Methoxy- and Acetoxy-8-oxoberbines — Synthesis, Antitumor Activity, and Interaction with DNA*

Christian Weimar, Silvia von Angerer, and Wolfgang Wiegrebe

Institute of Pharmacy and Sonderforschungsbereich 234, University of Regensburg, Universitätsstr. 31, D-8400 Regensburg, Germany

Received July 6, 1990

Most of the methoxy-8//-dibenzo[a,g]isoquinolin-8-ones 3a-h and their acetoxy derivatives 6a-e were synthesized by condensation of 1-oxo-1,2,3,4-tetrahydroisoquinolines 4a-c and homophthalic acid anhydrides 5a and b, ether cleavage and acetylation. These protoberberinones were tested for cytostatic activity in vitro using MDA-MB-231 mammary tumor cells and for interaction with native calf thymus DNA. Tetramethoxy-8-oxoberbine 3f shows an inhibition of cell proliferation of 87% at a concentration of 10^{-5} M; its cytostatic effect does not depend on intercalation into DNA.

In 1972 Zee-Cheng\(^1\) reported upon inhibitory effects of the alkaloid berberine (1, Fig. 1) in various models of leukaemia. This protoberberine derivative is nearly planar and characterized by a cationic center. These two properties might contribute to the affinity of berberine (1) to DNA and to its cytotoxic effect\(^2\). Berberine (1) and coralyne (2, Fig. 1)\(^3\), however, proved to be too toxic for clinical use and so further development of this type of alkaloids is necessary.

Based on these findings, we describe the synthesis of methoxy- (type 3) and acetoxy-8-oxo-5,6-dihydro-dibenzo[a,g]quinolizines (type 6), their cytotoxic properties and their interaction with DNA.

![Chemistry](image)

Figure 1

The demand of a large variety of dihydro-dibenzo[a,g]quinolizin-8-ones (3) excludes many synthetic approaches\(^4,5\) and led us to Haimova's strategy\(^6\) used for the preparation of e.g. 2,3,10,11-tetramethoxy-5,6-dihydro-8//-dibenzo[a,g]-quinolizin-8-one (3f), because this approach enabled us to react various 1,2,3,4-tetrahydroisoquinoline-1-ones 4 with differently substituted homophthalic acid anhydrides 5 (Scheme 1, see Page 510).

3-Methoxyphenylacetonitrile was hydrogenated with H\(_2\)/Raney-Ni. Increased pressure (60 atm) and elevated temp. (120°C) are mandatory for quantitative yields of amine 7a. \(\beta\)-Phenylethylamines 7a-c were cyclized via the pertinent carbamates 8a-c\(^7\), obtained from amines 7a-c and ethyl chloroformate. Heating the urethanes 8a-c with neat polyphosphoric acid affords the tetrahydroisoquinolin-1-ones 4 (Scheme 2).

\(^*\) Dedicated to Prof. Dr. Hartke, Marburg, on the occasion of his 60th birthday.
Starting from phenylacetic acid 9, the missing -CH_2-increment was introduced according to Finkelstein and Brossi \(^8\). This o-hydroxymethylation led to the isochroman 10, which was oxidized to the homophthalic acid 11a. Heating of compounds 11a and b with acetyl chloride led to anhydrides 5 (Scheme 3). Deviating from this approach 5-methoxyhomophthalic acid (11b) was obtained from bromination of m-methoxy-
benzoic acid (12) affording 13, and reaction of 13 with ethyl acetoacetate/NaH/Cu2Br2 as described as a general synthesis of homophthalic acids by Bruggink9. As outlined in the introduction Haimova's approach6 was used for the synthesis of compounds 3a-f (Scheme 1).

For reasons of comparison we also synthesized the acetoxyl derivatives 6a-e. By using BBr3 for the cleavage of the methoxy ethers 3 we found a smooth way for getting the hydroxy derivatives - the temp. used in this procedure is depending on the grade of substitution in the aromatic rings. To avoid oxidative degradation of the free phenols we immediately prepared the acetoxyl-8-oxo-5,6-dihydro-dibenzo[a,g]quinolizines 6 by refluxing with acetic acid anhydride/pyridine (Scheme 1).

To get the 9,10-dimethoxy-8-oxo-5,6-dihydro-dibenzo[a,g]quinolizines 3g and h (Scheme 4) an easy one-step synthesis is the alkaline oxidation of quaternary protoberbineium salts, already described by Gadamer10, starting from berberine- (1) and palmatine chloride (14).

