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A Game-Theoretic Foundation for
Competitive Equilibria in the Stiglitz-Weiss Model

Abstract

Financial intermediaries are, by definition, engaged in two-sided competition. Despite the well-

known problems of achieving competitive solutions under two-sided price competition, models of

financial intermediation are commonly solved for competitive equilibria. This paper provides a

game-theoretic foundation for competitive equilibria in one of the most important models of finan-

cial intermediation, the seminal Stiglitz-Weiss (1981) adverse selection model of the credit market

with a continuum of borrower types. The approach can readily be adapted to other models of

financial intermediation as well.

1 Introduction

Financial intermediaries are, by definition, engaged in competition in input (deposit) markets

and output (loan) markets. As noted by Stahl (1988) and Yanelle (1989, 1997), two-sided

price competition does not necessarily give rise to perfectly competitive equilibria, i.e., to the

market outcome that would arise with price-taking behavior. This casts doubt on the common

practice of solving models of financial intermediation for perfectly competitive equilibria. The

seminal Stiglitz-Weiss (1981) (henceforth: “SW”) model is a case in point. The purpose of

the present paper is to provide a game-theoretic foundation for the SW model that yields

the perfectly competitive solution as the outcome of two-sided price competition and that

generalizes to other models of financial intermediation as well.

To motivate the problem, consider the two-stage game analyzed by Stahl (1988, pp. 195-196),

the terminology adapted to the operation of banks rather than “merchants”. Let sufficiently

well-behaved supply and demand functions for loanable funds be given. The perfectly com-

petitive solution entails that both the deposit rate and the interest rate are equal to the

rate that equates supply of and demand for funds. At stage one, two banks bid for deposits.

The higher bidder gets the whole supply of deposits (“winner-take-all”). In the case of equal

bids, each bank gets the total supply with probability one-half (“random tie-breaking”). At
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stage two, the single bank endowed with loanable funds is a monopolist in the loan market.

When the demand elasticity evaluated at the market-clearing rate is sufficiently high such

that an increase in the interest rate reduces total repayment (principal plus interest paid

by all firms), the perfectly competitive solution arises as a subgame-perfect equilibrium of

the two-stage game: both banks offer the market-clearing rate to depositors, and the bank

selected by the random tie-breaking rule sets the same rate in the credit subgame. The bank

active at stage two has no incentive to raise the interest rate because of the ensuing drop

in total repayment. Lowering the bid rate at stage one is not profitable because, due to

winner-take-all competition, there is no supply left. Bidding higher at stage one leads to

losses because the revenue-maximizing loan rate then falls short of the bid rate. However,

the perfectly competitive solution does not arise if the demand for capital is inelastic, in that

an increase in the interest rate raises total repayment. This is because a bank that acquires

funds at the market-clearing rate at stage one has an incentive to set an interest rate above

the market-clearing rate and hold back funds at stage two then.

Stahl (1988, pp. 196 ff.) proceeds to show that the perfectly competitive solution generally

arises if the credit subgame precedes the deposit subgame and banks must not default on

their deposit obligations: assuming random tie-breaking in the credit subgame, both banks

set the market-clearing rate at stage one, and the bank selected by the tie-breaking rule bids

the same rate to depositors. It is not feasible to get the required funds at a lower deposit rate

at stage two. Deviating with a higher interest rate at stage one is not profitable, because

there is no residual demand left. Setting a lower rate at stage one yields losses, because

this forces a bank pay a deposit rate above the market-clearing level in order to meet its

obligations at stage two.

This second double-Bertrand game, in which competition in the “output” market precedes

competition in the “input market” appears of particular relevance for financial intermedi-

ation. For one thing, as pointed out above, financial intermediation is a prime example of

two-sided competition (see Freixas and Rochet, 1997, Section 3.4). For another, the order of

the stages is a natural way to express the fact that banks make long-term commitments by

rolling over short-term debt. Thus, the reinterpretation of the Stahl (1988) model as a model

of the capital market provides a sound game-theoretic foundation for perfectly competitive

financial intermediation in a frictionless environment.
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Matters are more complicated in markets with informational frictions, however. Two of the

startling features of capital markets with asymmetric information are rationing and two-price

equilibria, i.e., the “Repeal of the Law of Supply and Demand” and the “Repeal of the Law

of the Single Price” (Stiglitz, 1987, pp. 4 and 7, resp.). The SW model is at the center of our

analysis for the reason that it potentially gives rise to either of these two types of equilibria:

Coco (1997) and Arnold and Riley (2009) show that a two-price allocation is an equilibrium

of the model with price-taking behavior in the deposit market when the return on lending

is a non-monotonic function of the interest rate and there is excess demand at the local

maximum (and there is no market-clearing interest rate that yields a higher return).1 If the

model is modified such that riskier projects have a lower expected return, the return function

may be hump-shaped and pure credit rationing may arise, as stressed by SW. This raises

the question of whether these types of equilibria, like the perfectly competitive solution in

the frictionless case, can also be given a sound game-theoretic foundation.

The Stahl (1988) model does not lend itself directly to this setup with informational frictions.

It assumes that banks satisfy the entire market demand at the quoted interest rate. This

is inconsistent with either credit rationing or a two-price allocation with excess demand at

the lower rate. So, to make the Stahl (1988) approach applicable to rationing or two-price

equilibria, we assume that a bank’s strategy space consists of an interest rate and a limit

on the amount of credit offered (a “credit limit”2) in the credit subgame and of a deposit

rate and a maximum demand for funds in the deposit subgame. This modified double-

Bertrand approach yields the desired game-theoretic foundation for the respective types of

equilibria: the market-clearing, rationing, and two-price equilibria arise as subgame-perfect

Nash equilibria (SPNE) of the two-stage game under the respective assumptions about the

return function.3 We also show how the modified double-Bertrand approach carries over to

alternative models of financial intermediation as well. Thus, our modified double-Bertrand

1Related papers which cast doubt on the theoretical importance of credit rationing in SW-type models

include Bester (1985), Riley (1987), De Meza and Webb (1987, 2006), and Lensink and Sterken (2002).
2Notice that the term “credit limit” does not refer to the size of an individual loan but to the “number”

(mass) of loans a bank makes. De Meza and Webb’s (2006) work shows that the distinction is crucial: with

variable loan size rationing phenomena disappear altogether.
3This is our pragmatic definition of a “game-theoretic foundation for competitive equilibria”: a specific

game structure that yields the “equilibria” described in the literature as an SPNE (cf., by contrast, the

“Foundations of Competitive Equilibria” in Mas-Colell et al. (1995, ch. 18).
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approach yields a solid game-theoretic foundation for the common practice of solving models

of financial intermediation such as the SW model for perfectly competitive equilibria.

Building this foundation for competitive equilibria in the SW model requires making several

choices, e.g., with regard to how many loans different banks charging the same interest rate

make and which amount of deposits banks bidding the same rate receive. While we are

confident that our approach is robust to modifications of the rules of the game (except that,

as explained above, the sequencing of the two subgames is crucial), one might validly object

that we merely present one specification that yields the perfectly competitive outcome as an

SPNE. However, the main motivation for the present analysis is that there is no such game

in the existing literature. So the present analysis provides one way of filling this big gap in

the literature.

There are two other resolutions to the problem that two-sided price competition does not

necessarily give rise to a perfectly competitive equilibrium. First, Allen and Hellwig (1986)

show that the equilibrium prices of the mixed-strategy game converge in distribution to com-

petitive prices as the number of firms becomes large. Relatedly, Dixon (1987) demonstrates

that as the economy is replicated a sufficiently large number of times, a competitive approx-

imate equilibrium exists. This approach is not helpful for our purposes, however, because

input prices (i.e., in our context, the deposit rate) are taken as given. Moreover, compet-

itive solutions in Dixon’s model require efficient rationing, which is incompatible with the

information structure assumed by SW. Second, Gersbach (2002, 2008) derives a competitive

double-Bertrand equilibrium in a financial market in which the deposit subgame precedes the

credit subgame and with endogenous market-side switching (i.e., as the interest rate rises,

entrepreneurs supply their endowments to the market rather than demand additional funds

in order to invest). This approach is not suitable for our purposes either, because, though

there is rationing out of equilibrium, it relies on market clearing in equilibrium.

The paper is organized as follows. Section 2 briefly recapitulates the assumptions of the SW

model and explains double-Bertrand competition in detail. Section 3 proves that the the

two-interest allocation is the unique subgame-perfect equilibrium of the double-Bertrand

game. Section 4 is concerned with the SW model with a monotonic or a hump-shaped return

function. Alternative models of financial intermediation are considered in Section 5. Section

6 concludes. Details of the proofs of theorems are delegated to a technical appendix.
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2 Model

This section introduces the model. We first briefly recapitulate the assumptions of the well-

known SW adverse selection model with a continuum of borrower types.4 We then state our

assumptions with regard to price competition in the markets for loans and deposits.

Firms and projects

The model covers two time periods, 1 and 2. There is a continuum of length N (> 0) of

firms of different types, θ. The distribution of firm types, G(θ), is strictly increasing and

continuous and has (bounded) support [0, θmax]. In period 1, each firm has access to one

indivisible investment project with uncertain payoff R (≥ 0) in period 2. The distribution

of returns on the projects of type-θ firms is denoted as F (R|θ). F (R|θ) is continuous in R

for all θ. The returns on different projects are independent. All types of projects have the

same expected return, R̄: ER(R|θ) = R̄ for all θ. It is assumed that if θ′ > θ, the distribution

F (R|θ′) is a mean-preserving spread of F (R|θ):
∫ x

0
F (R|θ′)dR >

∫ x

0
F (R|θ)dR for all x > 0.

In this sense, the higher θ, the riskier the project. Each project requires a capital input B

(0 < B < R̄). Banks collect deposits and make fixed-interest loans to firms. This process

involves no factor cost. There is asymmetric information: firms observe their own type θ,

while banks do not. As a result, the interest rate(s) charged r cannot be made contingent on

borrower types θ. Firms are risk-neutral and apply for credit if their project yields a non-

negative expected profit. The supply of capital LS(ρ) is a continuous and strictly increasing

function of the interest rate paid on deposits ρ with LS(0) ≥ 0 and LS(ρ) → ∞ for ρ → ∞.

Double-Bertrand competition

Banks are distinguished by an index k ∈ {1, . . . , K} = K. The number of banks is at least

four (i.e., two per interest rate in a two-interest rate equilibrium): K > 4. The banks play

a two-stage game, first stage the credit subgame, then the deposit subgame. In the credit

subgame, bank k’s strategy is a pair (rk, λk) ∈ R2
+. rk is the interest rate k sets and λk a

credit limit (explained below). If there are several equilibrium interest rates, firms apply for

credit at the lowest interest rate first and turn to the next-highest interest rate if rationed.

If several banks charge the same interest rate rk, the bank with the highest credit limit λk

alone faces the market demand at rk. If several banks choose the maximum credit limit at

4The analysis is very similar with a finite set of borrower types.
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rk, then a tie-breaking rule randomly selects one of them, which then serves the market

demand at rk alone. For the sake of simplicity, we assume that the tie-breaking rule assigns

the same probability to each bank setting the maximum credit limit.5 Hence, at each interest

rate rk the (residual) demand is served by a single bank k. Its credit limit λk obliges this

bank to supply the minimum of λk and (residual) demand at rk to the market. In the deposit

subgame, bank k’s strategy is a pair (ρk, δk) ∈ R2
+. δk is the amount of deposits k demands at

the bid rate ρk.
6 The bids are served in the order of decreasing deposit rates. If the (residual)

supply of deposits does not fall short of demand at a given deposit rate ρk, then each bank k

which bids ρk gets δk and lenders are rationed randomly. If the demand for deposits exceeds

(residual) supply at ρk, then the banks k which bid ρk share the supply in proportion to

the volumes δk they demand.7 There is no secondary market for deposits. Following Stahl

(1988, pp. 196-197), we assume that a bank’s payoff in the case of default (i.e., if it fails to

refinance its credit given) is a negative constant π (< 0).8

3 Equilibrium

Return function

As shown by SW, the credit market equilibrium is characterized by adverse selection: firms

apply for credit if and only if their project is sufficiently risky. Formally, let π(R, r) =

max{R − (1 + r)B,−C} denote a firm’s profit. A firm with a type-θ project applies for

credit if and only if ER[π(R, r)|θ] ≥ 0. Given the mean-preserving spread assumption,

5More generally, we could assume that it assigns an arbitrary strictly positive probability to each bank.

