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1 Introduction 

1.1 Characterization of specific tumor types 

The main focus of this work is the epigenetic characterization of two specific tumor forms, in 

particular acute myeloid leukemia (AML) and colorectal carcinoma. The following sections 

provide an overview of cancer development as well as genetic and epigenetic features that 

are associated with the respective tumor form. 

1.1.1 Leukemia 

1.1.1.1 Normal hematopoiesis and leukemia development 

The term hematopoiesis describes the formation of all blood cellular components as 

represented in Figure 1-1. The cell system is tightly controlled and characterized by a 

remarkable cellular turnover that constantly regenerates from very few hematopoietic stem 

cells (HSC) (Steffen et al., 2005).  

 

 

Figure 1-1 Schematic representation of the hematopoiesis 
All blood cells develop from pluripotent stem cells. Pluripotent stem cells have a self-renewal capacity and can 
also differentiate towards either the myeloid or the lymphoid pathway (Wikipedia contributors, 2010). 
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HSCs reside in the bone marrow and have the capability to give rise to any one of the 

separate blood cell types. In addition, they are self-renewing and have the potential for 

asymmetric division. While proliferating, one daughter cell remains as HSC, whereas the 

other daughter cell develops towards either the myeloid or the lymphoid pathway. Common 

myeloid progenitors (myeloblasts) differentiate into granulocytes, macrophages, 

megakaryocytes and erythrocytes whereas T-cells, B-cells and natural killer cells are derived 

from common lymphoid progenitors (Orkin, 2000). Blood cell precursors progress through a 

series of stages in the bone marrow before entering the circulating blood stream. While the 

process of cell division is driven by early and lineage-specific growth factors and their 

receptors, the decision of differentiation is determined by specific transcription factors that 

activate lineage-specific genes (Larsson and Karlsson, 2005; Steffen et al., 2005). Because 

of the high cell division rates of the progenitor cells there is an obviously high probability for 

mutations which accumulate in stem cells if not recognized by the cellular repair system. 

Consequently, progenitor cells may lose their ability to differentiate and escape the regulation 

of proliferation which can lead to the formation of hematopoietic tumors such as leukemia 

(Steffen et al., 2005). Leukemias can be clinically subdivided into two groups: (A) Acute 

leukemia which is characterized by the rapid progression and accumulation of malignant 

cells and is therefore lethal without therapy within several weeks or months. (B) Chronic 

leukemia typically shows a much slower progression of disease, even if untreated, patients 

can survive for months or even years. White blood cells for this kind of malignancy are 

relatively mature but still abnormal. Both groups of leukemia can be further subdivided into 

lymphocytic and myeloid leukemia depending on their hematopoietic origin. In the present 

work, acute myeloid leukemia (AML) cell lines or primary AML samples were analyzed.  

 

1.1.1.2 Acute myeloid leukemia (AML) 

AML represents a clonal myeloid stem cell disorder that results from genetic and epigenetic 

alterations. Both, differentiation arrest and excessive proliferation in the immature progenitor 

pool result in the accumulation of non-functional progenitor cells, termed myeloblasts in the 

bone marrow and the peripheral blood, where they interfere with the production or the 

functions of normal blood cells (Jabbour et al., 2006; Shipley and Butera, 2009; Stone et al., 

2004). The development of AML has been associated with several risk factors such as age, 

exposure to viruses, radiation, chemical hazards and previous hematologic diseases or 

chemotherapy as well as genetic disorders (Deschler and Lubbert, 2006).  

Genetic events that are crucial for leukemic transformation comprise alterations in myeloid 

transcription factors as well as mutations of signal transduction intermediates (Steffen et al., 

2005). Specific cytogenetic abnormalities are described in many patients with AML. 
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Cytogenetic events involve inversions, deletions and balanced translocations that often result 

in the fusion of two genes at the chromosomal breakpoints (Steffen et al., 2005). Abnormal 

fusion proteins such as AML1-ETO, PLZF-RARa and MLL fusion proteins are expressed and 

can cause a block of differentiation. Most, if not all of those fusion proteins can recruit 

corepressors and histone deacetylases, which in turn induce conformational changes of the 

DNA structure. Consequently, the DNA accessibility for the transcription machinery is 

impaired leading to the repression of target genes. Another example is the t(15;17) 

translocation. The encoded PML-RARα fusion protein disrupts the normal response of RARα 

(retinoic acid receptor α) to retinoic acid. It binds to the retinoic receptor element in the 

promoter of several myeloid specific genes and inhibits differentiation of the cells (Steffen et 

al., 2005). Cytogenetic aberrations often have prognostic significance. Translocations such 

as t(8;21)(q22/q22) and t(15;17)(q22/q12) or inversion inv16(p13;q22), creating the fusion 

proteins AML1-ETO, PML-RARa and PEBP2βMYH11, respectively, are associated with good 

outcomes after treatment. In contrast, AML patients with a complex karyotype, partial 

chromosomal deletions (e.g. 5q) or deletion of whole chromosomes (5 and/or 7) are known 

to respond poorly to treatment (Table 1-1). However, recent studies revealed many genetic 

abnormalities that escape classical cytogenetic detection (Lowenberg, 2008). Changes in 

expression levels may be due to small amplifications or deletions as well as point and/or 

frameshift mutations in the coding region of critical genes. Constitutive activation of signal 

transduction molecules was observed in tyrosine kinase receptors Flt3, Ras, and Kit 

(Lowenberg, 2008). For example, thorough sequencing of many mutant alleles from patient 

samples revealed internal tandem duplications (ITD) of varying lengths in the juxtamembrane 

region of the Flt3 receptor (Flt3-ITD). In cell line models constitutive autophosphorylation of 

Flt3-ITD has been shown to facilitate cellular proliferation independently of external growth 

factors (Steffen et al., 2005). Other somatic mutations have been observed which affect 

transcription factors playing an important role in lineage-specific differentiation. Examples 

include PU.1, C/EBPα and GATA-1.  

 

Table 1-1 Cytogenetic-based risk stratification 
(adapted from Appelbaum et al., 2001; Jabbour et al., 2006; Shipley and Butera, 2009) 

Risk category Abnormality 

Favorable t(8;21), t(15;17), inv(16), t(16/16) 

Intermediate 
Normal karyotype, t(9;11), del(7q), del(9q), del(11q), del(20q),       
+8, +11, +13, +21, -Y 

Unfavorable 
Complex karyotype, -5, -7, inv(3)/t(3;3), t(6;9), t(6;11), t(11;19), 
del(5q) 
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Recently, considerable progress has been made in our understanding of the genetic 

processes involved in transforming hematological cells. The increasing numbers of 

cytogenetic and genetic abnormalities (markers) detected in AML allow for further dissection 

of AML into molecular subtypes with distinct prognosis. To date, there are two commonly 

used classification schemata for AML, the French-American-British (FAB) system and the 

newer World Health Organization (WHO) classification. According to the FAB classification 

AMLs are categorized into subtypes, M0 through M7, based on the type of cell from which 

leukemia developed and the degree of maturity of the leukemic cells. The WHO classification 

is an advancement of the FAB classification and includes more meaningful prognostic 

information such as morphological, immunophenotypic, genetic and clinical criteria (Bennett 

et al., 1976; Vardiman et al., 2002). The distinction of specific subtypes of disease with 

different prognosis enables risk-guided and targeted treatment strategies optimized for each 

patient (Lowenberg, 2008; Shipley and Butera, 2009; Stone et al., 2004).  

However, despite aggressive therapy, only 20-30% of patients enjoy long-term disease-free 

survival (Shipley and Butera, 2009).  

 

1.1.2 Colorectal cancer 

Colorectal cancer describes cancerous growth in the colon, rectum and appendix that 

represents about 95% of all colon tumors. It constitutes the third most common form of 

cancer and the third leading cause of cancer-related deaths in the Western world. Colorectal 

cancer became one of the most frequent malignant diseases in Europe and affects about 

one million people world-wide each year. The development of this neoplastic disease 

represents a multistep process in which genetic and epigenetic alterations accumulate and 

consequently lead to the transformation of normal colonic epithelial cells to colon 

adenocarcinoma cells (Grady and Carethers, 2008). Genetic abnormalities include hereditary 

as well as somatic mutations in specific DNA sequences, affecting in particular DNA 

replication or DNA repair genes (Ionov et al., 1993). APC, K-Ras, BRAF and p53 genes 

(Ades, 2009) are also often mutated leading to uncontrolled cell division. APC mutations, for 

example, play a critical role in the inherited familial adenomatous polyposis (FAP) which 

represents a predisposition to cancer (Grady and Carethers, 2008). 

A key molecular step in the early tumorigenesis process of colon cancer formation is the loss 

of genomic stability. In colon cancer three forms of genomic instability have been described: 

microsatellite instability (MSI), chromosome instability (CIN) (gains and losses of 

chromosomal regions), and chromosomal translocations (Grady and Carethers, 2008).  



 Introduction 

 - 5 -    

Colorectal cancer staging describes the depth of penetration, whether it has invaded 

adjacent organs and whether it has spread to lymph nodes or distant organs and is important 

for choosing the best method of treatment. The most used staging system is the TNM system 

of the American Joint Commitee on Cancer (AJCC). ”T” describes the degree of invasion of 

the intestinal wall, ”N” the degree of lymphatic node involvement and ”M” the degree of 

metastasis (Greene, 2007). Additionally, the numbers I, II, III, IV describe the tumor 

progression with higher numbers indicating worse prognosis. Staging of cancer is an 

important and powerful predictor of survival and treatment methods. 

When colorectal cancer is detected at early stages with little spread, it is curable in up to 

80% of the cases. The primary treatment is surgical while chemotherapy and/or radiotherapy 

may be recommended depending on the individual patient's staging and other medical 

factors.  

 

1.2 The concept of epigenetics  

The identity and the developmental potential of a cell are not only defined by its genetic 

component. The primary DNA sequence is only a foundation for understanding how the 

genetic program is read. Superimposed upon the DNA sequence (the genetic code) is a 

second layer of information, called the epigenetic code (Bernstein et al., 2007). The term 

“epigenetics” was first used by Conrad Waddington to describe “the causal interactions 

between genes and their products which bring the phenotype into being” (Waddington, 

1942). At present “epigenetics” refers to heritable changes in gene expression without a 

change in DNA sequence (Goldberg et al., 2007). The key modifications conferring 

epigenetic control are DNA methylation, histone modifications, which interplay with each 

other, with regulatory proteins and with non-coding RNAs and thus define the chromatin 

structure of a gene and its transcriptional activity (Delcuve et al., 2009). The present work 

particularly focuses on DNA methylation, which provides a stable, heritable and critical 

component of the epigenetic code.  

 

1.3 DNA methylation 

The four bases adenine, guanine, cytosine and thymine spell out the primary sequence of 

DNA. In addition there exists a “fifth base” which is produced by covalent modification of 

postreplicative DNA. DNA methyltransferases (DNMTs) transfer the methyl group that is 

provided by S-adenosylmethionine (SAM) to the carbon 5 position of a cytosine residue to 
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form 5’-methylcytosine (5mC) (Figure 1-2) (Herman and Baylin, 2003; Singal and Ginder, 

1999). In mammals, this modification is mainly found on cytosines followed by a guanine, the 

so-called CpG dinucleotides (CpGs). CpG dinucleotides are not equally distributed 

throughout the mammalian genome and are also vastly underrepresented (Fazzari and 

Greally, 2004; Ng and Bird, 1999; Razin, 1998). The human genome contains only 5-10% of 

the CpG dinucleotides compared to what would be statistically predicted, which is probably 

due to a process of natural selection (Singal and Ginder, 1999). One possible explanation for 

this distribution is the tendency of methylated cytosines to deaminate. Deamination of 

cytosine gives rise to uracil which is recognized as foreign by uracil-DNA glycosylases and 

correctly repaired. In contrast, deamination of mC gives rise to thymine, which is also a 

naturally occurring genomic base, not be recognized as “misplaced” and therefore prone to 

mutation and depletion in the genome over time (Fazzari and Greally, 2004). Despite their 

relative underrepresentation, CpG dinucleotides can be accumulated in small stretches of 

DNA. GC-rich sequences are present in satellite repeat sequences, middle repetitive rDNA 

sequences, centromeric repeat sequences and CpG islands (CGI) (Herman and Baylin, 

2003; Plass, 2002). CGIs are often defined as regions longer than 500 bp with a GC content 

of 55% or higher and a ratio of observed versus expected CpG frequency of 0.6 or greater 

(Gardinergarden and Frommer, 1987; Plass, 2002; Plass and Soloway, 2002; Takai and 

Jones, 2002), and frequently associate with promoter regions of housekeeping genes as well 

as up to 40% of tissue-specific genes and are usually unmethylated (Antequera and Bird, 

1993).  

 

Figure 1-2 Schematic representation of the biochemical pathways for cytosine methylation, demethylation 
and mutagenesis of cytosine and 5mC  
Cytosine can be methylated to form 5-methylcytosine. Deamination of 5-methylcytosine gives rise to thymine, 
whereas deamination of cytosine gives rise to uracil, which is normally recognized by the uracil-DNA glycosylase 
(Singal and Ginder, 1999). 
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1.4 Biological functions and consequences of DNA 

methylation 

About 1% of total DNA bases in human somatic cells constitute 5mC (Ehrlich and Wang, 

1981). Nearly 80% of the CpG dinucleotides that are not associated with CpG islands are 

methylated (Bird, 2002; Herman and Baylin, 2003). Methylation of CpG sites is generally 

correlated with transcriptional silencing which is thought to prevent the transcription of large 

and potentially harmful parts of the genome that consist of repeat elements, inserted viral 

sequences and transposons (Herman and Baylin, 2003). In contrast, the majority of the 

dinucleotides in CpG islands, especially those associated with gene promoters, are usually 

unmethylated, whether or not the gene is being transcribed (Herman and Baylin, 2003). An 

exception to this rule are those islands of genes involved in imprinting and X chromosome 

inactivation as well as embryonic development and tissue-specific differentiation (Mohn and 

Schubeler, 2009). 

Genomic imprinting is a process of establishing gene expression patterns in a 

parent-of-origin specific manner (Li et al., 1992). While the vast majority of genes are 

expressed equally from both parental alleles, some genes are only expressed from one of 

either alleles due to epigenetic silencing of a specific allele.  

The inactivation of all but one X chromosome is a mechanism of dosage compensation and 

is achieved by synergistic expression of Xist (X-inactive specific transcript) RNA from the 

inactivated chromosome, histone deacetylation and methylation (Avner and Heard, 2001). 

Controlled DNA methylation is also crucial for gene regulation during embryonic development 

(Okano et al., 1999). During gametogenesis and embryogenesis dramatic changes in 

genome-wide patterns of methylation are observed (Kafri et al., 1992; Monk et al., 1987; Reik 

et al., 2001). Global demethylation after fertilization is followed by waves of de novo 

methylation at the time of implantation. Not all sequences in the genome, however, are 

demethylated upon fertilization and not all sequences become de novo methylated after 

implantation. These exceptions further emphasize the regional specifity of genomic DNA 

methylation (Reik et al., 2001; Robertson, 2002). 

In mammals, there are at least 200 differentiated cell types, each of them containing the 

same genome, but using only a small proportion of available genes. Tissue-specific 

differentiation occurs without changes in DNA sequence (Ohgane et al., 2008). 

Genome-wide DNA methylation profiles store the “cellular memory” of gene-set activity that 

governs tissue/cell type feature and is heritable to the next cell generation (Ohgane et al., 

2008). However, the extent of tissue-specific methylation profiles throughout the genome is 
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largely unknown and has been the subject of much debate (Walsh and Bestor, 1999; 

Warnecke and Clark, 1999). 

 

1.5 Regulation of DNA methylation 

The establishment of DNA methylation patterns during embryonic development as well as 

the maintenance and regulation of CpG methylation are not yet fully understood (Ng and 

Bird, 1999; Razin, 1998; Suzuki et al., 2002). In mammalian cells, three DNA 

methyltransferases (DNMT) have been identified. DNMT3a and DNMT3b are de novo 

methyltransferases, which are strongly expressed during germ-cell development and early 

embryogenesis, but at low levels in somatic cells (Klose and Bird, 2006). On the other hand, 

DNMT1 has a preference for hemimethylated DNA and was therefore assigned to function in 

maintenance methylation during DNA (Costello and Plass, 2001; Plass and Soloway, 2002). 

DNMT1 is ubiquitously expressed in somatic tissue and was identified in an enzyme complex 

together with proliferating cellular antigen (PCNA) located at the replication fork (Costello and 

Plass, 2001; Plass, 2002). Other components of this protein complex are histone 

deacetylase 2 (HDAC2) and a DNMT1-associated protein (DMAP1) both mediating 

transcriptional repression (Plass, 2002). All three enzymes are essential for embryonic 

development (Costello and Plass, 2001). Mouse embryos lacking both copies of DNMT1 or 

DNMT3a die before birth, while DNMT3b deletion leads to death a few weeks after birth 

(Plass, 2002).  

DNA methylation is a dynamic but tightly regulated process. Since certain developmental 

events also involve erasure of the methylation pattern, an enzyme with demethylating activity 

has been suggested and debated (Plass, 2002). Three main biochemical mechanisms have 

been proposed that may result in active demethylation: removal of the methyl group, excision 

of the methylated base or excision of the methylated nucleotide (Bhattacharya et al., 1999; 

Gehring et al., 2009; Zhu et al., 2000). As opposed to plants, in mammals no specific 

demethylase has been identified so far, but enzymes involved in DNA repair are potential 

factors in the DNA demethylation process. It was assumed that glycosylases and 

endonucleases could cleave and relieve 5mC from DNA followed by repair of the affected 

site (Jost et al., 1995). Furthermore, base excision repair enzymes, glycosylases and 

DNMT3a/b have been found within the pS2 gene promoter. In this model system dynamic 

CpG demethylation and CpG remethylation processes are inherent to transcriptional cycling 

of the pS2 gene, implying a role of DNMTs in demethylation events beside DNA repair 

enzymes (Metivier et al., 2008). Another, alternative explanation for DNA demethylation 
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could include DNA replication in the absence of maintenance methylation, resulting in 

passive demethylation (Costello and Plass, 2001). 

