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STOCHASTIC CHOICE HEURISTICS * 

K. Michael A S C H E N B R E N N E R , Dietrich A L B E R T and 
Franz S C H M A L H O F E R 
University of Heidelberg, West-Germany 

A class of stochastic models is presented which assume that binary choice among multidimensional 
alternatives is accomplished by sequential accumulation of dimensional value differences until 
enough evidence is accumulated. The models purpose not only to predict individual choices or 
choice probabilities from dimensional evaluations of the alternatives but also to map the cognitive 
processes taking place. The latter conjecture is tested by an analysis of choice latencies. Within the 
model class competing assumptions are made about the source of fluctuations in choice behavior 
(fluctuations in values versus fluctuations in the selection of dimensions) and about the dimen­
sional comparison process (cardinal versus ordinal). The models are tested with individual choice 
probabilities and latencies from eight subjects making many choices between alternatives in four 
topic fields. The models do better when alternatives are described on a number of dimensions than 
for alternatives presented only by name. Further, the results suggest that fluctuations in the 
selection of dimensions must be seriously considered as an alternative to fluctuations in values for 
explaining choice variability. 

This study has two objectives: First, to predict individual binary 
choices among multidimensional alternatives from evaluations of the 
alternatives' features, that is, their levels on the dimensions, and the 
importance of the dimensions, and second, to model the cognitive 
processes leading to these choices. 

Choices in applied settings (e.g., in the attitude and behavior context, 
Fishbein and Ajzen 1975) are often predicted by the weighted additive 
rule. Recent research on cognitive strategies has revealed, however, that 
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the additive rule usually does not represent the cognitive choice 
processes. Rather, persons presumably use simple heuristic rules (e.g., 
Svenson 1979). But these heuristics often do not specify which informa­
tion will be selected and processed, how long this process will continue, 
which alternative will be chosen (except for specially designed alterna­
tives, e.g., Huber 1983), and why and when repeated choices from the 
same alternatives will differ. 

In order to answer some of these questions we developed stochastic 
choice models which assume that heuristic rules are applied to probabil­
istically selected information. In order to examine whether these models 
would predict choices and reflect the cognitive processes involved, 
choice frequencies and choice latencies were analyzed. 

General assumptions 

We propose that a binary choice is a sequential comparison process in 
which alternatives are compared on a number of dimensions. We do 
not assume, however, that all available or relevant dimensions are used 
for a choice nor that any fixed number of dimensions is used for 
choosing among alternatives of a given class. Rather, it is proposed that 
the comparison process is stopped and an alternative is chosen when a 
person has accumulated enough evidence to be convinced that one 
alternative is better than the other. 

More specifically, it is assumed that (1) choices are based on sequen­
tial dimensional comparisons. The sequence of selecting dimensions for 
comparison is determined by the importance of the dimensions. (2) For 
a given dimension the alternatives are compared with respect to the 
attractiveness of their features. (3) The results of these comparisons are 
accumulated over dimensions by a counter. (4) This process stops when 
the counter reaches or exceeds one of two critical values (k or —k) 
determining which alternative is chosen. 

For applying these assumptions to the prediction of choices it is 
further assumed that (5) the importance of dimensions can be assessed 
separately. (6) The results of the comparisons on individual dimensions 
can be estimated from separately assessed evaluations of the alterna­
tives' features. Finally, there is the question of what is enough evidence, 
that is, the size of the critical values. So far, we have estimated this 
parameter from the subjects' choice data. It is the only model parame­
ter estimated from the choice data. 



An illustration 

As an illustration consider two arbitrary 11-dimensional alternatives, x 
and y. Assume that the attractiveness values of their features are given 
by x: (2, 5, 2, 3, 6, 2, 1, 4, 7, 2, 1) and y: (1, 7, 2, 4, 3, 5, 7, 6, 1, 2, 4). 
These values are listed in the order from most to least important 
dimension. Also, assume that positive differences are counted in favor 
of x and negative ones in favor of y and that the critical values are 4- 3 
and - 3. The counter starts at 0. For the first dimension a difference of 
1 in favor of x is found, and so +1 is counted. Since the absolute 
amount is lower than 3 the second dimension will be processed. Here y 
is found to be superior by 2. Thus — 2 is added, setting the counter to 
— 1. For the third dimension, no difference is found, thus the counter 
stays at —1. Processing the following dimensions yields differences of 
— 1, +3, — 3, — 6 setting the counter successively to values of — 2, +1, 
— 2, - 8 . Thus, after the seventh dimension the critical value of - 3 is 
exceeded which stops the process by choosing y since the counter is 
negative. Therefore, dimensions 8 to 11 will not be considered. 