The analysis is unaffected.
6Competition is not “winner-take-all”.
7This kind of coordination is needed in order to avoid default caused by the mechanism that determines

the allocation of deposits to banks (cf. Stahl, 1988, p. 198).
8The assumption that a bank defaults if it does not raise deposits equal to or greater than the amount

of loans it makes implies that banks have no alternative source of funds in period 1. On the other hand,

negative payoffs may occur for banks (off the equilibrium path), which assumes that banks have funds they

can use to cover losses in period 2. So we implicitly assume that banks have period-2 income but cannot

borrow against this in period 1. An alternative interpretation is that banks are intermediaries for trade in

physical, not financial, capital. Clearly, banks then have to default if the amount of funds raised falls short

of credit given.
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this condition is satisfied for θ ≥ ϑ(r), where ϑ(r) is an increasing function defined by

ER[π(R, r)|ϑ(r)] = 0. The maximum interest rate above which no firm demands a loan is

denoted rmax: ER[π(R, rmax)|θmax] = 0.

Each bank’s pool of borrowers has the same risk characteristics, so the rate of return on

lending can be expressed as a function of the interest rate alone:

ϱ(r) =
R̄− ER,θ[π(R, r)|θ ≥ ϑ(r)]

B
− 1, (1)

SW observe that the return function ϱ(r) is not necessarily monotonic. This is because an

increase in the interest rate means that those borrowers who repay repay more, but since the

risk pool worsens, the proportion of borrowers who do repay falls. This means that a small

increase in the interest rate may be harmful, rather than beneficial, to the banks.

Coco (1997) and Arnold and Riley (2009) show, however, that ϱ(r) attains its unique global

maximum R̄/B − 1 at rmax (see the upper panel of Figure 1). This follows from (1) and the

observations that

ER,θ[π(R, rmax)|θ ≥ ϑ(rmax)] = ER[π(R, rmax)|θmax] = 0

and

ER,θ[π(R, r)|θ ≥ ϑ(r)] > 0, for r < rmax

(since ER[π(R, r)|θmax > 0). Intuitively, whenever r < rmax, the riskiest firms make positive

expected profit, so the banks’ return on lending falls short of the expected rate of return

of the investment projects. When r = rmax, only the riskiest borrower class remains in the

market and makes zero expected profit. This is the only possibility for banks to generate a

rate of return equal to the expected rate of return of the investment projects. In particular,

this means that the return function cannot have the hump shape assumed by SW.

For the sake of expositional convenience, we assume in what follows that ϱ(r) is continuous,

has a unique interior local maximum ρ∗ at the interest rate r∗, and is positive-valued for

all r ≥ r∗ (see the upper panel of Figure 1).9 It follows that there is a unique interest rate

r∗∗ > r∗ such that ϱ(r∗∗) = ρ∗ and that ϱ(r) increases for r > r∗∗.

9Arnold and Riley (2009) show that ϱ(r) is discontinuous if the lower bound of the support of F (R|θ) is
identical for a positive mass of borrower types θ.
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Figure 1: Return function and credit market

Supply and demand

To focus on non-market-clearing equilibria, we assume that

LD(r∗∗) < LS(ρ∗) < LD(r∗)

(see the lower panel of Figure 1). This rules out several types of equilibria.10 First, there is

not a market-clearing equilibrium with r < r∗, since there is excess demand. Second, there is

a market-clearing interest rate above r∗. But this interest rate cannot arise in an equilibrium

with zero profit for banks either, because banks could raise expected profit by underbidding

with the interest rate r∗. Moreover, there cannot be a pure rationing equilibrium in which

banks set the interest rate r∗ and pay ρ∗ to depositors. This is because it would be profitable

to deviate with an interest rate close to rmax: there is positive residual demand due to

rationing at r∗; the return on lending rises, since ϱ(r) attains its global maximum at rmax;

and if the amount of loans made is sufficiently small, the deposit rate rises only slightly.

Existence of a two-price equilibrium

The clue to finding an equilibrium is in found SW (pp. 398-399) in their discussion of a

return function with multiple humps: we have to look for an equilibrium with two interest

10The arguments put forward in this paragraph are somewhat heuristic. They will be made precise in the

proofs of Theorems 1 and 2 below.
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rates and equality of residual supply and residual demand at the higher rate. Accordingly,

let

L∗ =
LS(ρ∗)− LD(r∗∗)

LD(r∗)− LD(r∗∗)
LD(r∗). (2)

Suppose banks give credit L∗ at r∗ and LS(ρ∗) − L∗ at r∗∗ and pay the deposit rate ρ∗.

Since ϱ(r∗) = ϱ(r∗∗) = ρ∗, they make zero profit. Residual supply and demand at r∗∗ are

LS(ρ∗)−L∗ and [1−L∗/LD(r∗)]LD(r∗∗). From (2), residual supply equals residual demand.

The following theorem states that this two-price allocation is the outcome of the double-

Bertrand competition in the markets for credit and deposits.

THEOREM 1: The following pure strategies represent an SPNE:

↪→ in the credit subgame, (rk, λk) = (r∗, L∗) for two banks k, (rk, λk) = (r∗∗, LS(ρ∗) − L∗)

for two banks k, and (rk, λk) = (0, 0) for the other banks k ∈ K;

↪→ in the deposit subgame, the bank k setting r∗ and selected by the tie-breaking rule

chooses (ρk, δk) = (ρ∗, L∗), the bank k setting r∗∗ and selected by the tie-breaking rule chooses

(ρk, δk) = (ρ∗, LS(ρ∗)− L∗), and all other banks k ∈ K choose (ρk, δk) = (0, 0).

Clearly, the strategies described in Theorem 1 yield the two-price allocation, with zero profit

for all banks. Since there is no residual demand, it is not possible to make positive profit

with r > r∗∗. The proof of Theorem 1 requires a careful analysis of the residual supply and

demand functions, which is delegated to Appendix A. Appendix B provides a rigorous proof

of the theorem. Here we give a non-technical sketch. To simplify matters, we let π = −∞
here. This rules out default by banks (in and out of equilibrium) by assumption.11

Solving the model backwards, consider the first the deposit subgame. Let lk denote credit

given by bank k at stage one and

ρ = (LS)−1

(∑
k∈K

lk

)
(3)

the deposit rate that is just sufficient to raise the required amount of funds. The following

lemma summarizes banks’ behavior in the deposit subgame.

LEMMA 1: The following strategies represent a Nash equilibrium of the deposit subgame:

11In banking theory, the no-default assumption has been popularized by Ben Bernanke and Mark Gertler

(1987, p. 96). At a practical level, it can be motivated by the various solvency regulations unique to the

banking sector.
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(ρk, δk) = (ρ, lk) for each bank k with lk > 0, and (ρk, δk) = (0, 0) for each bank k with

lk = 0.

For banks with lk > 0, bidding lower or reducing the demand for funds means default:

deposits are insufficient to make the promised loans (and the payoff is π = −∞). Bidding

higher or increasing the demand for funds also reduces profit, since interest income is already

determined in the credit subgame. For banks with lk = 0, attracting funds is unprofitable

because they do not lend. For future reference, we note that the equilibrium deposit rate ρ

in (3) is a continuous and strictly increasing function of aggregate credit given
∑

k∈K lk.

Given the credit-subgame strategies in Theorem 1, we have
∑

k∈K lk = L∗ + [LS(ρ∗) −
L∗] = LS(ρ∗), so ρ∗ = (LS)−1[LS(ρ∗)] = (LS)−1(

∑
k∈K lk). It follows from Lemma 1 that the

strategies for the deposit subgame described in the theorem constitute a Nash equilibrium

of the resulting deposit subgame.

Turning to the credit subgame (i.e., stage one of the double-Bertrand game), consider a

given strategy profile, {(rk, λk)}k∈K. The set of market interest rates is {r| rk = r and lk >

0 for some k ∈ K}.

LEMMA 2: Suppose the strategy profile in the credit subgame changes such that one of the

following two situations arises:

↪→ credit given becomes positive at one interest rate formerly not contained in the set

of market interest rates; for all initial market interest rates, the maximum credit limit λk

remains the same;

↪→ the set of market interest rates remains unchanged; credit given rises for exactly one

market interest rate; for all other initial market interest rates, the maximum credit limit λk

remains the same;

then aggregate credit given rises.

The proof of the lemma is tedious, but the assertion made is straightforward: if some bank

makes additional loans at some interest rate, the total amount of loans made increases.

Together with Lemma 1 and (3), it follows that the deposit rate also increases. Bearing this

in mind, it is straightforward to show that it is not profitable to deviate from the strategies

in Theorem 1 in the credit subgame. Strategies with an interest rate above r∗∗ do not attract

firms, since there is no residual demand. By offering credit in excess of LS(ρ∗)− L∗ at r∗∗ a

bank overbids the highest credit limit, thereby capturing the residual demand. However, as
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there is no excess demand at r∗∗, the amount of credit given does not rise, so that zero profit

ensues. Firms can also be attracted by offering more funds at r∗ or by setting an interest

rate below r∗∗ other than r∗. However, this yields losses because the return on lending is

no greater than ρ∗ and the additional demand for deposits raises the deposit rate above ρ∗.

This proves Theorem 1.

“Uniqueness”

The SPNE in Theorem 1 is not unique: in the deposit subgame, banks k with lk = 0 can

play any strategy that leads to zero deposits; and in the credit subgame, any strategy that

yields lk = 0 with certainty also yields zero profit. However, all SPNE strategies lead to the

same market outcome:

THEOREM 2: In any pure-strategy SPNE, r∗ and r∗∗ are the only market interest rates;

credit given at these two interest rates equals L∗ and LS(ρ∗), respectively; the single market

deposit rate is ρ∗; and the supply of deposits is LS(ρ∗).

The proof is in Appendix C. Again, we give an informal sketch here, maintaining the as-

sumption that banks avoid default under all circumstances (i.e., π = −∞).

Consider first the deposit subgame. Let dk denote bank k’s deposits. In any Nash equilibrium

of the deposit subgame, each bank k must get dk ≥ lk in order to avoid default. If dk > lk,

k can raise its profit by reducing δk and, therefore, dk. So dk = lk for all k. Suppose a bank

with lk > 0 bids ρk < ρ (with ρ given by (3)) and gets the funds it needs. Since ρk ≤ ρ for

all k implies that the amount of deposits is insufficient to refinance aggregate credit given,

we must have ρk > ρ for some other bank. This cannot happen in a Nash equilibrium, since

this latter bank could then get its funds more cheaply. So ρk ≥ ρ for all k with lk > 0. But

then again, a bank with ρk > ρ could get the deposits it needs more cheaply. It follows that

dk = lk for all k and ρk = ρ for all k such that lk > 0 in any Nash equilibrium of the deposit

subgame. Thus, for given loan volumes lk determined in the credit subgame, the amount of

deposits and the market deposit rates are uniquely determined. For future reference, we note

that from dk = lk and ρk = ρ, bank k’s payoff is

πk = [ϱ(rk)− ρ]lk.

Turning to the credit subgame, we show first that all banks make zero expected profit Eπk

(expectations being taken when the random tie-breaking rule determines which banks make
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loans). This follows from standard Bertrand arguments. It suffices to argue that not all

banks make positive expected profit, for if some banks make profits and others do not, the

latter have an incentive to adopt one of the former’s strategies. If all banks make positive

expected profit, then each bank sets a different interest rate. This is because each of two

banks charging the same interest rate has an incentive to push its direct competitor out of

the market, by either raising the credit limit (if there is excess demand) or undercutting the

competitor’s interest rate slightly (if there is no excess demand). Moreover, there cannot be

excess demand at the highest interest rate if all firms make positive expected profit. If excess

demand prevailed, then the bank charging the highest interest rate, K say, could increase its

expected profit by changing rK such that its return rises holding credit given constant (i.e.,

without affecting the deposit rate). Thus, either no bank makes positive expected profit,

or else all banks make positive expected profit, each setting a different interest rate, and

supply equals residual demand at the highest interest rate. Consider the two banks, K and

K − 1, say, setting the highest and second-highest interest rates, rK and rK−1, respectively.

By offering slightly more funds than K−1 at rK−1, bank K pushes K−1 out of the market.