 

1.6 Epigenetics and gene regulation 

1.6.1 Mechanisms of methylation-mediated gene silencing 

CpG methylation, the most abundant epigenetic modification in vertebrate genomes, plays 

an essential part in the control of gene expression. DNA methylation is normally linked with 

stable transcriptional silencing of associated genes and much effort has been invested into 

studying the mechanisms that underpin this relationship. Two main models have been 

proposed to explain how transcriptional repression may be achieved. (A) The methyl group 

points into the major groove of the DNA and the space occupied can directly block the 

binding of transcription factors. Several transcription factors, including c-Myc/Myn, 

CREB/ATF, E2F and NFκB as well as the regulatory protein CTCF, recognize sequences 

that contain CpG residues and binding to each has been shown to be inhibited by 

methylation (Allis et al., 2007) (Bell et al., 1999; Singal and Ginder, 1999). (B) The second 

mechanism involves proteins that detect methylated DNA through methyl-CpG binding 

domains (MBDs) (Plass, 2002). MeCP1 and MeCP2 were the first two methyl-CpG binding 

activities to be described (Esteller, 2005). While MeCP1 was originally identified as a large 

multi-protein complex, MeCP2 is a single polypeptide with an affinity for single methylated 

CpGs (Esteller, 2005). Characterization of MeCP2 led to to the identification of two domains, 

a methyl-CpG binding domain (MBD) and a transcriptional repression domain (TRD) 

(Esteller, 2005). Database searches identified additional proteins with DNA binding motifs 

related to that of MeCP2 and designated the MBD family comprising MeCP2, MBD1, MBD2, 

MBD3 and MBD4 (Figure 1-3) (Allis et al., 2007; Wolffe et al., 1999), with MBD2 being the 

DNA binding component of MeCP1 complex. Three of the MBD proteins, namely MBD1, 

MBD2 and MeCP2, have been implicated in methylation–dependent repression of 

transcription (Bird and Wolffe, 1999) (Allis et al., 2007). Another methyl-DNA binding 

repressor called Kaiso exists, which lacks the MBD, but recognizes methylated DNA through 

zinc-finger domains (Klose and Bird, 2006). The proteins have different affinities towards 

5mC from MBD3 showing very little affinity to MBD2 that can bind to a single CpG residue 

(Ballestar and Wolffe, 2001; Fraga et al., 2003). Recently, it has been shown that the MBD of 

MeCP2 recognizes the hydration of methylated DNA rather than 5mC itself (Ho et al., 2008). 

Knowledge of the target site of the MBD domains is a prerequisite for understanding its 

biological role. Klose et al. could show that, despite of their overlapping DNA sequence 
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specifity, each methyl-CpG binding protein is targeted independently in the genome (Klose et 

al., 2005). MeCP2 strongly prefers mCpG sites flanked by a run of AT-rich DNA, whereas 

MBD1 has an additional DNA-binding domain specific for non-methylated CpG (Klose et al., 

2005). Kaiso is a bifunctional DNA-binding protein which can recognize DNA sequences 

containing two methylated CpG dinucleotides (Klose et al., 2005). Only MBD2 so far appears 

to have an exclusive affinity for mCpG (Allis et al., 2007). DNA methylation and the binding of 

MBD proteins strongly impact on the modification and structure of chromatin discussed in the 

next paragraph. 

 

 

Figure 1-3 Characteristic domains of methyl-CpG binding proteins 
Five members of the MBD protein family are aligned at their MBD domains (red). Other domains are labeled and 
include transcriptional repression domains (TRD), CXXC domains (zinc fingers some of which are implicated in 
binding to non-methylated CpG), an E-repeat (E), GR repeats of unknown functions or a T:G mismatch 
glycosylase domain which is involved in repair of 5-methylcytosine deamination. Kaiso lacks the MBD domain but 
binds methylated DNA via zinc fingers (ZF) and possesses a POZ/BTB domain to repress transcription (adapted 
from Klose and Bird, 2006).  

 

1.6.2 Cooperation between DNA methylation and chromatin 

modifications 

In general, the eukaryotic genome is divided into transcriptionally competent euchromatin 

and transcriptionally incompetent heterochromatin. The nucleosome represents the basic 

and repeating subunit of chromatin and is composed of a hetero-octamer of histone proteins 

and 147 bp DNA wrapped around this core 1.7 times in a left-handed helix (Figure 1-4). The 

histone octamer consists of two H2A-H2B dimers and one H32-H42 tetramer and is almost 

perfectly symmetrical in its tertiary structure (Kornberg, 1974; Kornberg and Lorch, 1999). A 

single copy of H1 can bind to the 50 bp linker DNA between nucleosomes and plays a 

significant role in the higher-order packaging of chromatin through stabilizing the chromatin 
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fibre. The position and stability of nucleosomes is a reversible ATP-dependent process. 

Hence, chromatin is in spite of its strong compaction, a highly dynamic and variable 

structure. Core histones are highly conserved in eukaryotes and have two subunits: the 

carboxy-terminal part featuring their common motif, the histone fold, mediates interactions 

with the DNA. The amino-terminal tails of all eight core histones protrude through the DNA 

and are exposed on the nucleosomal surface where they are subject to an enormous range 

of post-translational modifications including acetylation of lysines, methylation of lysines and 

arginines as well as phosphorylation of serines and threonines (Reid et al., 2009; Turner, 

2007). These modifications either allow for improved access for the transcription machinery 

or the reverse, whereby transcription is prevented in this region due to the conformation of 

the protein-DNA structure (Bernstein and Allis, 2005; Ducasse and Brown, 2006). 

 

 

Figure 1-4 DNA compaction into chromatin 
In eukaryotes, DNA is packed into chromatin. The basic repeat element of chromatin is the nucleosome, 
composed of a histone octamer around which 147 bp of DNA are coiled (adapted from Figueiredo et al., 2009).  

 

Recent studies have highlighted the role of DNA methylation in controlling gene expression 

and have confirmed its links with histone modification and chromatin remodeling (Klose and 

Bird, 2006). Methyl-binding proteins (MBPs) (see section 1.6.1) act as important “translators” 

between DNA methylation and histone-modifier proteins since on the one hand they are able 

to read the epigenetic methyl-CpG code and on the other hand each of the four MBPs has 

been shown to associate with a different corepressor complex (Lund and van Lohuizen, 

2004). For example, MeCP2 interacts with the mSin3a corepressor complex and a histone 

deacetylase (HDAC). Besides, it is also able to recruit DNMT1 to promoters (Ballestar and 

Wolffe, 2001; Jones et al., 1998; Kimura and Shiota, 2003; Nan et al., 1998). Of particular 

interest is MBD1, which can associate with the histone H3 lysine 9 (H3K9) methyltransferase 
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SETDB1 only during DNA replication (Sarraf and Stancheva, 2004). MBD2 is the 

DNA-binding component of MeCP1, which additionally includes the NuRD (nucleosome 

remodeling and histone deacetylation) (or Mi-2) corepressor complex (Wade et al., 1999). 

NuRD comprises MTA2 (metastasis-associated protein), MBD3, the histone deacetylases 

HDAC1 and HDAC2, a large chromatin-remodeling protein (Mi-2) and RbAp46/48, a 

component of several chromatin-related processes (Feng and Zhang, 2001; Loyola and 

Almouzni, 2004) (Allis et al., 2007). 

Histone modifications and chromatin remodeling can block transcription factors whereby a 

transcriptionally inactive chromatin environment is established (Esteller, 2007b). The most 

important processes concerning histone modifications will be focused in more detail in the 

following sections. Additionally, an example of the cooperation between DNA methylation 

and chromatin modification is summarized in Figure 1-5. 

 

 

Figure 1-5 DNA methylation, chromatin structure and recruitment of multiple repressors in a 
hypermethylated CpG island 
The open chromatin structure of a transcriptionally active gene with loosely spaced nucleosomes (grey cylinders) 
marked by DNA demethylation, histone acetylation and histone H3K4 methylation is shown at the top. The 
transcriptionally silenced state with more tightly packed nucleosomes is shown at the bottom. In formation of 
heterochromatic structures MBDs, HDACs, DNMTs and H1 are involved. MeCP2 is believed to recruit the Sin3A 
HDAC complex and HMT activity to the methylated site. Histone acetylation is indicated by yellow circles, H3K4 
and H3K9 methylation is indicated by red and orange hexagons, respectively and methylated CpG dinucleotides 
are indicated by blue circles. Proteins involved in transcriptional activation: Pol II=DNA polymerase II; 
TF=transcription factor; CoA=coactivator, HAT=histone acetyltransferase; TBF=TATA-binding factor; 
TAF=TBP-associated factor; Histone H3 lysine 4 methyltransferase (K4 HMT) is indicated in red. Proteins 
involved in transcriptional silencing: DNMT=DNA methyltransferase; MBD and MeCP2=methyl binding domains; 
HP1=heterochromatin protein 1 is indicated in dark red; Histone H3 lysine 9 methyltransferase (K9 HMT) is 
indicated in light red (adapted from Allis et al., 2007; Laird, 2005). 
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1.6.3 The histone code 

The so-called histone code as part of the epigenetic code, comprises multiple histone 

modifications which act sequentially or in a combination either on one or on multiple histone 

tails and thereby specify unique downstream functions (de, X et al., 2005; Strahl and Allis, 

2000). Recent discoveries showed that the functional epigenetic landscape is much more 

complex than previously thought which led to a refining of the histone code hypothesis. One 

aspect is that specific histone marks can have either repressive or activating consequences 

depending on the influence of adjacent modifications (de, X et al., 2005). For example, 

methylation of histone 3 lysine 9 (H3K9me) can initiate gene silencing but, in the context of 

methylated H3K4 and H4K20 it helps maintaining active marks (de, X et al., 2005). Likewise, 

H3K36 has a positive effect on transcription when it is found on the coding region and a 

negative effect when it is located inside the promoter sequence. Furthermore the data 

revealed that modifications on the same or different histones may be interdependent (de, X 

et al., 2005). That means that modification in one residue can determine that of another one 

either in cis or also in trans (de, X et al., 2005). An example for cis effects is represented by 

the activating mark H3K4me, which has two consequences: disrupting the binding of the 

repressive NuRD complex as well as blocking the methylation of H3K9. The best studied 

example for a trans effect is the ubiquitination of H2B being required for methylation of 

H3K4me3 (de, X et al., 2005; Kouzarides, 2007).  

Consequently, a specific histone mark alone does not describe a specific transcriptional state 

(active or passive), which turns transcription on or off, respectively. Actually, the marks have 

to be read in the context and in combination within the landscape of all the other marks 

decorating the chromatin platform and can thus represent a mechanism for differential 

regulation of chromatin activity in several distinct biological settings (Berger, 2007; Strahl and 

Allis, 2000; Weissmann and Lyko, 2003).  

Within the last few years there has been considerable progress in the development of 

high-throughput methods for analyzing histone modifications. Systematic and extensive 

studies of chromatin modifications performed either by mass spectrometry, ChIP-on-chip 

experiments or sequencing methods revealed a complex landscape including clusters of 

modified histones at transcription start sites, distal regulatory elements and conserved 

sequences, and broad domains at gene clusters and developmental loci (Bernstein et al., 

2007). Altogether at least eight distinct types of modifications on over 60 different histone 

residues were identified (Kouzarides, 2007). The most prominent ones are illustrated in 

Figure 1-6. 
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Figure 1-6 Post-translational histone modifications 
The modifications include acetylation (ac), methylation (me) and phosphorylation (ph) on lysine (K), arginine (R), 
serine (S) and threonine (T) residues. Histone modifications occur mainly on the N-terminal tails of histones H2A, 
H2B, H3 and H4 (adapted from Bhaumik et al., 2007). 

 

While the combination of all different histone modifications is an important aspect of 

epigenetic gene regulation, the remainder of this chapter will focus on histone acetylation 

and methylation, and how they relate to DNA methylation and gene expression. 

 

1.6.3.1 Histone acetylation 

Histone acetylation promotes transcriptionally active chromatin states by neutralizing the 

basic charge of the lysine residues, which weakens the interaction between the DNA and 

histone proteins, as well as between neighboring nucleosomes (Kouzarides, 2007). 

Acetylation occurs by the action of histone acetyltransferases (HAT). HATs are divided into 

three main families, GNAT, MYST and CBP/p300 that do not show much preference for a 

specific lysine residue generally (Kouzarides, 2007). Most of the acetylation sites are located 

on the histone tails, with the exception of lysine K56 located within the core domain of 

histone H3. K56 is facing towards the major groove of the DNA and can therefore strongly 

affect histone-DNA interactions when acetylated (Kouzarides, 2007). 

The antagonists to histone acetylases represent the histone deacetylases (HDAC) which 

remove the acetylation marks from the lysine residues. Thereby the positive charge of the 

histones is restored and therefore interacts with the negative charges on the DNA-phosphate 

backbone resulting in a more condensed chromatin structure. There are three distinct 

families of HDACs described: class I and class II HDACs and class III NAD-dependent 

enzymes of the Sir family (Kouzarides, 2007). HDACs have been found to be associated with 

transcriptional repressor complexes (see section 1.6.2). In addition, HDACs are able to 

interact directly with transcription factors like YY1 or the nuclear corepressor NCoR, as well 
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as with other HDACs (Dobrovic and Kristensen, 2009). Therefore, in addition to inducing a 

closed chromatin structure, HDACs are co-recruited with other proteins which block 

transcription. 

 

1.6.3.2 Histone methylation 

While histone acetylation to date has only been found associated with gene activation, 

histone methylation may have either activating or repressive effects on transcription 

depending on the specific residue modified and the context of other modifications. Additional 

complexity comes from the fact that lysine but also arginine residues can be methylated to 

different extents by histone methyltransferases (HMTs): lysine can be mono-, di- and 

trimethylated and arginine can be mono- or dimethylated, both, symmetrically and 

unsymmetrically (Kouzarides, 2007). All three states of H3K4 methylation are characteristic 

features of gene expression. Trimethylation of histone H3 lysine 36 (H3K36me3) and 

monomethylation of H3 lysine 27 (H3K27me1), H3 lysine 9 (H3K9me1), H3 lysine 20 

(H3K20me1), H3 lysine 79 (H3K79me1) and H2B lysine 5 (H2BK5me1) are also associated 

with transcribed chromatin. In contrast, trimethylation of H3 lysine 9 (H3K9me3), H3 lysine 27 

(H3K27me3) and H3 lysine 79 (H3K79me3) is generally linked to repression (Barski et al., 

2007; Bernstein et al., 2007).  

It was long believed that histone methylation was irreversible and thus the only stable histone 

modification. However, the recent discovery of histone demethylases has shown that histone 

methylation is as dynamic as the other histone modifications. Currently, there are two known 

types of histone demethylase domains: the LSD1 domain and the JmjC domain. Contrary to 

histone acetyltransferases, the histone methyltransferases as well as the histone 

demethylases show a high degree of substrate specifity, which is possibly the reason why 

methylation is currently the best characterized modification (Kouzarides, 2007). 

 

1.6.3.3 Recognition of chromatin modifications and the translation of the 

histone code 

The functional consequences of histone modifications can be either direct, causing structural 

changes to chromatin, or indirect, acting through the recruitment of effector proteins (Berger, 

2007). There are two main classes of proteins that can interact with specific chromatin 

modifications and bind via specific domains (Kouzarides, 2007). While methylation is 

recognized by so-called chromodomains, acetylation is recognized by bromodomains 

(Kouzarides, 2007). 
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Bromodomains are cysteine-rich motifs which facilitate protein-protein interactions and were 

found to be widely distributed among the different enzymes that acetylate (e.g.GCN5/PCAF, 

PCAF (CBP/300), TAFII250, TAF1l), methylate (e.g. MLL, a member of the TRX proteins) or 

remodel (SWI/SNF complex) chromatin (Daniel et al., 2005; de, X et al., 2005; Kouzarides, 

2007; Taverna et al., 2007). Remodeling factors may promote transcription by moving away 

blocking nucleosomes from transcription factor binding sites, as has been described for the 

Mi-2/NuRD and SWI/SNF complexes discovered in yeast (Hassan et al., 2002; Jacobson et 

al., 2000). 

The chromodomain was first identified as a common domain in HP1 

(chromodomain-containing heterochromatin protein 1) and the Polycomb protein of 

Drosophila (de, X et al., 2005). Later, chromodomains have also been detected in many 

other chromatin regulators like in ATP-dependent chromatin-remodeling enzymes (BPTF, 

CHD1, RAD54, Mi-2), HATs (ING2, MORF4L1) and HMTs (SUV39H1 and H2). Recently, it 

was shown that the HP1 chromodomain can recognize methylation of H3K9 (Bernstein et al., 

2007) which induces transcriptional repression and heterochromatinization (Bartova et al., 

2008). HP1 is associated with deacetylase and methyltransferase activity. Another example 

are the Polycomb (PcG) and trithorax (TrxG) group proteins that function as antagonistic 

chromatin-modifying complexes. They operate through binding to cis-acting PcG responsive 

elements (PREs) and form the molecular basis of the cellular memory. TrxG is required for 

the active state, whereas PcG proteins mediate the repressed state of gene expression. PcG 

proteins play pivotal roles in development and in the epigenetic silencing of lineage-specific 

gene repression. They are required for embryonic stem (ES) cell pluripotency and are 

markedly downregulated upon differentiation. PcG proteins are divided into two families 

based on distinct Polycomb repressor complexes, namely PRC1 and PRC2. PRC proteins 

are recruited to their response elements. PCR2 modifies the chromatin by catalyzing H3K27 

and H3K9 methylation, while PCR1 complexes create stably repressed chromatin structure 

through recognition of H3K27me3 via its chromodomain protein PC, in analogy to the 

formation of constitutive heterochromatin (Muller et al., 2002; Peters and Schubeler, 2005; 

Ringrose and Paro, 2007). 

However, effector proteins and complexes often contain multiple modification binding 

domains, with the potential to bind adjacent marks either within one histone or among 

multiple nucleosomes. HP1, for example, may function as a dimer that binds two methylated 

sites (Rice and Allis, 2001). Figure 1-7 illustrates the function of conserved motifs with certain 

chromatin-modifying proteins (Rice and Allis, 2001). 
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Figure 1-7 Schematic representation of the function of bromo- and chromodomains 
(A) PCAF and TAFII250 contain a HAT catalytic domain that may acetylate lysine residues on the histone tails (not 
shown for TAFII250). Additionally, each protein contains a bromodomain or double bromodomain, respectively, 
that binds to the acetylated lysines on the histone tails to promote transcription. (B) SUV39H1 contains a catalytic 
SET domain flanked by two cysteine-rich domains (Cys) which are necessary for methyltransferase activity. The 
chromodomain of HP1 binds to specific methylated histone tails such as H3K9 and induces the assembly of 
heterochromatin. The exact functions of the HMT chromodomain and HP1 chromo shadow domain are not known 
(adapted from Rice and Allis, 2001). 

