shows the
knowledge acquisition and performance components of the COEX architecture:
CECoS is guided by the expert and constructs a hierarchy of problem classes from a
set of cases. From the same cases, skeletal plans are formed by SP-GEN. Additional
background knowledge is acquired from text with the tool COKAM+ (Schmidt,
1992}. The performance component shows how a new problem is first classified, and
the associated skeletal plan is retrieved. By refining this skeletal plan the solution for
the specific production problem is then obtained.

4. Hierarchical clustering and terminological definitions of problem
and operator classes

The knowledge acquisition tool CECoS is not an automatic concept formation
procedure as the GCC-algorithm (Maarck, 1990), UNIMEM (Lebowitz, 1986;
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1987), COBWERB (Fisher, 1987), RESEARCHER (l.ebowitz, 1986}, CARL (Burn-
stein, 1983) and CLUSTER/2 (Michalski & Stepp, 1983) are. Rather CECoS
supports the acquisition of a concept hierarchy of problem or operator classes in the
respective application domain.

Figure 3 gives an overview of the five phases by which problem descriptions are
formed by CECoS. In phases 1 and II, a set of prototypical cases which delineates
the desired competence of the future knowledge base is selected and the judgments
of a domain expert about their relatedness are used to form a problem class
hierarchy by a hierarchical cluster analysis. In phase IIl, the expert attributes
features to the different problem classes and assigns these features to the different
views, which were determined by the model of skeletal plan refinement. Thereafter,
in phase IV, CECoS determines an agenda for consistency and redundancy checks,
which have to be executed by the expert. In phase V a stepwise formalization is
performed. The generation of the different operator descriptions is thereby
supported by COKAM+.

In the following section, we will present a more detailed description of the
application of CECoS to 60 prototypical cases and explain how newly arising
problems can afterwards be classified.

4.1. PHASE I. CASE SELECTION

Within the first phase appropriate exemplar cases are selected. This selection should
be performed according to the needs of the specific application area (e.g. in a
company}. Although the selection phase is presented as part of CECoS, this set of
cases also serves as the examples used to construct skeletal plans with SP-GEN.

The reported example application is based on 60 production problems charac-
terized in three dimensions: geometry, workpiece material and (CNC} turning
machine (which has been used to manufacture the desired goal workpiece). The
chosen geometries (gl—g5) contain two drive shafts {gl and g2), one pinion shaft
{g3) and two axle shafts (g4 and g5). An unalloyed stee! (wl), a special kind of cast
iron (w2), a certain type of aluminium (w3) and an alloyed steel (wd) are the
different workpiece materials (wl-w4). Finally three different machines or lathes
{d1-d3) had been available: a lathe at the low end of the performance spectrum
{5-5 kW) with only one revolver and four tool holders (d1), a lathe {70 kW) with cne
revolver and six tool holders (d2), and a high performance lathe (%0 kW) with two
revolvers and 12 tool holders (d3). The production problem shown in Figure 1 is
consequently denoted by g5wld3.

4.2. PHASE II: PAIRED COMPARISON AND HIERARCHICAL CLUSTER ANALYSIS

Each pair of exemplar cases is presented graphically to a domain expert. Thereby
the surface description of each object is visually presented, in a way typically used in
this application domain. Now, the expert judges the similarity between the presented
cases on a discrete scale between 1 (very dissimlar) and 7 (very similar), Thereby the
expert guides the classification. Since a complete pairwise presentation yields
n#{n —1)/2 comparisons for » objects, this complexity was reduced by preclassify-
ing the cases in primary step. CECoS is then applicd to the prototypes of the
different classes. Thereafter, it is separately applied to all the objects of every class.
The resulting tree structures are subsequently joined.
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In the primary step the 60 example cases have been categorized into 11 different
classes. These classes are denoted by the numbers 0,1,...,10. The application of
CECoS will be described for the objects of one of the 11 classes. Note that the
problem class hierarchy for this class is only a subtree of the whole class structure.
The nodes of this subtree are denoted by letters,