As credit given at rK−1 increases slightly and credit given at rK drops to zero, the deposit

rate ρ falls, and K’s resulting profit (1+∆)(EπK) is higher than K−1’s expected profit was:

(1 + ∆)(EπK) > EπK−1. Conversely, let K − 1 withdraw its credit offer at rK−1 and fully

satisfy the residual demand at an interest rate slightly below rK . This implies that K drops

out of the market, and K−1’s credit given is higher than K’s was. Since the average interest

rate at which the residual demand that prevails at rK−1 is satisfied rises (from a weighted

average of rK−1 and rK to slightly less than rK), aggregate credit given falls by a non-

infinitesimal amount and so does the equilibrium deposit rate ρ. As K−1’s return is close to

ϱ(rK), the deposit rate jumps downward, and credit given exceeds lK , it follows that K−1’s

ensuing expected profit (1 + ∆)(EπK−1) is higher than K’s was: (1 + ∆)(EπK−1) > EπK .

This contradicts the definition of a Nash equilibrium (which entails Eπk ≥ (1+∆)(Eπk) for

k ∈ {K − 1, K}):

EπK ≥ (1 + ∆)(EπK) > EπK−1 ≥ (1 + ∆)(EπK−1) > EπK .

So any equilibrium is characterized by zero expected profit for all banks.

Given zero profit, we can rule out the possibility of an equilibrium with credit given at a

single interest rate, r1 say (this implies non-existence of market-clearing or pure-rationing
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equilibria, as mentioned in Section 3). Excess demand for credit in a single-interest rate

equilibrium implies that banks can make positive profit by making a small “number” of loans

at an interest rate close to rmax. So credit given in a single-interest rate equilibrium is LD(r1),

and, from (3), the bank which gives credit at r1 bids the deposit rate ρ1 = (LS)−1[LD(r1)].

Together with zero expected profit (i.e., ϱ(r1) = ρ1), it follows that LS[ϱ(r1)] = LD(r1).

Due to the assumed shape of the return, demand, and supply functions (with LD(r∗∗) <

LS[ϱ(r∗∗)] = LS[ϱ(r∗)] < LD(r∗)), this implies that r1 is in the interval (r∗, r∗∗), so there

is positive demand at r∗ (see Figure 1). Together with ϱ(r1) < ρ∗, it follows further that

making a small “number” of loans at r∗ is profitable, since the ensuing return, ρ∗, is higher

than ϱ(r1) and the deposit rate ρ rises only slightly.

r∗ and r∗∗ are the only market interest rates. Suppose not. Given that all banks make the

same expected profit (viz., zero), the fact that the number of market interest rates exceeds

one, and the assumed shape of the return function, there are two or three interest rates, each

yields a return strictly less than ρ∗, and one market interest rate is in the interval (r∗, r∗∗)

(see the upper panel of Figure 1). But then again it is possible to make positive expected

profit by offering a small amount of credit at r∗.

At least two banks set the maximum credit limit at r∗. Otherwise the single bank setting the

maximum credit limit at r∗ can make positive expected profit by decreasing its credit limit

slightly, so that the deposit rate ρ falls, while the return on lending ρ∗ is unaffected. And at

least two banks set a credit limit at r∗∗ that is at least as large as the residual demand. If

all credit limits at r∗∗ fall short of residual demand, then there is positive residual demand

for all interest rates up to rmax, so it is profitable to make loans at close to rmax. If only one

bank sets a credit limit equal to or greater than residual demand, then this bank gains from

increasing the interest rate it charges slightly and satisfying the residual demand at that

interest rate: as it withdraws its credit offer at r∗∗, it generates positive residual demand

above r∗∗, so that expected returns above ρ∗ can be achieved. At the same time, as the

residual demand which prevails at r∗∗ is satisfied at a higher interest rate on average, credit

given and the deposit rate ρ fall.

Total credit given at r∗ and r∗∗ equals LS(ρ∗). Otherwise the equilibrium deposit rate deviates

from ρ∗, which contradicts zero expected profit. A decrease in credit given at r∗ implies a less

than one-for-one decrease in the residual demand at r∗∗. This is because only the sufficiently
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risky proportion of the additionally rationed borrowers demand loans at r∗∗. So aggregate

credit given at r∗ and r∗∗ falls below LS(ρ∗) when credit given at r∗ falls below LS(ρ∗), a

contradiction. Conversely, when credit exceeds L∗ at r∗, residual demand at r∗∗ falls less

than one-for-one, so there is excess demand at at r∗∗. This is inconsistent with equilibrium,

since banks could make positive profit by making a small “number” of loans at an interest

rate close to rmax.

4 Variations of the model

Theorems 1 and 2 state that double-Bertrand competition in the markets for credit (stage

one) and deposits (stage two) uniquely gives rise to a two-price equilibrium when the return

on lending is a non-monotonic function of the interest rate with excess demand at the local

maximum and there is no market-clearing interest rate that yields a higher return. This

section argues that this modified double-Bertrand competition is a natural approach to

finding competitive equilibria in the SW model, because it gives rise to the usual kinds of

equilibria under alternative assumptions about the shape of the return function, viz., market

clearing when the return function is monotonic and credit rationing when it is hump-shaped

and there is excess demand at the return-maximizing rate.

Monotonic return function

Suppose the return function ϱ(r) is continuous and monotonic, so that the composite loan

supply function LS[ϱ(r)] is also monotonically increasing. Suppose further that there is a

market-clearing interest rate r̄ (see the left panel of Figure 2). Let ρ̄ ≡ ϱ(r̄) and L̄ ≡ LS(ρ̄).

The following theorem states that equality of supply and demand then holds true generally:

THEOREM 3: Suppose ϱ(r) is continuous and monotonic and there is r̄ such that LS(ϱ(r̄)) =

LD(r̄). Then the following pure strategies represent an SPNE:

↪→ in the credit subgame, (rk, λk) = (r̄, L̄) for two banks k and (rk, λk) = (0, 0) for the

other banks k ∈ K;

↪→ in the deposit subgame, the bank k setting r̄ and selected by the tie-breaking rule chooses

(ρk, δk) = (ρ̄, L̄) and all other banks k ∈ K choose (ρk, δk) = (0, 0).

The deposit rate, interest rate, and amounts of deposits and credit are the same in any

pure-strategy SPNE.
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Figure 2: Credit market with monotonic or hump-shaped return function

The first part of the theorem is clear enough. There is no residual demand at interest rates

above the market-clearing level. And setting an interest rate r below r̄ is unprofitable, be-

cause this yields ϱ(r) < ρ̄ and, from Lemmas 1 and 2, raises the deposit rate. As for the

“uniqueness” part, we merely have to adapt a few steps in the proofs of Theorem 2. Details

are in Appendix D. The arguments used to rule out positive expected profit in equilibrium

in the proof of Theorem 2 apply here as well. Together with the fact that all banks pay the

same deposit rate in equilibrium, it follows that all banks that make loans earn the same rate

of return. Given the monotonicity of the return function, this means that there is a single

market interest rate. If the single market interest rate is above the market-clearing level r̄,

there is excess supply of deposits, so it would be profitable to acquire funds at a deposit

rate below ρ̄ and lend at an interest rate slightly below r̄. Conversely, if the market interest

rate falls short of the market-clearing level, there is excess demand in the credit market and

banks can make positive profit by lending at a rate slightly below rmax.

Hump-shaped return function

From the analysis in Section 3, it follows that in order to obtain a hump-shaped return

function, we have to modify the assumptions made in Section 2. Accordingly, let the projects’

expected return ER(R|θ) be lower for projects with higher θ. That is, high-θ projects are

not only more risky (in terms of second-order stochastic dominance) but worse in terms

of expected return. Then we can assume that the return function ϱ(r) takes on a unique

interior maximum ρ∗, at a “bank-optimal” interest rate r∗, say.12 Suppose further there is

12For instance, let type-θ projects succeed with probability 1− θ and fail otherwise. The payoff is R̄/(1−
θ) + γ (R̄ + γ − B > B − C > γ > 0) in case of success and zero otherwise. G(θ) is uniform on [0, 1].

Expected profit is zero for type ϑ(r) = [(1+ r)B− γ− R̄]/[(1+ r)B− γ−C]. For r ≤ (γ+ R̄)/B− 1 (≡ r∗),
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excess demand at the bank-optimal rate: LD(r∗) > LS(ρ∗) (≡ L∗) (see the right panel of

Figure 2). In this case, the double-Bertrand price-setting game uniquely yields the SW credit

rationing equilibrium:

THEOREM 4: Suppose ϱ(r) is hump-shaped and LD(r∗) > LS(ρ∗). Then the following pure

strategies represent an SPNE:

↪→ in the credit subgame, (rk, λk) = (r∗, L∗) for two banks k and (rk, λk) = (0, 0) for the

other banks k ∈ K;

↪→ in the deposit subgame, the bank k setting r∗ and selected by the tie-breaking rule chooses

(ρk, δk) = (ρ∗, L∗) and all other banks k ∈ K choose (ρk, δk) = (0, 0).

The deposit rate, interest rate, and amounts of deposits and credit are the same in any

pure-strategy SPNE.

Again, the first part of the theorem is obvious: from Lemmas 1 and 2, the deposit rate rises

above ρ∗ if entry into the loan market is successful, while the expected rate of return cannot

exceed ρ∗. The same arguments as above prove that banks make zero expected profit in

equilibrium. Given that banks pay the same deposit rate, it follows that all market interest

rates yield the same expected return. So given the hump shape of the return function, either

there is a single market interest rate, or else there are two equilibrium interest rates, one

below and the other above r∗. In the latter case, as there is positive residual demand at r∗,

it would be profitable to make a small “number” of loans at r∗. So all loans are made at

the same interest rate. If this rate exceeds r∗, there is positive residual demand at r∗, and

it is profitable to make a small ‘number” of loans at r∗. From the assumption that there is

excess demand at r∗, it follows that there is excess demand at lower rates. So if the single

market interest rate is lower than r∗, there is positive residual demand at r∗, and again it is

profitable to make a small “number” of loans at r∗.

we have ϑ(r) ≤ 0, so all firms demand loans. The return function ϱ(r) = C/B − 1 + [(1 + r)B − C]/(2B)

is upward-sloping in this case. Due to the parameter constraint, ϱ(r∗) = (R̄ + γ + C)/(2B) − 1 > 0.

For r > r∗, the constraint R̄ > C ensures ϑ′(r) > 0, i.e., there is adverse selection. The return function

ϱ(r) = C/B − 1 + [(R̄− C)/(2B)][(1 + r)B − C]/[(1 + r)B − γ − C] is downward-sloping.
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5 Application to alternative models

In the preceding section, we argued that the modified double-Bertrand approach provides a

natural foundation for competitive equilibria in the SW model, because it gives rise to the

usual kinds of equilibria, depending on the shape of the return function. In this section, we

argue that, more generally, the modified double-Bertrand approach provides a rigorous game-

theoretic foundation for competitive equilibria in other models of financial intermediation

as well. We substantiate this claim by incorporating modified double-Bertrand competition

into several simple models of financial intermediation with different informational frictions

(evidently, this endeavor cannot aim at being exhaustive). This requires only minor modifica-

tions of the analysis in the preceding sections. This is because, like the SW adverse selection

model, standard credit market models give rise to a (return) function ϱ(r) : R+ → R that re-

lates the return on lending to the interest rate r independently of other endogenous variables.

Equilibrium in the deposit and loan markets can then be analyzed using demand LD(r) and

(composite) supply LS(ϱ(r)) following exactly the same steps as in the SW model.

First-order dominance

Suppose projects of type θ yield a certain payoff R(θ). R(θ) is monotonically decreasing, so

low-θ projects first-order (stochastically) dominate high-θ projects (cf. DeMeza and Webb,

1987). Firms demand capital if R(θ) ≥ (1 + r)B, i.e., if θ ≤ R−1((1 + r)B). The demand for

capital is thus LD(r) ≡ G(R−1((1 + r)B)). As there is no default risk, the return on lending

is given by the return function

ϱ(r) = r.

Capital supply LS(ϱ(r)) = LS(r) increases monotonically with the interest rate r. By the

reasoning put forward in the SW model with a monotonic return function in Section 4, the

equilibrium is uniquely characterized by the interest rate r̄ that equates supply and demand

(i.e., LS(r̄) = LD(r̄)).

Moral hazard

Consider N (> 0) firms endowed with one project per capita. Each project requires input B

(> 0). If it succeeds, it yields R (> 0). If it fails, it yields nothing. The success probability

p(e) is a continuously differentiable function of effort e (with p′(e) > 0 and 0 ≤ p(e) ≤ 1).