For further comparison of the cytotoxic properties and structure-activity-relationships we also prepared the enamine 15 as a crystalline product11 by reduction of compound 3f with LiAlH4 (Scheme 5). Further reduction of 15 with NaBH4 led to racemic xylopinine (16) which was dehydrogenated with iodine to the quaternary 2,3,10,11-tetramethoxyberbine iodide 17 (Scheme 5).

The NMR-Data of the intermediate 2,3,10,11-tetramethoxyenamine 15 were assigned by NOE-difference-spectra.

Because 5,6-dihydro-8-oxoberbines have a slight angle (18-20°, Fig. 2) in the isoquinoline ring system and the cytotoxic properties often depend on the planarity of a substance, we aromatized the 5,6-dihydro-8-oxoberbine 3f by dry heating with Pd/C. According to Dreiding-models and the rules of aromaticity the resulting 8/-dibenzo[a,g]quinolizin-8-one 18 (Scheme 4) has a planar ring system with 18 π-electrons.

Fig.2: Deviation from planarity (see text).

Scheme 4

- H3CO, H3CO
- OCH3, OCH3

Scheme 5

- H3CO, H3CO
- OCH3, OCH3

Arch. Pharm. (Weinheim) 324, 509-518 (1991)
Cytostatic activity

The MDA-MB-231 cell line\(^1\)\(^2\) was used for determination of the cytostatic activity. The cells are hormone-independent mammary tumor cells of human origin. All the 8-oxoberbines described were tested for cytostatic effects at a concentration of 10\(^{-5}\) mole. The inhibition of cell growth was determined by the microtiter essay with spectroscopic measurement of the living cell density\(^13\).

Most of our compounds were devoid of activity, with the exception of 3d and 3f, which had equal or better cytostatic properties than berberine (1) and coraline chloride (2). The tetramethoxy-8-oxoberbine 3f was the most active compound. Replacement of the methoxyphenyl ring (ring D) by a pyridine ring (19\(^14\), Scheme 4) decreased the cytostatic activity.

<table>
<thead>
<tr>
<th>Compound</th>
<th>% T/C(^a)</th>
<th>Compound</th>
<th>% T/C(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41(^b)</td>
<td>6a</td>
<td>99 ns</td>
</tr>
<tr>
<td>2</td>
<td>33(^b)</td>
<td>6b</td>
<td>76(^b)</td>
</tr>
<tr>
<td>3a</td>
<td>95 ns</td>
<td>6c</td>
<td>77(^b)</td>
</tr>
<tr>
<td>3b</td>
<td>99 ns</td>
<td>6d</td>
<td>56 (^b)</td>
</tr>
<tr>
<td>3c</td>
<td>70(^b)</td>
<td>6e</td>
<td>69 (^b)</td>
</tr>
<tr>
<td>3d</td>
<td>44(^b)</td>
<td>16</td>
<td>75 (^b)</td>
</tr>
<tr>
<td>3e</td>
<td>98 ns</td>
<td>17</td>
<td>100 (^n)</td>
</tr>
<tr>
<td>3f</td>
<td>13 (^b)</td>
<td>18</td>
<td>100 (^n)</td>
</tr>
<tr>
<td>3g</td>
<td>61(^b)</td>
<td>19</td>
<td>89 (^b)</td>
</tr>
<tr>
<td>3h</td>
<td>81 (^b)</td>
<td>23</td>
<td>97 (^n)</td>
</tr>
</tbody>
</table>

\(^a\) Concentration 1x10\(^{-5}\) M.
\(^b\) significant p < 0.01.
ns not significant.

Interaction with DNA/RNA

Interaction of a compound with DNA or RNA often leads to cytostatic effects. In this context intercalation has to be distinguished from unspecific addition to DNA or RNA.

Conventional UV-spectroscopy is frequently used for preliminary studies of interactions with DNA. Berberine (1), e.g., when incubated with native DNA, shows three isosbestic points in its UV-spectrum, which according to Krey\(^2\) might be indicative for a certain affinity of 1 to DNA. Coraline (2), however, does not exhibit an isosbestic point under these conditions, but a hypochromic effect at low concentrations was regarded\(^15\) as a hint towards an interaction with DNA; high concentration of 2 leads to a bathochromic shift\(^2\).