 

In summary, chromatin provides a platform that becomes regulated by structural marks 

which can be read by nuclear factors. In order to act as marks which can influence the 

chromatin structure and thereby the transcriptional state of a gene, modifications have to be 

directed to the specific loci. There are several ways of targeting modifying enzymes to their 

sites of action (Imhof, 2006). One possibility is the targeting through interaction with specific 

transcription factors. Moreover, histone modifying enzymes have also been shown to interact 

with RNA polymerases or the replication clamp proliferating cell nuclear antigen (PCNA) 

(Imhof, 2006). Another targeting mechanism is the recruitment of histone deacetylases by 

methyl binding proteins (MBPs) to methylated cytosines. Recently, another mechanism of 

targeting histone modifying activities has been proposed involving the transcription of 

non-coding RNAs (Imhof, 2006). The non-coding Xist RNA, for example, coats the entire 

inactive X chromosome, causing chromosome-wide gene silencing. This process is 

accompanied by the deposition of histone modifications like H3K27me3 and H4K20me1 

(Bartova et al., 2008). 

The ability of the histone code to dictate the chromatin environment allows not only the 

regulation of transcriptional activity but also the regulation of other nuclear processes such 

as replication, DNA repair, and chromosome condensation (Kouzarides, 2007). 
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1.6.4 Non-coding RNA 

Recent studies have demonstrated that non-coding RNAs (ncRNAs) such as miRNAs act as 

diverse players in gene regulation, especially in the epigenetic control of chromatin. ncRNAs 

are able to direct methylation of CpGs as well as histone modifications that are correlated to 

long-term gene silencing (Costa, 2008). In a yeast model, Moazed et al. demonstrated that 

components of the RNAi (RNA interference) participate directly in heterochromatin formation 

(Moazed et al., 2005; Moazed, 2007). Therefore, it was proposed that the nascent RNA 

transcripts from centromeric repeats may act as a platform for heterochromatin assembly. Liu 

et al. could show by knockout experiments with Tetrahymena that H3K27me1 (a mark for 

repressive heterochromatin) is dependent on the RNAi machinery (Liu et al., 2007). This 

provides an indication that ncRNAs may mediate the heritability of histone modifications and 

heterochromatin formation (Flanagan, 2007).  

One of the best studied examples of ncRNAs involvement is the dosage compensation 

through silencing of the second X chromosome by the ncRNA Xist as described above 

(Bernstein and Allis, 2005).  

Although, the knowledge about the influence of non-coding RNA on transcriptional changes 

is far from being complete, those molecules are considered to be important epigenetic 

regulators.  

 

1.7 Epigenetic alterations during tumorigenesis 

Cancerogenesis constitutes a multistep process in which defects in various tumor genes 

accumulate (Plass, 2002). The initiation and progression of cancer is due to genetic changes 

such as point mutations, missense or frameshift mutations, deletions and translocations, but 

also to epigenetic changes (Herman and Baylin, 2003). Epigenetic tumor-specific alterations 

comprise most importantly DNA methylation as well as histone modifications which can 

influence gene regulation of oncogenes or tumor suppressor genes and contribute to 

uncontrolled cell growth (Costello and Plass, 2001; Plass, 2002). DNA methylation changes 

in cancer cells include both loss of methylation in CpG depleted regions where most CpGs 

should be methylated (hypomethylation) or gains of methylated CpGs in CpG islands 

(hypermethylation) (Herman and Baylin, 2003; Plass, 2002). Figure 1-8 summarizes the 

different mechanisms through which DNA methylation can promote oncogenesis. 
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Figure 1-8 Models for the different mechanisms through which cytosine methylation can promote 
oncogenesis  
(1) A consequence of hydrolytic deamination of 5mC are cytosine to thymine transitions. Those point mutations 
within promoters of tumor suppressor genes (if both alleles are affected) may contribute to tumorigenesis. 
(2) Specific oncogenes have been observed to be hypomethylated and maybe therefore activated in human 
tumors. (3) Tumor suppressor genes can be inactivated through promoter hypermethylation. (4) Loss of 
methylation may contribute to chromosome instability which possibly leads to gene deletions during mitotic 
recombination (adapted from Singal and Ginder, 1999). 

 

1.7.1 Global hypomethylation 

A major hallmark in cancer is the occurrence of genome-wide hypomethylation (Plass, 2002; 

Singal and Ginder, 1999). The extent of global hypomethylation is correlated to the tumor´s 

malignancy grade. Therefore, decreased levels of overall genomic methylation may serve as 

biological marker with prognostic value (Costello and Plass, 2001). The majority of 

hypomethylation events occur in repetitive elements localized in satellite sequences or 

centromeric regions (Plass, 2002). Furthermore, hypomethylation contributes to the 

activation of latent retrotransposons and to the potentially harmful expression of inserted viral 

genes, imprinted genes and genes on the inactive X chromosome (Costello and Plass, 2001; 

Herman and Baylin, 2003). In addition, the global loss of DNA methylation affects the 

functional stability of chromosomes in cancer. Pericentromeric regions of the chromosomes 

depend on high levels of cytosine methylation for stability and for proper replication of the 

DNA (Herman and Baylin, 2003). Aside from the genome-wide hypomethylation, the 

demethylation and consequently the activation of specific proto-oncogenes have been 
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reported (Singal and Ginder, 1999). Proto-oncogenes are normal genes that can become 

oncogenes due to mutations or increased expression. They usually code for proteins that are 

either involved in regulation of cell growth and differentiation or in signal transduction. As 

oncogenic mutations are dominant, only one mutated allele is necessary to confer the 

cancerous behavior. Some well described examples of proto-oncogenes include Ras, bcl-2 

or c-myc (Costello and Plass, 2001). 

 

1.7.2 Regional hypermethylation 

CpG islands located in the promoter region of certain genes fulfill gene regulatory functions 

and are generally unmethylated in healthy cells. Exceptions are imprinted genes and genes 

on the inactive X chromosome. There is also evidence that selected genes show progressive 

age-related increases in promoter methylation (Issa, 2003). Particularly, in cancer cells, 

prevalently CpG islands (CGIs) of tumor suppressor genes can be hypermethylated despite 

genome-wide hypomethylation (Hirst and Marra, 2009). Aberrant de novo CGI promoter 

methylation leads to gene silencing affecting genes involved in cell cycle, DNA repair, 

metabolism, cell adherence, apoptosis, premature aging and miRNA expression (Esteller, 

2007b; Hirst and Marra, 2009). The Retinoblastoma (Rb) gene was the first tumor 

suppressor gene targeted by CGI hypermethylation. Another tumor suppressor gene 

frequently found hypermethylated in cancer is p16, an important cell cycle regulatory protein. 

P16 (also known als INK4a or CDKN2A) is responsible for blocking cell cycle progression at 

the G1/S boundary. Loss of p16 function through methylation may lead to cancer progression 

by allowing deregulated cellular proliferation (Singal and Ginder, 1999). The number of 

genes that are known to be affected by epigenetic inactivation exceeds the number of 

cancer-related genes inactivated by mutation (Herman and Baylin, 2003). Mutations in tumor 

suppressor genes are mostly recessive which explains why the complete disruption of a 

tumor suppressor gene’s function requires inactivation of both alleles for malignant 

transformation of a cell (Costello and Plass, 2001; Herman and Baylin, 2003).  

So far, the mechanism for tumor-specific hypermethylation is not yet fully explored. The 

profiles of CpG island hypermethylation of tumor suppressor genes vary according to the 

tumor type (Esteller, 2005; Esteller, 2007b). Different mechanisms for aberrant de novo 

methylation in cancer may have evolved. One possibility is that methylation changes arise in 

a random fashion and may lead to progressive proliferation through a selective advantage 

(Jones and Baylin, 2007). The second possibility constitutes a dysregulation of histone and 

DNA modifying enzymes such as DNMTs. The third possibility for abnormal de novo 

methylation in tumor cells includes the absence of “protective” transcription factors or a loss 
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of chromatin boundaries leading to the spreading of DNA methylation into affected CpG 

islands (Turker, 2002). The fourth possibility comprises the targeted recruitment of DNMTs to 

methylation targets by interaction with transcription factors such as the Ets family 

transcription factor PU.1 (Metivier et al., 2008; Suzuki et al., 2006) or the SET-containing 

histone methyltransferases like G9a (Feldman et al., 2006) or EZH2. The histone 

methyltransferase EZH2 specifically methylates both H3K9 and H3K27. EZH2 is associated 

with the Polycomb group (PcG) complexes (see section 1.6.3.3 and 1.7.4), and is recruited to 

PcG-specific sites through SUZ12 (Vire et al., 2006). EZH2 has emerged as a key histone 

methyltransferase involved in methylation of H3K27 within promoters of developmental 

genes that become methylated and therefore reversibly repressed to maintain pluripotency in 

ES cells. It was shown that stem cell PcG targets are more likely affected by cancer-specific 

de novo methylation than non-PcG targets during malignant transformation (Schlesinger et 

al., 2007). This finding supports the hypothesis that reversible gene expression in a stem cell 

is replaced by permanent silencing in a cancer cell with perpetual state of self-renewal 

(Widschwendter et al., 2007). This is possibly due to the upregulation of EZH2 observed in 

many tumors. Recent studies have described a direct connection between EZH2 and the 

DNMTs (Vire et al., 2006), thus providing a link between histone methylation and DNA 

methylation during cancer development.  

 

1.7.3 Differential DNA methylation patterns in AML and colorectal 

cancer 

In addition to the large amount of well defined genetic aberrations as described previously, 

DNA methylation changes at crucial genes are able to contribute to the multistep 

transformation process of normal to cancerous cells (Farrell, 2005; Galm et al., 2006; Pfeifer 

and Besaratinia, 2009; Plass et al., 2008). Although some genes are affected in multiple 

tumor types, such as the cell cycle regulator p16, methylation profiling studies have shown 

that each tumor type has a characteristic methylation pattern indicating the involvement of 

cell type- or lineage-specific transcription factors. Interestingly, the methylation profile in 

hematopoietic malignancies differs from solid tumors regarding the affected genes. Table 1-2 

gives a summary of those genes that have frequently reported to be hypermethylated in AML 

and in colorectal carcinoma, respectively. 

There is growing evidence for the diagnostic and prognostic potential of methylation changes 

in different tumor types. Methylation profiles may act as potential new biomarkers of risk 

prediction in tumor patients, complementing standard immunophenotyping, cytogenetic and 

molecular analyses (Galm et al., 2006; Plass et al., 2008). 
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Table 1-2 Genes frequently methylated in acute myeloid leukemia (AML) and colorectal carcinoma  
(adapted from Galm et al., 2006; Toyota et al., 2001; Wong et al., 2007) 

AML Colorectal carcinoma 

Gene Function Gene Function 

p15 Cyclin-dependent kinase inhibitor APC Signal transduction, β-catenin regulation 

E-cadherin Cell adhesion CDH13 Cell signaling 

SOCS-1 Cell signaling CDKN2A Cell cycle regulation 

p73 p53 similar protein CHFR Mitotic stress checkpoint 

DAPK1 Programmed cell death induced by IFNγ HIC1 Regulation of DNA damage responses 

HIC1 Transcriptional regulation HPP1 TGF-β antagonist 

RARβ2 Retinoic acid receptor-β2 MGMT Repair of DNA guanosine methyl adduct 

CRBP1 Carrier protein involved in retinol transport  MLH1 Mismatch repair 

MYOD1 Myogenic differentiation RASSF1A DNA repair, cell cycle regulation 

SDC4 Receptor in intracellular signaling TIMP3 Matrix remodeling, tissue invasion 

 

1.7.4 Differential histone modifications in tumors 

Global changes in the pattern of CpG methylation eventually lead to genome-wide changes 

in histone modification patterns in human tumor cells (Fraga et al., 2005). These alterations 

of histone marks occur early in tumorigenesis and accumulate during its process (Esteller, 

2007a). Promoter hypermethylation in cancer cells is generally linked to changes in the 

histone modification pattern including hypoacetylation at histones H3 and H4 (Esteller, 2006). 

Furthermore, in some cases H3K9 methylation has been shown to occur in hypermethylated 

DNA sequences. Usually, aberrant DNA hypermethylation is also accompagnied by loss of 

H3K4 trimethylation (Esteller, 2006).  

In cancer cells, altered patterns of histone modifications occur not only in promoter regions of 

tumor suppressor genes but also within constitutive heterochromatin. Studies of 

genome-wide posttranslational modifications of histone H4 have shown that cancer cells 

exhibit decreased levels of H4K16 acetylation and H4K20 trimethylation compared to normal 

tissues (Esteller, 2007a; Fraga et al., 2005; Fraga and Esteller, 2005). Those alterations 

occur mainly within the context of repetitive DNA sequences that become hypomethylated in 

tumor cells. It was thus suggested that the global loss of monoacetylation and trimethylation 

of H4 is a common hallmark of cancer cells (Fraga et al., 2005; Fraga and Esteller, 2005). A 

summary of altered histone modifications and DNA methylation patterns is shown in Figure 

1-9.  

 



 Introduction 

 - 23 -    

 

Figure 1-9 Histone modification maps and DNA methylation patterns for a typical chromosome in normal 
and cancer cells 
Nucleosomes (grey cylinders) are shown in the context of chromosomal location and transcriptional activity. 
Histone acetylation and methylation (di- and tri-) are indicated. In normal cells, genomic regions that include the 
promoters of tumor suppressor genes are enriched for histone modification marks associated with active 
transcription, such as acetylation of H3 and H4 lysine residues and H3K4me3. In the same cells, DNA repeats 
and other heterochromatic regions are characterized by H3K27me3, H3K9me2 and H4K20me3 which are 
repressive marks. In cancer cells, both, the active histone marks on tumor suppressor genes and repressive 
marks at DNA repeat regions are lost. Above and below the nucleosomal arrays, respectively, the respective DNA 
methylation pattern is represented. CpG islands of tumor suppressor genes become hypermethylated in cancer 
cells which leads to transcriptional inactivation of these genes. At the same time, the genome of a cancer cell 
undergoes global hypomethylation at repetitive sequences and some tissue-specific and imprinted genes. This 
hypomethylation might contribute to tumorigenesis, causing chromosomal instability or changes such as loss of 
imprinting. E, exon (adapted from Esteller, 2007a). 

 

Recent analyses have shown that a number of different histone modifying enzymes are 

altered in various types of cancer contributing to changes in histone patterns. The observed 

loss of H4K20me3 could be due to altered expression levels of histone methyltransferases 

(like EZH2, SUV39H or SUV4-20H) (Esteller, 2007a). The proper balance between 

acetylation and deacetylation of H4K16 is mediated by specific HATs. Inactivating mutations 

in the HAT p300, for example, have been described in many tumor forms. Recently, HDAC2 

Normal cell

Cancer cell



Introduction 

- 24 - 

has been identified as another component of the epigenetic machinery that is mutated and 

therefore inactivated in human cancer (Esteller, 2007a).  

 

One of the most interesting phenomena currently emerging in the field of histone 

modifications and cancer is the discovery of bivalent domains on histone tails. Bivalent 

domains comprise both, transcriptionally repressive and active marks at the same time, 

which facilitates a switch between transcriptional activation and repression. Those domains 

were first described in ES cells (Bernstein et al., 2006). Upon differentiation, tissue-specific 

genes which become highly expressed display only the activating H3K4 methylation, while 

genes which become silenced display only the repressive H3K27 methylation (Bernstein et 

al., 2006; Pietersen and van Lohuizen, 2008). Bivalent domains serve to silence 

developmental genes in ES cells, while preserving the potential for activating them during 

differentiation (Bernstein et al., 2006; Pietersen and van Lohuizen, 2008) (see sections 

1.6.3.3 and 1.7.2). 

It is believed that genes with bivalent marks are especially sensitive to silencing by DNA 

methylation during tumorigenesis (Ohm et al., 2007). Notably, embryonal carcinoma cells 

(EC) also display increased levels of other repressive marks (H3K9 di-and tri-methylation) on 

the histones associated with the respective genes, implicating that these bivalent histone 

marks represent a transition state between genes in ES cells and fully silenced genes in 

adult cancer cells (Ohm et al., 2007).  

 

1.7.5 Therapeutic strategies targeting epigenetic aberrations 

In contrast to genetic alterations, epigenetic changes which contribute to tumorigenesis are 

potentially reversible. This offers the possibility of novel therapies for cancer treatment, 

particularly with regard to acute myeloid leukemia (AML) and myelodysplastic syndrome 

(MDS) (Galm et al., 2006; Herman and Baylin, 2003). Many studies in multiple tumors 

demonstrated an increased activity of DNMTs as well HDACs. Therefore, the development of 

strategies will be required which inhibit and antagonize (reverse) the activity of those 

enzymes in order to prevent and treat neoplastic diseases (Herman and Baylin, 2003; Singal 

and Ginder, 1999). 

Currently, there are two demethylating agents approved for clinical use by the United States 

FDA: 5-azacytidine (Vidaza, AZA; Pharmion Corp) and 5-aza-2´-deoxycytidine (decitabine, 

Dacogen; MGI Pharma/SuperGen) (Herman and Baylin, 2003; Plass et al., 2008). These 

agents are cytosine analogues and exert their hypomethylating activity by competing with the 

endogenous pool of deoxynucleosides for incorporation into newly synthesized DNA during 
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replication. Once incorporated into DNA, azanucleosides covalently bind and trap the 

DNMTs resulting in inactivation. This may lead to loss of promoter hypermethylation and 

re-expression of silenced tumor suppressor genes (Plass et al., 2008). 

Previous studies demonstrated the dominance of the DNA methylation over histone 

deacetylation in the process of gene silencing. Thus, treatment of cells with one of the HDAC 

inhibitors such as Trichostatin A, valproic acid, the hydroxamid acid or SAHA (Vorinostat), 

alone, rarely results in reactivation of cancer genes (Plass et al., 2008). However, these 

agents exert additive or synergistic effects if some demethylation is first achieved by low 

doses of 5-aza-2´-deoxycytidine (Galm et al., 2006; Herman and Baylin, 2003). In vivo, the 

sequential treatment with low doses of demethylating agents followed by HDAC inhibitors is 

the basis for new therapeutic strategies.  

Recent studies have shown that epigenetic mutations may be more harmful than genetic 

mutations. Thus, patients might benefit from the new emerging anti-cancer treatments which 

target the epigenome. Additionally, because many of the hypermethylation events occur very 

early in tumor development, inhibiting or reversing these changes could be of high potential 

for cancer prevention in the future.  
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2 Research objectives 

Besides genetic alterations, epigenetic changes are now recognized as an additional 

mechanism contributing to tumorigenesis (Plass, 2002). Because DNA methylation is stable 

in genomic DNA preparations, it is the most suitable of all known epigenetic modifications for 

diagnostic applications and may provide useful molecular markers to complement clinical 

diagnostics and prognostics. To date, most of the studies are based on single gene 

approaches to identify candidate genes. However, for the systematical identification of 

relevant epigenetic biomarkers global analyses of DNA methylation are of major clinical 

interest.  