This model not only predicts which alternative will be chosen but 
also how many dimensions will be processed for making a choice. If the 
alternative y from the example above had been evaluated 6 rather than 
4 on the fourth dimension, the same choice, y, would have already 
resulted after processing the fourth rather than the seventh dimension. 
We assume that the number of dimensions processed in any choice 
determines the choice latency. 

Specific assumptions of the models 

Within the framework defined above, we made some competing as­
sumptions about the nature of the comparison process and about the 
possible fluctuations in the choice process. 

Comparison modes 

In the illustration given above, cardinal value differences between the 
two alternatives are accumulated over dimensions; this is called cardinal 
comparison. There is evidence, however, that persons often determine 
only which alternative, if any, is better on a given dimension and base 



their choices on these ordinal comparisons (Svenson 1979). Therefore, 
ordinal models were considered in which the comparison results may 
only obtain values of +1, - 1 , or 0, depending on whether x, y, or 
neither alternative is more attractive on a dimension. In the illustration 
above, ordinal comparison also results in the choice of y9 but after 
processing eight rather than seven dimensions. In general, the two 
comparison modes may yield different choices for the same pairs of 
alternatives. 

Fluctuations in the choice process 

Given a constant set of alternatives, dimensions, evaluations, impor­
tance weights, and a critical value, the models developed so far will 
predict the choice of a fixed alternative for any pair after a fixed 
number of comparisons. It has often been observed, however, that, 
given the same alternatives repeatedly, persons do not always make the 
same choices (e.g., Petrusic and Jamieson 1978). The model has three 
components that may be subject to fluctuations: (1) The values of a 
person may be due to some fluctuation, an assumption dating back to 
Thurstone (1927). (2) The sequence of selecting dimensions may be 
fluctuating. (3) The critical values may fluctuate. Because no plausible 
hypotheses were found about fluctuations of the criteria we assumed 
them to be constant. In the present study it was attempted to compare 
the competing assumptions about the influence of the fluctuation of 
values and about the fluctuation of the sequence by which dimensions 
are processed upon individual choices. For both assumptions a cardinal 
or an ordinal comparison mode may be assumed, so that four specific 
models are obtained. 

The fluctuation of values was accounted for by the actually observed 
variation of the evaluations. The resulting models will be called value-
fluctuation (VFL) models. 

Alternatively, the fluctuation in the selection of dimensions was 
accounted for in stochastic dimension selection (SDS) models by assum­
ing that the selection of dimensions is an inherently stochastic process 
which depends on the importance of the dimensions. Although Luce's 
choice axiom (Luce 1959) is not suited for describing choices between 
multidimensional alternatives (Restle 1961; Tversky 1972), the selection 
of dimensions may be well described by this axiom, because importance 
is considered a single continuum. Let wy be the importance weight of 



dimension j\ and / be the set of dimensions that have not yet been 
processed. Then the probability pt that a dimension i will be selected as 
the next dimension is 

Pi = eWl/ £ for i e / and 0 for i <£ J. [l] 

The experiment 

The competing assumptions about the source of fluctuations in choice behavior were 
examined for both comparison modes in an experiment by collecting choice frequencies 
and latencies elicited from individuals in repeated paired comparisons between realistic 
alternatives. 

Since in realistic settings alternatives are often presented by multidimensional 
descriptions or by their names, both modes of presentation were employed. Tentatively, 
we assumed the same cognitive processes for described and named alternatives with 
dimensions being retrieved from the S's memory rather than from the display in the 
latter case. 

Also, in many occasions only the decision maker knows the alternatives which are 
relevant in a given choice situation. If the alternatives which are generated by the 
decision makers are more relevant to them, different behavior may be expected for S 
generated and experimenter generated materials. This was the second independent 
manipulation. 

In addition to the choices, S's separately evaluated the attractiveness of the features 
of the alternatives and the importance of their dimensions. These values were used as 
external parameters of the four proposed models. Additionally, these ratings were used 
for predicting choices by the weighted additive rule. 

Method 

Subjects 
Eight students who agreed to participate in 22 individual two hour sessions in one 

week intervals served as Ss. They were paid D M 5.- per hour and an additional D M 5.-
per hour only after completion of all sessions. The data of four other S's who 
prematurely quit the experiment between the fourth and eight session are not reported 
here. 

