400)

Enantioselective Synthesis of Some Nicotiana Alkaloids

Siavosh Mahboobi and Wolfgang Wiegrebe*)

Institute of Pharmacy, University of Regensburg, P.O. Box 397, D-8400 Regensburg, Germany

Received July 17, 1987

A modified approach to myosmine (6) via a silyl enol ether of 3-acetylpyridine (1) is described. Chiral reduction of 6 with N-(benzyloxycarbonyl)-L-proline/NaBH₄ and formylation leads to (R)-N-formylnornicotine (8) (35 % ee) which in turn is converted to (R)-nornicotine (11) and (R)-nicotine (10).

Enantioselektive Synthese einiger Nicotiana-Alkaloide

Wir beschreiben eine modifizierte Synthese des Myosmins (6) über einen Silylenolether des 3-Acetylpyridins (1). Chirale Reduktion von 6 mit N-Benzyloxycarbonyl-L-Prolin/NaBH₄ und N-Formylierung (35 % ee) führen zu (R)-N-Formylnornicotin (8), das in (R)-Nornicotin (11) bzw. (R)-Nicotin (10) überführt wird.

Various methods for the synthesis of nicotiana alkaloids as racemates are reported, inter alia¹⁻³). We here describe a modified approach to myosmine (6) and strategies for chiral syntheses of nicotine derivatives.

Methyl-arylketones react with *Böhme-Eschenmoser*-salt⁴⁾ to the pertinent *Mannich* bases (type **4**) which in turn are converted to the 3-oxo-3-arylbutyronitriles (type **5**)³⁾. Partial hydrogenation with concomittant ring closure leads to 2-aryl-1-pyrrolines (type **6**). This method gives very low yields with methyl-arylketones having low C-H-acidity of the methyl group as we recognized in our synthesis of *Preininger*'s alkaloid⁵⁾. So we adapted *Danishefsky*'s idea of activating the methyl group⁶⁾ via its pertinent silyl enol ether⁶⁾: 3-acetyl-pyridine⁷⁾ (1) was silylated in 95 % yield with F₃C-SO₂-O-Si(CH₃)₃⁸⁾ to 2; 2 reacted with dimethyl-methylenimmonium iodide to give 3, which was hydrolyzed to the *Mannich* base 4. 4-HCl was treated with CN⁻ to afford the

nitrile 5, the overall yield 2 to 5 is 72–75 %. Partial hydrogenation of 5 with Raney-Ni in EtOH/NH₃ led to myosmine (6). An exceeding hydrogenation to racem. nornicotine³⁾ is prevented by our conditions (cf. Experim. Part) (Scheme 1).

Chiral reduction generates a centre of chirality at C-1 of the former pyrroline group.

Chiral reductions of imines being part of indol and isoquinoline alkaloids with Iwakuma's reagent⁹⁾ are known. In our hands usual cleavage of the N-borane adduct **7** as described⁹⁾ does not give any defined product. Therefore, we used our work-up procedure with simultaneous N-acylation^{4, 10)}, leading to the rotamers of (+)-(R)-N-formylnornicotine (**8**) in 35 % ee and 90 % chemical yield. Routine procedures (Scheme 2) give rise to (+)-(R)-nicotine (**10**) and (+)-(R)-nornicotine (**11**) of equal optical purity (Scheme 2).

$$\begin{array}{c} \text{CH}_3 \\ \text{C=O.} \\ \text{C=O.} \\ \text{D} \\ \text{C=O.} \\ \text{C=O.} \\ \text{D} \\ \text{C=OSi(CH}_3)_3 \\ \text{C=OSi(CH}_3)_3 \\ \text{D} \\ \text{N} \\ \text{D} \\ \text{D} \\ \text{C=OSi(CH}_3)_3 \\ \text{D} \\ \text{D} \\ \text{C=OSi(CH}_3)_3 \\ \text{D} \\$$

Use of acetic anhydride instead of the mixed anhydride H-CO-O-CO-CH₃ during work-up after chiral reduction affords the racemate of N-acetyl-nornicotine (9)¹¹⁾ with the enantiomer **R-9** being enriched.