A hierarchical cluster analysis is applied to the resulting similarity matrix of the
pairwise comparison. Hierarchical cluster analysis is one of several methods for
conceptual clustering along with optimization, clumping, incremental clustering, etc.
(Backhaus, Erichson, Plinke, Schuchhard-Ficher & Weiber, 1987). CECoS uses the
agglomerative clustering method of *“Nearest Neighbor”, i.e. the most similar
objects are clustered subsequently, until a single problem class contains all objects.
Each node within the resuiting concept hierarchy represents a single problem class.
Each terminal node contains at least one specific exemplar case. Within the
hierarchy the subsumption principle holds, i.e. each class subsumes its successor
classes. The bottom section of Figure 3 depicis a subtree of the problem class
hierarchy. Specific cases as glw2d2, glw2d3, g3w2d2, etc. are protorypical members
of the terminal problem classes.

Following the paradigm of user guidance the expert is now asked to “verify” the
problem class hierarchy. The hierarchy may be accepted immediately without any
comments, but can also be edited. Therefore errors in similarity judgments may be
corrected, and it is ensured that the delineated categories are meaningful to the
expert.

4.3. PHASE 1II: FEATURE DEFINITION AND VIEW ASSIGNMENT

In the third phase, the expert is asked to name the features which define the
different problem classes, Each feature is a natural language expression and can be
seen as a single knowledge unit representing some term in the domain terminology.
The conjunction of the defining features of a class delineates an explanation for the
respective problem class. For example, for problem class i the expert named the
following features: “‘groove in the right shoulders”, “insertion directly beside the
cape”, and “mold not cylindrical”. In addition, class i inherits the defining features
from classes 5, b and e (see Figure 3). These features provide the seed of the
description language which will be used to define initial and goal states as well as the
intermediate states during the application of SP-GEN. The resulting domain
ontology is very useful, because experts naturally use the terminology at the most
useful level (Rosch, 1978; Chi, Feltovich & Glaser, 1981).1

The next step on route to a formal knowledge base is to assimilate each
knowledge unit to the model of expertise (i.e. the model of skeletal plan
refinement), which structures the knowledge of mechanical engineering. The model
distinguishes between knowledge about the product, the production plan and the
environment of the company. In order to assign each term to the corresponding
“module” of the knowledge base different views are defined: product, plan and

% In their work on DEDAL, Baudin, Kedar and Pell (1994) found that the concept definition phase is
the activity that has the greatest impact on the performance of the system in the carly stages of its
development. The functionality of such a concept defimition can be described as a form of interactive
induction (Buntine & Stirling, 1990).
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environment views. Combined views were introduced for representing interdepen-
dencies among two or more single views. For example, interdependence between
product and plan view is called a combined view, which is appropriate for all
features which relate properties of the workpiece to properties of the production
plan. Since the views were introduced for modularizing the domain knowledge,
combined views should be scarcely used.

The expert has to assign each failure to one of the defined views. For example, the
feature “workpiece material alloyed steel” is assigned to the product view. On the
other hand, “insertion directly beside the cape” is assigned to the combined view:
interdependence berween product and plan. Figure 3 illustrates how these view
assignments decompose the domain ontology of features {see Phase III).