The main focus of this thesis was to establish and adapt the previously developed 

methyl-CpG immunoprecipitation (MCIp) technique for comparative methylation analyses. 

Based on this approach, genome-wide methylation profiles of tumor cell lines and tumor 

patients should be generated, to detect potential marker genes which are hypermethylated in 

tumors and could be associated with cancer development and therefore have diagnostic or 

therapeutic relevance. Analyses should be performed with two specific tumor types, namely 

acute myeloid leukemia (AML) and colon cancer carcinoma. 

The molecular mechanisms controlling the methylation status of CpG islands in normal and 

malignant cells are poorly understood. Therefore, to get insights into this process, factors 

should be identified which are mainly responsible on the one hand for maintaining the 

unmethylated state of CpG islands in health and disease and on the other hand for de novo 

methylation in cancer. Computational methods should be applied to identify candidate 

sequence motifs associated with unmethylated and methylated CpG islands, respectively. 
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3 Material and equipment 

3.1 Equipment 

8-Channel PipettorImpact2 Equalizer 384 Thermo Fisher Scientific, Hudson, US 

Autoclave      Technomara, Fernwald, Germany 

Bioanalyzer 2100    Agilent Technologies, Böblingen, Germany 

BioPhotometer     Eppendorf, Hamburg, Germany 

Centrifuges      Heraeus, Hanau; Eppendorf, Hamburg, Germany 

Densitometer     Molecular Dynamics, Krefeld, Germany 

Electrophoresis equipment    Biometra, Göttingen; BioRad, Munich, Germany 

Fast-Blot machine    Agfa, Köln 

FACS Calibur     BD, Heidelberg, Germany 

Heat sealer (Fermant 400)    Josten & Kettenbaum, Pensberg, Germany 

Heat sealer     Eppendorf, Hamburg, Germany 

Heatblock     Stuart Scientific, Staffordshire, UK 

Incubators      Heraeus, Hanau, Germany 

J6M-E centrifuge    Beckmann, Munich, Germany 

Laminar air flow cabinet    Heraeus, Hanau, Germany 

Lightcycler     Roche, Mannheim 

Luminometer (Sirius)     Berthold Detect. Systems, Pforzheim, Germany 

MassARRAY Compact System   Sequenom, Hamburg, Germany 

MassARRAY MATRIX Liquid Handler  Sequenom, Hamburg, Germany 

MassARRAY Phusio chip module  Sequenom, Hamburg, Germany 

Megafuge 3,0 R    Heraeus, Osterode, Germany 

Microarray hybridization chambers SureHyb Agilent Technologies, Böblingen, Germany 

Microarray scanner; 5 micron resolution  Agilent Technologies, Böblingen, Germany 

Microarray slide holder    Agilent Technologies, Böblingen, Germany 

Microscopes     Zeiss, Jena, Germany 

Multifuge 3S-R     Heraeus, Osterode, Germany 

Multipipettor Multipette plus   Eppendorf, Hamburg, Germany  

NanoDrop     PeqLab, Erlangen, Germany 

PCR-Thermocycler PTC-200   MJ-Research/Biometra, Oldendorf, Germany 

PCR-Thermocycler Veriti 384 well  Applied Biosystems, Foster City, USA 

pH-Meter      Knick, Berlin, Germany 

Picofuge     Heraeus, Osterode, Germany 

Power supplies      Biometra, Göttingen; Germany 

Realplex Mastercycler epGradient S  Eppendorf, Hamburg, Germany 

Sigma 2 – Sartorius    Sartorius, Göttingen, Germany 
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Sonifier 250     Branson, Danbury, USA 

Sorvall RC 6 plus    Thermo Fisher Scientific, Hudson, USA 

Speed Vac     Christ, Osterode, Germany 

Thermomixer     Eppendorf, Hamburg, Germany 

Typhoon™      Amersham Biosciences, Germany 

Ultracentrifuge Optima L-70    Beckman, Munich, Germany 

Waterbath     Julabo, Seelstadt, Germany 

Water purification system    Millipore, Eschborn, Germany 

 

3.2  Consumables 

384-well PCR plates    Thermo Fisher Scientific, Hudson, USA 

96 well optical bottom plates (black)  Nunc Brand Products, Roskilde, Denmark 

8-channel pipettor tips Impact 384  Thermo Fisher Scientific, Hudson, USA 

Adhesive PCR sealing film   Thermo Fisher Scientific, Hudson, USA 

Cell culture flasks and pipettes   Costar, Cambridge, USA 

CLEAN resin     Sequenom, Hamburg, Germany 

Cryo tubes     Nunc, Wiesbaden, Germany 

Filter tubes: Millipore Ultrafree-MC  Millipore, Eschborn, Germany 

Heat sealing film    Eppendorf, Hamburg, Germany 

Luminometer vials    Falcon, Heidelberg, Germany 

MATRIX Liquid Handler D.A.R.Ts tips  Thermo Fisher Scientific, Hudson, USA 

Micro test tubes (0.5, 1.5, 2 ml)   Eppendorf, Hamburg, Germany 

Microarray gasket slides   Agilent Technologies, Santa Clara, USA 

Multiwell cell culture plates and tubes  Falcon, Heidelberg, Germany 

nProteinA Sepharose 4 FastFlow  GE Healthcare, Munich, Germany 

Nylon Transfer membrane   MSI, Westboro, USA 

PCR plate Twin.tec 96 well   Eppendorf, Hamburg, Germany 

rProteinA Sepharose 4 FastFlow  GE Healthcare, Munich, Germany 

Sepharose Cl-4 beads    Sigma-Aldrich, Munich, Germany 

SpectroCHIP bead array   Sequenom, Hamburg, Germany 

Sterile combitips for Eppendorf multipette Eppendorf, Hamburg, Germany 

Sterile micropore filters    Millipore, Eschborn, Germany 

Sterile plastic pipettes    Costar, Cambridge, USA 

Syringes and needles    Becton Dickinson, Heidelberg, Germany 
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3.3  Chemicals 

All reagents used were purchased from Sigma-Aldrich (Taufkirchen, Germany) or Merck 

(Darmstadt, Germany) unless otherwise noted. Oligonucleotides for real-time PCR were 

synthesized and high-pressure liquid chromatography purified by Metabion 

(Planegg-Martinsried, Germany). Oligonucleotides adapted to methylation analysis with the 

MassARRAY system (see section 4.4.6) were purchased from Sigma-Aldrich (Taufkirchen, 

Germany). 

 

3.4  Enzymes and kits 

aCGH Hybridization Kit    Agilent Technologies, Waldbronn, Germany 

Alkaline phosphatase    Roche, Mannheim, Germany 

Aprotinin     Roche, Mannheim, Germany 

BioPrime Purification Module   Invitrogen, Karlsruhe, Germany 

BioPrime Total Genomic Labelling System Invitrogen, Karlsruhe, Germany 

Blood & Cell Culture DNA Midi Kit  Qiagen, Hilden, Germany 

BSA      Sigma, Deisenhofen, Germany 

Blood and Tissue Culture Kit   Qiagen, Hilden, Germany 

DNA Ladder 1 kb plus    Invitrogen, Karlsruhe, Germany 

DNA molecular weight standard   Invitrogen, Karlsruhe, Germany 

dNTPs      NEB, Frankfurt, Germany 

Dual-Luciferase Reporter Assay System Promega, Madison, USA 

EpiTect Bisulfite Kit    Qiagen, Hilden, Germany 

Exo-Klenow-Fragment    Invitrogen, Karlsruhe 

EZ DNA methylation kit    Zymo Research, Orange, USA 

FastStart TaqDNA polymerase   Roche, Mannheim, germany 

Gene expression hybridization Kit  Agilent, Waldbronn, Germany 

HhaI Methylase     NEB, Frankfurt, Germany 

Hpa II Methylase    NEB, Frankfurt, Germany 

Human Cot-1 DNA    Invitrogen, Karlsruhe, Germany 

Klenow Enzyme    NEB, Frankfurt, Germany 

Klenow exo- (3’-5’ exo minus)   NEB, Frankfurt, Germany 

Lipofectamin transfection reagent  Invitrogen, Karlsruhe, Germany 

Linear Amp. Kit plus, one colour  Agilent Technologies, Waldbronn, Germany 

NucleoSpin Plasmid Quick Pure  Macherey-Nagel, Düren, Germany 

NucleoSpin® Extract II    Macherey-Nagel, Düren, Germany 

Pepstatin     Roche, Mannheim, Germany 
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PicoGreen ds DNA Quantitation Reagent MoBiTec, Göttingen 

Plasmid Midi Kit    Qiagen, Hilden, Germany 

PMSF (Phenylmethanesulfonylfluoride)  Sigma, Deisenhofen, Germany 

Proteinase K     Roche, Mannheim 

QIAquick PCR Purification Kit   Qiagen, Hilden, Germany 

QuantiFast SYBR green   Qiagen, Hilden, Germany 

Repli-G Midi Kit     Qiagen, Hilden, Germany 

Restriction endonucleases   NEB, Frankfurt; Roche, Mannheim; Germany 

Reverse Transkriptase SuperSkript II  Promega, Madison, USA 

RNA 6000 Nano Kit    Agilent Technologies, Waldbronn, Germany 

RNA Spike-in Kit    Agilent Technologies, Waldbronn, Germany 

RNeasy Midi and Mini Kit   Qiagen, Hilden, Germany 

S-adenosylmethionine (SAM)   NEB, Frankfurt, Germany 

Shrimp Alkaline Phosphatase (SAP)  Sequenom, Hamburg, Germany 

Sss I CpG methylases    NEB, Frankfurt, Germany 

T-Cleavage MassCleave Reagent kit  Sequenom, Hamburg, Germany 

TaqDNA Polymerase    Roche, Mannheim, Germany 

T4 DNA Ligase     Promega, Madison, USA 

T4 DNA Ligase buffer    NEB, Frankfurt, Germany 

TOPO TA Cloning Kit    Invitrogen, Karlsruhe 

Wizard DNA Clean-Up System   Promega, Madison, USA 

 

3.5 Molecular weight standards 

DNA ladder 1 kB Plus was purchased from Invitrogen (Karlsruhe, Germany). The 

Kaleidoscope Prestained standard protein marker was purchased from BioRad (Munich, 

Germany). 

 

3.6 Oligonucleotides 

3.6.1 Sequencing primers 

Gene Primer sequence (sense & antisense) 

M13 reverse 5'-GGA AAC AGC TAT GAC CAT GAT-3' 

T7 5’-TAA TAC GAC TCA CTA TA-3’ 
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3.6.2 Real-time PCR primers for MCIp 

Gene Primer sequence (sense & antisense) 

CBX6 
5’-AAGCTTCCGCCATTGCTCTG-3’ 
5’-TCCGTTCCTGGACAGCCC-3’ 

CDKN2B 
5’-GGCTCAGCTTCATTACCCTCC-3’ 
5’-AAAGCCCGGAGCTAACGAC-3’ 

CHI3L1 
5’-ATCACCCTAGTGGCTCTTCTGC-3’ 
5’-CTTTTATGGGAACTGAGCTATGTGTC-3’ 

COL14A1 
5’-AGACGCAATGCAGTTCCATGG-3’ 
5’-ATCTCCCTACACCGTGAACCC-3’ 

CYP1B1 
5’-TGTTGAATCCGTGCTTAGTAGAGACC-3’ 
5’-CAGAGTAGCATTCAGAAAGGCAGATGG-3’ 

CYP27B1 
5’-CATCCGTTCTCTCTGGCTGTCC-3’ 
5’-CTGTCGAGGCTACACGAGCTGC-3’ 

Empty6.2 
5'-GAAACCCTCACCCAGGAGATACAC-3’ 
5'-TGCAGTGGGACTTTATTCCATAGAAGAG-3' 

DMRT2 
5’-CACGTTTTTGCTAGAGGTGAGGG-3’ 
5’-TCCTCCATCCGTACTGACATAGGG-3’ 

ESR1 
5’-GACTGCACTTGCTCCCGTC-3’ 
5’-AAGAGCACAGCCCGAGGTTAG-3’ 

FARP1 
5’-GCTCCGTAGAGTTCCCGAAACC-3’ 
5’-AGCGAATCCCATGACAGTTCCC-3’ 

FNBP1 
5’-ATCCAAAGGTCTGCACAAATGTTCCTG-3’ 
5’-CGAGGGAGAAAGATAAGCTGTGGG-3’ 

HOXD10 
5’-TCTATAGTGACGCTACCTTTCCCG-3’ 
5’-CTTGAGAGGACAACGACATTTAGGG-3’ 

JUN 
5’-AGGAGTTAGTGTGACAGGGTCGC-3’ 
5’-CCAAATCGCACTCTTATATCCTGGC-3’ 

JUN (p) 
5’-ATTGGCTCGCGTCGCTCTC-3’ 
5’-GGAGCATTACCTCATCCCGTG-3’ 

KLF5 
5’-AGACACTTCATTTAGTAGCTCTTTGGCG-3’ 
5’-GCCCTCTCACAGCAAGACCC-3’ 

KLF11 
5’-GACAGCGGGCTAGATGTCTCC-3’ 
5’-GTCAGGGGAAGCCGAAACG-3’ 

KLF11 (p) 
5’-GTTGAGGCCTCTAGGTGGGTCTC-3’ 
5’-CCACGCTTATAGGAACCTCCTGC-3’ 

LDLR 
5’-GGGTACAAATAATCACTCCATCCCTG-3’ 
5’-TAAATCCCTCAGACTCCTCCCG-3’ 

MAFB 
5’-TGTGCAGACTATGTATGGCTCCG-3’ 
5’-AAACACTCTGGGAGCCACAGG-3’ 

MAFB (p) 
5’-TCGAGGTGTGTCTTCTGTTCGG-3’ 
5’-GACCTGCTCAAGTTCGACGTG-3’ 

MLF1 
5’-AAATCTGATAGGCTTCATCCCATTTCC-3’ 
5’-GTCCTGTATCCGAAACATTCTCTGG-3’ 

PAX9 
5’-CTCTGCTTGTCATAACTGCAACTCGG-3’ 
5’-TGATGACTGTGGATGGGAGGATAGG-3’ 
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Gene Primer sequence (sense & antisense) 

PDE4B 
5’-CAGGAGGTCTGTGAGGTAGGTG-3’ 
5’-TGTGTAGTAGGTTGTAACTGCTGAGG-3’ 

PFC 
5’-CGTTACGGGTTTCCTGATTGGC-3’ 
5’-GGAATCTAGGGAGGTCCAGGAG-3’ 

PLA2G7 
5’-GTGCTGGTGTCATTTCTCCCTG-3’ 
5’-TCTAGCTCCATTTCTCCTCAGACC-3’ 

RAB3C 
5’-TGAGGGATCGGGCTATTCGC-3’ 
5’-GCCAAGAGAGGAGATCAATGCC-3’ 

RAX 
5’-CATGGACACCCGTGAATTCCGAG-3’ 
5’-AGGTAAAGCGCCCAGGTTGAG-3’ 

RGMA 
5’-AAAGACCGTATCGCACTCCCTC-3’ 
5’-CGCAGAGACTGGAAAGAACCG-3’ 

RPIB9 
5’-AAAGACTCTACACTGGCACCACG-3’ 
5’-TAGTGCCGACATTTCTTGCCC-3’ 

RPP30 
5’-AGCTTCTAAGTTACTATCAGCCCTTCC-3’ 
5’-GTATTGTTCCAACACTCCCACGTCC-3’ 

SETBP1 
5’-TGTGCGTTTCTAGAGGAGCCG-3’ 
5’-AAATCGATACCGAAGGGTTCCC-3’ 

SLITRK3 
5’-TACCTCTTACAACACCAGCGAGC-3’ 
5’-GGATCAGTTAGGTGTAAGGACGTTGG-3’ 

SNRPN 
5’-TACATCAGGGTGATTGCAGTTCC-3’ 
5’-TACCGATCACTTCACGTACCTTCG-3’ 

SSIAH2 
5’-CTGAGACACTCCGCTCCAGC-3’ 
5’-TGTTATTGGCTGTCTCTGCACCTC-3’ 

TGIF 
5’-GTCCGGGAAGGAACTGTGCTC-3’ 
5’-CTGCTCGGGACAGAAGAGAACAC-3’ 

TLR2 
5’-TGTGTTTCAGGTGATGTGAGGTC-3’ 
5’-CGAATCGAGACGCTAGAGGC-3’ 

ZFP36L1 
5’-AAACATTGTCCCGAGACTCACTTCC-3’ 
5’-GTCTGTCCAGCGGCATTACC-3’ 

ZNF516 
5’-CAGGTGATGATGGAACCCACTC-3’ 
5’-TGCTGCCCTTCACTTTTCTACG-3’ 

ZNF516 (p) 
5’-CCCTCAGTGTGGCAGAACTTTG-3’  
5’-CCCAGCCTGGAAATGGTC-3’ 

  

3.6.3 Real-time PCR primers for ChIP-on-chip 

Gene Primer sequence (sense & antisense) 

HDAC3 
5’-TCAGCTCTCCCGGTATCTGG-3’ 
5’-GACAAATGGCCCTCGCATCC-3’ 

LDHB 
5’-GTCGTGCGGAGAAGACAAAGTCAG-3’ 
5’-CTAAGAGGCTGCGGTGGTTGTG-3’ 

CTCF 
5’-GTCCCTTCCCTTATCAGCACCC-3’ 
5’-GCACGGTTTAATCGCTCCACAG -3’ 

RAN 
5’-CGTCTCCGGCGTTTGAATTGC-3’ 
5’-GCGATACCTTCCAGAAGCGTC-3’ 
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Gene Primer sequence (sense & antisense) 

CAPNS1_1 
5’-AGACCTGGATCCAGCTAGCC-3’ 
5’-AACTCTCGGGTCGGACACTG-3’ 

CAPNS1_2 
5’-CAATGTCCGCTTCGGCTCTAGG-3’ 
5’-TGACTCAGGCCGCAACTCTC-3’ 

CXCR4 
5’-AGATGCGGTGGCTACTGGAG-3’ 
5’-CAGAAACTTCAGTTTGTTGGCTGCG-3’ 

MED8 
5’-CTAGTACGCCCAACGCAACTC-3’ 
5’-CTGATTGGTGGACGAAGCCTTCTC-3’ 

LOC116349 
5’-TAGCCGTAGAGGGTGAGTCG-3’ 
5’-ACAGGGAGAGCAAGGATGAAAGAC-3’ 