In UV-difference spectroscopy even small deviations from the spectrum taken without DNA can be recognized by shifts of the base line. Sufficient solubility in the DNA-buffer system is a prerequisite for pertinent investigations. We tested our dibenzo[a,g]quinolizin-8-ones in comparison with ethidium bromide and berberine chloride (1): Most of our protoberberines, especially di- and trimethoxy-derivatives did not show any or only weak interactions with native DNA. Tetramethoxy-substitution, however, causes interference (Fig. 3).

As expected ethidium bromide shows strongest interaction efficacy, followed by compound 3f (line 2). Berberine chloride (1) was nearly ineffective under these conditions. In order to find out whether the interaction of compound 3f with DNA depends on its concentration, constant aliquots of 3f were added to the DNA-solution: linear increase points towards a concentration-depending interaction with native DNA. After sonication of native DNA ethidium bromide has lost its affinity to DNA whilst the difference spectra with 3f do not differ from each other. Therefore, we suppose that this protoberberinone affects not only the intact DNA but also single DNA-increments. As a consequence we tested interferences of 3f with guanosine, cytidine, adenosine, uridine, and their 5-phosphates as well as with pertinent 2'-desoxy derivatives and thymidine: 3f shows affinity to 2'-desoxyguanosine, 2'-desoxycytidine and to their phosphates (Fig. 4).

The interaction with 2'-desoxyadenosine is weak, no effect was observed with 2'-desoxyuridine and thymidine. Therefore, we do not expect any specific affinity to native RNA. The cytotoxic trimethoxyprotoberberine 3d does not show any interaction with native DNA or its nucleosides.

Fig. 3: Difference spectra for 1 = ethidium bromide, 2 = 3f, and 3 = berberine chloride; R = [substance]/[DNA] = 1.5 [mole/mole phosphorus].
Fluorescence Spectroscopy

The interaction of 3f with DNA was confirmed by DNA-induced shift of its fluorescence maximum from 425 nm (3f in DMF plus phosphate buffer saline) to 540 nm after incubation with DNA for 2 min (cf. Experimental Part).

Displacement of Ethidium bromide

At high concentrations of salts in the buffer system (ca. 1.0 mole) ethidium bromide interacts with DNA by intercalation, whilst at low ionic strength additional electrostatic binding occurs, caused by reciprocal actions of the phosphate increments with the ethidium cation. These two effects lead to an increase of fluorescence of the ethidium cation which is considered to be a specific test for intercalation. Addition of another intercalating substance displaces ethidium bromide and, therefore, diminishes or cancels its fluorescence intensity, depending on the concentration of the displacing compound. The C_{50}-values (50% fluorescence quenching) obtained according to McGhee and von Hippel are used to determine binding constants of our substances under consideration.

For our experiments we have used the ratio [DNA = mole phosphorus]/[mole ethidium bromide] = 2.0 in order to get sufficient fluorescence intensity at the beginning of the titration. Moreover, a low ionic strength was adjusted to leave both opportunities of binding open (vide supra). Experiments were run with those protoberberinones exhibiting significant effects at MDA-MB-231 cells (Table 1). Actinomycin D was used as a positive control; this compound replaces ethidium bromide irreversibly. Fig. 5 shows that actinomycin D replaces ethidium bromide, whilst the protoberberinones tested do not.

Viscosity experiments

Intercalating substances lead to increased length of DNA for about 3.4 Å by partial unwinding accompanied by changing of the torsion angle (ethidium bromide, e.g., gives rise to an alteration of a least 12°). At the same time intercalation stabilizes DNA so increasing its viscosity. Therefore, intercalating properties can be determined by titration of DNA with the intercalating molecule. By this method intercalation of coralyne (2) into native DNA - analogous to that of ethidium bromide - has been detected.

Titrination of native DNA with protoberberinone 3f indicated that this test compound - contrary to ethidium bromide - does not increase the relative viscosity of DNA, so corroborating the results of the displacement experiment and of the test with sonicated DNA. Obviously 3f (and similar protoberberinones?) does interfere with native DNA, but not by intercalation.

Discussion

Among the tetramethoxy-8H-dibenzo[a,g]quinolizin-8-ones, only 3f shows strong cytostatic activity against MDA-MB-231 human mammary tumor cells with a better effect than the original protoberberines berberine (1) or coralyne chloride (2). This effect can be rationalized by an interaction with DNA. However, a direct intercalation into DNA can be ruled out. Based on these findings, we have synthesized C-5-, C-6- and C-13-alkylated derivatives to improve these effects. In the case of the acetoxy derivatives, this structural modifications should give rise to binding affinity for the estrogen receptor, a prerequisite for a selective action on estrogen receptor positive tumors like mammary carcinomas.