4.4. PHASE TV: CONSISTENCY AND REDUNDANCY ASSESSMENT

In the fourth phase the different knowledge units are compared. Through different
consistency and redundancy checks, contradictions and redundant definitions are
eliminated. CECoS supports the domain expert by detecting potential contradictions
and redundant definitions based on syntactic similarities. Truly semantic dis-
crepancies have to be found by the expert. Features of different views cannot
contradict each other and cannot be redundant, because they refer to different
entities. Only the interdependencies between various views (combined views) may
result in contradictions and redundancies between different reference domains, Each
test is applied pathwise, for single classes and for common successor classes. For
example, an inconsistency may arise when a feature and its negation are attributed
on the same path. This would be a classical contradiction to the subsumption
principle. A redundancy may occur when the same feature is used to define a class
as well as one of its successor classes. This feature should only be assigned to the
superordinate class. Phase IV of Figure 3 illustrates this situation with the feature
“mold not cylindrical”,

4.5. PHASE V: STEPWISE FORMALIZATION

Within the last phase the informal definitions of the different problem classes are
stepwise formalized, In the semiformalization step, the expert explains each feature
with more detailed expressions. Thereafter, these natural language expressions are
completely formalized in TAXON. Since the features are modularized according to
views, this stepwise formalization process is performed view by view.

During the semiformalization step, the features are independently prepared for
formalization. CECoS presents a feature together with its assigned views as a
template. The expert is requested to explain this feature in more concrete terms.
Thereby, new features may be generated and assigned to views as well. For the new
features, the view assignment, consistency and redundancy assessment as well as the
semiformalization phases are iterated, until the most detailed explanations are
supplied. The most concrete features are termed atomic. The decisions as 1o which
features are considered as atomic is left to the user.

The semiformalization allows for an easier transformation of the problem class
descriptions into the formal representation language TAXON. The definition of the
T-box is directly determined by the semiformalization. Each utilized feature forms a
concept, and the concept definition is given by the more detailed explanation.
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therefore assigned to the combined view interdependence between product and plan view.

Atomic features are primitive concepts, whereas non-atomic features are compound
concepis defined by the formalizations of their explaining features.

For example, consider the feature “insertion directly beside the cape™ of problem
class i, which has been assigned to the interdependence between product and plan
view (see Figure 3). In the semiformalization step CECoS presents the template
“insertion directly beside the cape(product and plan view) = ( _)" The domain
expert explains this feature by “The distance between insertion and cape is less than
Smm, and therefore a left-side clamped insertion tool is necessary.”” He points out
that a special cutting tool is necessary to produce the insertion directly beside the
cape. This explanation is illustrated in Figure 4 by depicting the relevant part of the
respective case. Figure 4 shows two non-applicable tools as well as a suitable
left-side clamped insertion tool. This explanation is then refined, until only atoric
features occur.

During formalization step the feature “insertion directly beside the cape™ and its
explanation is defined as a compound concept in TAXON:f

(conc insertion_directly _beside_the _cape
and (somei  insertion)
(some c  cape)
({ (- (i lefi_border)
{c right_border))
>))
left_.side_clamped _insertion_tool)).

“insertion”, “cape”, and “left_side_clamped_insertion_tool” are compound con-
cepts, which have to be defined in more detailed terms like contour coordinates and
concrete tool specifications.

The problem classes of the delineated hierarchy are formalized as concepts in

+Some technical problems have been pointed out and discussed by Schmalhofer, Reinartz and
Tschaitschian (in press).
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TAXON as well. For instance, Figure 3 (see phase V) shows the TAXON concept of
problem class i. This concept is a conjunction of the superordinate class ¢ and
additional feature concepts. In order to define this class, these features must be
formalized as (primitive or compound) concepts as has already been illustrated for
the feature “insertion directly beside the cape™.

The KL-ONE-like inference services (such as classification of the taxonomy,
subsumption queries, etc.) enable CECoS to check the correctness of the formalized

problem class hierarchy and to solve the classification task for newly arising
production problems.