AIP 
5’-CGCAGAGAACCAATCACCATCC-3’ 
5’-CTTCGGCAACTCCTAGCACC-3’ 

KLF15 
5’-ACCTCCTTGCTTCCCACCTC-3´ 
5´-CAGGCCAGTCTCACGTTCTCAC-3´ 

 

3.6.4 Real-time RT-PCR primer 

Gene Primer sequence (sense & antisense) 

MAFB 
5’-GAGCCGGAGAGAGAGACG-3’ 
5’-AGGAGTCTCCAGATGGCCTTG-3’ 

JUN 
5’-CGGCGGTAAAGACCAGAAGG-3’ 
5’-CGCCCAAGTTCAACAACCG-3’ 

KLF11 
5’-ACCTACTTCAAAAGTTCCCACC-3’ 
5’-CATGAAACGTCGGTCACACAC-3’ 

SSIAH2 
5’-GTTTCAGCACTACAAGGCTAAACGG-3’ 
5’-AAGCTGCCTTGCTCTGGAGC-3’ 

ZNF516 
5’-GTTCTGAAGTTCATACCACCTCCG-3’ 
5’-TCAGAGGCACTGTCTGGACGG-3’ 

 

3.6.5 LM-PCR oligonucleotides 

Gene Primer sequence (sense & antisense) 

LM_JW102_sticky 5’-GCGGTGACCCGGGAGATCTGAATTCT-3’ 

LM_JW103_sticky 5’-GAATTCAGATC-3’ 

 

3.6.6 Bisulfite amplicon generation (Nested PCR) 

Gene 
 

Primer sequence (sense & antisense) 

RAB3C outer 
5’-ATTGGGAGAGGTAATTTAGGAG-3’ 
5’-ATTTTAAACAAACACTCTTATCCTC-3’ 



Material and equipment 

- 34 - 

Gene 
 

Primer sequence (sense & antisense) 

 
inner 

5’-TTTGGAAAGGAGTAGGGAGG-3’ 
5’-ATCCCTCATCAAAACAACCC-3’ 

MAFB outer 
5’-GGGTAYGGYGTGGTATTGGG-3’ 
5’-TAAAATAAATCACAACTTAACCTATCCATC-3’ 

 
inner 

5’-TTTAATTTAATTTTGTGGGGTGGT-3’ 
5’-CTCTAAAAACCACAAATCTCTTAAAACC-3’ 

JUN outer 
5’-TTTAGATGGGAATAAGYGTGTAGG-3’ 
5’-TACTACAAATCCAACTTCAAACC-3’ 

 
inner 

5’-TYGGGAAAATAAGTTTAGAAGG-3’ 
5’-ACTCTTATATCCTAACATCCTATCC-3’ 

SSIAH2 outer 
5’-TTTAATATATGGGATAGAGAGAATTTGG-3’ 
5’-TTCTATCCTTTTAATTAACCRCCTCAC-3’ 

 
inner 

5’-AAATAGTAGGGGGAGTGATGGG-3’ 
5’-AAACCCAAAAACTCACAACTTCC-3’ 

KLF11 outer 
5’-TGTTTATGTGAGTGGTGGGG-3’ 
5’-ACCCACCTAAAAACCTCAACC-3’ 

 
inner 

5’-TTGTTTTYGTTTTTTGGATGGAG-3’ 
5’-TATTTTTAACTTCTATCATTCTCCC-3’ 

ZNF516 outer 
5’-CACCCAATTCTACCCCTCC-3’ 
5’-ATTTTTTTATTGGGAGTTGATG-3’ 

 
inner 

5’-ACCTCTCCATTACATCATCCC-3’ 
5’-GTTTTTGGTAAATTTTAGAAGGTG-3’ 

CPM outer 
5’-TTGGTTAGTTAGTTGGGTTTTGG-3’ 
5’-AAACAATTATACTAACCTTCTTCTCTTTCC-3’ 

 
inner 

5’-TTGGTATTTAGATTTGGAGTGGG-3’ 
5’-TAATATACAATAACTTCCACCATAACCA-3’ 

 

3.6.7 MassARRAY QGE  

3.6.7.1 Oligonucleotides 

Gene Primer sequence (sense & antisense) 

MGMT_MBD-Fc_1_TAG 5’- ACG TTG GAT GCG CCC CTA GAA CGC TTT G -3’ 

 
5’- ACG TTG GAT GAG ACA CTC ACC AAG TCG CAA AC -3’ 

 

3.6.7.2 Competitors 

Gene Primer sequence (sense & antisense) 

Comp_MGMT-1 
5’- CGC CCC TAG AAC GCT TTG CGT CCC GAC GCC CGC AGG TCC CCG 
CGG TGC GCA CCG TTT GCG ACT TGG TGA GTG TCT -3’ 

 
5’- AGA CAC TCA CCA AGT CGC AAA CGG TGC GCA CCG CGG GGA CCT 
GCG GGC GTC GGG ACG CAA AGC GTT CTA GGG GCG -3’ 
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3.6.8 Bisulfite amplicon generation (MassARRAY) 

All primers designed for methylation analysis using the MassCLEAVE assay are or will be 

available within the supplementary information of the corresponding publications. 

 

3.7 Antibodies 

Chromatin immunoprecipitation (ChIP) 

Anti-YY1     Santa Cruz, sc-1703 

Anti-NRF1     Abcam, ab34682 

Anti-Sp1     Upstate, 07645 

Anti-rabbit IgG     Upstate 

Western Blot 

Goat anti-IgG F(c), HRP conjugated  Rockland, Gilbertsville, USA 

 

3.8  Antibiotics 

Ampicillin     Ratiopharm, Ulm, Germany 

Hygromycin     Clontech, Mountain View, USA 

Zeozin      Invitrogen, Karlsruhe, Germany 

 

3.9 Plasmids 

pCpG-mcs     Invivogen, San Diego, USA 

pGL3-Basic     Promega, Mannheim, Germany 

pCR®2.1-TOPO    Invitrogen, Karlsruhe, Germany 

 

3.10 E.coli strains 

PIR1  F-∆lac169 rpoS(Am) robA1 creC510 hsdR514 endA recA1 uidA(∆MluI)::pir-116 

TOP10  F-mcrA ∆(mrr-hsdRMS-mcrBC) Ф80lacZ∆M15 ∆lacΧ74 recA1 deoR araD139  

∆(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG 
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DH10ß  F-mcrA ∆(mrr-hsdRMS-mcrBC) Ф80lacZ∆M15 ∆lacΧ74 recA1 deoR araD139  

∆(ara-leu)7697 galU galK rpsL endA1 nupG 

 

3.11 Cell lines 

Human cell lines  

THP-1      Human acute monocytic leukemia (DSMZ no ACC 16) 

U937      Human histiocytic lymphoma (DSZM no ACC 5) 

KG-1      Human acute myeloid leukemia (DSZM no ACC 14) 

 

Insect cell lines 

Drosophila Schneider 2 (S2) cells  

 

3.12 Databases and software 

Agilent feature extraction 9.5.1   Agilent Technologies, Waldbronn, Germany  

BLAT      http://genome.brc.mcw.edu 

EpiTYPER 1.0.5    Sequenom, Hamburg, Germany 

Generunner version 3.05   Agilent Technologies, Waldbronn, Germany 

Genespring 10.0.2     

Perlprimer version 1.1.14   

PubMed      www.ncbi.nlm.nih.gov/entrez 

Spotfire decision site 7.0 

UCSC Genome. Browser    www.genome.ucsc.edu 

 

Reference sequence: Genomic locations are based on the March 2006 human reference sequence 

(NCBI Build 36.1) that was produced by the International Human Genome Sequencing Consortium. 

 

The following databases were used to annotate genes associated with CpG islands that were either 

bound by general transcription factors (Sp1, NRF1 or YY1) or associated with a particular methylation 

status: 

Biological Process:  Functional groupings of proteins (Gene Ontology, 

http://www.geneontology.org/) 

Molecular Function: Mechanistic actions of proteins (Gene Ontology) 

Cellular Component:  Protein localization (Gene Ontology) 
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KEGG Pathways:  Groups of proteins in the same pathways 

(From KEGG, http://www.genome.jp/kegg/pathway.html) 

Interactions:  Groups of proteins interacting with the same protein (From NCBI Gene, 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene) 

Interpro:  Proteins with similar domains and features  

(Interpro, http://www.ebi.ac.uk/interpro/) 

Pfam:   Proteins with similar domains and features (Pfam, http://pfam.sanger.ac.uk/) 

SMART:  Proteins with similar domains and features 

(SMART, http://smart.embl-heidelberg.de/) 

Gene3D:  Proteins with similar domains and features 

(Gene3D Database, http://gene3d.biochem.ucl.ac.uk/Gene3D/) 

Prosite:  Proteins with similar domains and features 

(Prosite Database, http://ca.expasy.org/prosite/) 

PRINTS:  Proteins with similar domains and features (PRINTS Database, 

http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/index.php) 

Chromosome Location: Genes with similar chromosome localization 

miRNA Targets:  Genes targeted by similar miRNAs 

(miRBase target database http://microrna.sanger.ac.uk/) 

 

3.13 Statistical testing 

All statistical analysis of enrichment data (motifs or attributes) was performed using a 

cumulative hypergeometric distribution (or Fisher Exact test, referred to as the 

hypergeometric test). Statistical testing of differences in mRNA level distributions was done 

using the two-sided Mann–Whitney U test.
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4 Methods 

4.1  General cell culture methods 

For washing and harvesting, mammalian cells were centrifuged using the general cell 

program: 8 min, 300×g, 4°C. 

 

4.1.1 Cell line culture conditions and passaging 

Cells were cultured in RPMI 1640 (HyClone) or DMEM (Gibco) routinely supplemented with 

10% inactivated FCS, L-glutamine (2 mM), sodium pyruvate (1 mM), antibiotics (50 U/ml 

penicillin and 50 µg/ml streptomycin), 2 ml vitamins, non essential amino acids and 50 µM 

ß-mercaptoethanol. Media supplements were purchased from Gibco and Biochrome 

(L-glutamine), respectively. 

FCS was heat inactivated for 30 min at 56°C before use. Exceeding incubation times and 

higher temperatures should be avoided because heat sensitive growth factors could be 

damaged. Each batch of FCS as well as each RPMI batch was tested before use. 

Culturing of cells was performed at 37°C, with 5% CO2 and 95% relative humidity in an 

incubator. U937, THP-1 and KG-1 cells grow in suspension and were split 1:4 to 1:8 in fresh 

medium every 2-4 days.  

 

4.1.2 Culturing of stably transfected Drosophila S2 cells and 

expression of the methyl binding polypeptide MBD-Fc 

MBD-Fc stands for a fusion protein consisting of the methyl-CpG binding domain (MBD) of 

human MBD2 (methyl-CpG binding domain protein 2) and the Fc-tail of human IgG1. The 

MBD-Fc vector was stably transfected into Drosophila S2 cells using the Effectene 

transfection reagent (Qiagen) and hygromycin selection. A detailed description of design and 

generation of the fusion protein can be found in Gebhard, 2005 and Gebhard et al., 2006b. 

 

Expansion in cell culture bottles 

MBD-Fc S2 cells were seeded at a density of 1-2×106 cells/ml in Insect-Xpress medium 

(Lonza) including 50 U/ml penicillin and 50 µg/ml streptomycin but without FCS at 21-23°C. 
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400 µg hygromycin was added for selection of plasmid containing cells. Cells were splitted 

once a week, without exceeding 10×106 cells/ml. 

 

Protein production 

Cells were transferred into 2,000 ml roller bottles and cultured at a density of 4×106 cells/ml 

in up to 400 ml Insect-Xpress medium supplemented with penicillin, streptomycin and 

hygromycin as described above. Cells should not exceed a density of 10×106 cells/ml. For 

large-scale protein production, after 3-5 days the culture media was exchanged and 

5×106 cells/ml were seeded in 400 ml Insect-Xpress medium. Instead of hygromycin, 0.5 mM 

CuSO4 was added to stimulate the metal inducible promoter of the used vector. The MBD-Fc 

containing culture medium was harvested after 4 days like described in section 4.2.1. For 

recovery, cells were cultured again in Insect-Xpress medium containing standard antibiotics 

and selection antibiotic for 3-5 days. The cycle of production was repeated until protein 

quality and amount clearly decreased. 

 

4.1.3 Assessing cell number and vitality 

The number of viable and dead cells was determined by Trypan blue exclusion. Cell 

suspensions were diluted with Trypan blue solution and then counted in a Neubauer 

haemocytometer. Dead cells appear blue since the blue stain is able to enter the cytoplasm. 

The concentration of viable cells was then calculated using the following equation: 

Number of viable cells/ml  C=N×D×10
4 

 
 N:  average of unstained cells per corner square (1 mm containing 16 sub-squares) 
 
 D: dilution factor 
 

Required solutions and materials:  

 Trypan blue solution:  0.2% (w/v)  Trypan blue in 0.9% NaCl solution 
 
 Neubauer haemocytometer slide with coverslip  

 

4.1.4 Freezing and thawing cells 

Cells were harvested and resuspended at 5-10×106 cells/ml in 800 µl ice cold medium, 

including 10% FCS. After inverting the mix and transferring it into cryo-vials, 160 µl DMSO 
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(10% final) and 640 µl FCS (40% final) were added and the tubes were rapidly inverted to 

mix cells properly. To allow gradual freezing at a rate of 1°C/min, the cryo-vials were placed 

in isopropanol-filled cryo-containers (Nalgene) for two hours, then transferred to -80°C for 

48 h. For long-term storage, samples were transferred in liquid nitrogen (-196°C).  

 

4.1.5 Mycoplasma assay 

Cell lines were routinely checked for mycoplasma contamination by the MycoAlert® 

Mycoplasma detection assay (Cambre, Rockland, USA) according to the manufacturer’s 

instructions. 

4.1.6 Isolation of human monocytes 

Peripheral blood mononuclear cells (PB-MNCs) were separated by leukapheresis of healthy 

donors (Graw et al., 1971), followed by density gradient centrifugation over Ficoll/Hypaque 

(Johnson et al., 1977). Monocytes were then isolated from MNCs by counter current 

centrifugal elutriation (Sanderson et al., 1977). 

Elutriation was performed in a J6M-E centrifuge equipped with a JE 5.0 elutriation rotor and a 

50 ml flow chamber (Beckman, Munich, Germany). After sterilizing the system with 6% H2O2 

for 20 min, the system was washed with PBS. Following calibration at 2,500 rpm and 4°C 

with Hanks BSS, MNCs were loaded at a flow rate of 52 ml/min. Fractions were collected 

and the flow-through rate was sequentially increased according to Table 4-1. 

 
Table 4-1 Elutriation parameter and cell types 

Fraction Volume (ml) Flow rate (ml/min) Main cell type contained 

Ia 1000 52 platelets 

Ib 1000 57 

B- and T- lymphocytes, NK cells 

IIa 1000 64 

IIb 500 74 

IIc 400 82 

IId 400 92 

III 800 130 monocytes 

 

Monocytes represent the largest cells within the MNCs and are therefore mainly obtained in 

the last fraction. Monocytes were >85% pure as determined by morphology and CD14 

antigen expression. Low amounts of monocytes may be also detected in the IId fraction. 

Monocytes (fraction III) were centrifuged (8 min, 300×g, 4°C), resuspended in RPMI culture 

medium and counted. Monocyte yields were donor-dependent, typically between 10-20% of 
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total MNCs. Supernatants of monocyte cultures were routinely collected and analyzed for the 

presence of interleukin-6 (IL-6), which was usually low, indicating that monocytes were not 

activated before or during elutriation. 

 

4.2 General protein biochemical methods 

4.2.1 Purification of the recombinant protein MBD-Fc 

4.2.1.1 Dialysis 

The MBD-Fc containing culture supernatant (see section 4.1.2) was harvested by 

centrifugation of the cells at 320×g for 10 min at 4°C. To remove (dead) cells and debris the 

supernatant was centrifuged at 2,000×g for 20 min at 4°C before the final centrifugation step 

of 15,000×g for 1 hour at 4°C to get rid of smaller debris. Afterwards the supernatant was 

dialyzed against 1×TBS (pH 7.4) for 3-4 days whereas the buffer was exchanged twice a 

day. 

 

Required buffers: 

 10×TBS pH 7.4   151.4 g  (500 mM) Tris 
     219.2 g  (1.5 M)  NaCl 
     9.3 g  (10 mM) EDTA 
     125 mg  (0.05%)  NaN3 
     Add ddH2O to 2500 ml 

 

4.2.1.2 Affinity chromatography 

After dialysis the protein containing supernatant was purified and enriched using a ProteinA 

sepharose column (Amersham): 

The column (Pharmacia) was filled with 3 ml rProteinA sepharose beads (GE Healthcare, 

Uppsala, Sweden) in 1×TBS. After washing the column with 1×TBS, the dialyzed protein 

supernatant was loaded, followed by another washing step with 1×TBS. Constant flow rate of 

dialyzed cell culture supernatant was achieved using a peristaltic pump (Heidolph, 

Schwabach, Germany). Elution was performed in 1 ml fractions with elution buffer into 1.5 ml 

tubes each containing 50 µl neutralization buffer. The different fractions were measured 

using a Biophotometer (Eppendorf, Hamburg, Germany). The protein containing fractions 

(determined by a photometer) were combined and dialyzed against 1×TBS (as described 

above) using Slide-A-Lyzer Dialysis Cassettes (Pierce, Rockford, USA). 
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Regeneration was performed by washing the column with 3 M KCl and finally with 1×TBS, 

now prepared for another purification cycle or for storage at 4°C. 

 

Required buffers and solutions: 

 Elution buffer pH 3.0  2.9 g  (0.1 M)   Citric acid 
     Add ddH2O to 100 ml 
 
 Neutralization buffer pH 8.8 18 g  (1.5 M)  Tris 
     Add ddH2O to 100 ml 
 
 Recovering solution   22.4 g  (3.0 M)  KCl 
     Add ddH2O to 100 ml 

 

4.2.1.3 Conservation of the purified MBD-Fc 

To stabilize and preserve the protein, 0.2% gelatine and 0.05% NaN3 were added. The 

MBD-Fc fusion protein was now ready for further experiments or for long-term storage at 

4°C. 

 

4.2.1.4 Quantification and quality control of MBD-Fc 

Quality of each protein batch was assessed by SDS-PAGE (see section 4.2.2) followed by 

Coomassie staining (or Western Blot analysis as described in section 4.2.3) as well as by 

control-MCIp (see section 4.4.4). 

Protein concentration was determined relative to a BSA standard curve using a densitometer 

after SDS-PAGE. 