Experimental part

General remarks: lit¹⁰, - Kugelrohr distillations were performed in a Büchi apparatus with at least 5 bulbs and twofold cooling with dry ice. The external temp. is cited.

1-Trimethylsilyloxy-1-(3-pyridyl)-ethene (2)

To 6.05 (0.05 mol) 3-acetylpyridine (1)⁷⁾ in 80 ml absol. benzene and 6 g Et₃N were added drop by drop 23.05 g F_3C – SO_2 –O– $Si(CH_3)_3$ ⁸⁾ then the mixture was refluxed for 3 h. The upper phase (benzene) was evaporated *i. vac.* and the residue sublimated under the condition of Kugelrohr distillation (50–60 °C, 0.05 mm Hg): White crystals (9.18 g, 95 %), m. p. 52–53 °C. – ¹H-NMR: δ (ppm) = 0.35 (s; 9H, 3 × CH₃), 4.78 (d; J = 3.3 Hz, 1H, C=CH₂), 5.24 (d; J = 3.3 Hz, 1H, C=CH₂), 7.90–8.13 (m; 1H, aromat.), 8.53–8.71 (m; 1H, aromat.), 8.80–9.16 (m; 2H, aromat.).

3-Cyano-1-(3-pyridyl)-propan-1-one (5)

7.73 g (0.04 mol) 2 were dissolved in 20 ml absol. CH₂Cl₂ under purified N₂. Then 8.14 g (10 % excess) dimethyl-methylenimmonium iodide⁴⁾ were added at 0 °C in one portion under purified N₂. After addition cooling is removed and after 1 h CH₂Cl₂ is evaporated i. vac. under N₂. The residue (colourless oil 3; the structure of 3 is deduced from Danishefsky's publication⁶⁾) was dissolved at 0 °C in 2N HCl, excess HCl was evaporated i. vac. leaving a colourless oil 4. In the hood dry KCN (3.90 g, 50 % excess) was added in one portion under N₂ followed by 400 ml water of 40 °C. After stirring under N₂ at this temp. until 4 had disappeared (tlc control; Al2O3/ethyl acetate or SiO2/ethyl acetate) the mixture was cooled to room temp. and extracted with CH2Cl2. Column chromatography (CC) (Al₂O₃/ethyl acetate) afforded 4.60 g (72 %) 5; m. p. 66 °C (Et₂O₃) lit.3): 66-67 °C). – IR (KBr): 2264 (C \equiv N), 1700 cm⁻¹ (C=O). – ¹H-NMR: $(CDCl_3)$: δ (ppm) = 2.60-2.95 (m; J = 6 Hz, 2H, CH₂), 3.30-3.55 (m; J = 6 Hz, 2H, CH₂), 7.38–7.60 (m; 1H, aromat.), 8.15–8.38 (m; 1H, aromat.) 8.80-8.98 (m; 1H, aromat.), 9.16-9.30 (m; 1H, aromat.).

Myosmine (6)

Contrary to Leete³⁾ we hydrogenated **5** at atmospheric pressure and 40–50 °C. – To 2.92 (20 mmol) **5** in 100 ml absol. EtOH were added 3 ml of absol. EtOH which was saturated with NH₃ at 0 °C, and 1.5 g Raney-Ni. – The reaction was controled by tlc (Al₂O₃/ethyl acetate or Al₂O₃/Et₂O) in order to prevent further reduction of the C=N double bond. When **5** had been converted completely, the mixture was filtered and evaporated and the residue was purified (short column; Al₂O₃/ethyl acetate) and distilled (Kugelrohr, 60 °C, 0.05 mm Hg): 2.26 g (85 %) white crystals, m. p. 43–43.5 °C (lit.¹²): 40.5–42 °C), picrate: m. p. 183.5–185 °C (lit.³): 183–185 °C). – ¹H-NMR of **6** (base): δ (ppm) = 1.85–2.26 (m; 2H, pyrroline), 2.80–3.13 (m; 2H, pyrroline), 3.95–4.26 (m; 2H, pyrroline), 7.25–7.5 (m; 1H, aromat.), 8.10–8.34 (m; 1H, aromat.), 8.54–8.8 (m; 1H, aromat.), 8.96–9.13 (m; 1H, aromat.).