4.6. CLASSIFICATION OF NEWLY ARISING PRODUCTION PROBLEMS

After the whole problem class hicararchy is formalized, the TAXON inference
system classifies known and newly arising production problems, which are rep-
resented in adequate terms. Figure 5 again depicts the subtree of problem class 5.
The initial exemplar cases are classified as members of their respective terminal
problem class. Assume a new production problem, which is defined by A-box
assertions outlined at the lower left side of Figure 5. When TAXON classifies a
newly arising production problem, a defining feature like “mold_cylindrical” is
compared to the top of the hierarchy. The inference mechanisms should enable the
system to test whether the detailed description corresponds to a crucial feature. If
each feature of a problem class definition is successfully proved, the procedure

(conc class_i
(and class_5
class_b
class_e
groove_in_the right_shoulders
insertion_directly_beside_the_cape
mold_not_cylindrical))

T-box

A-box 1 { I 1 1 I
< glw:.'\dz glw2d3 giw2d2 g3w2d3 glwld2 g2w2d3
.
~
~

newly arising production problem

example case production problem

(indi  new_problem)

(asse  (mold_cylindrical new_problem)
(new_problem g g1)
(new_problem w  w2)
(new_prctlem d d2))

Gndi  glw2d2)
(asse  (mold_not_cylindrical glw2d2)

@wz g gl
@G22 w wl)
@wadz d d2))

FiGure 3. The TAXON inference system classifies a newly-arising production problem into the most
specific problem class.
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continues with its successor classes. This process is iterated until a mismatch occurs
or a terminal class is obtained (compare with Aamodt, 1991; Porter ef al., 1990). In
our case, the “new_problem” passed all the tests until problem class i is reached.
For problem class i a mismatch occurs, because of the defining feature “mold_
cylindrical”. Since a mismatch is also obtained for problem class j, the “new_
problem” is categorized into class e. This classification is a prerequisite for retrieving
a skeletal plan. Each skeletal plan is attached to a specific problem class. How such
skeletal plans are obtained by the explanation-based learning procedure SP-GEN
will be described next.

5. Explanation-based learning to form generalizations

SP-GEN is based on the idea of explanation-based learning (Mitchell et al., 1986),
which is a form of analytic learning. Explanation-based learning (EBL) is a method
where generalizations are formed from a single case by employing a body of
background knowledge, a target concept and a desired descriptior level, which is
defined by a so called operationality criterion. EBL explains or proves that the case
(training example) satisfies the requirements of the target concept (goal concept)
using the background knowledge as the domain theory. In other words it is deduced
from the domain theory that the training example is an instance of the goal concept.
The deduced proof is generalized to a more usable concept definition in terms of the
desired description level (operationality criterion). This generalization is guided by
the background knowledge rather than by some unknown inductive bias and brings
the relevant features of the case in focus while irrelevant features are ignored.

A characterization of SP-GEN as an EBL-method is presented in Table 1. The
domain theory provides significantly more structure than the domain theories of
similar systems (DeJong & Mooney, 1986, Minton, Carbonell, Etzicni, Knoblock &
Kuokka, 1987; Mitchell et al,, 1986). Unlike DeJong & Mooney’s GENESIS that
uses a poal state as a target concepl a generic problem and solution description is
used. A specific manufacturing problem and its solution serves as training example.
Different operationality criteria are used for different levels of the problem class
hierarchy. The learning result of SP-GEN is a blueprint (i.e. a skeletal plan) that can
be reused for manufacturing similar workpieces.

TabLE 1
Characterization of SP-GEN as an EBL-method

Domain theory Hierarchically structured knowledge base in terms of state
and operator definitions, problem classes, abstraction and
refinement rules

Target concept Generic problem and solution approach (non-operational)

Training example Success case: initial and goal states, sequences of concrete
operations (e.g. a production plan that has been
successfully used in the real world)

Operationality criteria Terms used by domain experts to describe states and
operators (acquired with CECoS and COKAM+)
Learning result A skeletal plan as a blueprint for solving future problems

(ie. a well structured specification of a problem
description and its solution in operational terms}
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The complexity of the application domain required a decomposition in severai
processing phases. A skeletal plan is thus constructed in four phases. In the first
phase, the execution of the source plan is simulated and explanations for the effects
of the individual operations are constructed. In the second phase the generalization
of these explanations is performed with respect to a criterion of operationality that
specifies the vocabulary for defining general operators for the skeletal plan. In the
third phase, a dependency analysis of the resulting operator effects unveils the
substantial interactions of the plan at the more general level of the skeletal plan.
And finally in the fourth phase the concept descriptions for the generalized
operators of the skeletal plan are formed by collecting and normalizing the
important constraints for each operation that were indicated by the dependencies.