 

4.2.2 Discontinuous SDS-PAGE 

Protein samples were separated by using a discontinuous gel system. This technique 

separates proteins according to their electrophoretic mobility, which is besides other 

characteristics a function of the polypeptide chain length. A polyacrylamide gel is composed 

of stacking and separating gel layers that differ in salt and acrylamide (AA) concentration. 

For a sodium dodecyl sulfate (SDS) polyacrylamide (AA) gel electrophoresis (SDS-PAGE) 

the protein preparation was diluted 1:5 with H2O in a volume of 10 µl and supplemented with 

10 µl SDS sample buffer. Accordingly, a bovine serum albumin (BSA) standard curve was 

prepared containing four different dilutions comprising 1, 0.5, 0.25 and 0.125 mg/ml. All 

samples were incubated to 95°C for 5 minutes and subsequently loaded into a SDS-PAGE 
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assembly together with a pre-stained protein size standard (Bio-Rad Laboratories, Munich, 

Germany). 

 

Table 4-2 SDS-PAGE stock solutions 

Stock solution Separating gel Stacking gel 

Final AA concentration 13.5% 5% 

Stacking gel buffer - 25 ml 

Separating gel buffer 25 ml  

SDS 1 ml 1 ml 

Rotiphorese Gel 30 (30%) 45 ml 16.65 ml 

H2O adjust to 100 ml 

 

Table 4-3 SDS-PAGE gel mixture 

Stock solution Separating gel Stacking gel 

Separating gel stock solution 10 ml - 

Stacking gel stock solution - 5 ml 

TEMED 10 µl 5 µl 

Ammoniumpersulfate 10% freshly 
prepared 

50 µl 40 µl 

 

The separating gel was prepared the day before electrophoresis and overlaid with 

water-saturated isobutanol until it was polymerized. Isobutanol was exchanged for separating 

gel buffer diluted 1:3 with water and the gel was stored overnight at 4°C. The following day, 

the stacking gel was poured on top of the separating gel, and the comb was inserted 

immediately. After polymerization, the gel was mounted in the electrophoresis tank, which 

was filled with 1×Laemmli buffer. Protein samples were loaded and the gel was run with 

25 mA/110 volts until the sample buffer bands reached the surface of the stacking gel. Then 

the voltage was increased to 200 V and the gel was run for 2-4 h. Proteins were then 

resolved through the separating gel according to their size. 

 

Required buffers and solutions: 

 Separating gel buffer 90.83 g  (1.5 M)  Tris/HCl, pH 8.8 
    Add ddH2O to 500 ml 
  
 Stacking gel buffer 30 g  (0.5 M)  Tris/HCl, pH 8.8 
    Add ddH2O to 500 ml 
 
 SDS (10%)  10 g   (10%)  SDS 
    Add ddH2O to 500 ml 
  
 Ammonium persulfate 100 mg  (10%)  Ammonium persulfate 
 (APS)   Add ddH2O to 1 ml 
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 Laemmli buffer (5×) 15 g  (40 mM) Tris 
    21 g  (0.95 M) Glycine 
    15 g  (0.5%)  SDS 
    Add ddH2O to 3000 ml 

 

4.2.3 Western Blot analysis and immunostaining 

After separation by SDS-PAGE, proteins were blotted electrophoretically onto a PVDF 

membrane (Immobilon-P, Millipore) using a three-buffer semi-dry system and visualized by 

immunostaining using specific antibodies and the ECL detection kit. 

The membrane was cut to gel size, moistened first with methanol followed with buffer B and 

placed on top of three Whatman 3MM filter paper soaked with buffer A (bottom, on the 

anode) followed by three Whatman 3MM filter paper soaked with buffer B. The SDS-PAGE 

gel was then removed from the glass plates, immersed in buffer B and placed on top of the 

membrane. Another three Whatman 3MM filter papers soaked with buffer C were placed on 

top of the gel followed by the cathode. Air bubbles in between the layers had to be avoided. 

Protein transfer was conducted for 30 – 45 min at 0.8 mA/cm2 gel surface area. 

 

Required buffers: 

 Buffer A  36.3 g  (0.3 M)  Tris, pH 10.4 
    200 ml  (20%)  Methanol 
    Add ddH2O to 1000 ml 
 
 Buffer B  3.03 g  (25 mM) Tris, pH 10.4 
    200 ml  (20%)  Methanol 
    Add ddH2O to 1000 ml 
 
 Buffer C  5.2 g  (4 mM)  ε-amino-n-caproic acid, pH 7.6 
    200 ml  (20%)  Methanol 
    Add ddH2O to 1000 ml 
 

Blotted membranes were then blocked either with 5% milk in PBST for 1 h at RT then 

washed once for 5 min with PBST or TBST before incubation at RT for 1 h with the primary 

antibody. After washing three times 10 min with the appropriate washing buffer, the 

membrane was incubated for 1 h at RT with a horseradish-peroxidase (HRP)-coupled 

secondary antibody, detecting the isotype of the first antibody. Three washing steps of 

3×10 min preceded the visualization of bound antibody using the ECL kit. Blots were 

exposed to an autoradiography film (HyperfilmTM ECL, Amersham) for 5 seconds to 30 min 

depending on the signal intensity. 
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Required buffers and materials: 

 TBS (2×)  9.16 g  (20 mM) Tris /HCl, pH 7.4 
    35.1 g  (150 mM) NaCl 
    Add ddH2O to 2000 ml 
 
 TBST (1×)  500 ml  (1×)  TBS (2×) 
    1 ml  (0.1%)  Tween 20  
    Add ddH2O to 1000 ml 
 

4.2.4 Coomassie staining of SDS gels 

SDS-gels were tossed in ddH2O (three times, 5 min each) and subsequently incubated in the 

Coomassie solution for about 20 – 60 min. After washing overnight in ddH2O, proteins 

appear as blue bands on a transparent background. For documentation purposes the ready 

stained gel was scanned using a personal Densitometer SI (Molecular Dynamics). The gel 

image was loaded into the ImageQuant 5.0 software and protein bands were quantified using 

the BSA-standard curve as a reference. 

 

Required solution: 

 Coomassie Bio Safe Bio Rad, Munich, Germany 

 

4.3 General molecular biological methods 

4.3.1 Bacterial culture 

4.3.1.1 Bacterial growth medium 

E.coli strains were streaked out on solid LB-agar with specific antibiotics and grown overnight 

(O/N) at 37°C. Single colonies were then picked into liquid LB-medium and then incubated 

O/N with shaking at 200 rpm. 

 LB-medium: 10 g  NaCl 
   10 g  Bacto Tryptone (Difco) 
   5 g  Yeast extract 
   Add ddH2O to 1000 ml, autoclave 
 
 LB-agar plates: 15 g  Agar 
   10 g  NaCl 
   10 g  Bacto Tryptone (Difco) 
   5 g  Yeast extract 
   Add ddH2O to 1 l, autoclave, cool to 50°C and add the appropiate antibiotic. 
   Pour the agar solution into 10 cm Petri dishes, and store inverted at 4°C. 
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4.3.1.2 Transformation of chemically competent E.coli 

Chemically competent E.coli (50 µl) were thawed on ice, 1-25 ng plasmid DNA in 2-5 µl 

volume (e.g. 2 µl from TOPO-cloning) was added and the suspension was mixed gently and 

incubated on ice for 30 min. Cells were then heat-shocked in a water bath at 42°C for 30 s, 

immediately cooled on ice for 2 min and 250 µl SOC medium was added. To express the 

resistance, bacteria were incubated for 1 h at 37°C with shaking. For blue/white screening of 

insert-containing clones after transformation (in case of TOP10 cells), 40 µl of X-gal was 

dispersed on a prewarmed LB-plate prior to use and incubated at 37°C for additional 30 min. 

Afterwards 50-150 µl of the transformation reaction were plated and incubated at 37°C on 

LB-agar containing the antibiotic necessary for selection of transformed cells overnight. 

 

 SOC medium 20 g (2%)  BactoTrypton (Difco) 
   5 g (0.5%)  BactoYeastExtract (Difco) 
   0.6 g (10 mM) NaCl 
   0.2 g (3 mM)  KCl 
   Add ddH2O to 1000 ml, autoclave and add to the cooled solution: 
 
   10 ml (10 mM) MgCl2 (1 M), sterile filtered 
   10 ml (10 mM) MgSO4 (1 M), sterile filtered 
   10 ml (20 mM) Glucose (2 M), sterile filtered 
 
 X-gal  40 mg   X-gal (5-bromo-4-chloro-3-indolyl-ß-D-galactoside)
      In 1 ml DMF, store at -20°C protected from light 
 

4.3.1.3 Glycerol stock 

For long-term storage, bacteria were stored in 20% glycerol by adding 500 µl liquid culture to 

200 µl of 80% glycerol, mixing and freezing at -80°C. 

 

4.3.1.4 Plasmid isolation from E.coli 

To check if the isolated single E.coli colonies contained the correct plasmid, a DNA mini-prep 

was carried out using NucleoSpin® Plasmid Quick Pure Kit from Macherey-Nagel following 

the supplied instructions. Afterwards the plasmid constructs were sequenced. To isolate 

larger amounts of ultra pure DNA (100 µg) for transfection experiments, plasmids were 

isolated using the QIAGEN Plasmid Midi Kit for endotoxin-free midi-preps according to the 

manufacturer’s instructions. 
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4.3.2 Molecular cloning 

Direct cloning of PCR products was done using the TOPO-TA Cloning kit (Invitrogen) 

according to the manufacturer’s instructions. Alternatively, DNA fragments were 

PEG-precipitated and the precipitates as well as the cloning vector were digested with the 

appropriate restriction endonucleases (New England Biolabs or Roche). For directional 

cloning, restriction sites were introduced by adding the appropriate recognition sequences to 

the primer sequences. The cut fragments and the vector were gel-purified and combined in a 

10 µl ligation reaction with a 3- to 5-fold molar excess of insert to vector, using 25-50 ng of 

vector. Ligation was carried out overnight at 16°C with 1 U T4 DNA Ligase or alternatively 

5 min using a rapid ligation system. 2 µl of the reaction was then used to transform 

chemically competent E.coli (see section 4.3.1.2). 

Successful insertion of the fragment into the vector was controlled by preparing plasmid DNA 

from liquid cultures (see section 4.3.1.4). To control correct insertion and sequence integrity, 

plasmid constructs were sequenced using vector-specific primers. 

 

4.3.2.1 PEG precipitation 

To precipitate DNA from small volumes, e.g. PCR reactions or endonuclease digestion, one 

volume of PEG-mix was added to the DNA-containing solution, vortexed and incubated for 

10 min at RT. After centrifugation (10 min, 13,000 rpm, RT), the supernatant was discarded 

and the precipitated DNA was washed by carefully adding 200 µl 100% EtOH to the tube wall 

opposite of the pellet, followed by a centrifugation step (10 min, 13000 rpm, RT) and careful 

removal of the supernatant. The pellet was dried and resuspended in H2O at half to 

three-quarters of the initial volume. 

 PEG-mi x  26.2 g  (26.2%)  PEG 8000 
   20 ml  (0.67 M) NaOAc (3 M) pH 5.2 
   660 µl  (0.67 mM) MgCl2 (1 M) 
   Add ddH2O to 250 ml 

 

4.3.2.2 Restriction endonuclease digestion 

To verify the presence and orientation of plasmid insert, or to clone insert DNA into a 

plasmid, DNA was digested with appropriate restriction enzymes. Enzymes and their buffers 

were purchased from Roche or New England Biolabs (Germany). The digestion of plasmid 

DNA or PCR products was carried out using 10 U enzyme/1 µg DNA in 20 µl at 37°C for 
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2 hours. Digestion of genomic DNA was performed overnight with 1.5 U/µg DNA in 30 µl 

reaction volume (see section 4.3.3.4). 

 

4.3.2.3 CIAP treatment 

To prevent re-ligation of digested vectors, vector-ends were treated with CIAP (calf intestinal 

alkaline phosphatase, Roche) at 37°C for 30 min before gel extraction. 

 

4.3.2.4 Gel purification 

To purify DNA from analytical agarose gels, desired bands were excised under UV 

illumination and purified with the QIAEX II gel extraction kit (Qiagen) or NucleoSpin Extract II 

following the manufacturer’s instructions. 

 

4.3.2.5 Ligation reaction 

Restriction enzyme treated vectors and PCR products were ligated in a 10 µl reaction at a 

3- to 5-fold molar excess of insert to vector, using 25-50 ng of vector. Ligation was carried 

out overnight at 16°C with 1U T4 DNA ligase and 1 µl T4 DNA ligase buffer. 

 

4.3.2.6 Sequencing 

DNA sequencing was done by Geneart (Regensburg, Germany) with ABI sequencing 

technology based on the Sanger didesoxy method. Sequence files were analyzed and 

aligned with Generunner, Bioedit or with the Blat function of the UCSC genome browser. 

 

4.3.3 Preparation and analysis of DNA 

4.3.3.1 DNA preparation from normal cells 

Genomic DNA (gDNA) was isolated using the Qiagen Blood & Cell Culture DNA Midi Kit or, 

for smaller cell numbers, the Blood and Tissue Culture Kit (Qiagen). gDNA concentration 

was then determined with the NanoDrop spectrophotometer and quality was assessed by 

agarose gel electrophoresis. 
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4.3.3.2 DNA preparation from clinical samples 

Colorectal cancer samples were collected from 20 patients who underwent colon resection 

for biopsy-proven invasive colorectal adenocarcinoma at the University of Regensburg. The 

study was performed in agreement with the Institutional ethical review board of the University 

of Regensburg (05/003). The tissue was snap frozen and stored at –80°C (in cooperation 

with PD. Dr. W. Dietmeier, Department of Pathology). Each resection specimen was staged 

and graded by routine pathology analysis according to the TNM classification by the 

American Joint Committee on Cancer. DNA from frozen colon tissues was isolated using the 

PUREGENE™ DNA Purification Kit (Gentra, Minneapolis, USA) according to the supplier’s 

recommendation.  

Leukemic blasts and bone marrow cells from AML patients were collected during routine 

diagnostic bone marrow aspirations (in cooperation with Prof. Dr. G. Ehninger, TU Dresden). 

Patients had given informed consent to additional sample collection and analyses according 

to a protocol approved by the local ethical committee.  

 

4.3.3.3 Agarose gel electrophoresis 

The required amount of agarose as determined according to Table 4-4 was added to the 

corresponding amount of 1×TAE. The slurry was heated in a microwave oven until the 

agarose was completely dissolved. The ethidium bromide was added after cooling the 

solution to 50-60°C. The gel was cast and mounted in the electrophoresis tank and covered 

with 1×TAE. DNA-containing samples were diluted 4:1 with DNA loading dye (5×), mixed and 

loaded into the slots of the submerged gel. Depending on the size and the desired resolution, 

gels were run at 40-100 volts for 30 min to 3 h. 

 

Table 4-4 Agarose concentration for different separation ranges 

Efficient range of separation (kb) % agarose in gel 

0.1 – 2 2.0 

0.2 – 3 1.5 

0.4 – 6 1.2 

0.5 – 7 0.9 

0.8 - 10 0.7 

genomic DNA 0.5 
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Required buffers: 

 TAE (50×)  252.3 g  (2 M)  Tris 
    20.5 g   (250 mM) NaOAc/HOAc, pH 7.8 
    18.5 g  (50 mM) EDTA 
    Add ddH2O to 1 l 
 
 EDTA (0.5 M)  18.6 g  (0.5 M)  EDTA/NaOH, pH 8.0 
    Add H2O to 100 ml 
 
 DNA loading dye 500 µl  (50 mM) Tris/HCl, pH 7.8 
 DNA-LD (5×)  500 µl  (1%)  SDS (20%) 
    1 ml  (50 mM) EDTA (0.5 M), pH 8.0 
    4 ml  (40%)  Glycerol 
    10 mg  (1%)  Bromophenol blue 
    Add H2O to 10 ml, store at 4°C 
 
 1.0% Agarose  1 g  (1%)  Agarose (Biozym) 
 
Add 1×TAE to 100 ml and heat in a microwave until agarose is completely dissolved. 
Cool to 50°C and add 2.5 µl ethidium bromide (10 mg/ml) (Sigma). 

 

4.3.3.4 Restriction endonuclease digestion 

Digestion of genomic DNA was performed overnight with 1.5 U/µg DNA in 30 µl reaction 

volume. 

 

4.3.3.5 Quantification of DNA 

The exact DNA concentration was determined either by using the PicoGreen dsDNA 

Quantitation Reagent (Molecular Probes) or by using the NanoDrop spectrophotometer. 

 

4.3.4 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) allows in vitro synthesis of large amounts of DNA by 

sequence-specific polymerization of nucleotide triphosphates catalyzed by DNA polymerase 

(Mullis et al., 1986). The polymerization reaction is “primed” with small oligonucleotides that 

anneal to the template DNA strand through base pairing, giving the reaction its specificity by 

defining the borders of the segment to be amplified. Standard applications of PCR reactions 

are explained in the following and are used unless otherwise mentioned. More specialized 

applications are explained in more detail within the specific method. 
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4.3.4.1 Primer design 

Unless otherwise mentioned sequences for generating primers were extracted using the 

UCSC Genome Browser. In general primers were designed using PerlPrimer Software and 

controlled using PCR and BLAT functions of the UCSC Genome Browser and GeneRunner 

Software. Following settings were used to design primers: 

 

Primer Tm: 65-68°C 

Primer length: 18-28 bp 

Amplicon size: 80-150 bp 

 

4.3.4.2 Standard PCR for cloning or sequencing of gDNA 

PCRs were generally performed in “thick” PCR tubes with a reaction volume of 20-100 µl in a 

MJ research PTC 200 thermocycler (Biozym). The "calculated temperature" feature was 

used to decrease temperature hold times and additionally the lid was heated to 105°C to 

prevent vaporisation. The nucleotide sequences of the utilized primers are given in 

section 3.6. The primer annealing temperatures varied between 57 and 65°C. For a typical 

reaction the PhusionTM Hot Start High-Fidelity DNA Polymerase (Finnzymes; Espoo, 

Finnland) was used with the following basic reaction conditions: 

 

Component Volume Final concentration 

H2O Add 50 µl  

5×Phusion HF buffer 10 µl 1× 

10 mM dNTPs 1 µl 200 µM each 

Primer S 1 µl 0.2 µM 

Primer AS 1 µl 0.2 µM 

Template DNA X µl  

Phusion Polymerase (2 U/ml) 0.5 µl 0.02 U/µl 

 

 

General parameter settings for analytical PCR are summarized in Table 4-5 Reaction 

parameter for analytical PCR. 
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Table 4-5 Reaction parameter for analytical PCR 

PCR step Cycling parameter 

Initial melting 95°C, 2 min 

20 - 35 cycles 

Melting 95°C, 15 s 

Annealing 65°C, 15 s 

Extension 72°C, 60 s 

Final extension 72°C, 5 -7 min 

Cooling 15°C, forever 

 

4.3.4.3 Real-time PCR 

Quantitative real-time PCR (qPCR) enables both detection and quantification (as absolute 

number of copies or relative amount when normalized to DNA input or additional normalizing 

genes) of a specific sequence in a DNA sample. The procedure follows the general principle 

of polymerase chain reaction; its key feature is that the amplified DNA is quantified as it 

accumulates in the reaction in real-time after each amplification cycle. On the one hand, this 

method was used to quantify cDNA after reverse transcription (see section 4.3.5.3), on the 

other hand to quantitatively analyze genomic DNA after fragmentation by methyl-CpG 

immunoprecipitation (MCIp, see section 4.4.4) or after chromatin immunoprecipitation. PCR 

reactions were performed using the Quantifast SYBR Green Kit from Qiagen either in glass 

capillaries using the LightCycler system from Roche (total volume: 20 µl) or in 96-well format 

adapted to the Eppendorf Realplex Mastercycler EpGradient S (Eppendorf, Hamburg, 

Germany). The relative amount of amplified DNA is measured through the emission of light 

by the SYBR green dye when it is intercalated in double-stranded DNA. 