Effort has a cost c(e) (twice continuously differentiable with c′(e) > 0 and c′′(e) ≥ 0).
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Ignoring collateral, a firm’s expected profit is E(π(r, e)) = p(e)[R − (1 + r)B]. Let e(r) =

argmaxe E[π(r, e)]. Firms demand a loan and choose e = e(r) if E[π(r, e(r))] ≥ 0. Otherwise,

they choose not to carry out their project. That is, the demand for capital is NB for r up

rmax, where E[π(rmax, e(rmax))] = 0. We assume that the banks’ return on lending

ϱ(r) = p(e(r))(1 + r)− 1

is a hump-shaped function of the interest rate with a positive maximum, at r∗ say.13 Finally,

we assume that the supply of capital at r∗ falls short of supply: S(ϱ(r∗)) < NB. By the

same arguments as in Section 4, the equilibrium is a rationing equilibrium.

Limited enforcement

Finally, assume that lenders cannot perfectly enforce repayment, even if they can observe

R: what they can do is impose a non-pecuniary penalty ϕ(R) on a borrower with payoff

R who decides not to repay, where ϕ(R) is assumed strictly increasing. The distribution of

returns F (R) is identical for each firm and has bounded support [0, Rmax]. Borrowers choose

to repay if, any only if, R ≥ ϕ−1((1 + r)B). The return on lending is given by the return

function

ϱ(r) = (1 + r)[1− F (ϕ−1((1 + r)B)]− 1.

Let rmax denote the interest rate at which the probability of repayment becomes zero:

rmax = ϕ(Rmax)/B − 1. The return function takes on its minimum value at this interest

rate: ϱ(rmax) = −1. So it has an interior maximum at some r∗.14 If there is excess demand at

r∗, then by the same arguments as in Section 4, the equilibrium is a rationing equilibrium.

6 Conclusion

Financial intermediation, by definition, leads to two-sided competition. Generally, double-

Bertrand competition in the markets for credit and deposits possibly gives rise to existence

13For instance, let R > 2B and p(e) = e and c(e) = e2/2 for 0 ≤ e ≤ 1. Then e(r) = R − (1 + r)B, firms

demand a loan if r ≤ R/B − 1, and the return function ϱ(r) = [R− (1 + r)B](1 + r)− 1 attains an interior

maximum of R2/(4B)− 1 at r = R/(2B)− 1.
14For instance, let ϕ(R) = αR (0 < α < 1) and F (R) = R/Rmax for R ∈ [0, Rmax]. Then the return

function is ϱ(r) = r−(1+r)2B/(αRmax) and takes on its maximum value ϕ(αRmax/(2B)−1) = αRmax/(4B)

at r = αRmax/(2B)− 1.
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problems and non-competitive equilibria. We show that in the SW adverse selection model

with a continuum of borrower types the usual types of competitive equilibria (with two

prices or with market clearing or rationing at a single price) emerge in any subgame-prefect

equilibrium of the double-Bertrand game if the credit subgame precedes the deposit subgame

and banks can set limits on the amounts of credit they offer and deposits they take. The

analysis is readily adapted to other models of financial intermediation as well. Thus, the

modified double-Bertrand approach yields a solid game-theoretic foundation for the common

practice of solving models of financial intermediation for perfectly competitive equilibria.
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A Game-Theoretic Foundation for Competitive Equilibria in the
Stiglitz-Weiss Model: Technical Appendix

Appendix A. Residual supply, residual demand, and

payoffs

A.1 Residual supply

In the deposit subgame, bank k’s strategy is (ρk, δk). Let dk denote the amount of deposits bank

k ∈ K gets. Given that the bids are served in the order of decreasing rates ρk, dk = 0 for banks

with ρk below some marginal rate. Let D ≡ {ρ| ρk = ρ and dk > 0 for some k ∈ K} be the set of

market deposit rates, i.e., of rates such that some bank raises a positive amount of deposits. Let

the market deposit rates ρn ∈ D be ordered such that ρ1 > ρ2 > · · · > ρN , where N is the number

of market deposit rates. Let Dn be the total amount of deposits taken by banks at the deposit rate

ρn. Let l
S
n(ρ) denote the residual supply at ρ > ρn−1. Because of random rationing, residual supply

is determined recursively by

lSn+1(ρ) =

[
1− Dn

lSn(ρn)

]
lSn(ρ), ρ > ρn, (A.1)

for n ∈ N\{N}, where N ≡ {1, . . . , N}.

LEMMA A.1: Residual supply satisfies lS1 (ρ1) = LS(ρ1) and

lSn(ρ) =

[
1−

n−1∑
n′=1

Dn′

LS(ρn′)

]
LS(ρ), ρ > ρn−1, (A.2)

for n ∈ N\{1}.

Proof: The assertion is evidently true for n = 1. The validity of (A.2) for n > 1 is proved by

induction, by substituting from the induction hypothesis (A.2) into (A.1):

lSn+1(ρ) =

[
1− Dn

lSn(ρn)

]
lSn(ρ)

= lSn(ρ)−Dn
lSn(ρ)

lSn(ρn)

=

[
1−

n−1∑
n′=1

Dn′

LS(ρn′)

]
LS(ρ)− Dn

LS(ρn)
LS(ρ)

=

[
1−

n∑
n′=1

Dn′

LS(ρn′)

]
LS(ρ). ///
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For n ∈ N , let Kn = {k ∈ K| ρk = ρn} denote the set of banks which play ρn in the deposit

subgame. The amount of deposits raised by a bank k ∈ Kn is

dk = min

{
δk,

δk∑
k′∈Kn

δk′
lSn(ρn)

}
. (A.3)

dk = 0 if k ̸∈ Kn for all n ∈ N . The total amount of deposits with deposit rate ρn is

Dn =
∑
k∈Kn

dk. (A.4)

The fact that there is positive (residual) supply at ρn implies that there is excess supply at the

lower market deposit rates:

lSn(ρn) >
∑

k′∈Kn

δk′

for n ∈ N\{N}. So from (A.3), dk = δk for k ∈ Kn and

Dn =
∑
k∈Kn

δk (A.5)

for n ∈ N\{N}.

LEMMA A.2: If ρn ≤ ρ for all n ∈ N and ρN < ρ, then

N∑
n=1

Dn < LS(ρ).

Proof: Since LS(ρ) is strictly increasing, we have LS(ρn) ≤ LS(ρ) for all n ∈ N and LS(ρN ) < LS(ρ).

Using DN ≤ lSN (ρN ) and (A.2), we obtain:

DN ≤ lSN (ρN )

=

[
1−

N−1∑
n′=1

Dn′

LS(ρn′)

]
LS(ρN )

<

[
1−

N−1∑
n′=1

Dn′

LS(ρn′)

]
LS(ρ)

= LS(ρ)−
N−1∑
n′=1

LS(ρ)

LS(ρn′)
Dn′

≤ LS(ρ)−
N−1∑
n′=1

Dn′

N∑
n=1

Dn < LS(ρ). ///

2



Starting from a given strategy profile, let ∆x denote the change in a variable x induced by a change

in the strategies, so that (1 + ∆)x is the new value this variable takes on. As a direct corollary to

Lemma A.1, we obtain from (A.2):

LEMMA A.3: If the amount of deposits raised at ρn−1 changes by ∆Dn−1, the residual supply at

ρn changes by

∆lSn(ρn) = − LS(ρn)

LS(ρn−1)
∆Dn−1

(n ∈ N\{1}). ∆lSn(ρn) → −∆Dn−1 as ρn → ρn−1.

A.2 Residual demand

In the credit subgame, bank k’s strategy is (rk, λk). Let lk denote the amount of loans actually

made by bank k ∈ K. Given that firms apply for credit at the lowest rates first, lk = 0 for banks

with rk above some marginal rate. Let R ≡ {r| rk = r and lk > 0 for some k ∈ K} be the set of

market interest rates, i.e., at which the amount of loans made is positive. Let the interest rates

in R be ordered such that r1 < r2 < · · · < rM , where M is the number of market interest rates.

Let M ≡ {1, 2, . . . ,M}. For each m ∈ M, denote the amount of credit given at rm ∈ R as Lm

(> 0). Let lDm(r) denote the residual demand at r. Due to random rationing, residual demand is

determined recursively by

lDm+1(r) =

[
1− Lm

lDm(rm)

]
lDm(r), r > rm, (A.6)

for m ∈ M\{M}.

LEMMA A.4: Residual demand satisfies lD1 (r) = LD(r) and

lDm(r) =

[
1−

m−1∑
m′=1

Lm′

LD(rm′)

]
LD(r), r > rm−1, (A.7)

for m ∈ M\{1}.

Proof: The proof parallels that of Lemma A.1. lD1 (r) = LD(r) is obvious. We prove the validity of

(A.7) by induction on m. Suppose (A.7) holds for m. Substituting for lDm(rm) and lDm(r) from (A.7)
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in (A.6) proves the validity of (A.7) for m+ 1:

lDm+1(r) =

[
1− Lm

lDm(rm)

]
lDm(r)

= lDm(r)− Lm
lDm(r)

lDm(rm)

=

[
1−

m−1∑
m′=1

Lm′

LD(rm′)

]
LD(r)− Lm

LD(r)

LD(rm)

=

[
1−

m∑
m′=1

Lm′

LD(rm′)

]
LD(r). ///

LEMMA A.5: Residual demand satisfies

lDm(rm) >
M∑

m′=m

Lm′

for m ∈ M\{M}.

Proof: From the fact that lDm(r) is strictly decreasing, Lm < lDm(rm) for m ∈ M\{M}, the ordering

convention rm < rm+1, and (A.6),

lDm(rm) = Lm +

[
1− Lm

lDm(rm)

]
lDm(rm)

> Lm +

[
1− Lm

lDm(rm)

]
lDm(rm+1)

= Lm + lDm+1(rm+1) (A.8)

for m ∈ M\{M}. For given m ∈ M\{M − 1,M − 2}, we assert that

lDm(rm) >
m′′∑

m′=m

Lm′ + lDm′′+1(rm′′+1) (A.9)

holds true for all m′′ ∈ M\{1, . . . ,m − 1,M}. (A.8) proves the validity of (A.9) for m′′ = m.

We prove (A.9) by induction on m′′. From the induction hypothesis and lDm′′+1(rm′′+1)− Lm′′+1 >

lDm′′+2(rm′′+2) (from (A.8)),

lDm(rm) >
m′′∑

m′=m

Lm′ + lDm′′+1(rm′′+1)

=

m′′+1∑
m′=m

Lm′ − Lm′′+1 + lDm′′+1(rm′′+1)

>
m′′+1∑
m′=m

Lm′ + lDm′′+2(rm′′+2).
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This proves the validity of (A.9) for m′′+1 and, hence, for all m′′ ∈ M\{1, . . . ,m− 1,M}. Setting

m′′ = M − 1 and using LM ≤ lDM (rM ) yields

lDm(rm) >
M−1∑
m′=m

Lm′ + lDM (rM )

≥
M∑

m′=m

Lm′ . ///

For each m ∈ M, let Λm = max{λk| k ∈ K, rk = rm} denote the maximum credit limit of those

banks k which set rm. Given that (one of) the bank(s) with the highest credit limit alone serves

the entire market demand, the amount of credit given at rm is

Lm = min
{
Λm, lDm(rm)

}
. (A.10)

Starting from a strategy profile {(rk, λk)}k∈K, let the strategies change in such a way that one of

the following two situations arises.

(a) Credit given becomes positive for exactly one interest rate, and credit supply remains unchanged

at all market interest rates:

↪→ (1 + ∆)Lmd = ∆Lmd > 0 at one rmd ̸∈ R;

↪→ ∆Λm = 0 for all rm ∈ R.

(b) Credit given increases at exactly one interest rate, and credit supply remains unchanged at all

other market interest rates:

↪→ ∆Lmd > 0 at one rmd ∈ R;

↪→ ∆Λm = 0 for all rm ∈ R\{rmd}.

Let md = 0 and Md = M∪ {0} in case (a) and Md = M in case (b).

LEMMA A.6: ∆(
∑

m∈Md Lm) > 0 in both cases (a) and (b). ∆(
∑

m∈Md Lm) → 0 as ∆Lmd → 0.

Proof: We focus on case (a). [The necessary changes in case (b) are inserted in brackets.]