The authors thank M. Beer and R. Brunner-Ploss for technical assistance and the Deutsche Forschungsgemeinschaft (SFB 234) for financial support.
Experimental Part

Melting points: Büchi 510 apparatus, uncorrected.- **Elemental analyses**: Mikroanalytisches Laboratorium, University of Regensburg.- **IR-spectra**: Beckman Acculab III; KBr. - **1-H-NMR-spectra**: Varian EM 390 (90 MHz), Bruker WM 250 (250 MHz); TMS as internal standard.- **UV-absorption**: spectrast: Uvikon 810 (Kontron); solvent: acetonitrile.- **Fluorescence spectra**: Hitachi F-3000.- **Mass-spectra**: Varian MAT CH 5.

Dihydro-dibenzo[a,g]quinolizines 3a-f

1-Oxoisouquinoline 4 (5 mmole) is suspended in chlorobenzene p.a. (15 ml), pyridine p.a. (0.41 ml) and POCl3 (0.21 ml in 5 ml chlorobenzene p.a.) are added. The suspension is stirred for 15 min at room temp., then homophthalic acid anhydride 5 (4.55 mmole) is added slowly. The mixture is stirred again for 15 min, then refluxed for 1 h, cooled again and dissolved in CH2Cl2 (50 ml). The org. layer is washed with 10% NaOH (3 x 40 ml), dried (Na2SO4) and evaporated. The remaining oil is purified by CC (SiO2/CHCl3) and crystallized from ether. The crystals of 3a-f are colorless and recrystallized from EtOH.- **Yields**: 55-70%.

5.6-Dihydro-2,10-dimethoxy-8H-dibenzo[a,g]quinolizin-8-one (3a)

3a was synthesized from 4b and 5b; m.p. 152°C.- C28H28NO3 (370.4) Calc. C 74.3 H 5.58 N 4.6 Found C 74.0 H 5.55 N 4.4.- **IR (KBr):** 1645 (-CO) cm⁻¹.- **1-H-NMR (CDCl3):** δ (ppm) = 2.88 (t; J = 6 Hz; 2H; -CH2-; H-5), 3.80 (s; 3H; -OCH3), 3.87 (s; 3H; -OCH3), 4.33 (t; J = 6 Hz; 2H; -CH2-; H-6), 6.73-7.90 (m; 6H arom and 1H vinyl).- **UV: max (log ε):** 326 (4.27), 255 (4.12), 221 nm (4.26).

5.6-Dihydro-3,10-dimethoxy-8H-dibenzo[a,g]quinolizin-8-one (3b)

From 4a and 5b; m.p. 177°C.- C28H28NO3 · 1/2 H2O (316.4) Calc. C 72.2 H 5.73 N 4.4 Found C 72.0 H 5.81 N 4.3.- **IR (KBr):** 1645 (-CO) cm⁻¹.- **1-H-NMR (CDCl3):** δ (ppm) = 2.87 (t; J = 6 Hz; 2H; -CH2-; H-5), 3.77 (s; 3H; -OCH3), 3.85 (s; 3H; -OCH3), 4.33 (t; J = 6 Hz; 2H; -CH2-; H-6), 6.57-7.92 (m; 6H arom and 1H vinyl).- **UV: max (log ε):** 327 (4.38), 255 (4.17), 214 nm (4.44).- **MS: m/z:** 307 (100%, M⁺), 292 (80, * 277.73 (M - CH3)⁺), 277 (4), 153.5 (10, M²⁺).

Lactams 4a-c

Polyphosphoric acid (100 g) is preheated to 140°C (oil bath temp.). After reaching this temp. carbamate 8 (50 mmole) is directly poured onto the polyphosphoric acid and refluxed for 1 h. After cooling the mixture is suspended in ice water (100 ml). While cooling the solution is alkalized with NaOH (40%) and extracted with CH2Cl2 (x 150 ml). The combined org. layers are dried (Na2SO4) and evaporated. The remaining oil is purified by CC (SiO2/CHCl3) and crystallized from ether. The crystals of 4a-c are colorless and recrystallized from ether.- **Yields**: 50-60%.

*Arch. Pharm. (Weinheim) 324, 509-518 (1991)
1,2,3,4-Tetrahydro-6-methoxy-1-oxo-isouquinoline (4a)
Prepared from 8a; m.p. 139°C, lit. 139°C\(^{25}\).- UV: λ max (log ε) = 285 (3.35), 229 nm (3.96).