(+)-(R)-N-Formylnornicotine (8) and (+)-(R)-N-Acetylnornicotine (9)

Modifying Iwakuma's procedure his reagent was prepared as follows: 1.98 g (7.98 mmol) N-benzyloxycarbonyl-L-proline were added in portions to a suspension of 79.44 mg (2.1 mmol) NaBH₄ in 13 ml absol. THF at 5 °C under N₂ and stirring. Stirring at this temp. was continued until development of H₂ had ceased. After 3 h at room temp. THF was evaporated at 10 °C under N₂, the residue was dried at 20 °C, 0.05 mmg Hg, and dissolved in 4 ml absol. CH₂Cl₂ at 0 °C under N₂. – To this solution 219.3 mg

(1.5 mmol) 6 in 4 ml absol. CH₂Cl₂ were added at 0 °C under N₂. After 10 h at 0 °C and stirring for 3 d at room temp. the solution was divided into two fractions (about 1.5 and 6.5 ml, respectively). Both solutions were evaporated separately (faint yellow oils). The major part was reacted at 0 °C with 6 ml acetic formic anhydride, previously cooled to 0 °C. The mixture was stirred for 30 min at room temp. then 30 min at 40-50 °C, followed by evaporation of the excess of anhydride. To the residue was added HClO₄ (70 %) at 0 °C. After 30 min at 0 °C and 30 min at room temp. the mixture was neutralized with N NaOH at 0 °C and rapidly extracted with CH₂Cl₂. After drying and CC (Al₂O₃; CH₂Cl₂/H₃CCN 9:1) 8 was purified by Kugelrohr distillation (95-100 °C; 0.05 mm Hg): 195.4 mg (91 %) colourless oil. – IR (film): 1665 cm $^{-1}$ (CO). – $^{1}\text{H-NMR}$: δ (ppm) = 1.75-2.15 (m; 3H, pyrrolidine), 2.25-2.60 (m; 1H, pyrrolidine); 3.47-3.97 (m; 2H, pyrrolidine), 4.85-5.20 (m; 1H, pyrrolidine), 7.27-7.54 (m; 2H, aromat.), 8.39 (s; 0.35 H, N-CH=O), 8.15 (s; 0.65 H, N-CH=O), 8.67-8.40 (m; 2H, aromat.). Because 8 was not separated on Chirasil^{4, 10)} the ee was determined at the stage of N-acetyl-nornicotine (9).

The minor fraction was processed analogously but instead of the mixed anhydride mentioned above 3 ml acetic anhydride were used. Neutralization at -5 °C; CC with CHCl₃; Kugelrohr distillation at 95 °C/0.05 mm Hg: 49.75 mg (93 %) colourless oil.

The ee was determined as described^{4, 10)}: 35.4 % (+)-(R)-9. – IR (film): 1660 cm⁻¹ (CO). – ¹H-NMR: δ (ppm) = 1.70–2.70 (m; 4H, pyrrolidine), 1.82 (s; 3H, CO–CH₃), 3.48–3.85 (m; 2H, pyrrolidine), 4.83–5.28 (m; 1H, pyrrolidine), 7.40–7.58 (m; 2H, aromat.), 8.35–8.85 (m; 2H, aromat). – The ms revealed the fragment ions described¹¹⁾ in similar rel. int.