To begin with, let rmd > rM [rmd = rM in case (b)]. From (A.7) and (A.10), residual demands and

credit given at all interest rates rm, m ∈ M [m ∈ M\{M} in case (b)] are unaffected:

∆Lm = 0 for m ∈ M

[for m ∈ M\{M} in case (b)]. So ∆Lmd = ∆L0 > 0 [∆Lmd = ∆LM > 0 in case (b)] yields

∆

 ∑
m∈Md

Lm

 = ∆Lmd > 0.
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Obviously, ∆(
∑

m∈Md Lm) → 0 as ∆Lmd → 0.

If, on the other hand, rmd < rM , let rm′ denote the lowest interest rate above rmd : rm′−1 < rmd <

rm′ [m′ = md in case (b)]. From (A.7) and (A.10), ∆Lmd does not affect residual demand or credit

given at lower interest rates:

∆Lm = 0 for m ∈ {1, . . . ,m′ − 1}. (A.11)

The fact that rmd < rM implies that for the initial strategy profile, there is excess demand at rmd

and, therefore, positive residual demand at higher interest rates rm, m ∈ {m′, . . . ,M} [here and

throughout the remainder of the proof, replace m′ with m′ + 1 in case (b)]. As ∆Lmd > 0, (A.7)

implies that these residual demands fall. We have to distinguish three cases.

(1) (1 + ∆)Lmd < lD
md(rmd) and Λm < (1 + ∆)lDm(rm) for all m ∈ {m′, . . . ,M − 1}:

That is, ∆Lmd is small enough such that the excess demands at interest rates up to rM−1 remain

positive. This is satisfied for ∆Lmd → 0. We then have

∆Lm = 0 for m ∈ {m′, . . . ,M − 1} (A.12)

[in case (b), if rmd = rM−1, then (A.12) drops out]. Furthermore, from (A.7), (A.11), and (A.12),

∆lDM (rM ) = − ∆Lmd

LD(rmd)
LD(rM ). (A.13)

If LM = lDM (rM ), then ΛM ≥ lDM (rM ). Using (A.13), we have

∆LM = ∆lDM (rM )

= − LD(rM )

LD(rmd)
∆Lmd . (A.14)

Adding up (A.11), ∆Lmd , (A.12), (A.14) and using rmd < rM and ∆Lmd > 0, we obtain

∆

 ∑
m∈Md

Lm

 =

[
1− LD(rM )

LD(rmd)

]
∆Lmd > 0.

Obviously, ∆(
∑

m∈Md Lm) → 0 as ∆Lmd → 0.

If, on the other hand, LM < lDM (rM ), then ΛM = LM . Using (A.10), the case distinction LM <
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lDM (rM ), and (A.13), it follows that

∆LM = min
{
ΛM , (1 + ∆)lDM (rM )

}
− LM

= min
{
ΛM − LM , ∆lDM (rM ) + lDM (rM )− LM

}
= min

{
0, ∆lDM (rM ) + lDM (rM )− LM

}
≥ min

{
0, ∆lDM (rM )

}
(A.15)

= min

{
0, − LD(rM )

LD(rmd)
∆Lmd

}
= − LD(rM )

LD(rmd)
∆Lmd .

Hence, from (A.11), (A.12), rmd < rM , and ∆Lmd > 0,

∆

 ∑
m∈Md

Lm

 ≥
[
1− LD(rM )

LD(rmd)

]
∆Lmd > 0. (A.16)

As ∆Lmd → 0, we have, from (A.13), ∆lDM (rM ) → 0. Together with the case distinction LM <

lDM (rM ), it follows that the equality sign holds in (A.15) and, hence, in the former inequality in

(A.16). So ∆(
∑

m∈Md Lm) → 0 as ∆Lmd → 0.

(2) (1+∆)Lmd < lD
md(rmd), but Λm < (1+∆)lDm(rm) does not hold true for all m ∈ {m′, . . . ,M−1}:

In this case [which cannot occur if rmd = rM−1 in case (b)], there is m′′ ∈ {m′, . . . ,M − 1} such

that Λm′′ ≥ (1 + ∆)lDm′′(rm′′) > 0. The fact that there is positive residual demand at rm′′ (as

(1 + ∆)lDm′′(rm′′) > 0) implies Λm < (1 + ∆)lDm(rm) for m ∈ {m′, . . . ,m′′ − 1}. Hence, from (A.7)

and (A.10),

∆Lm = 0 for m ∈ {m′, . . . ,m′′ − 1}. (A.17)

From (A.7), (A.11), and (A.17),

∆lDm′′(rm′′) = − ∆Lmd

LD(rmd)
LD(rm′′).

Using (1 + ∆)Lm′′ = (1 +∆)lDm′′(rm′′), we have

∆Lm′′ = (1 +∆)lDm′′(rm′′)− Lm′′

= −LD(rm′′)

LD(rmd)
∆Lmd + lDm′′(rm′′)− Lm′′ . (A.18)

There is no residual demand at rm for m ∈ {m′′ + 1, . . . ,M} (as Λm′′ ≥ (1 + ∆)lDm′′(rm′′)). So

∆Lm = −Lm for m ∈ {m′′ + 1, . . . ,M}. (A.19)
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Adding up (A.11), ∆Lmd , and (A.17)-(A.19) yields

∆

 ∑
m∈Md

Lm

 =

[
1− LD(rm′′)

LD(rmd)

]
∆Lmd + lDm′′(rm′′)−

M∑
m=m′′

Lm > 0.

The inequality sign follows rmd < rm′′ , ∆Lmd > 0, and lDm′′(rm′′) >
∑M

m=m′′ Lm (from Lemma A.5).

(3) (1 + ∆)Lmd = lD
md(rmd):

In this case,

∆Lmd = lDmd(rmd) (A.20)

[∆Lmd = lD
md(rmd) − Lmd in case (b)]. Since there is no residual demand at interest rates above

rmd ,

∆Lm = −Lm for m ∈ {m′, . . . ,M}. (A.21)

Adding up (A.11), (A.20), and (A.21) yields

∆

 ∑
m∈Md

Lm

 = lDmd(rmd)−

(
Lmd +

M∑
m=m′

Lm

)
> 0.

The inequality sign follows from the fact that lD
md(rmd) > Lmd +

∑M
m=m′ Lm (from Lemma A.5).

///

This is Lemma 2 in the main text.

A.3 Payoff functions

LEMMA A.7: ϱ(rm) gives the return on lending for all rm ∈ R.

Proof: At each interest rate rm ∈ R rationing, if it occurs, is random (the probability of receiving

funds Lm/lDm(rm) is uniform across types). Consequently, the relative frequencies of types θ ∈

[ϑ(rm), θmax] which still have not received credit and, therefore, the relative frequencies of those

types θ ∈ [ϑ(rm+1), θ
max] which demand credit at rm+1 do not change. Applying this reasoning

recursively, starting at m = 1, proves the lemma. ///

For each rm ∈ R, let Km = {k ∈ K| (rk, λk) = (rm,Λm)} denote the set of banks which set

the maximum credit limit. Let K+ = {k ∈ K| lk > 0} denote the set of banks which give credit in

equilibrium. If Km contains a single bank k, then k ∈ K+. If Km contains several banks k, according

to the tie-breaking rule, the probability of being in K+ is (#Km)−1 for each of these banks. Since

at each market interest rate rm ∈ R only one bank k serves the market demand, we can relabel the

banks k in K+ such that k = m for m ∈ M, reinterpret lDk (rk) = lDm(rm) as the residual demand
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faced by bank k, and let lk = Lm denote credit given by bank k ∈ K+. From (A.7) and (A.10), we

then have

lDk (rk) =

[
1−

k−1∑
k′=1

lk′

LD(rk′)

]
LD(rk) (A.22)

and

lk = min{λk, l
D
k (rk)} (A.23)

for k ∈ K+. lk = 0 for k ̸∈ K+. Using Lemma A.7, bank k’s profit is

πk =

 [1 + ϱ(rk)]lk − (1 + ρk)dk; for dk ≥ lk

π; for dk < lk
(A.24)

for k ∈ K. This equation maps strategy profiles {(rk, λk), (ρk, δk)}k∈K to expected payoffs Eπk

for k ∈ K. In the credit subgame, the choices {(rk, λk)}k∈K together with the tie-breaking rule

determine K+. While lk = 0 for k ̸∈ K+, (A.22) and (A.23) determine lk for k ∈ K+. In the deposit

subgame, the choices {(ρk, δk)}k∈K determine dk via (A.2), (A.3), and (A.4).

Appendix B: Proof of Theorem 1

Given the strategies in Theorem 1, the tie-breaking rule determines one bank, k = 1 say, which

serves credit demand at r∗ and another bank, k = 2 say, which serves the residual demand at

r∗∗. From (A.23), these banks give credit l1 = min{L∗, LD(r∗)} = L∗ and l2 = min{LS(ρ∗) −

L∗, lD2 (r∗∗)}, respectively. lk = 0 for all other banks k so K+ = {1, 2}. By bidding ρ1 = ρ2 = ρ∗,

the two banks in K+ raise deposits LS(ρ∗). From the definition of x and Lemma A.4, it follows

that the residual demand at r∗∗, lD2 (r∗∗) = (1 − x)LD(r∗∗), equals supply l2 = LS(ρ∗) − L∗. So

aggregate credit given is
∑

k∈K lk = l1 + l2 = LS(ρ∗). From (A.3), dk = lk for both banks k ∈ K+.

ϱ(r∗) = ϱ(r∗∗) = ρ∗ and Lemma A.7 imply zero expected profit for both banks (Eπ1 = Eπ2 = 0).

To prove Theorem 1, we have to show that deviations from the strategies in the theorem are not

profitable.

Throughout we make the following two labeling conventions. First, when starting from a given

strategy profile, banks k are labeled as explained in Appendix A.3, they keep their label after a

change in the strategy profile. For instance, if K is thy only bank setting the maximum market

interest rate rK initially, we denote the post-change interest rate it sets as (1 +∆)rK even if there

are now other banks with higher interest rates. Second, when more than one bank set rk, we label

the bank that is determined by the random tie-breaking rule as k, although a different bank may

be chosen by the tie-breaking rule after a change in the strategy profile.
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Figure B.1: Equilibrium deposit rate

B.1 Deposit subgame

If a bank k ∈ K+ raises deposits dk equal to the amount of loans it makes lk its payoff (A.24)

simplifies to

πk = [ϱ(rk)− ρk] lk, k ∈ K+. (B.1)

For a given deposit rate ρ′, let K++′
be the subset of banks k ∈ K+ which (weakly) prefer raising

dk = lk to default: K++′
= {k ∈ K| k ∈ K+, [ϱ(rk) − ρ′]lk ≥ π}. As ρ′ rises, elements of K++′

successively drop out. So
∑

k∈K++′ lk is a decreasing step function (see Figure B.1). (a) If there is a

solution ρ′ to
∑

k∈K++′ lk = LS(ρ′), denote it as ρ (see the left panel of Figure B.1). (b) Otherwise,

let ρ be the deposit rate ρ′ such that
∑

k∈K++′ lk > LS(ρ′) for ρ′ = ρ and
∑

k∈K++′ lk < LS(ρ′) for

ρ′ > ρ (see the right panel of Figure B.1). Let K′ be the subset of banks k which are indifferent

between raising dk = lk at ρ and default in this case: K′ = {k ∈ K| k ∈ K++, [ϱ(rk) − ρ]lk = π}.

Finally, let {d′k}k∈K′ be any set of deposits for k ∈ K′ such that d′k < lk for all k ∈ K′ and∑
k∈K′

d′k = LS(ρ)−
∑

k∈K++\K′

lk. (B.2)

The definition of ρ implies that such a set of deposits exists. Letting K′ = ∅ in case (a), we can

treat both cases using the same notation. Notice that if K++ = K+ and K′ = ∅, then, using lk = 0

for k ̸∈ K+, (B.2) becomes

ρ = (LS)−1

(∑
k∈K

lk

)
(B.3)

(this holds true, for example, if one assumes π = −∞, so that all banks in K+ strictly prefer any

loss to default and K′ = ∅).

LEMMA B.1: Suppose d′k satisfies (B.2) for k ∈ K′, and let ρ be given by (B.3). Then the follow-

ing strategies are a Nash equilibrium of the deposit subgame: (ρk, δk) = (ρ, lk) for k ∈ K++\K′,

(ρk, δk) = (ρ, d′k) for k ∈ K′, and (ρk, δk) = (0, 0) for k ̸∈ K++.
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Proof: Banks k ∈ K++ acquire funds by paying a common deposit rate ρ. From (B.2), demand

equals supply in the market for deposits:∑
k∈K

δk =
∑

k∈K++\K′

lk +
∑
k∈K′

d′k

= LS(ρ).