Although TAXON could in principle be used to represent production plans, a
PROLOG:-like notation has actually been used. Since approaches to translating
terminological representations into a kind of modal logic and then using resolution
like inference methods, which are easy to realize in PROLOG, already exist
(Ohlbach, 1991), the two representation formalisms can be combined in a
straightforward manner.

The formal representation of a specific operation (cut 4) from the concrete plan of
problem case g5wld3 (see also Figure 1) is shown by the following example:

case('‘gBwld3”, plan(‘‘cut 4™,
cut(speed(400),
feed(0-20),
(path([polygon([B5000, 300), (4500, 300), (3900, 40031,
polygon([(3050, 400), (3000, 410), (2760, 410),
(2750, 450D,
polygon([(1470, 450), (1400, 500), (680, 500},
(600, 525D,
tool(toolholder(*I80_5608" (**CS-NL3240-12'"),
insert(“‘IS0O_-1832"(“SNGN120808T02020""),
“SH20F" M.

5.1. SIMULATION AND EXPLANATION

In the first phase of SP-GEN, the plan execution is simulated on the basis of the
available domain theory. The simulation of the plan is performed by sequentially
determining the effects of each operator Op,,...,Op, of the plan. In order to
determine the effects of the sequence of operators, the intermediate preocessing
states from the initial state §; (the mold) to the final state S, {which will contain the
target workpiece if the domain theory is sufficient) are computed as follows:

So""?‘PI—’Sl—Fz’Sz' e Sn—lﬂ_)sn

The effects of each operator are represented by a set of rules with STRIPS like add
and delete actions. The execution of these rules thus creates the successor world
state. By applying all the rules for each operator, the various consequences of the
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individual operations of the plan are calculated. The proofs that exist for .
applicability of each operator rule can now be seen as an explanation of each effe
that depends on operator attributes as well as world state atiributes, from the init
or intermediate states. The following example shows the explanation of cut 4 in th
context of case gdwid3:

“out 4" ig 8 very.fine cut
Testing precondition: chucking precision.sufficient
Testing precondition: ischucked
Testing precondition: within workspace boundaries
Testing precondition: no collision. with_workpieca
Testing precondition: cutting parameters_ok
Testing precondition: machine rpm sufficient
Al preconditions sucesssfully tested.
very fine_cut since
high tolerance required and
Chucking precigion(very-high) and
iz.chucked and
within.workspace. boundaries and
cutting. path(ipolygon((8000, 3002, . . .DD and
cutting. direction{tool(- - -)), toleft) and
path direction{[polygen({(5000, 300, . . .}, o left) and
max tool.cutting depth{tool(. - ), 80 and
max.cutting depthdipelygon( (5000, 300, .. 121, ) and
80> 8 and
cutiing material{ceramic) and
workpiece material{cast iron) and
outting feed(Q0-8) and
400 < 800 and
00-8 < 00-8 and
min.x.soordinate(3007 and
circumference(300, 00-1884) and
machine rpm(5000) and
cutting speed(400) and
400 < G- 1884 » 5OO0.

New Surface: repr(B00G, BO, 300,
New Surface: ragi(BOD0, 4500, 300, —)
New Surface: rsec(4500, 3800, 500, 400, —)

New Surface: raec(650, 600, 80O, BAB, —)

If the domain theory is sufficient, a complete explanation for the whole plan wil] be
obtained. Otherwise, a specific gap has been identified in the domain theory. CECoS
and COKAM+ can then be used to fil} this knowledge gap.
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5.2. GENERALIZATION

In the second phase of the procedure, these proofs are independently generalized
for each production step of the plan. The independent generalization of each
production step is necessitated because of the complexity of the complete plans.