Materials 
Four different choice domains with nine alternatives each were employed. The four 

domains were vacation areas, journal subscriptions, car rentals, and German universi-

[1] Originally, we had also considered a stochastic dimension selection model with />, directly 
proportional to w,. This was not pursued further, because it introduced too much fluctuation in the 
predicted choices. 



ties. For each area, nine real alternatives were selected. These alternatives were then 
described by their features on eleven dimensions. A typical example of a named and a 
described choice pair is shown in table 1. 

In addition, the Ss themselves generated alternatives, dimensions, and features for 
two of the choice domains. 

Design 
The alternatives of a domain could be presented in one of four different ways, 

obtained by crossing the two experimental variables, generation (S, experimenter) and 
presentation mode (named, described). Each S was run under all four of these 
conditions with one domain assigned to each condition. The assignment of domains to 
conditions was balanced over 5s. The nine alternatives of a domain form 36 choice 
pairs, yielding a total of 144 pairs of alternatives for the four domains. The SY 
preferential choices from each pair were repeatedly elicited. 

Procedure 
A l l Ss were run individually. The experiment consisted of 22 sessions. In the first 

session, Ss generated nine alternatives for each of the two choice domains assigned to 
S-generated conditions. For one of these two domains they also generated 11 dimen­
sions and the features of the alternatives of this domain on these dimensions. 

For the remainder of the first session, unrelated materials were used for having the 
Ss practice the choice and evaluation tasks which were to follow. This exercise as well 
as the following 20 sessions were run under the control of an Apple II micro-computer 
and were completely S paced. 

Each of the 20 subsequent 1.5 to 2 hour sessions consisted of a choice and an 
evaluation part. The choice part consisted of the 144 paired comparisons of the nine 

Table 1 
Sample choice pair (journal subscriptions, experimenter-generated) in named and described 
presentation mode. 

Named presentation: Capital Spiegel 

Described presentation 

Frequency of publication Monthly Weekly 
No. of articles on science 4 1 
No. of advertisements 120 180 
Price of magazine 6.-DM 4.-DM 
No. of articles on politics 70 25 
No. of articles on ecology 1 5 
No. of articles on entertainment 5 3 
No. of articles on cultural events 3 5 
No. of pictures 15 15 
No. of color pictures 10 3 
No. of pages 350 300 



alternatives from each of the four domains. The order of the pairs was mixed over 
domains and conditions and randomly determined for each session. For each compari­
son the following informations were simultaneously presented on a screen. At the top 
of the screen appeared the name of the domain. In the named conditions the two 
alternatives' names appeared on the screen, one beside the other. If the domain was 
assigned to a described condition the list of dimensions appeared, one below the other, 
on the left side of the screen. Their order was newly randomized for every new display. 
The alternatives' features on the dimensions were displayed in two columns to the right 
of the dimension names; alternatives' names were not given. The columns of the two 
alternatives of each pair were randomized over sessions. 

The Ss indicated their choices by pressing one of two buttons. Ss were instructed to 
work fast but to take all the time they needed to make good decisions. The choices and 
choice latencies were recorded by the computer. 

The evaluation part with 220 evaluation tasks followed. The Ss gave evaluations of 
the importance of dimensions and of the attractiveness of the alternatives' features for 
the two domains that were used in the described conditions. A l l these evaluations were 
done on seven point rating scales with the extreme poles being labelled "not important" 
and "very important" or "not attractive" and "very attractive". The items were 
randomly ordered within sessions. Each importance evaluation started with the text 
"How important is the following dimension for you in choosing among (domain)?" 
appearing on the screen. A similar text indicated domain and dimension when an 
attractiveness rating was required. Simultaneously the dimension or feature appeared 
on the screen. Below appeared a 7-point rating scale on which the Ss indicated their 
evaluation by turning a dial. The Ss' ratings were collected by the computer. 

In the 22nd session, the Ss generated the dimensions and the alternatives' features 
on these dimensions for the named S-generated domain. Then evaluations for the two 
domains used under named conditions were elicited in this last session. This was done 
the same way as for described alternatives in the foregoing sessions but only once. 

Data of one session were lost for four Ss (Nos. 3, 4, 5, 6) due to a discette failure. 
These Ss' results are based on only 19 replications. 