So, from (A.3), dk = δk for all k ∈ K++. We now consider the three groups of banks distinguished

in the lemma successively. We have to show that no bank can raise its payoff by deviating with

∆(ρk, δk) ̸= (0, 0).

Consider first a bank kd ∈ K++\K′. From the definition of K++, the fact that dkd = lkd , and

(B.1), we have πkd ≥ π (with strict inequality in case (b)). As dkd = lkd , any deviating strategy

(1 + ∆)(ρkd , δkd) which gives rise to ∆dkd < 0 implies default and, therefore, is unprofitable:

(1 + ∆)πkd = π ≤ πkd . Clearly, this occurs for ∆δkd < 0. The same also holds true for bids with

∆ρkd < 0. To see this, notice that Lemma A.2 implies that the supply of deposits falls below LS(ρ)

if ∆ρkd < 0, so that ∆dkd < 0, since all other banks bid a higher rate than kd. So only deviating

strategies with ∆dkd ≥ 0 and ∆ρkd ≥ 0 and with one inequality strict avoid default. However, this

implies ∆[(1 + ρkd)dkd ] > 0 and, from (A.24) and the fact that rkd and lkd are determined in the

credit subgame already, ∆πkd < 0. Hence, any deviating strategy, whether it leads to default or

not, reduces profit.

Next, consider a bank kd ∈ K′ (which is non-empty in case (b) only). The strategy in the lemma

implies default: πkd = π, since δk = d′k < lk. Any deviating strategy that also leads to default is

equally profitable: (1 + ∆)πkd = π. A deviating strategy that avoids default necessarily satisfies

(1 + ∆)dkd ≥ lkd > 0. Since supply equals demand in the market for deposits and the supply is

shared in proportion to the bids made in the case of excess demand for deposits, this necessitates

(1 + ∆)ρkd > ρ. Together with (A.24), this implies

(1 + ∆)πkd = [1 + ϱ(rkd)]lkd − [1 + (1 + ∆)ρkd ](1 + ∆)dkd

< [1 + ϱ(rkd)]lkd − (1 + ρ)lkd

= [ϱ(rkd)− ρ]lkd

= π. (B.4)

So deviating with a non-default strategy decreases profit below the default level.

Banks k ̸∈ K++ can be subdivided into banks k ∈ K+\K++ and banks k ̸∈ K+. Banks k ∈ K+\K++

default, for they have chosen lk > 0 but do not get deposits (since δk = 0). By the same reasoning

as above, in order to improve upon the default payoff π, a bank kd ∈ K+\K++ has to deviate such
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that (1+∆)dkd ≥ lkd > 0 and (1+∆)ρkd > ρ. But from (B.4), this is unprofitable: (1+∆)πkd < π.

Finally, banks k ̸∈ K+ make zero profit. Since they do not generate returns in the credit subgame,

there is no way of improving upon this outcome.

Notice that this holds true even if there is only one bank active in the credit market (i.e., K+ = {1}).

In this case, from (B.3), ρ = (LS)−1(l1). ///

This is Lemma 1 in the main text. From the lemma, it follows that the bidding strategies in Theorem

1 constitute a Nash equilibrium in the deposit subgame. K++ = K+ = {1, 2} and ρ = ρ∗ = ϱ(r∗) =

ϱ(r∗∗) satisfy the definitions of K++ and ρ (case (a)): K++ = {k ∈ K| k ∈ K+, [ϱ(rk) − ρ]lk ≥ π}

and
∑

k∈K++ lk = LS(ρ). So (ρ1, δ1) = (ρ, l1) = (ρ∗, L∗), (ρ2, δ2) = (ρ, l2) = (ρ∗, LS(ρ∗) − L∗), and

(ρk, δk) = (0, 0) for k ̸∈ {1, 2} constitute a Nash equilibrium.

B.2 Credit subgame

To complete the proof of Theorem 1, it remains for us to show that, given the Nash equilibrium

strategies in the deposit subgame described in Lemma B.1, it is not possible for any bank kd ∈ K to

make positive expected profit (1 + ∆)(Eπkd) > 0 with a deviating strategy in the credit subgame,

i.e., with ∆(rkd , λkd) ̸= (0, 0).

Setting an interest rate (1 + ∆)rkd > r∗∗ is not profitable because residual demand is zero. This

follows from the fact that supply equals residual demand at r∗∗. So we focus on strategies (1 +

∆)(rkd , λkd) with (1 + ∆)rkd ≤ r∗∗.

Since at each interest rate, only the banks with the highest credit limit have a positive probability

of making loans, (1 + ∆)rkd = r∗∗ and (1 + ∆)λkd < LS(ρ∗) − L∗ does not generate profit. Since,

by assumption, two banks choose (rk, λk) = (r∗∗, LS(ρ∗)−L∗) initially, this holds true even if kd is

one of these two banks. If some other bank kd plays (1 +∆)(rkd , λkd) = (r∗∗, LS(ρ∗)−L∗), it faces

a positive probability of being selected by the tie-breaking rule. However, even then it makes zero

profit. By setting a credit limit (1+∆)λkd > LS(ρ∗)−L∗ bank kd captures the market at r∗∗ with

certainty. But since there is no excess demand at r∗∗, bank kd merely adopts the role of bank 2,

serves the residual demand lD2 (r∗∗) (= LS(ρ∗)− L∗), and makes zero profit.

If kd chooses (1+∆)rkd = r∗ and (1+∆)λkd > L∗, it captures the entire demand at r∗ and makes

a return ϱ((1+∆)rkd) = ρ∗. Since demand at r∗ exceeds L∗, bank kd makes loans (1+∆)lkd > L∗.

By assumption, two banks choose (rk, λk) = (r∗∗, LS(ρ∗) − L∗) initially. So even if kd is one of

these banks, the supply of credit remains unchanged at the higher interest rate, while credit given

rises at the lower rate. From Lemma A.6 (case (b)), it follows that ∆(
∑

k∈K lk) > 0, even though

∆l2 < 0. Hence, as illustrated in Figure B.2, ∆(
∑

k∈K++′ lk) > 0 for ρ′ small enough such that
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Figure B.2: Change in the equilibrium deposit rate when a bank deviates in the credit subgame

all k ∈ K+ prefer dk = lk over default. Suppose kd’s deviation is profitable: (1 + ∆)πkd > 0. We

will derive a contradiction. Suppose first that the deposit rate ρ′ above which 2 prefers default

over (1 + ∆)d2 = (1 + ∆)l2 does not exceed the deposit rate above which kd prefers default over

(1 + ∆)dkd = (1 +∆)lkd . We have to distinguish three cases. (a) There is (1 + ∆)ρ > ρ∗ such that

(1+∆)lkd +(1+∆)l2 = LS((1+∆)ρ) (see the left panel of Figure B.2). From Lemma B.1, (1+∆)ρ

is the equilibrium deposit rate. Since (1+∆)ρ > ρ∗, this contradicts the fact that kd makes a profit:

(1 + ∆)πkd = [ρ∗ − (1 + ∆)ρ](1 + ∆)lkd < 0.

In the other two cases, (b) and (c), since ∆l2 < 0, the deposit rate ρ′ above which bank 2 prefers

default over (1 + ∆)d2 = (1 + ∆)l2 rises. Given the premise that kd does not default, it follows

that the first step of the function (1 + ∆)(
∑

k∈K++′ lk) occurs at a higher deposit rate ρ′ than

before, in particular at a deposit rate greater than ρ∗. (b) Suppose there is (1 + ∆)ρ such that

(1+∆)lkd+(1+∆)l2 > LS((1+∆)ρ) > (1+∆)lkd (see the middle panel of Figure B.2). From Lemma

B.1, (1+∆)ρ is the equilibrium deposit rate. It follows that (1+∆)ρ > ρ∗, which again contradicts

(1+∆)πkd > 0. (c) Otherwise there is (1+∆)ρ > ρ∗ such that (1+∆)lkd = LS((1+∆)ρ) (see the right

panel of Figure B.2). From Lemma B.1, (1+∆)ρ is the equilibrium interest rate and (1+∆)πkd < 0,

a contradiction. If the deposit rate above which 2 prefers default over (1 + ∆)d2 = (1 + ∆)l2 does

exceed the analogous deposit rate for kd, case (a) is treated analogously. Otherwise it is bank kd

that ceases to prefer (1+∆)dkd = (1+∆)lkd at the first downward discontinuity of the step function

(1+∆)(
∑

k∈K++′ lk). From the case distinction made, (1+∆)ρ is no less than the ρ′-value at which

this discontinuity occurs. So kd defaults in the deposit market equilibrium, again contradicting

(1 + ∆)πkd > 0.

The remaining possibility is a deviating strategy (1+∆)(rkd , λkd) with (1+∆)rkd < r∗∗, (1+∆)rkd ̸=

r∗, and (1+∆)λkd > 0. Due to the assumed shape of the return function, we have ϱ((1+∆)rkd) < ρ∗.

Market clearing at r∗∗ implies positive residual demand for all (1 + ∆)rkd < r∗∗. So (1 + ∆)lkd >
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0 and, from Lemma A.6 (case (a)), ∆(
∑

k∈K lk) > 0. Moreover, ∆lk < 0 for k ∈ {1, 2} when

(1 +∆)rkd < r∗, and ∆l2 < 0 = ∆l1 when r∗ < (1 + ∆)rkd < r∗∗. Similarly as above, suppose first

that the deposit rates ρ′ above which k = 1 and k = 2 prefer default over (1 + ∆)dk = (1 + ∆)lk

do not exceed the deposit rate above which kd prefers default over (1 + ∆)dkd = (1 +∆)lkd . (a) If

there is (1 +∆)ρ > ρ∗ such that (1 +∆)lkd + (1+∆)l1 + (1+∆)l2 = LS((1 +∆)ρ), then (1 +∆)ρ

is the equilibrium deposit rate. Since (1 + ∆)ρ > ρ∗, kd makes a loss:

(1 + ∆)πkd = [ϱ((1 + ∆)rkd)− (1 + ∆)ρ](1 + ∆)lkd < 0.

In the other two cases, (b) and (c), since ∆lk ≤ 0 for k ∈ {1, 2}, the deposit rates ρ′ above which

banks k = 1 and k = 2 prefer default over (1 + ∆)dk = (1 + ∆)lk do not fall. Since ∆lk < 0

for at least one k ∈ {1, 2}, the rate rises for at least one k. So the first step of the function

(1 + ∆)(
∑

k∈K++′ lk) occurs at a higher deposit rate ρ′ than before. By the same reasoning as in

the preceding paragraph, irrespective of whether (b) (1+∆)(
∑

k∈K++′ lk) intersects L
S(ρ′) at some

ρ or (c) not, the equilibrium interest rate ρ exceeds ρ∗, so kd’s profit is negative. Next, suppose

first that the deposit rate ρ′ above which kd prefers default over (1 + ∆)dkd = (1 + ∆)lkd lies in

between the corresponding rates for banks 1 and 2. As noted above, since ∆lk ≤ 0 for k ∈ {1, 2},

no bank prefers default at deposit rates up to ρ∗, for (1 + ∆)(
∑

k∈K++′ lk) > LS(ρ′) at ρ′ = ρ∗,

so that (1 + ∆)ρ > ρ∗ and (1 + ∆)πkd < 0. Finally, suppose kd is the first bank to prefer default

as ρ′ rises. If (1 + ∆)(
∑

k∈K++′ lk) intersects LS(ρ′) at some ρ′ = (1 + ∆)ρ lower than the rate

at which kd prefers default, (1 + ∆)ρ > ρ∗ is the equilibrium interest rate, and (1 + ∆)πkd < 0.

Otherwise the deposit market equilibrium occurs at a rate ρ′ at which kd prefers to default, so that

(1 + ∆)πkd = π < 0. Hence, in each case, kd’s profit from the deviating strategy (1 + ∆)(rkd , λkd)

is negative. This completes the proof of Theorem 1. ///

Appendix C. Proof of Theorem 2

C.1 Deposit subgame

Observe, to begin with, that default cannot occur in equilibrium. To see this, suppose there is a

bank k ∈ K+ (i.e., with lk > 0) which defaults. The only other thing that could have happened

is that the bank would not have been selected by the tie-breaking rule (if there are other banks

setting the same interest rate and credit limit), so that zero profit would have ensued. So expected

profit Eπk is negative. The fact that zero profit with certainty is possible rules out this possibility.