1,2,3,4-Tetrahydro-7-methoxy-1-oxo-isouquinoline (4b)
From 8b; m.p. 86°C, lit. 86-88°C\(^{26}\).- UV: λ max (log ε) = 299 (3.37), 229 nm (3.96).

1,2,3,4-Tetrahydro-6,7-dimethoxy-1-oxo-isouquinoline (4c)
From 8c; m.p. 174°C, lit. 173.5-174.5°C\(^{27}\).- UV: λ max (log ε) = 293 (3.76), 255 nm (3.94).

Carbazates 8a-c
100 mole of the corresponding β-phenylethylamine 7 are dissolved with NEt\(_2\) (50 ml). After addition of ethyl chloroformate (10.0 g) in absol. CH\(_2\)Cl\(_2\) the mixture is stirred for 1 h. The precipitate is dissolved with 2 N HCl and stirred again. After washing with H\(_2\)O the org. layer is dried (Na\(_2\)SO\(_4\)) and evaporated. The remaining oils or precipitates are used without further purification.- Yield: nearly quantitative.

Ethyl-N-[2-(3-methoxyphenyl)ethyl]-carbamate (8a)
Prepared from 7a and ethyl chloroformate (Fa. Aldrich); C\(_{12}\)H\(_{17}\)NO\(_3\) (223.3).- IR (film): 3340 (-NH), 1710 (-CO) cm\(^{-1}\).- 1H-NMR (CDCl\(_3\)): δ (ppm) = 1.25 (t; J = 7.5 Hz; 3H; -CH\(_3\)), 2.80 (t; J = 7.5 Hz; 2H; -CH\(_2\)CH\(_2\)-NH), 3.40 (q; J = 7.5 Hz; 2H; -CH\(_2\)CH\(_2\)-), 3.77 (s; 3H; -OCH\(_3\)), 4.10 (q; J = 7.5 Hz; 2H; -CH\(_2\)CH\(_2\)-), 4.90 (s broad; 1H; -NH2; not exchangeable), 6.67-7.40 (m; 4H arom).

Ethyl-N-[2-(4-methoxyphenyl)ethyl]-carbamate (8b)
From β-(p-methoxyphenyl)ethylamine and ethyl chloroformate; colorless crystals, m.p. 61-62°C (ether), lit. 64-66°C.

Acetoxy- and Acetoxy-8-oxoborines

7-Methoxy-isochroman-1,3-dione (5b)
From 11b; light-brown crystals, m.p. 131-134°C (ether), lit. 142-143°C\(^{31}\).

6,7-Dimethoxyisochroman-3-one (10)
3,4-Dimethoxyphenylacetic acid (9) (200 mmole; Fa. Merck) is heated with glacial acetic acid (200 ml) on the steam bath. Formaline solution (37%, 40 ml) and conc. HCl (40 ml) are added and the mixture is stirred on the steam bath under reflux for 1 h. H\(_2\)O (200 ml) is added, the solution is extracted with CHC\(_3\) (3 x 200 ml). The combined org. layers are washed with 10% NaHCO\(_3\)-solution, dried (Na\(_2\)SO\(_4\)) and evaporated. The residue is crystallized by adding some drops of EtOH or ether.- Yield: 90%.- Colorless crystals, m.p. 98-99°C (EtOH), lit. 102-103°C\(^{32}\).

4.5-Dimethoxyhomophthalic acid (11a)
100 mole lactone 10 are dissolved in 10% KOH/H\(_2\)O (110 ml). Under stirring 2% KMnO\(_4\)-solution (1600 ml) is added quickly, the solution is stirred at room temp. for 10 h. EtOH (20 ml) is added and the mixture is heated on the steam bath. After filtration the water layer is concentrated and acidified with conc. HCl. The precipitate is recrystallized from H\(_2\)O.- Yield: 90-95%.- Colorless crystals, m.p. 206-208°C (H\(_2\)O), lit. 213-214°C\(^{31}\).

2-Bromo-5-methoxybenzoic acid (13)
0.24 mole of m-anisic acid (Fa. Aldrich) are dissolved in NaOH/H\(_2\)O (107.9 g/267.5 mmole NaOH in 400 ml H\(_2\)O). After heating to 50-60°C 12.9 ml (0.25 mole) of Br\(_2\) are added slowly, then the solution is stirred for 30 min. While cooling NaHCO\(_3\)-solution is added until the mixture is colorless. The precipitate is dried.- Yield: 70-80%.- Colorless crystals, m.p. 157-158°C (EtOH 96%), lit. 162°C\(^{31}\).