Results 

A l l analyses were done individually for each S and domain. Table 2 shows a sample 
pattern of relative choice frequencies ordered by marginal frequencies. Typical features 
of the observed choice frequencies are the large numbers of zeros and ones and a band 
of probabilities different from zero and one around the diagonal. In order to test 
whether the relatively few non-zero/one frequencies were based on Ss* strategy 
changes during the earlier replications we compared their choice frequencies from the 
first half of replications with those from the second half. There was no significant 
increase of zeros and ones from first to second half. 

Fitting the choice models 
Each of the four models (ordinal and cardinal, V F L and SDS) was individually 

fitted to the observed choice frequencies for each S and domain. For every S and each 



domain the parameter k was estimated by a grid search. In this estimation all integers 
from one to the highest accumulated difference that could occur were considered as 
possible parameters. For each model, the value of k producing the minimal average of 
squared differences between observed and predicted choice probabilities was taken as 
the critical value. 

Choice predictions with cardinal and ordinal V F L models were calculated from the 
SV evaluations as was described in the introductory illustration. For domains used in 
described conditions, 20 sets of evaluations had been elicited. These were used to 
predict the choices repeatedly by using each set of values, in order to reflect the 
possibility that choice fluctuations could be accounted for by fluctuations in values. 

Ordinal and cardinal SDS model predictions were derived from each S's averaged 
evaluations. These models were formalized as finite Markov chains. According to our 
assumption of a stochastic process for selecting dimensions, the value of the counter 
after each step of processing is a random variable. At every step there is a probability 
that the counter is at least as large as the positive critical value, at least as small as 
— k, or absolutely smaller. In the first two cases one or the other alternative will be 
chosen. In the third case another dimension will be processed. Summing the probabili­
ties that the counter is at least as large as +/c over all steps of the process yields the 
probability for choosing one alternative. The probability for choosing the other 
alternative is given by summing the probabilities of the counter being at least as small 
as —k. There may remain a probability that all dimensions are processed without 
reaching +k or — k. For this case, choice was assumed with probability proportional to 

Table 2 
Observed choice frequencies (upper entries) and predicted choice probabilities (lower entries) for 
subject 3, vacation areas (described subject-generated alternatives). The predicted probabilities are 
from the cardinal SDS model with a critical value of 3. The probabilities indicate preferences for 
column over row alternatives. Observed values are based on 19 observations and rounded. 

Alternative 5 9 4 3 7 2 6 8 

9 O80 
0.58 

4 0.95 0.65 
0.78 1 

3 1 0.75 0.55 
0.80 0.73 0.56 

7 1 1 0.95 0.90 
0.93 1 0.85 0.83 

2 1 1 1 0.85 0.95 
1 1 1 0.82 1 

6 1 1 1 1 1 1 
1 1 1 0.96 0.98 0.94 

8 1 1 1 1 1 1 0.90 
0.98 1 0.96 1 1 0.80 0.25 

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 



the counter's differences from + k and -k. At any particular state in the process, the 
order in which the already processed dimensions were considered is irrelevant. Thus, by 
defining the set of possible states by the power set of all dimensions the Markov 
property is fulfilled for these states. A state becomes absorbing if a critical value is 
reached or exceeded in that state. For nonabsorbing states the transition probabilities 
to all other states that include one more dimension are positive and defined by the 
BTL-equation above. A l l other transition probabilities are zero. 

Model fit 
Table 3 displays the average standard deviations of the four models for the four 

experimental conditions. For comparison, the values for the weighted additive model 
using all dimensions are also reported. The additive model uses the assessed importance 
evaluations as weights for the attractiveness values rather than for determining the 
sequence of processing dimensions. 

Altogether, our models fit the 5 s choices better than the additive model. Further, 
table 3 shows no considerable differences in the pattern of model fits between 5- and 
experimenter-generated alternatives. But model fits are generally worse for named 
alternatives than for described ones. We will not consider named alternatives further. 

For described alternatives, the cardinal SDS model fits the choices better than the 
ordinal one. This also holds on an individual basis for all eight 5s and for 5- as well as 
for experimenter-generated alternatives. For the V F L models there appears to be no 
difference between cardinal and ordinal models. Also, on an individual basis each is 
better in half the cases under both generation modes with individual differences being 
small. Therefore, we will compare the two cardinal models. 

In order to give an impression of the individual variation, table 4 displays the 
individual model fits for cardinal models and described alternatives and the 5s' best 
fitting k values. The cardinal SDS model is better than the cardinal V F L model in all 
but two cases. The probability of obtaining this superiority by chance is less than 0.002 
by a binomial test. In seven cases, marked with an asterisk in table 4, the SDS model is 
also significantly better on an individual 5 basis (F-test on the arcsin transformed 
frequencies; Mosteller 1951; individual p < 0.05). For further illustration, the predict-

Table 3 
Average standard deviations of observed choice frequencies from the predicted ones for cardinal 
and ordinal VFL and SDS models and the weighted additive model (ADD) in the four experimen­
tal conditions. 