 Reaction setup:  5 µl SYBR Green mix (2×) 

    2 µl ddH2O 

    0.5 µl sense primer 

    0.5 µl antisense primer 

    2 µl DNA 

Table 4-6 Reaction parameter for real-time PCR 

PCR step Cycling parameter 

Initial melting 95°C, 5 min 

45 cycles 
Melting 95°C, 8 s 

Annealing & extension 60°C, 20 s 

Final cycle 
Melting 95°C, 15 s 

Annealing & extension 60°C, 15 s 

Melting curve 10 – 20 min 

 95°C, 15 s  
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To calculate amplification efficiency, a standard curve was generated for each primer pair by 

amplifying four dilutions (1:10, 1:50, 1:100, 1:1000). Realplex software calculated 

automatically DNA amounts based on the generated slope and intercept. Specific 

amplification was controlled by melting-curve analysis and data was imported and processed 

in Microsoft Excel 2007. All samples were measured in duplicates and normalized to the 

ß-actin or the HPRT housekeeper when analyzing mRNA expression. Duplicates of ChIP 

samples were normalized to the input or a not affected upstream control region. 

 

4.3.4.4 MassARRAY quantitative gene expression (QGE) analysis 

4.3.4.4.1 Principle 

The MassARRAY QGE method combines real-competitive PCR (rcPCR) with the iPLEX 

primer extension reaction, followed by matrix-assisted laser desorption/ionization 

time-of-flight mass spectrometry (MALDI-TOF MS). cDNA or MCIp-enriched DNA is spiked 

with a competitor, which matches the sequence of the targeted cDNA region in all positions 

except a single base and serves as an internal standard. DNA and competitor are 

PCR-amplified and then SAP (shrimp alkaline phosphatase) -treated to dephosphorylate 

remaining nucleotides. After SAP inactivation, a primer extension cocktail is added. The PCR 

products from the competitor and the cDNA now serve as templates for the iPLEX reactions. 

After primer extension, the products are desalted using clean resin and then dispended on a 

SpectroCHIP for subsequent MALDI-TOF MS. During mass spectrometric analysis, the peak 

areas of the distinct mass signals for the competitor and DNA extension products are 

resolved and peak area ratios are calculated. The QGE Analyzer software plots cDNA 

frequency versus competitor concentration for each assay and sample. DNA concentrations 

(expressed as LOGEC50 or EC50) are automatically calculated via non-linear regression 

analysis and represent the competitor concentration at which the allele frequencies of cDNA 

and competitor are equal (0.50:0.50). A workflow for conducting MassARRAY QGE 

experiments is shown in Figure 4-1. Detailed description of the method is given in the 

MassARRAY QGE-iPLEX Application guide (www.sequenom.com).  
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Figure 4-1 Schematic outline of the MassARRAY QGE process 
cDNA or MCIp-enriched DNA is spiked with a synthetic DNA molecule (competitor), which matches the sequence 
of the targeted cDNA region in all positions except a single base and serves as internal standard. The 
cDNA/competitor is PCR-amplified and subjected to a SAP treatment. After inactivation of the SAP, a primer 
extension cocktail is added. The PCR products from the competitor and the cDNA now serve as templates for the 
iPLEX reactions. After primer extension, the products are desalted using clean resin and then dispended on a 
SpectroCHIP for subsequent MALDI-TOF MS (www.sequenom.com). 

 

4.3.4.4.2 Protocol 

Primer and competitive template designs were created using the MassARRAY QGE Assay 

Design software v1.0 (Sequenom, San Diego, CA). Preparing of the competitor plates, PCR, 

SAP addition, iPLEX reaction, desalting of the iPLEX reaction and MALDI-TOF analysis were 

performed as described in the Sequenom protocols. Raw data were then processed using 

the MassARRAY QGE Analyzer software v3.4. 

 

4.3.4.5 Nested PCR for quantitative methylation analysis 

Methylation analysis of specific DNA fragments was performed using a nested PCR after 

bisulfite treatment of genomic DNA (see section 4.4.3). 10 µl of bisulfite-treated DNA were 
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used for the first nested PCR reaction, generated with an outer primer pair. Afterwards the 

PCR products are used as a template for a second PCR using a different set of primers 

inside of the first PCR product (inner primer pair). The reaction was performed as follows: 

 

Components 1st PCR 2nd PCR 

Bisulfite DNA 10 µl  

DNA from 1
st
 PCR  0.5 µl 

10×Taq-Buffer 5 µl 5 µl 

dNTPs (10 mM each) 1 µl 1 µl 

Out S (10 µM) 2 µl  

Out AS (10 µM) 2 µl  

In S (10 µM)  2 µl 

In AS (10 µM)  2 µl 

Taq 0.5 µl  

FastStart-Taq  0.5 µl 

H2O Ad 50 µl Ad 50 µl 

 
 
Table 4-7 Reaction parameter for nested PCR 

step 1st PCR  2nd PCR 

 Temp Time cycle  Temp Time cycle 

Initial denaturation 93°C 5 s 1  94°C 3 min 1 

Denaturation 
Annealing 
Extension 

93°C 
55°C 
72°C 

15 s 
15 s 
70 s 

 
30 
 

 
94°C 
55°C 
72°C 

15 s 
15 s 
80 s 

 
30-35 
 

 

 

Final extension 72°C 5 min 1  72°C 5 min 1 

 

After the second amplification reaction, products were cloned into a TOPO vector and 

transformed in TOP10 cells (one shot chemical transformation) (see section 4.3.1.2). After 

preparation of plasmid DNAs, samples were then sent to Entelechon or Geneart for 

sequencing. 

 

4.3.5 Preparation and analysis of RNA 

4.3.5.1 Isolation of total RNA 

Total RNA was isolated using the Qiagen RNeasy Midi, Mini or Micro Kit according to the 

available number of cells. RNA concentration was then determined with the NanoDrop 
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spectrophotometer and quality was assessed by agarose gel electrophoresis or using the 

Agilent Bioanalyzer according to the manufacturer’s instructions. 

 

4.3.5.2 Formaldehyde agarose gel 

The agarose was dissolved in MOPS/H2ODEPC by heating in a microwave oven and cooled to 

60°C. Formaldehyde was added while stirring the solution under a fume hood and the gel 

was cast, mounted in an electrophoresis tank and overlaid with 1×MOPS as electrophoresis 

buffer. RNA samples were heated to 37°C for 30 min to control RNase contamination and 

placed on ice afterwards. Samples were subsequently diluted with four volumes RNA loading 

buffer (1:4), denatured for 20 min at 65°C and briefly incubated on ice. Following 

centrifugation, the samples were loaded into the gel slots. Gels were run at 40-60 V. 

 

Required buffers 

 MOPS (20×)  42 g (0.4 M)  MOPS/NaOH, pH 7.0 
    4.1 g (100 mM) NaOAc 
    3.7 g (20 mM) EDTA 
    Add H2ODEPC to 500 ml, store in the dark 
 
 RNA loading buffer 10 ml (50%)  Formamide, deionized 
    3.5 ml (2.2 M)  Formaldehyde (37%) 
    1 ml (1×)  MOPS (20×) 
    0.8 ml (0.04%)  Bromophenol blue (1% in H2O) 
    0.2 g (1%)  Ficoll 400, Pharmacia (dissolve in 2 ml H2O) 
    Add H2ODEPC to 20 ml, store in 1 ml aliquots at -20°C 
 
    Add 5 µl/ml ethidium bromide (10 mg/ml) before use 
 

4.3.5.3 Reverse transcription PCR (RT-PCR) 

To quantify mRNA transcripts of genes, total RNA was reverse transcribed using the MMLV 

reverse transcriptase (Promega, Germany) combined with random decamers (Ambion, 

Germany) in a total reaction volume of 20 µl. 

 Reaction setup: : 1 µg Total RNA 
    1 µl Random decamers 
    1 µl  dNTPs (10 pmol/ml) 
    Add H2OUSB 

 
    Incubate for 5 min at 65°C, cool on ice and centrifuge 
 
    4 µl  M-MLV Buffer (5×)  
    Mix and incubate for 2 min at 42°C 
 
    1 µl M-MLV Reverse transcriptase 
    Incubate for 50 min at 42°C followed by 15 min at 70°C 
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The resulting cDNA was then quantified with specific primers by real-time PCR (see section 

4.3.4.3). 

 

4.3.5.4 Whole genome gene expression 

4.3.5.4.1 4 × 44K Agilent whole human genome expression array 

Labeling, hybridization and scanning of high quality RNA were performed using the Agilent 

Gene Expression system according to the manufacturer’s instructions. In brief, 200 ng to 

1000 ng high-quality RNA were amplified and Cyanine 3-CTP labeled with the One colour 

Low RNA Input Linear Amplification Kit from Agilent. Labeling efficiency was controlled using 

the NanoDrop spectrophotometer and 1.65 µg labeled cRNA was fragmented and hybridized 

on the whole human genome expression array (4 × 44K, Agilent). After 17 hours of 

hybridization at 65°C, the microarrays were washed and subsequently scanned with an 

Agilent scanner. Data were then extracted with Feature Extraction 9.5.1 software (GE1 

v5_95_Feb07 protocol, Agilent) and finally analyzed using GeneSpring G 7.3.1 software 

(Agilent). To validate microarray data, several genes were selected and verified by RT-PCR 

followed by qPCR (see sections 4.3.5.3 and 4.3.4.3). 

 

4.3.5.4.2 Affymetrix microarray analysis 

RNA from KG-1, U937, and THP-1 cells as well as from freshly isolated human blood 

monocytes of healthy donors were alternatively (formerly) analyzed using Affymetrix 

HG-U133_Plus_2 arrays. Hybridization, cRNA labeling and data handling was done by the 

KFB (Regensburg). 

 

4.3.6 ChIP-on-chip 

Chromatin immunoprecipitation (ChIP) is a method to investigate interactions between 

proteins and DNA in vivo. Therefore DNA is covalently bound to proteins with formaldehyde, 

fragmented by sonication and precipitated with suitable antibodies. Hereafter, the covalent 

cross-links are broken up to free the precipitated DNA. The quality of each ChIP was 

controlled at known target sites by qPCR. If the ChIP was successful the fragments were 

amplified with a ligation-mediated PCR (LM-PCR, see section 4.3.6.2), fluorescence-labeled 

and hybridized on a microarray (ChIP-on-chip, microarray handling see section 4.4.5) against 

a fractional amount of the input to correct background noise. This approach allows the 
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identification of binding sites of DNA-binding proteins in all areas covered on the microarray 

platform. 

 

4.3.6.1 Chromatin immunoprecipitation (ChIP) 

Preparation of cross-linked chromatin was performed as described previously with some 

modifications. In summary, 2 million cells were used per immunoprecipitation. The cells were 

treated with 1% formaldehyde solution for 10 min at room temperature and quenched by 

0.125 M glycine. After washing with PBS including 1 mM PMSF, 2×106 cells were 

resuspended in 50 µl lysis buffer 1A (L1A: 10 mM, HEPES/KOH, pH 7.9, 85 mM KCl, 1 mM 

EDTA, pH 8.0) and lysed by adding 50 µl lysis buffer 1B (L1A + 1% Nonidet P-40) for 10 min 

on ice. Note that lysis buffers were supplemented with phosphatase inhibitors (50 mM 

ß-glycerophosphate and 1 mM Na2OV4) when phosphorylated proteins had to be 

precipitated. The lysate was centrifuged (700×g, 5 min), the supernatant discarded and the 

nuclei were resuspended in 400 µl L2. If more cells were available, up to 20×106 cells were 

treated with the same procedure to concentrate the chromatin. Cross-linked chromatin was 

sheared to an average DNA fragment size around 400 – 600 bp using a Branson Sonifier 

250 (Danbury, CT). The sonicated lysate was cleared by centrifugation (13,000 rpm, 5 min, 

4°C) and the supernatant was transferred into a new 1.5 ml tube. To monitor successful 

fragmentation of the DNA an aliquot was taken for agarose gel analysis (which was 

incubated overnight with 200 mM NaCl at 65 °C to reverse the formaldehyde cross-links and 

purified with the QIAquick PCR purification kit (Qiagen)) and a 5 % volume aliquot of the 

lysate was kept as the input. To pre-clear the lysate 50 µl/precipitation sepharose CL-4B 

beads were washed twice with TE pH 8.0, filled up with dilution buffer to the previous volume 

and incubated with 25 µl 20% BSA and 4 µl glycogen per ml CL4Beads on a rotator for a 

minimum of 2 hours at room temperature. The lysate was diluted 1:1.5 with DB and 50 µl of 

the CL-4B beads/ IP were added, rotating for 2 hours at 4 °C. 

Following this the pre-cleared lysate was recovered by centrifugation (13,000 rpm, 5 min, 

4°C) and 200 µl supernatant for each IP was transferred in a new 0.5 ml PCR tube. 

Antibodies were added (2-5 µg each, depending on the used cell numbers) and incubated on 

a rotator at 4 °C overnight. 

To bind the antibody complexes to beads, 55 µl nProtein A sepharose beads per IP were 

washed twice with TE pH 8.0, filled up to the previous volume with DB and blocked with 

0.4 µl glycogen and 2.5 µl BSA (20%) per 100 µl beads overnight on a rotator at 4°C. Then 

50 µl of the blocked beads were added to the antibody complexes, rotated at 4°C for 2 hours, 

centrifuged (4,000 rpm, 5 min, 4 °C) and the supernatant was discarded. The beads were 

transferred on Millipore Ultrafree-MC columns and washed twice with WBI, WBII, WBIII and 
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three times with TE pH 8.0, shaking the beads for 5 minutes in between. The DNA was 

eluted in two steps by adding 100 µl EB each, incubating for 20 minutes and 10 minutes 

respectively, shaking up the beads every 5 minutes. 200 µl EB was added to the input as 

well, and all samples were incubated overnight at 65 °C with added Proteinase K (0.5 µg/µl 

final concentration, Roche) to reverse the cross-links. RNase (0.33 µg/µl, Qiagen) digestion 

for 2 hours at 37 °C degraded RNA that could interfere with downstream applications. Finally, 

the samples were purified with the QIAquick PCR purification kit following the manufacturer’s 

instructions with small variations: binding buffer PB was incubated for 30 minutes, binding 

DNA to the column by centrifugation was carried out at 10,000 rpm and elution was done 

with 100 µl pre-warmed elution buffer EB. 

 

Required buffers and solutions: 

 Glycine    9.85g (2.625 M)  Glycine 
     Ad 50 ml with ddH2O 
 
 Cell Buffer Mix   20 µl (10 mM)  HEPES / KOH (1 M), pH 7.9 
     57 µl (85 mM) KCl (3 M) 
     4 µl  (1 mM)  EDTA (0.5 M, pH 8.0) 
     Ad 1.98 ml with ddH2O 
     
     Add just prior to use: 
     20 µl (1 mM)  PMSF (100 mM in Iso-prop, nostalgia) 
     2 µl (1 µg/ml) Pepstatin (1 µg/µl) 
     2 µl (2 µg/ml) Aprotinin (2 µg/µl) 
 
 Nuclear Lysis Buffer (L2) 100 µl (50 mM) Tris/HCl (1 M), pH 7.4 @ 20°C 
     100 µl (1%)  SDS (20%) 
     33.3 µl (0.5%)  Empigen BB (30%)  
     40 µl (10 mM)  EDTA (0.5 M), pH 8.0 
     Ad 1.98 ml with ddH2O 
       
     Add just prior to use: 
     20 µl (1 mM)  PMSF (100 mM in Iso-prop, nostalgia) 
     2 µl (1 µg/ml) Pepstatin (1 µg/µl) 
     2 µl (2 µg/ml) Aprotinin (2 µg/µl)   
 
 Dilution Buffer (DB)  50 µl (20 mM) Tris/HCl (1 M), pH 7.4 @20°C 
     50 µl (100 mM) NaCl (5 M) 
     10 µl (2 mM)  EDTA (0.5 M, pH 8.0) 
     125 µl  (0.5%)  Triton X-100 (10%) 
     Ad 2.47 ml with ddH2O 
 
     Add just prior to use: 
     25 µl (1 mM)  PMSF (100 mM in Iso-prop, nostalgia) 
     2.5 µl (1 µg/ml) Pepstatin (1 µg/µl) 
     2.5 µl (2 µg/ml) Aprotinin (2 µg/µl) 
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 Wash Buffer I (WB I)  200 µl (20 mM) Tris/HCl (1 M), pH 7.4 @ 20°C 
     300 µl (150 mM) NaCl (5 M) 
     50 µl (0.1%)  SDS (20%) 
     1 ml (1%)  Triton X-100 (10%) 
     40 µl (2 mM)  EDTA (0.5 M, pH 8.0) 
     To 10 ml with ddH2O 
 
 Wash Buffer II (WB II)  200 µl (20 mM) Tris/HCl (1 M), pH 7.4 @ 20°C 
     1 ml (500 mM) NaCl (5 M) 
     40 µl   SDS (20%) 
     1 ml (1%)  Triton X-100 (10%) 
     40 µl (2 mM)  EDTA (0.5 M, pH 8.0) 
     To 10 ml with ddH2O 
 
 Wash Buffer III (WB III)  100 µl (10 mM) Tris/HCl (1 M), pH 7.4 @ 20°C 
     250 µl (250 mM) LiCl (10 M) hard to dissolve, try 2.5 M 
     1 ml (1%)  NP-40 (10%) 
     1 ml (1%)  Deoxycholate (10%) 
     20 µl (1 mM)  EDTA (0.5 M, pH 8.0) 
     To 10 ml with ddH2O 
 
 Elution Buffer (EB)  450 µl  (0.1 M)  NaHCO3 (1M) 
     225 µl (1%)  SDS (10%) 
     To 4.5 ml with ddH2O 

 

4.3.6.2 LM-PCR 

Ligation mediated PCR (LM-PCR) was used to amplify the chromatin immunoprecipitated 

DNA. Adaptors are ligated to all fragments in the precipitation, and primers specific for these 

adaptors are used to amplify all fragments independent of their sequences. All reagents were 

purchased from New England Biolabs (NEB) unless otherwise mentioned. 