The degree of generalization is determined by the operationality criteria for each
preduction step, which are defined at the concept (Hirsh, 1990) rather than at the
predicate level. These criteria are obtained from the terms which the expert used for
describing the different operations of the concrete plan at a general level. It is thus
assumed that exactly those terms which are used by experienced humans would
determine operationality. A justification for this assumption can be found in the
rescarch of Rosch (1978) who has shown that humans favour basic level categories
in their descriptions. Such categories can be termed operational in the sense that
they provide maximum information and the least cognitive effort for achieving some
task goal. The following example shows the generalized proof for cut 4 in the
context of case gSwild3:

very_fine cut with
high tolerance required
cutting path(_g30125)
cutting tool(—g301358)
cutting direction (_g30135, _g30147)
path_direction(_g30125, _g30147)
max tool cutting depth(_g30135, g30171)
max cutting depth(_g30125, _g30183)
-£30171 > _g30183
cutting material{ceramic)
cutting feed({_g30225)
—£30335 < 800
—g30825 < 00-8
min x coordinate(_g30259)
circumference(_g30259, _g30271)
cutting speed(_g30235)
_g30R35 < _g30R71 +_g30281

5.3. DEPENDENCY ANALYSIS

The dependency analysis of the third phase determines which previous opera-
tions {or initial state affairs) achieved the prerequisites for the various production
steps of the plan. It is thereby determined when the prerequisites for performing a
specific production step were accomplished. A directed graph is constructed in
which all existing dependencies between the individual plan operations and the
problem description are denoted by arcs (compare with Stefik, 1981). The follow-
ing example shows selected dependencies for cut 4 in the context of case gSwld3:
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Problem description

[ mold \ ( factory \ ( goal workpiece \

geometry teChnOlOgJ machine | tools geometry | technology
N ! AN —
hardened steel \ ~N
not spheroidized ceramics surface
surface not forged g groove
CETamiCs  giff machine N
surface Emosread

chucked
with high precision

surface

FIGURE 6. Partial dependency graph for the case gSwld3.

‘eut 4" produces rsec(650, 600, 800, 525, —)
' required for the goal workpiece.

“‘cut 4” produces rsec(2760, 8750, 410, 450, —
required for *‘cut 6.

*cut 4™ produces rsec(3050, 3000, 400, 410, —)
required for “‘cut 8.

*chuck” produces chucking precision (very_high)

required for “cut 4.

“cut 4" requires machine stiffness (very good)
given in the environment description.

“out 4"’ requires workpiece_material (cast_iron)
given in the workpiece description.

For the complete case gSwld3, Figure 6 shows a graphical representation of selected
dependencies. For example, cut 1 depends on the workpiece being chucked (for
subsequent cuts this obvious dependency is no longer shown in the graph), on the
geometry and the technology of the mold, and on the availability of ceramic cutting
tools in the factory. The required geometry and technology of the goal workpiece is
produced exclusively by cuts 4 to 7. The lack of a dependency between cuts 5 to 7,
furthermore indicates that they could be executed in any sequence.

5.4. NORMALIZATION

This last phase builds the skeletal plan in its final representation by identifying
independently solvable sub-formulas from the dependency graph which expresses
only local constraints on one operator. By analysing the occurrence of variables in
the graph the dependencies are separated into:
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* one set Rg, ... containing all dependencies which only relate to features of the
problem description,

* one set Ry, for each operator Op; where the dependencies refer to parameters
of the operator Op,,

¢ one set Rpependen: Where the dependencies refer to the possible orderings of the
operator classes.