Alter- Comparison Alternatives generated by 
natives modes Subject Experimenter natives modes 

VFL SDS ADD VFL SDS ADD 

Described Cardinal 0.28 0.20 0.35 0.27 0.20 0.31 
Ordinal 0.29 0.27 0.26 0.30 

Named Cardinal 0.37 0.32 0.47 0.40 0.32 0.49 
Ordinal 0.39 0.31 0.44 0.34 



ions of the cardinal SDS model for S 3, S-generated alternatives, are shown in table 5 
(lower entries). 

Choice latencies 
The models also predict the number of dimensions to be processed for choosing 

among each individual pair of alternatives. Therefore, the monotonicity of the function 
relating the observed choice latencies to the predicted number of dimensions was tested 
using the r-correlation. Only results for described alternatives and cardinal models will 
be reported. For named alternatives, there was no such relation. 

For the V F L model this test is simple since this model predicts precisely how many 
dimensions will be processed for every pair. For each individual S and domain the 
observed choice latencies were averaged over all choice pairs with identical numbers of 
predicted dimensions. 

The SDS model does not predict a single number of dimensions but two probability 
distributions over number of dimensions for each pair, one for the choice of each 
alternative. Therefore, we calculated the following test quantities tm, /w = l , . . . ,12, 
where 12 refers to the case that the critical value is not reached after processing all 11 
dimensions. Assume that a S chooses x from the pair (x, y) in the / th replication with 
latency txyi9 and let fxym be the model's probability that x is chosen from pair (x,y) 
after the processing of m dimensions. Then 

should be a monotone function of m. In simple words, this means that on the average 
choices should take more time, the more the probability is concentrated on higher 
numbers of dimensions. 

Table 5 shows examples of the relation between predicted number of dimensions 

Table 4 
Individual subjects' critical values (&) and model fits for cardinal models and described conditions. 

Sub- Alternatives generated by 

Subject Experimenter 

k Model fit k Model fit 

VFL SDS VFL SDS VFL SDS VFL SDS 

3 3 3 0.21 0.14* 5 6 0.26 0.17 
4 6 8 0.19 0.13 * 3 8 0.31 0.26 
5 3 2 0.40 0.41 5 4 0.29 0.20 * 
6 1 3 0.37 0.28 2 1 0.28 0.18 * 
9 2 2 0.26 0.20 2 11 0.16 0.20 
11 3 1 0.18 0.15 4 5 0.25 0.20 
13 5 2 0.31 0.13 * 5 3 0.29 0.16 * 
14 2 1 0.31 0.22 1 3 0.35 0.22* 



Table 5 
Predicted numbers of processed dimensions and observed average choice latencies for subject 3 
(vacation areas) and 6 (universities), subject-generated domains, (m: numbers of dimensions 
processed by the models.) 

(a) VFL model (fm: number of pairs decided after processing m dimensions; 
tm\ average latency for these pairs). 

m T 

1 2 3 4 5 6 7 8 9 10 11 12 

Subject 3 
fm 0 5 14 10 3 3 1 0 0 0 0 0 0.60 
tm - 30.1 47.4 55.1 54.4 51.7 79.4 - - - - -

Subject 6 
fm 31 5 0 0 0 0 0 0 0 0 0 0 1.0 
L 13.3 13.9 - - - - - - - - - -

(b) SDS model (fm: 
tm: 

probability of processing m dimensions; 
weighted choice latency for m dimensions). 

m T 

1 2 3 4 5 6 7 8 9 10 11 12 

Subject 3 
fm 0.03 0.19 0.18 0.14 0.11 0.09 0.06 0.05 0.04 0.03 0.01 0.07 0.97 
L 41.2 43.3 43.0 46.0 48.9 51.1 52.3 55.4 55.9 58.1 63.8 66.3 

Subject 6 
fm 0.37 0.22 0.12 0.07 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.07 0.55 
im 12.7 13.1 13.6 13.7 14.0 14.5 15.2 15.6 15.3 16.3 12.4 15.1 

and observed latencies for two Ss and both models. 
With three exceptions (S-generated alternatives: S 5, both models; S 11, SDS 

model) all 32 (16 domains X 2 models) T-correlations were positive. The median 
correlations for S- and experimenter-generated conditions were 0.49 and 0.67 for the 
V F L model and 0.40 and 0.38 for the SDS model. Comparing the coefficients for the 
two models by a statistical test is not appropriate, however, for reasons of differences in 
the averaging formulas and because on the average the SDS model correlations are 
based on twice as many response time classes (11.6) as those of the V F L model (6.2). 