5-Methoxyhomophthalic acid (11b)
11b is prepared from 13 according to Brüggim\(^{9}\).- Yield: 60-70%; light-brown crystals, m.p. 184-186°C (CH\(_2\)Cl\(_2\)MeOH/H\(_2\)O), lit. 184-186°C\(^{9}\).

Acetoxy-dihydro-dibenzo[a,g]quinolinizes 6a-e

a) Ether cleavage
100 mg methoxyoxoberbine 3 (in 10 ml of absol. CH\(_2\)Cl\(_2\)) are added dropwise to 0.1 ml of BBr\(_3\) in 10 ml of absol. CH\(_2\)Cl\(_2\), then refluxed for 1 h and stirred at room temp. for 12 h. While cooling saturated NaHCO\(_3\)-solution (10-15 ml) is added and the suspension is mixed with EtOAc to get a clear solution. The org. layer is separated, the water layer is extracted again with EtOAc (2 x 50 ml). The combined org. layer are washed with saturated NaCl-solution, dried (Na\(_2\)SO\(_4\)) and evaporated. Generally the residue is dried for a short time i. vac., then it is acetylated immediately.

b) Acetylation
The residue from a) is refluxed with Ac\(_2\)O (6 ml) and absol. pyridine (5 drops) for 2 h, then the excess of reagents is evaporated i. vac. After cooling the remaining oil is crystallized from MeOH and the precipitate is washed with ether and dried. Purification: CC (SiO\(_2\), EtOAc).- Yields: 70-80% colorless crystals.

2,10-Diacetoxy-5,6-dihydro-SH-dibenzo[a,g]quinoliniz-8-one (6a)
Prepared from 3a; m.p. 168-169°C (MeOH).- C\(_{12}\)H\(_{17}\)NO\(_3\) - 1/2 CH\(_2\)OH (379.4) Calc. C 68.1 H 5.05 N 3.7 Found C 68.0 H 5.0 N 3.7.- IR (KBr): 1750 (CH\(_2\)CO), 1660 (-CO) cm\(^{-1}\).- 1H-NMR (CDCl\(_3\)): δ (ppm) = 2.30 (s; 6H; H\(_2\)C=CO-), 2.97 (t; J = 6 Hz; 2H; -CH\(_2\)F), 4.35 (t; J = 6 Hz; 2H; -CH\(_2\)H, -H), 6.87-7.63 (m; 5H arom and 1H vinyl), 8.10 (d; J = 2 Hz; 1H arom; -H).- UV: λ max (log ε) = 329 (4.28), 212 nm (4.40).

Arch. Pharm. (Weinheim) 324, 509-518 (1991)
3,10,11-Triacetoxy-5,6-dihydro-8H-dibenzo[a,g]quinolizin-8-one (6b)

From 3b; m.p. 206-208°C (MeOH). - C₃₂H₂₃NO₉ (536.4) Calc. C 69.4 H 4.72 N 3.9 Found C 69.1 H 4.83 N 3.9 - IR (KBr): 1750 (CH₂-CO), 1640 (-CO) cm⁻¹. - ¹H-NMR (CDCl₃); δ (ppm) = 2.23 (s; 9H; H₂-C₃=O), 3.00 (t; J = 6 Hz; 2H; -CH₂-H-5), 4.42 (t; J = 6 Hz; 2H; -CH₂-H-6); 6.90-8.20 (m; 6H arom and 1H vinyl). - UV: λ max (log ε) = 331 (4.34), 209 nm (4.79).

3,10-Diacetoxy-5,6-dihydro-8H-dibenzo[a,g]quinolizin-8-one (6c)

From 3d; m.p. 217-219°C (MeOH). - C₃₂H₂₂NO₇ + 1/2 CH₂OH (437.4) Calc. C 64.5 H 4.84 N 3.2 Found C 64.7 H 4.73 N 3.0 - IR (KBr): 1775 (CH₂-CO), 1660 (-CO) cm⁻¹. - ¹H-NMR (CDCl₃); δ (ppm) = 2.32 (s; 9H; H₂-C₃=O), 2.93 (t; J = 6 Hz; 2H; -CH₂-H-5), 4.32 (t; J = 6 Hz; 2H; -CH₂-H-6), 6.92 (d; J = 2 Hz; 1H arom; H-4), 7.00-7.12 (m; 1H arom and 1H vinyl), 7.42 (s; 1H arom), 7.78 (dd; J₁₂ = 9/2 Hz; 1H arom; H-2), 8.22 (s; 1H arom). - UV: λ max (log ε) = 326 (4.32), 216 nm (4.33).