Consequently, K++ = K+ and K′ = ∅, and ρ is given by (B.3).
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It follows that in equilibrium banks k ∈ K+ choose (ρk, δk) such that dk ≥ lk, since otherwise they

suffer default. Suppose a bank kd ∈ K+ chooses (ρkd , δkd) such that dkd > lkd . From (A.3), dk is

continuous and increasing in δk, and dk = 0 for δk = 0. Thus, there exists a ∆δkd < 0 such that

(1 + ∆)dkd = lkd for (1 + ∆)(ρkd , δkd) = (ρkd , (1 + ∆)δkd). As rkd and lkd are determined in the

credit subgame already, (A.24) implies ∆πkd > 0. So dk = lk for all k ∈ K+.

Banks k ̸∈ K+ make zero profit if dk = 0. Any bid (ρk, δk) such that dk > 0 entails πk < 0, which

cannot occur in equilibrium. So dk = lk holds true for k ̸∈ K+ as well. Consequently, payoffs are

given by (B.1), and, from Lemma B.1, the amount of deposits made equals the amount of credit

given:
∑N

n=1Dn =
∑

k∈K lk.

Suppose ρk < ρ, where ρ is given by (B.3), for some k ∈ K+. Lemma A.2 then rules out ρk ≤ ρ for

all k ∈ K+, for this would entail default for some bank, as aggregate deposits fall short of credit

given:

N∑
n=1

Dn < LS(ρ)

=
∑
k∈K

lk.

So if ρk < ρ for some k ∈ K+, then the highest market deposit rate ρ1 satisfies ρ1 > ρ. Suppose K1,

the set of banks bidding ρ1, contains only one bank, kd say. The fact that a bank k bidding ρk < ρ

faces positive residual supply (which is implied by dk = lk > 0 for all k ∈ K+) means that kd can

decrease ρkd slightly and still raise deposits lkd . So a Nash equilibrium does not prevail. If, on the

other hand, K1 contains more than one bank k ∈ K, then dk = δk for all k ∈ K1 (since dk > 0

for some bank k with ρk < ρ). Let a bank kd ∈ K1 choose (1 + ∆)(ρkd , δkd) with ∆ρkd negative

and small in absolute value and ∆δkd = 0. The demand for deposits at ρ1 falls by δkd = dkd = lkd .

From Lemma A.3, the residual supply at (1 + ∆)ρkd rises by approximately lkd . The fact that the

residual supply at ρk (< ρ) is positive implies that the residual supply at (1 + ∆)ρkd is sufficient

so as to raise lkd . So we can rule out ρk < ρ for some k ∈ K+ in a Nash equilibrium. So ρk ≥ ρ for

all k ∈ K+. In order to prove that ρk = ρ for all k ∈ K+ it remains for us to rule out ρk > ρ for

some k ∈ K+.

If there is more than one market deposit rate (i.e., N > 1), the arguments put forward in the

preceding paragraph prove that it is possible for each bank k ∈ K1 setting the highest market

deposit rate ρ1 to raise profit by decreasing the deposit rate slightly. So consider the case of a single

deposit rate (i.e., N = 1), ρ1 > ρ. K1 = K+ in this case. From dk = lk for all k ∈ K, (B.3), and the
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fact that LS(ρ) is strictly increasing, we have∑
k∈K1

dk =
∑
k∈K

dk

=
∑
k∈K

lk

= LS(ρ)

< LS(ρ1). (C.1)

From (A.3) with n = 1, lS1 (ρ1) = LS(ρ1), and (C.1), we have

∑
k∈K1

dk =
∑
k∈K1

min

{
δk,

δk∑
k′∈K1

δk′
LS(ρ1)

}

=
∑
k∈K1

δk min

{
1,

1∑
k′∈K1

δk′
LS(ρ1)

}

= min

{
1,

1∑
k′∈K1

δk′
LS(ρ1)

} ∑
k∈K1

δk

= min

∑
k∈K1

δk, L
S(ρ1)


=

∑
k∈K1

δk.

From the fact that dk ≤ δk for all k ∈ K1, it follows that dk = δk and, hence, lk = δk for all

k ∈ K1. Suppose a bank kd ∈ K1 deviates with ∆ρkd negative and small in absolute value. The

amount of deposits raised at ρ1 falls by lkd . Lemma A.3 implies that demand at (1+∆)ρkd increases

by approximately the same amount. Together with the fact that there is excess supply at ρ1 (cf.

(C.1)), it follows that kd faces sufficient residual supply at (1 +∆)ρkd so as to raise lkd . So a Nash

equilibrium does not prevail. This completes the proof that dk = lk for all k ∈ K and ρk = ρ (with

ρ given by (B.3)) for all k ∈ K+ in any Nash equilibrium of the deposit subgame.

C.2 Credit subgame

Let K+++ be the subset of banks with strictly positive expected payoff as of stage one in equilibrium:

K+++ = {k ∈ K|Eπk > 0}.

LEMMA C.1: K+++ = ∅ or K+++ = K.

Proof: Suppose to the contrary that Eπk > 0 and Eπkd = 0 for {k, kd} ⊂ K. kd can also make a

positive expected profit by choosing (1 + ∆)(rkd , λkd) = (rk, λk). ///
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LEMMA C.2: rk ̸= rkd if {k, kd} ⊂ K+++.

Proof: Suppose the contrary: rk = rkd for {k, kd} ⊂ K+++. This implies λk = λkd . We have to

distinguish two cases: (a) there is excess demand at rkd or (b) not.

(a) Suppose there is excess demand at rkd : λk = λkd < lD
kd
(rkd). Let k

d deviate with ∆rkd = 0 and

∆λkd = ϵ, where ϵ > 0. Given the random tie-breaking rule, kd’s probability of serving the market

rises from (#{k| rk = rkd})−1 (< 1) to unity. Excess demand at rkd implies ∆lkd = ∆λkd = ϵ for

ϵ small enough. From Lemma A.6 (case (b)) and (B.3), ∆ρ rises, and the increase converges to

zero as ϵ → 0. As the probability of serving the demand for loans jumps upward, while ϱ(rkd) is

unchanged and ∆lkd and ∆ρ go to zero as ϵ → 0, it follows from (B.1) that ∆(Eπkd) > 0.

(b) Next, suppose there is no excess demand at rkd : λk = λkd ≥ lD
kd
(rkd). This implies that rkd is the

highest market interest rate. Suppose kd deviates by making loans to all firms that demand credit

at (1+∆)rkd , where ∆rkd = ϵ is negative and small in absolute value. As above, the probability of

facing positive demand jumps upward. All other arguments of the payoff function (B.1) go to zero

as ϵ → 0: ϱ(rkd + ϵ) → ϱ(rkd) because of continuity of the return function; (1 + ∆)lkd → lD
kd
(rkd)

because of the continuity of the residual demand functions; from Lemma A.6, ∆(
∑

k∈K lk) → 0

because ∆(
∑

k∈K lk) = (1+∆)lkd − lD
kd
(rkd), as three is no residual demand left at rkd ; from (B.3),

∆ρ → 0. So from (B.1), ∆(Eπkd) > 0. ///

LEMMA C.3: lDK(rK) = lK if K+++ = K.

Proof: K+++ = K and Lemma C.2 imply that one bank K alone sets the maximum market interest

rate rK . Therefore, lK > 0 with probability one. Suppose lDK(rK) > lK , i.e., K does not satisfy

the total residual demand it faces. Let K deviate with ∆rK = ϵ, where rK + ϵ > rK−1 and

ϱ(rK + ϵ) > ϱ(rK) (i.e., ϵ > 0 if ϱ(r) is increasing at rK and ϵ < 0 if ϱ(r) is decreasing at rK),

and ∆λK = 0. Because of excess demand, ∆lK = ∆λK = 0 for ϵ small enough. Given that lK is

constant, so is
∑

k∈K lk. From (B.3), ∆ρ = 0. From (B.1), ∆(EπK) > 0. ///

LEMMA C.4: K+++ = ∅.

Proof: Suppose not. Then, from Lemmas C.1-C.3, EπK > 0, EπK−1 > 0, rK > rK−1, and lDK(rK) =

lK .

(a) Let K deviate with (1+∆)(rK , λK) = (rK−1, λK−1+ ϵ), where ϵ > 0. Analogously to the proof

of Lemma A.6 (which does not apply directly because the supply of credit falls at rK), we have

∆lk = 0 for k ∈ {1, . . . ,K − 2}. (C.2)

K ∈ K+++ implies excess demand at rK−1 and, hence, lK−1 = λK−1. So bank K − 1 is pushed out
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of the market:

∆lK−1 = −lK−1 (C.3)

Furthermore, excess demand at rK−1 implies (1 + ∆)lK = lK−1 + ϵ, i.e.,

∆lK = lK−1 + ϵ− lK (C.4)

for ϵ small enough. Since, moreover, no bank sets an interest rate above rK (this would imply zero

profit, contradicting K+++ = K), adding up (C.2)-(C.4) yields

∆

(∑
k∈K

lk

)
= ϵ− lK < 0

for ϵ small enough. That is, aggregate credit given and, from (B.3), the deposit rate jump downward.

From (B.1), we have

(1 + ∆)(EπK) = [ϱ(rK−1)− (1 + ∆)ρ](lK−1 + ϵ)

> [ϱ(rK−1)− ρ]lK−1

= EπK−1 (C.5)

for ϵ small enough.

(b) Next, let K − 1 deviate with (1+∆)(rK−1, λK−1) = (rK + ϵ, lDK−1(rK + ϵ)), where ϵ is negative

and small enough in absolute value such that rK + ϵ > rK−1. (C.2) holds true. Bank K − 1’s credit

given changes by

∆lK−1 = lDK−1(rK + ϵ)− lK−1. (C.6)

Since there is no excess demand left at (1 + ∆)rK−1 = rK + ϵ,

∆lK = −lK . (C.7)

Adding up (C.2), (C.6), and (C.7) and letting ϵ → 0 yields

∆

(∑
k∈K

lk

)
= lDK−1(rK + ϵ)− (lK−1 + lK)

→ lDK−1(rK)− (lK−1 + lK) (C.8)

as ϵ → 0. From (A.6) (with m = K − 1, r = rK , and Lm = lK−1),

lDK(rK) =

[
1− lK−1

lDK−1(rK−1)

]
lDK−1(rK).
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Hence, using lDK(rK) = lK and the fact that rK > rK−1,

lK−1 + lK = lK−1

[
1−

lDK−1(rK)

lDK−1(rK−1)

]
+ lDK−1(rK)

> lDK−1(rK).

From (C.8), it follows that, for ϵ → 0, the deviating strategy (1 + ∆)(rK−1, λK−1) = (rK +

ϵ, lDK−1(rK + ϵ)) causes a downward jump in
∑

k∈K lk. From (B.3), the deposit rate falls dis-

continuously: ∆ρ < 0. Together with the fact that the return function ϱ(r) is continuous and

lDK−1(rK) > lDK(rK) = lK , it follows from (B.1) that

(1 + ∆)(EπK−1) = [ϱ(rK + ϵ)− (1 + ∆)ρ]lDK−1(rK + ϵ)

> [ϱ(rK)− ρ]lK

= EπK

for ϵ → 0.

So we have (1+∆)(EπK) > EπK−1 and (1+∆)(EπK−1) > EπK . As shown in the main text, this

is not consistent with the definition of a Nash equilibrium. ///

Notice that the analysis so far holds true independently of the shape of the return function.

LEMMA C.5: r1 = r∗ and r2 = r∗∗ are the only market interest rates.

Proof: Clearly, M = ∅ (no credit given) cannot arise in equilibrium. M = ∅ implies rk ≥ rmax or

λk = 0 for all k ∈ K. Any (1+∆)(rkd , λkd) such that ϱ(rkd) > (LS)−1(lkd) yields (1+∆)(Eπkd) > 0.