Discussion 

All together, the results for described alternatives support the assump­
tion that binary choice is accomplished by sequential accumulation of 
dimensional value differences until enough evidence is accumulated. 



The models predict choices in various domains better than the additive 
model [2], and there is a positive relation between the subjects' choice 
latencies and the numbers of dimensions processed by the models. 

Among our models, cardinal models accounting for value differences 
made better choice predictions than ordinal models. This result is in 
contrast to the fact that most choice heuristics described in the litera­
ture are ordinal. An explanation may be that we considered only binary 
choices. Payne (1976) observed that ordinal rules are mostly used to 
choose among more than two alternatives, whereas more elaborate 
comparisons are made between two alternatives [3]. 

From the cardinal models, the SDS model was found to be superior 
in predicting choices. This suggests that fluctuations in the process of 
selecting dimensions must be seriously considered as an alternative to 
fluctuations in values for explaining choice variability. An incidental 
observation about the choice latencies suggests, however, that our 
selection assumption may have introduced too much variation. The 
choice latencies of the SDS model of subject 6 in table 5 show that the 
violations of monotonicity occurred only for higher numbers of predic­
ted dimensions which were assigned comparably low probabilities by 
the model. For the SDS model such low probability-high (7 to 11) 
numbers of dimensions choice latencies were the main source of viola­
tions of monotonicity among our subjects. This suggests that the 
subjects, contrarily to the SDS model, did not even occasionally use as 
many dimensions for making their choices. Further research on the 
process of selecting dimensions appears worthwhile. 

For named alternatives, our models fitted less well. For named 
experimenter-generated alternatives this might have been explained by 
the subjects using other dimensions than we had assumed. Results were 
not better, however, in the subject-generated condition in which the 
subjects generated their own dimensions after making their choices. 
This suggests that the subjects did not use a dimensional strategy at all 
for choosing among named alternatives. 

[2] Our models had an advantage over the additive rule in so far as one parameter was estimated 
from the choice data. No parameter was estimated from the choice latencies, however. Thus, the 
latency analysis may be considered as a cross validation favoring our models since the additive rule 
would not predict different latencies for individual pairs of alternatives. 
[3] This explanation was suggested by Thomas Eppel. 



Relation to other theories 

Our models incorporate a number of well known choice heuristics (that 
are discussed, for instance, by Svenson 1979, or Aschenbrenner 1981) 
as special cases, or they define probabilistic versions of these strategies. 
For instance, with a critical value of 1 the ordinal models become the 
lexicographic rule; with increasing critical values they approach the 
majority rule. The cardinal models with high critical values are equiva­
lent to an additive model. Also, other modifications, not yet tested, 
would yield further established rules. For instance, one could assume 
that the comparison results are not accumulated over dimensions but 
that the counter is set back to zero after each dimension. With low 
critical values such cardinal models would become the lexicographic 
semiorder. With high critical values they might be considered as variants 
of the greatest attractivity difference rule with "greatest" being replaced 
by "sufficiently great". 

Also, the general idea of describing choice processes by such models 
proposing a sequential information sampling process with a stopping 
criterion has already some tradition in psychology (e.g., Audley and 
Pike 1965). Elaborate versions of such models have been designed and 
applied for psychophysical judgment and discrimination tasks (e.g., 
Link 1975). Some support for such processes in multidimensional 
choice has been reported by Petrusic and Jamieson (1978). A sequential 
sampling model for one-dimensional (monetary outcome) risky choice 
was recently presented by Busemeyer (1982). Especially intriguing 
about such processes is the fact that they allow for a great reduction of 
information processing effort while yielding almost the same choice 
accuracy as can be achieved by processing all information about the 
alternatives. 

The main difference of our approach is the use of externally assessed 
parameters (values and importance weights) for predicting choices. Also 
new is our solution for deriving the SDS model predictions from these 
parameters. This solution was needed as a consequence of the assump­
tion that the same dimensions will not be processed more than once in 
any choice. Without this assumption, that is, when replacement of 
sampled information is assumed such models are formally much more 
tractable. 
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