The set of constraints Rgp,pe formally describes the class of problems for which
the skeletal plan can be used: it specifies the application conditions for the skeletal
plan. The skeletal plan itself consists of the set of operator classes Op,,..., Op,
with the constraints Ro, and Rpepengen Which specify the possible sequences in
which they may be applied. Some of the application conditions for the skeletal plan
acquired from the concrete production problem g5w1d3 are:

* long workpiece

» left_vertical plane

* right_center_hole

* workpiece_material (cast_iron)
*» machine_gtiffness (very_gocd)

6. Implementation and evaluation

For testing the proposed integration of knowledge acquisition and machine learning
techniques in the COEX architecture, CECoS and SP-GEN have been implemented
in PROLOG (compare with Kedar-Cabelli & McCarty, 1987). CECoS runs on a
MAC II and SP-GEN runs on a MAC II as well as on SPARC work stations.

The paired comparisorn and hierarchical cluster analysis of CECoS have been
tested with 60 production problems and resulted in the problem classes which are
partially shown in Figure 3 {lower section). These components worked very well in
that it required little time to establish the problem class hierarchies and that the
results were readily validated by the human expert. Since the feature definition
requires more user interactions from the human expert, this component was only
applied to a selected subset of problem classes. Although it was often difficult for the
expert to name appropriate features, a complete description of each class was
obtained after a few iterations. Several features were assigned to a combined view
within the view assignment phase. This shows that there are local interdependencies
between the meta classes of the KADS-model, which are not represented in the
model itself. Nevertheless, views partition the knowledge into mostly independent
segments, and the consistency and redundancy assessment could thus be indepen-
dently performed for these segments. For the semiformalization, templates were
automatically generated and filled by the expert. Although the formalization of such
restricted natural language expressions can be performed largely automatically
(Schmidt & Wetter, 1989; Schmalhofer & Schmidt, 1991), we have not yet integrated
such a facility and conducted the formalization by hand. The resulting knowledge
base gives a formal description of the problem classes exemplified for class 5 in
Figure 3.

SP-GEN has been applied for constructing the skeletal plan for one of the
terminal classes. From this demonstration it could be inferred that SP-GEN will
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generally work for all terminal classes, i.e. it can perform any kind of instance to
class generalization.

7. Discussion

The field of machine learning has accomplished tremendous achievements during
the last decade. One particularly active area is the research on knowledge-intensive
learning mechanisms and more specifically explanation-based learning. Explanation-
based learning is a very promising learning technique, because it enables the
learning biases to be made explicit in the form of domain theories (Mitchell er al.,
1986). Moreover, under certain conditions it may be used for speed-up learning (e.g.
Mooney, 198%; Minton, 1990).

With EBL, one can generalize training examples under the guidance of a target
concept and a domain theory. An operationality criterion determines the degree of
generalization. Initially, the application of EBL required a complete and consistent
domain theory, which is sufficient to prove that a training example belongs to the
target concept. More recent EBL systems may even be applied without a complete
domain theory (e.g. Duval, 1991). Other extensions concern the operationality
criterion. Instead of a static operationality criterion, dynamic reasoning process may
be used to determine (conditional) operationality (DeJong & Mooney, 1986; Hirsh,
1990). The first approaches to EBL did not generalize the siructure of the
explanation, but relaxed constraints on the variables in the explanation of a specific
example. Shavlik (1990) showed how recursive and iterative concepts can be learned
by generalizing the explanation structure. The progress in machine learning is well
documented by empirical performance evaluations of different algorithms in various
well structured microworlds (e.g. the blocks world, the Tower of Hanoi task, simple
sorting tasks.).

All this progress in machine learning and EBL does not pay off, unless the
machine learning community can present success cases, where these techniques are
applied to real world problems. The development of knowledge-based systems for
complex tasks like production planning in mechanical engineering is a complex
application in which economic returns could be achieved with EBL. Therefore, we
tried to adapt the EBL paradigm to this real world application domain.