2,3,10-Triacetoxy-5,6-dihydro-8H-dibenzo[a,g]quinolizin-8-one (6d)

From 3e; m.p. 202-205°C (MeOH). - C₃₂H₂₃NO₉ + 1/2 H₂O (430.4) Calc. C 64.1 H 4.68 N 3.3 Found C 63.8 H 4.66 N 3.0 - IR (KBr): 1765; 1755 (CH₂-CO), 1660 (-CO) cm⁻¹. - ¹H-NMR (CDCl₃); δ (ppm) = 2.17 (s; 3H; H₃-C₃=O), 2.30 (s; 6H; H₂-C₃=O), 2.97 (t; J = 6 Hz; 2H; -CH₂-H-5), 4.35 (t; J = 6 Hz; 2H; -CH₂-H-6); 5.73 (s broad; 1H vinyl; H-13), 6.73 (s broad; 1H arom), 7.43 ("d"; J = 2 Hz; 1H arom), 7.53 (s; 1H arom), 7.63 (s; 1H arom), 8.08 (d; J = 2 Hz; 1H arom; H-9). - UV: λ max (log ε) = 330 (4.30), 215 nm (4.37).

2,3,10-Tetramethoxy-5,6-dihydro-8H-dibenzo[a,g]quinolizin-8-one (6e)

From 3f; m.p. 244-245°C (MeOH). - C₃₂H₂₃NO₉ (479.4) Calc. C 62.6 H 4.41 N 2.9 Found C 62.6 H 4.04 N 2.8 - IR (KBr): 1775 (CH₂-CO), 1655 (-CO) cm⁻¹. - ¹H-NMR (CDCl₃); δ (ppm) = 2.36 (s; 3H; H₃-C₃=O), 2.96 (t; J = 6 Hz; 2H; -CH₂-H-5), 4.33 (t; J = 6 Hz; 2H; -CH₂-H-6), 6.87, 7.12, 7.41, 7.61, 8.20 (s; 4H arom and 1H vinyl). - UV: λ max (log ε) = 329 (4.34), 216 nm (4.37).

Dihydro-dibenzo[a,g]quinolizines 3g and h

To 50 mmole berberrin- (1) or palmatine chloride (14), dissolved in hot H₂O (500 ml), are dropped 150 g KOH in 70 ml H₂O. The mixture is stirred for 15 min and extracted with ether (3 x 500 ml). The black-brown precipitate is stirred with hot ether for 15 min and filtrated. The combined ether layers are washed with water, dried (Na₂SO₄) and evaporated. Purification: CC (SiO₂, EtOAc). - Yields: 40-50%.

5.6-Dihydro-9,10-dimethoxy-2,3-methylenedioxy-8H-dibenzo[a,g]quinolizin-8-one (3g)

From berberine chloride (Fa. Sigma); white-yellow crystals, m.p. 188-190°C (EtOH), lit. 199.5°C(33).

5.6-Dihydro-2,3,9,10-tetramethoxy-8H-dibenzo[a,g]quinolizin-8-one (3h)

From palmatine chloride (Fa. Sigma); yellow foam, m.p. 183-184°C (EtOH, lit. 183°C(34)). - C₃₂H₂₃NO₉ + 1/2 EtOH (390.4) Calc. C 67.7 H 6.15 N 3.6 Found C 67.7 H 5.87 N 3.5 - IR (KBr): 1655 (-CO) cm⁻¹. - ¹H-NMR (250 MHz, CDCl₃); δ (ppm) = 2.90 (t; J = 6 Hz; 2H; -CH₂-H-5), 3.88, 3.93, 3.97, 4.00 (s; 12H; -OCH₃), 4.33 (t; J = 6 Hz; 2H; -CH₂-H-6), 6.73, 6.78 (s; 2H arom), 7.23-7.32 (m; 2H arom and 1H vinyl). - UV: λ max (log ε) = 327 (4.26), 217 nm (4.26).