Suppose next that there is a single equilibrium interest rate r1, so that M = {1} and, given the

convention k = m, K+ = {1}. Consider a bank kd ∈ K\{1}. Suppose there is excess demand at r1

(i.e., lD1 (r1) = LD(r1) > l1). Then, the fact that K+ = {1} implies that for all k ∈ K\{1}, rk = r1

and λk ≤ λ1 or rk ≥ rmax or λk = 0. kd ∈ K\{1} can make positive expected profit by choosing

(1 + ∆)(rkd , λkd) = (rmax + η, ϵ) with η negative and small in absolute value and ϵ positive and

small. Because of excess demand at r1, (1+∆)lkd = ϵ with probability one for ϵ small. By virtue of

Lemma A.6 and (B.3), ∆ρ → 0 and thus ϱ(rmax + η) > (1 +∆)ρ as ϵ → 0 and η → 0. From (B.1),

(1 + ∆)πkd > 0. This rules out excess demand in a single-interest equilibrium.

So l1 = lD1 (r1) = LD(r1). From Lemma B.1, in the deposit subgame, bank 1 bids ρ1 =

(LS)−1(LD(r1)) and gets d1 = LD(r1). Hence, LS(ρ1) = LD(r1). According to Lemma C.4, bank

1 makes zero profit: ρ1 = ϱ(r1). So LS(ϱ(r1)) = LD(r1). Given the assumed continuity and shape

of the return, demand, and supply functions (with LD(r∗) > LS(ϱ(r∗)) and LD(r∗∗) < LS(ϱ(r∗∗))

and with LD(r) − LS(ϱ(r)) decreasing for r < r∗ and for r > r∗∗), this implies r∗ < r1 < r∗∗.
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It follows that the demand for credit is positive at r∗ and that ϱ(r1) < ρ∗. Suppose kd chooses

(1 + ∆)(rkd , λkd) = (r∗, ϵ), where ϵ is positive and small. The fact that the demand for credit is

positive at r∗ implies (1 + ∆)lkd = ϵ with probability one. From Lemma A.6 and (B.3), ∆ρ is

small. It follows that ϱ(r∗) = ρ∗ > (1 + ∆)ρ. From (B.1), (1 + ∆)(Eπkd) > 0. This rules out a

single-interest rate equilibrium.

Given that all banks k ∈ K+ get deposits dk = lk (> 0) and pay a common deposit rate ρ (Lemma

B.1) and make zero expected profit (Lemma C.4), (B.1) implies that all banks k ∈ K+ realize the

same return ϱ(rk) = ρ. Given the assumed shape of the return function, identical returns at all, and

at at least two, market interest rates implies that either (as asserted by the lemma) the equilibrium

is a two-interest rate equilibrium with credit given positive for r∗ and r∗∗ and for no other interest

rate, or else K+ consists of two or three banks, ϱ(rk) < ρ∗ for all k ∈ K+, and r2 > r∗. We now

rule out the latter case. Consider a bank kd. If for each rk, k ∈ K+, there is a single bank choosing

(rk,Λk), then let kd ∈ K\K+ (the fact that there are two or three banks in K+ and at least four

banks in K ensures that K\K+ ̸= ∅). Otherwise, consider a bank kd either in K\K+ or such that

there is another bank k′ ∈ K with (rk′ , λk′) = (rkd , λkd). This choice of kdensures that Lemma A.6

is applicable when kd makes loans at a new interest rate. Let kd set (1 + ∆)(rkd , λkd) = (r∗, ϵ),

where ϵ is small and positive. r2 > r∗ implies that there is positive residual demand at r∗, so that

(1 + ∆)lkd = ϵ with probability one. By virtue of Lemma A.6 and (B.3), ∆ρ → 0 as ϵ → 0. So

(1 + ∆)(Eπkd) = [ρ∗ − (1 + ∆)ρ](1 + ∆)lkd > 0. This proves that the equilibrium is a two-interest

rate equilibrium with credit given positive for r∗ and r∗∗. ///

LEMMA C.6: At least two banks k ∈ K set (rk, λk) = (r1,Λ1), and at least two banks k ∈ K set

(rk, λk) = (r2, λk) with λk ≥ lD2 (r2).

Proof: Suppose (rk, λk) = (r1,Λ1) for only one bank k = 1. From Lemma C.5, there is positive

residual demand at r∗∗, which implies l1 = Λ1. Let bank 1 choose (1 + ∆)(r1, λ1) = (r∗, l1 + ϵ),

where ϵ is negative and small enough in absolute value such that bank 1 continues to serve the

market at r∗ (i.e., there is no k ∈ K such that rk = r∗ and l1 + ϵ ≤ λk < l1). If there is excess

demand at r∗∗ (i.e., l2 = Λ2 < lD2 (r∗∗) = [1− l1/L
D(r∗)]LD(r∗∗)), then ∆l2 = 0 and, using ∆l1 = ϵ,

∆

(∑
k∈K

lk

)
= ϵ

< 0.

If there is no excess demand at r∗∗, then ∆l2 = ∆lD2 (r∗∗) = −[LD(r∗∗)/LD(r∗)]∆l1 and, using
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∆l1 = ϵ,

∆

(∑
k∈K

lk

)
=

[
1− LD(r∗∗)

LD(r∗)

]
ϵ

< 0

for ϵ small enough small enough in absolute value. ∆ρ < 0 in both cases. Since the return ϱ(r∗) = ρ∗

is unaffected and (1 + ∆)l1 = l1 + ϵ with probability one, we have, from (B.1), (1 + ∆)(Eπ1) > 0.

Turning to the higher equilibrium interest rate r2 = r∗∗, suppose no bank k sets λk ≥ lD2 (r2). Then,

given Lemma C.5, there is positive residual demand for all interest rates in the interval (r∗∗, rmax),

so that any bank kd not setting r1 can make positive profit with (1 + ∆)(rkd , λkd) = (rmax + η, ϵ),

where η is negative and small in absolute value and ϵ is positive and small.

So suppose there is exactly one bank k = 2 which chooses (rk, λk) = (r2, λk) with λk ≥ lD2 (r2).

This implies that there is no excess demand at r2 = r∗∗: l2 = lD2 (r∗∗). Let bank 2 deviate with

(1 + ∆)r2 = r∗∗ + η, where η is positive, so that ϱ(r∗∗ + η) > ρ∗. The fact that k = 2 is the

only bank which chooses λk ≥ lD2 (r∗∗) at r∗∗ implies that credit given at r∗∗ by the bank with

the next-highest credit limit, k′ say (notice that lk′ = 0), satisfies (1 + ∆)lk′ < lD2 (r∗∗), so the

residual demand is positive at r∗∗ + η. Let η be small enough such that there is no bank k with

r∗∗ < rk ≤ r∗∗ + η. Then bank 2 faces positive residual demand (1+∆)lD2 (r∗∗ + η). Suppose it sets

(1 +∆)λ2 = (1+∆)lD2 (r∗∗ + η). Then (1+∆)l2 = (1+∆)lD2 (r∗∗ + η), and using r∗∗ + η > r∗∗ and

Lemma A.5,

(1 + ∆)lk′ + (1 +∆)l2 < lD2 (r∗∗)

= l2.

Hence, using lk′ = 0,

∆

(∑
k∈K

lk

)
= (1 +∆)lk′ + (1 +∆)l2 − (l2 + lk′)

< l2 − (l2 + lk′)

= 0.

From (B.3), ∆ρ < 0. As ϱ(r∗∗ + η) > ρ∗ = ρ, and ∆ρ < 0, bank 2’s expected profit, as given by

(B.1), becomes positive: ∆(Eπ2) > 0. ///

LEMMA C.7: l1 = L∗ and l2 = LS(ρ∗)− L∗.

Proof: Aggregate credit given obeys

l1 + l2 = LS(ρ∗). (C.9)
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Suppose not. Then, from Lemma B.1 and (B.3),

ρ = (LS)−1(l1 + l2)

̸= (LS)−1(LS(ρ∗))

= ρ∗.

From Lemma C.5 and ϱ(r∗) = ϱ(r∗∗) = ρ∗, it then follows that Eπk ̸= 0 for k ∈ {1, 2}. This

contradicts Lemma C.4. Given that aggregate credit given is LS(ρ∗), from (A.22), the residual

demand at r∗∗ is

lD2 (r∗∗) =

[
1− l1

LD(r∗)

]
LD(r∗∗). (C.10)

Suppose l1 < L∗. From l2 ≤ lD2 (r∗∗), (C.10), LD(r∗∗) < LD(r∗), and the definition of L∗, we obtain

l1 + l2 ≤ l1 + lD2 (r∗∗)

= l1 +

[
1− l1

LD(r∗)

]
LD(r∗∗)

=

[
1− LD(r∗∗)

LD(r∗)

]
l1 + LD(r∗∗)

<

[
1− LD(r∗∗)

LD(r∗)

]
L∗ + LD(r∗∗)

= L∗ +

[
1− L∗

LD(r∗)

]
LD(r∗∗)

= LS(ρ∗).

This contradicts (C.9).

Suppose l1 > L∗. Then the same formulas as employed above and (C.9) yield

lD2 (r∗∗)− l2 =

[
1− l1

LD(r∗)

]
LD(r∗∗)− [LS(ρ∗)− l1]

=

[
1− LD(r∗∗)

LD(r∗)

]
l1 + LD(r∗∗)− LS(ρ∗)

>

[
1− LD(r∗∗)

LD(r∗)

]
L∗ + LD(r∗∗)− LS(ρ∗)

=

[
1− L∗

LD(r∗)

]
LD(r∗∗)− [LS(ρ∗)− L∗]

= 0.

That is, there is excess demand at r∗∗. But then (1+∆)(rkd , λkd) = (rmax+η, ϵ), where η is negative

and small in absolute value and ϵ is positive and small, yields (1 +∆)(Eπkd) > 0. This contradicts

Lemma C.4, thereby completing the proof of Lemma C.7 and Theorem 2. ///
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Appendix D: Proof of Theorem 3

The analysis of residual demands and supplies in Appendix A and of the deposit subgame in

Appendix B.1 goes through without modification. Because of market clearing at r̄, if kd sets (1 +

∆)rkd > r̄ in the credit subgame, it does not attract firms. Likewise, (1+∆)rkd = r̄ and (1+∆)λkd <

L̄ implies (1 + ∆)lkd = 0. With (1 + ∆)rkd = r̄ and (1 + ∆)λkd > L̄, kd takes on the role of bank

1 (that serves the market before kd’s deviation) and makes zero profit. Suppose kd deviates with

(1 + ∆)(rkd , λkd) where (1 + ∆)rkd < r̄ and (1 + ∆)λkd > 0. ∆l1 < 0 but, from Lemma A.6,

∆(
∑

k∈K lk) > 0. As explained in Appendix B.2, if the deposit rate ρ′ above which 1 prefers default

over (1 + ∆)d1 = (1 + ∆)l1 does not exceed the deposit rate above which kd prefers default over

(1 +∆)dkd = (1 +∆)lkd , the deposit rises, so (1 +∆)πkd < 0. And if the deposit rate above which

1 prefers default over (1 + ∆)d1 = (1 + ∆)l1 exceeds the analogous deposit rate for kd, either the

deposit rises or else kd defaults. (1 + ∆)πkd < 0 in both cases.

Turning to the “uniqueness” part, the proofs of Lemmas C.1-C.4 go through without modification,

so K+++ = ∅, i.e., there is no bank k ∈ K that makes positive expected profit Eπk. By the same

reasoning as in the proof of Lemma C.5, M ̸= ∅. As shown in Appendix C.1, all banks k ∈ K+

pay the same deposit rate ρ and acquire deposits dk = lk. It follows that ϱ(rk) = ρ for all k ∈ K+.

Given the assumed monotonicity of ϱ(r), this means that there is a single market interest rate (i.e.,

M = {1}).

Suppose the single market interest rate satisfies r1 > r̄, so that LD(r1) < LS(ϱ(r1)). Given that

the single active bank 1 acquires deposits d1 = l1 ≤ LD(r1), it follows that there is excess supply

in the market for deposits (i.e., d1 < LS(ϱ(r1))) and, therefore, positive residual supply at lower

rates. So a bank kd can lend (1 + ∆)lkd > 0 at (1 + ∆)rkd slightly below r̄ and raise deposits

(1 + ∆)dkd = (1 +∆)lkd at a rate below ρ̄, thereby making a positive profit (1 + ∆)πkd .

In the opposite case r1 < r̄, we have LS(ϱ(r1)) < LD(r1) and l1 ≤ LS(ρ1), since otherwise bank

1 would default. Using d1 = l1 and zero profit, it follows that l1 < LD(r1). But that means that

there is excess demand in the credit market. So a bank kd can make a positive profit (1 + ∆)πkd

by offering a small amount of credit at interest rate slightly below rmax. ///
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