In pursuing this goal, a number of issues had to be addressed which usually do not
arise in microworlds: how can we get the relevant background knowledge and
establish an adequate domain theory? How should one determine operationality in
real world domains? How can we ensure the utility of the formed peneralizations?
How should the training examples be selected? These are just a few of the questions
which need to be answered before EBL can be applied to the real world.

We found the apprenticeship learning paradigm a useful framework for addressing
these questions. In the apprenticeship learning paradigm, an expert (or human user)
and automatic machine learning techniques cooperate to construct a knowledge-
based system. Thereby, the expert and the system learn from each other. Through
knowledge elicitation, the system can acquire new knowledge from the expert. The
experts, on the other hand, can learn how their knowledge must be structured, so
that it can be documented and communicated by a knowledge-based system
{Schmalhofer, Reinartz & Tschaitschian, 1992). This is the framework that was used
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for developing the COEX architecture, where model-based knowledge engineering
techniques, knowledge elicitation and conceptual clustering were integrated with
EBL. CECoS is an implementation of conceptual clustering, and SP-GEN is an
implementation of EBL within this framework.

The COEX system is thus a type of apprenticeship learning system. The expert
takes the role of an author and provides new background knowledge with respect to
selected success cases from the real world. This activity is supported by the tools
CECoS and COKAM+ (Schmidt, 1992). The system takes the role of an editorial
assistant and produces representations at the appropriate level of generality
(supported by SP-GEN) and gives feedback on whether the information provided by
the expert is comprehensive in terms of the available representation formatisms
(supported by CECoS).

The results of our implementations show the usefulness of the KA/EBL
integration for complex domains. CECoS forms hierarchically structured problem
classes so that the so called utility problem can be handled (Minton, 1990). SP-GEN
was successful in forming skeletal plans for the terminal problem classes. SP-GEN
generalizes constants such as feed 0-45mm U™ into variables (Feed1), which are
constrained (3 <Feedl <5) according to a dependency or validation structure for
the whole plan (Kambhampati, 1990). It was thus shown that with the proposed
integration scheme, EBL can be applied to real world problems.

We also encountered some problems with CECoS as well as with SP-GEN, which
could not have been unveiled with toy applications. The application of CECoS
suffered from the representation limitations of the terminological language TAXON.
Because of these limitations, a feature such as “‘groove_in_the_right_shoulders”
could not be represented. This feature means that there would be a sequence of
shoulders at the right side of the cape and that there would be a groove in this area.
Whether there would be two, three or more shoulders is not essential and must
consequently remain undertermined. These representation problems are discussed
by Schmalhofer, Reinartz and Tschaitschian (in press).

Secondly, when we tried to apply SP-GEN to non-terminal problem classes, it
became clear that explanation-based generalization is not sufficient for these classes.
Whereas SP-GEN can form generalizations from cases for quite specific problem
classes, true abstractions would be required to generate procedure schemata for the
more abstract problem classes. Knoblock (1990) addresses the issue of abstraction
for problem solving. Michalski and Kodratoff (1990) have recently pointed out that
generalization needs to be distinguished more clearly from abstraction. While
generalization normally uses the same representation language, abstraction involves
a change in the representation space to transform the representation language into a
simpler language than the original. The problem descriptions of the non-terminal
classes were at such an abstract description level.

In order to generate a procedure schema for these classes, one must combine
different numbers and different sequences of operators. But SP-GEN offers no
support to generalize over the cutting sequence. Although the dependency analysis
of SP-GEN finds interdependencies between single cutting steps, it cannot construct
a uniform procedure schema, that subsumes substantially different operator se-
quences and plans with different numbers of operators. The construction of such
procedure schemata requires the formation of true abstractions, which led us to
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develop the explanation-based abstraction method and the PABS procedure
(Schmalhofer & Tschaitschian, 1993). With PABS the proposed KA/EBL integra-
tion will become even more useful and may provide a significant milestone to a
unified approach to learning in complex domains (Schmathofer er al , in press).
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