5.6-Dihydro-2,10-tetramethoxy-8H-dibenzo[a,g]quinolizin (15)

The enamine 15 is prepared from the 8-oxoberbine 3f according to Kipa­risiades(31). - Yield: 85-90%; yellow precipitate, C₃₂H₂₃NO₉ (353.4), m.p. 192-193°C (dec.), lit. 173-176°C(11). - NOE-difference-spectra (250 MHz):

Weimar, von Angerer, and Wiegebre

Arch. Pharm. (Weinheim) 324, 509-518 (1991)
UV-Difference-Spectroscopy

a) Interaction with native DNA

Calfthymus-DNA type I (Fa. Sigma) is dissolved in 0.1-M-Tris-NaCl-buffer (pH 7.4) at 4°C. The concentration of the solution is about 6 x 10^{-5} M (according to phosphorus). Test substances are dissolved in DMSO (10^{-2} M solution). Tandem quartz-cells (Fa. Helma) are used. Test- and reference-cuvette are containing the DNA-solution in one part, in the other part only buffer. 1 μl of the substance-solution is added to the DNA in the test-cell and to the buffer in the reference-cell, respectively. The mixture is incubated for 2 min and after cautious stirring the extinction difference is determined between 550 and 230 nm. A solution of ethidium bromide (10^{-2} M) is used as positive control and in order to limit the volume of solvent 10 μl of the substance-solution are added at the outmost. To determine a concentration dependence (linear increase of the plot) of the interaction between substance concentration and DNA-phosphorus concentration.

b) Interaction with sonicated DNA

The experiment is performed according to a). To destroy the DNA-structure the DNA-solution (see above) is sonicated for 10 min at room temp. For evaluation of the spectra identical concentrations of substances are compared (native/sonicated DNA).

c) Interaction with (non-)phosphorylated DNA-increments

The experiment is performed according to a), but a solution of (non-)phosphorylated DNA-increments (10^{-5} M) is used instead of the DNA solution.

Fluorescence Spectroscopy

To determine a DNA-induced shift in the fluorescence spectra of our substances we measured the spectra of the DNA solution (0.1-M-Tris-NaCl-buffer, pH 7.4) with excitation wavelength: 546 nm; emission wavelength: 590 nm; excitement bandpass: 600 nm; emission bandpass: 5 nm; scan speed: 600 nm/min.

Displacement of Ethidium bromide

To get sufficient fluorescence intensity at the beginning of the titration we used the ratio [DNA = mole phosphorus]/[mole ethidium bromide] = 2.0. The concentration of the DNA solution (in 0.1-M-Tris-NaCl-buffer, pH 7.4) was 4.6 x 10^{-5} M (according to phosphorus), the concentration of ethidium bromide 10^{-2} M (in DMF), actinomycin D (10^{-2} M/DMF) was used as a positive control. In the experiments aliquots of the test substance solutions are added to the ethidium bromide-DNA solution, and after mixing the quenching of fluorescence intensity is determined.- Excitation wavelength: 546 nm; emission wavelength: 590 nm; excitement bandpass: 5 nm; emission bandpass: 5 nm.

Viscosity Experiments

For this experiment an Ostwald-Viscosimeter (No. I) is used, the concentration of the DNA solution (in 0.1-M-Tris-NaCl-buffer, pH 7.4) was 4.6 x 10^{-5} M (according to phosphorus). The concentration of the test substances was 10^{-2} M (in DMF). In order to find the apparatus constant the sinking time in the buffer was determined, which was equal to that of water. The apparatus constant is calculated according to the following usual formula:

\[\gamma = \frac{n}{\rho} = k \cdot t \]

\(\gamma \) = kinematic viscosity, \(n \) = dynamic viscosity, \(\rho \) = density, \(k \) = apparatus constant, \(t \) = sinking time.

As basic value for the sinking time the DNA-solution was measured. By addition of aliquots from the substance solution to the DNA-solution in the viscosimeter the ratio between substance- and DNA concentration was raised from 0.01 to 0.1 with compensation of the solvent effects. From this experiment the corrected time for the measurements is resulting:

Corrected time = \(t_{DNA+DMF} - t_{DNA} \)

The corrected time is subtracted from the sinking time of the substance solutions, the resulting value is the corrected sinking time for the substances. Now it is possible to calculate the kinematic viscosity \(\gamma \):

\[\gamma = \frac{n}{\rho} = k \cdot t' \]

\(\gamma \) = kinematic viscosity, \(n \) = dynamic viscosity, \(\rho \) = density, \(k \) = apparatus constant, \(t' \) = corrected sinking time.

References

1. K.Y. Zee-Cheng and C.C. Cheng, J. Pharm. Sci. 61, 967 (1972) and lit. cited therein.