(+)-(R)-Nicotine (10)

88 mg (0.5 mmol) **8** were stirred in an autoklave with 2 ml HCOOH (98 %) and 2 ml $\rm H_2CO$ (37 %) at 100 °C for 18 h. After cooling to 0 °C the excess of the reagent was evaporated at 28 °C, the residue (oil) was triturated at 0 °C with pre-cooled 2N NaOH, the mixture was saturated with NaCl and extracted with CH₂Cl₂ repeatedly. After drying (Na₂SO₄) and Kugelrohr distillation with *intensive cooling* (35–40 °C; 0.01 mm Hg, Lit.¹³⁾: 109 °C, 8 mm Hg) we obtained **10** as a colourless oil (81 mg, 91 %). – IR (film): 2793 cm⁻¹ (N-CH₃). – ¹H-NMR: δ (ppm) = 1.50–2.52 (m; 5H, pyrrolidine), 2.11 (s; 3H, N-CH₃), 2.92–3.44 (m; 2H, pyrrolidine), 7.12–7.37 (m; 1H, aromat.), 7.59–7.80 (m; 1H, aromat.), 8.38–8.63 (m; 2H, aromat.). – [α] $^{2}_{10} = + 28.07^{\circ}$ (aqueous 1 % KOH¹³), c = 0.9): 36.1 % ee (lit:¹³⁾ [α] $^{1}_{10} = + 77.78^{\circ}$).

(+)-(R)-nornicotine (11)

52.86 mg (0.3 mmol) **8** were refluxed with 10 ml 3N HCl for 2 h, then cooled to 0 °C and made alcaline with NaHCO₃. After saturation with NaCl and extraction with CH₂Cl₂ the org. layer was dried (Na₂SO₄) and *carefully* evaporated (20 °C, 20 mm Hg) in order to prevent evaporation of **11**: colourless pure residue (NMR). *Careful* Kugelrohr distillation at 25–30 °C, 0.2 mg Hg (118–119 °C, 3 mm Hg¹⁴⁾) afforded 40 mg (90 %) **11** as an colourless oil. – IR (film): 3300 cm⁻¹ (br., NH). – ¹H-NMR: δ (ppm) = 1.50–2.40 (m; 4H, pyrrolidine), 1.98 (s; 1H, NH, D₂O exchange), 2.83–3.42 (m; 2H, pyrrolidine), 4.04–4.35 (m; 1H, pyrrolidine), 7.13–7.40 (m; 1H, aromat.), 7.60–7.81 (m; 1H, aromat.), 8.40–8.68 (m; 2H, aromat.).

References

- 1 M. Nakane and C. R. Hutchinson, J. org. Chem. 43, 3922 (1978).
- 2 G. F. Alberici, J. Andrieux, G. Adam, and M. M. Plat, Tetrahedron Lett. 1983, 1937.
- 3 E. Leete, M. R. Chedekel, and G. B. Bodem, J. Org. Chem. 37, 4465 (1972).

- 4 H. Brunner, R. Becker, S. Mahboobi, and W. Wiegrebe, Angew. Chem. 97, 969 (1985) and lit. cited there.
- 5 S. Mahboobi and W. Wiegrebe, Sci. Pharm. 54, 217 (1986).
- 6 S. Danishefski, T. Kitahara, R. McKee, and P. F. Schuda, J. Am. Chem. Soc. 98, 6715 (1976).
- 7 3-Acetylpyridine from EGA-Chemie, D-7900 Steinheim.
- 8 G. Simchen and W. Kober, Synthesis 1976, 259.
- 9 K. Yamada, M. Takeda, and T. Iwakuma, J. Chem. Soc. Perkin Trans. I 1983, 265.
- 10 H. Brunner, A. Kürzinger, S. Mahboobi, and W. Wiegrebe, Arch. Pharm. (Weinheim) 321, 73 (1988).
- 11 A. H. Warfield, W. D. Galloway, and A. G. Kallianos, Phytochemistry 11, 3371 (1972).
- 12 D. Spitzner, Synthesis 1977, 242.
- 13 E. Späth, C. S. Hicks, and E. Zajic, Ber. Dtsch. Chem. Ges. 68, 1388 (1935).
- 14 T. Kisaki and E. Tamaki, Arch. Biochem. Biophys. 92, 351 (1961).
 [Ph 371]