 

To prepare the 60 mM linker, 10 ml Tris-HCl (1 M) pH 7.9, 15 µl oligo JW102_sticky and 

15 µl oligo JW103 (160 µM each, Metabion) were mixed and incubated in a thermocycler 

with the following program:  

 

   Step 1   95°C   5 min 
   Step 2   70°C   1 min 
   Step 3   Ramp down to 4°C  
      (0.4°C /min) 
   Step 4   4°C   HOLD  

 

To start, the overhangs were converted into phosphorylated blunt ends, using T4 DNA 

polymerase, E.coli DNA Pol I large fragment (Klenow polymerase), and T4 polynucleotide 

kinase (PNK). The 3’ to 5’ exonuclease activity removes 3’ overhangs, the polymerase 

activity fills in the 5’ overhangs and the PKN adds the phosphate group to the 3’ end. 
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ChIP enriched DNA (about 10 ng) was brought to a volume of 40 µl with ddH2O. Then 10 µl 

of the reaction mix was added: 

 

T4 DNA Ligase buffer with 10 mM ATP     (5 µl) 
dNTP mix        (2 µl) 
T4 DNA polymerase       (1 µl) 
Klenow DNA polymerase diluted with water to 1 U/µl  (1 µl) 
T4 PNK        (1 µl) 

 

The mixture was incubated in a thermocycler for 30 minutes at 20°C, then purified with the 

QIAquick PCR purification kit (Qiagen) and finally eluted in 34 µl elution buffer (EB). The 

eluate was then incubated with 1 µl of Klenow fragment (3’ to 5’ exo minus), 5 µl NEB 

buffer II and 10 µl dATP (1 mM) for 30 minutes at 37 °C, followed by clean-up with the 

MinElute kit (Qiagen), eluting in 10 µl EB. In this process an adenine overhang was added to 

the DNA fragments’ 3’ ends to facilitate the ligation with the adapters, which have a single “T” 

base overhang at their 3’ site (see oligo JW102_sticky). DNA Quick-Ligase buffer 2 (15 µl), 

linker 60 µM preparation (1 µl) and DNA Quick-Ligase (4 µl) were mixed with the DNA 

sample and incubated for 15 minutes at room temperature. The reaction was cleaned up with 

the QIAquick PCR purification kit (Qiagen) and eluted in 25 µl EB. For large-scale 

amplification of IP samples two buffer mixes were prepared: 

 

Mix A: 

Stock 1× Mix Final Concentration 

5×Phusion polymerase buffer 8.00 µl 1× 

dNTP mix (10 mM each) 1.25 µl 250 µM 

Oligo JW102_sticky (160 µM) 0.31 µl 1 µM 

Betaine 5.44 µl  1.5 M 

Total 15µl  

 

Mix B: 

Stock 1× Mix Final Concentration 

5×Phusion polymerase buffer 2.00 µl 1× 

Phusion Polymerase(2 U/µl) 0.50 µl 1 U 

Betaine 7.50 µl 1.5 M 

Total 10.00 µl  
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15 µl of Mix A was added to the sample and on a thermocycler the following program was 

started: 

Table 4-8 Reaction parameter for 1st LMPCR 

PCR step Cycling parameter 

Initial heating 55°C, 4 min 

End-filling 72°C, 30 s 

Initial melting 98°C, 30 s 

15 cycles 

Melting 98°C, 10 s 

Annealing 68°C, 30 s 

Elongation 72°C, 30 s 

Final elongation 72°C, 5 min 

Cooling 4°C, forever 

 

Midway through step 1 (initial heating) the program was paused and 10 µl Mix B was added 

to “hot start” the reaction. The PCR product was diluted with 475 µl ddH2O, and 5 µl were 

used for a second expansion using the following mixture: 

 

Stock 1x Mix Final concentration 

5× Phusion polymerase buffer 10.00 µl 1× 

dNTP mix (10 mM each) 1.25 µl 250 µM 

Oligo JW102_sticky (160 µM) 0.31 µl 1 µM 

ddH2O 19.94 µl  

Phusion Polymerase (2 U/µl) 
HOT START 

0.50 µl 1 U 

PCR dilution (first amplification) 5 µl  

Betaine 13 µl 1,5 M 

Total volume 50 µl  

  

 

The PCR program for the second expansion was: 

Table 4-9 Reaction parameter for 2nd LMPCR 

PCR step Cycling parameter 

Initial melting 98° C, 30 s 

25 cycles 

Melting 98°C, 10 s 

Annealing 68°C, 30 s 

Elongation 72°C, 30 s 

Final elongation 72 °C, 5 min 

Cooling 4°C, forever 

 



 Methods 

 - 63 -    

The product was cleaned up with the QIAquick PCR purification kit (Qiagen) and eluted in 

50 µl EB. DNA concentration was measured with the NanoDrop instrument (Peqlab). 

 

4.3.6.3 Labeling and hybridization 

Amplified ChIP material and genomic input were labeled with Alexa Fluor 5-dCTP and Alexa 

Fluor 3-dCTP, respectively. Comparative ChIP-versus-input hybridizations on CpG island 

oligonucleotide microarrays (Agilent) were performed using the recommended, stringent 

protocol (see section 4.4.5.2). 

 

4.4 Analysis of DNA methylation 

4.4.1 In vitro methylation of DNA 

10-20 µg plasmid or genomic DNA were incubated with 2.5 U/µg Sss I methylase in the 

presence of 160 µM S-adenosylmethionine (SAM; methyl group donor) for 4 hours at 37°C. 

After 2 hours the reaction was supplied with another 160 µM SAM. Simultaneously, control 

reactions were treated as above but without addition of SAM and methylating enzymes. After 

the methylation reaction, DNA was purified using the NucleoSpin® Plasmid Quick Pure Kit 

from Macherey-Nagel or by phenol-chloroform extraction followed by ethanol precipitation 

and finally quantified using a NanoDrop spectrophotometer. Completeness of methylation 

was controlled by digesting both methylated and unmethylated DNA using the 

methylation-sensitive restriction enzymes Hha I and Hpa II. 

 

4.4.2 Generation of an in vitro partially methylated gene locus 

A fragment of the CpG island promoter of CPM was subcloned into the CpG-free plasmid 

pCpG-mcs (Invivogen). The plasmid was linearized with Ase I to generate a fragment of the 

CpG island promoter flanked with CpG-less sequences on either side. The DNA fragment 

was then treated with Sss I (New England Biolabs) and decreasing amounts of the methyl 

donor S-adenosylmethionine (160 µM, 40 µM, 10 µM, 2.5 µM, 0.7 µM). Samples were 

combined to obtain a mixture of DNA fragments with varying density of CpG methylation. 
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4.4.3 Bisulfite sequencing 

A common method for analyzing cytosine methylation is bisulfite conversion of DNA followed 

by sequencing. Cytosine-derivates undergo reversible reactions with bisulfite yielding a 

5,6-Dihydro-6-sulfonate, which deaminates spontaneously. After that the sulfate is eliminated 

under alkaline conditions, leaving uracil.   

5’-methylcytosine is not affected by this reaction. Modification of gDNA with sodium bisulfite, 

leading to conversion of unmethylated cytosine residues into uracil while not affecting 

5-methylcytosine (Frommer et al., 1992a), was performed using the Qiagen EpiTect Bisulfite 

Kit as recommended by the manufacturer. 10 µl of bisulfite-treated DNA were used for the 

nested PCR reaction (see section 4.3.4.5). 

 

4.4.4 Methyl-CpG immunoprecipitation (MCIp) 

The MCIp is a method that allows the rapid and sensitive screening of DNA methylation. The 

application consists of the binding of methylated DNA fragments to the bivalent, antibody-like 

fusion protein MBD-Fc (a methyl binding domain fused to an Fc-tail) in an 

immunoprecipitation-like approach. The affinity to DNA is increased with the density of 

methylated CpGs and lowered with higher salt concentrations in the buffer. Washing with 

buffers containing increasing NaCl concentrations and collection of according flow-throughs 

leads to the fragmentation of DNA depending on the methylation status of CpG 

dinucleotides. Enriched methylated DNA fragments can be efficiently detected on single 

gene level or on a genome-wide level. The recombinant MBD-Fc protein was produced as 

previously described (Gebhard, 2005; Gebhard et al., 2006b; Gebhard et al., 2006a) (see 

also section 4.1.2) and MCIp was performed with slight modifications. A schematic 

representation is given in Figure 5-1 and Figure 5-8. 

 

Required buffers and solutions: 

 

TME (10×) 200 mM Tris-HCl (1 M) pH 8.0 

 20 mM MgCl2 (1 M) 

 5 mM EDTA (500 mM) 

   

Buffer A 1× TME (10×) 

(300 mM NaCl) 300 mM NaCl (5 M) 

 0.1% NP-40 (10%) 
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Buffer X 1× TME (10×) 

(300 mM NaCl) 300 mM NaCl (5 M) 

 0.1% NP-40 (10%) 

   

Buffer B-G 1× TME (10×) 

 0.1% NP-40 (10%) 

 350 (B), 400 (C), 450 (D), 500 (E), 600 (F), 1000 mM (G) 

 

4.4.4.1 DNA fragmentation 

Genomic DNA was either restriction digested with Mse I or sonicated to a mean fragment 

size of 350-400 bp. Before sonication gDNA was initially sheared using a 20 gauge needle 

attached to a 2 ml syringe (BD) before quantification using the NanoDrop ND 1000 

spectrophotometer (Peqlab). Sonication was carried out with the Branson Sonifier 250 

(Danbury) using the settings shown below. After sonication the sample was immediately 

cooled on ice. The fragment range was controlled using agarose gel electrophoresis. 

 

For 5 µg DNA in 500 µl TE Duty cycle 30% 

 Output 3 

 Sonication time 60 s 

   

For 2.5 µg DNA in 500 µl TE Duty cycle 80% 

 Output 0.5 

 Sonication time 2×30 s 

 

4.4.4.2 Binding MBD2-Fc to beads 

For small-scale reactions, typically 13-18 µg purified MBD-Fc protein per 40 µl nProtein 

A-Sepharose 4 Fast Flow beads (Amersham Biosciences) were rotated in 2 ml TBS 

overnight at 4°C in order to bind the Fc-part of the protein to the beads. For large-scale 

reactions 60-80 µg MBD-Fc protein was bound to 150-200 µl nProtein A–Sepharose 4 Fast 

Flow beads. On the next day, the MBD2–Fc-bead complexes (40 µl/assay) were transferred 

and dispersed equally into 0.5 ml (for large-scale reaction: 2 ml) Ultrafree-MC centrifugal 

filter devices (Millipore) and spin-washed twice with buffer A. 

 

 

 



Methods 

- 66 - 

4.4.4.3 Enrichment of highly methylated DNA 

For small-scale reactions digested or sonicated DNA (150-300 ng) was added to the washed 

MBD2–Fc beads in 350 µl buffer and rotated for 3 h at 4 °C. Beads were centrifuged to 

recover unbound DNA fragments (300 mM fraction) and subsequently washed twice with 

200 µl and 150 µl of buffers containing increasing NaCl concentrations (350-1000 mM, see 

buffers B-G). The flow-through of each washing step was collected in separate tubes and 

desalted using a QIAquick PCR Purification kit (Qiagen). In parallel, 150-300 ng fragmented 

input DNA was resuspended in 350 µl buffer and desalted using a QIAquick PCR Purification 

kit (Qiagen) as a control. 

To generate DNA fragments for direct labeling for microarray hybridization this MCIp protocol 

was scaled up. For large-scale reactions, for each sample, 60-80 µg purified MBD2–Fc 

protein was added to 150-200 µl Protein A–Sepharose beads (Amersham Biosciences) in 

15 ml TBS and rotated overnight at 4°C. For the precipitation, 2 ml Ultrafree-MC centrifugal 

filter devices (Millipore) were used and 2 or 4 µg of sonicated DNA (in large scale reactions 

no digested DNA was used). The flow-throughs were collected and desalted using a 

QIAquick PCR Purification kit (Qiagen) or the MinElute Kit. In parallel, 1/10 of the DNA used 

for precipitation was also desalted using the respective kit and used as input DNA. The 

separation of CpG methylation densities of individual MCIp fractions was controlled by qPCR 

using primers covering the imprinted SNRPN gene and a region without any CpGs 

(Empty 6.2), respectively. For the microarray approach a threshold was defined and 

flow-throughs were combined to a hypermethylated fraction for subsequent labeling and 

microarray analysis. 

 

4.4.5 DNA Microarray handling and analysis 

4.4.5.1 Human CpG 12K arrays  

To generate fluorescently labeled DNA for CpG island microarray hybridization, 

Mse I-compatible uni-directional LMPCR linker (LMPCR_S-L 5’-GCG GTG ACC CGG GAG 

ATC TCT TAA G-3’ and LMPCR_AS-L: 5’-TAC TTA AGA GAT C-3’, 20 µM) were ligated to 

the MCIp-eluted DNA and in a separate reaction to an equal amount of input DNA (0.5 µl 

linker /ng DNA) in 60 µl reactions using 1,200 U T4 Ligase (NEB) at 16°C O/N. Linker-ligated 

DNA was desalted using QIAquick PCR Purification kit (Qiagen). Amplification of 

linker-ligated DNA preparations was performed using LMPCR primer (5’-GTG ACC CGG 

GAG ATC TCT TAA G-3’) and Taq polymerase (Roche) in the presence of 1.3 M betaine. 

Amplicons were desalted using QIAquick PCR Purification kit (Qiagen) and quantified 
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(PicoGreen dsDNA Quantitation Reagent, Molecular Probes). Labeling and hybridization of 

MCIp amplicons were done by the KFB (Regensburg) according to the protocol provided by 

the CpG island microarray manufacturer (Microarray Centre UHN, Toronto, Canada) with 

modifications. Briefly, four microgram of normal and tumor MCIp-amplicons were directly 

labeled with Cy5- and Cy3-dCTP, respectively, using the BioPrime® Array CGH Genomic 

Labeling System (Invitrogen). Ten microgram of each fluorescently labeled and purified DNA 

amplicon in 300 µl DIG Easy Hyp Solution (Roche) supplemented with 25 µg Cot-1 DNA 

(Invitrogen) and 30 µg Yeast tRNA were hybridized to Human CpG 12K Arrays (HCGI12K, 

Microarray Centre, UHN, Toronto, Canada) in 6021 mm Gene Frames (ABgene) at 37°C for 

O/N. Slides were washed three times in 1×SSC, 0.1% SDS at 50°C for 10 min. After two 

more rinses with 0.1×SSC, slides were dried and scanned using the Affymetrix 428 Scanner. 

Images were analyzed using the ImaGene 5.6 and Gene Sight Lite software (BioDiscovery, 

Inc., EL Segundo, CA). Locally weighted scatter plot smoothing normalization was used to 

normalize Cy3 and Cy5 signals. Clones that produced reproducible differential signals on the 

CpG island microarray were sequenced by the University Health Network Microarray Centre. 

 

4.4.5.2 Human 244K Agilent CpG island microarrays 

4.4.5.2.1 Labeling reaction 

Enriched methylated DNA fragments of the high salt MCIp fractions were labeled with Alexa 

Fluor 5-dCTP (cancer cells) and Alexa Fluor 3-dCTP (normal cells) using the BioPrime Total 

Genomic Labeling System (Invitrogen) as indicated by the manufacturer. Amplified ChIP 

material was labeled with Alexa Fluor 5-dCTP and the genomic input with Alexa Fluor 

3-dCTP. Labeling efficiency was controlled using the NanoDrop Nd-1000 spectrophotometer 

(PeqLab, Erlangen, Germany).  

 

4.4.5.2.2 Microarray hybridization 

The differently labeled DNA fragments or pools of two samples were combined and 

supplemented with human Cot-1 DNA, Agilent blocking agent (10-fold) (Agilent 

Technologies, Böblingen, Germany), Agilent hybridization buffer (2-fold) as supplied in the 

Agilent oligo aCGH Hybridization Kit. For more stringent hybridization conditions deionized 

formamide was additionally added in order to prevent cross-hybridization of GC-rich DNA 

sequences.  
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Component 1x Mix Final concentration 

DNA samples combined in 80 µl TE 80 µl  

Cot-1 DNA (1.0 mg/ml) 50 µl 0.1 mg/ml 

Agilent Blocking agent (10×) 52 µl 1× 

Deionized formamide 78 µl 15% 

Agilent Hybridization Buffer (2×) 250 µl 1× 

 

The sample was heated to 95°C for 3 min, mixed, and subsequently incubated at 37°C for 

30 min and spun down afterwards for 1 min. Hybridization on microarray slides (Agilent) was 

then carried out at 67°C for 40 h using an Agilent SureHyb chamber and an Agilent 

hybridization oven. Slides were washed in Wash I (6×SSPE, 0.005% N-lauroylsarcosine) at 

room temperature for 5 min and in Wash II (0.06×SSPE; prewarmed to 37°C for stringent 

protocol) for additional 5 min. Afterwards slides were dried and incubated using acetonitrile 

for 30 s. Images were scanned immediately and analyzed using a DNA microarray scanner 

(Agilent). Microarray images were processed using Feature Extraction Software 9.5.1 

(Agilent) using the standard CGH protocol for samples from MCIp. Processed data were 

imported into Microsoft Office Excel for further analysis. Graphical presentations of datasets 

were obtained using Spotfire Decision Site Software 7.0 (Spotfire). 

 

4.4.6 Quantitative DNA methylation analysis using the MassARRAY 

system (SEQUENOM) 

4.4.6.1 Principle 

Quantitative assessment of DNA methylation in target genomic regions was performed using 

the Sequenom MassCLEAVE™ assay. DNA samples for analysis are initially 

bisulfite-treated, resulting in the conversion of unmethylated cytosines to uracil, whereas 

methylated cytosines remain unchanged. This conversion reaction allows for accurate 

discrimination between methylated and unmethylated cytosines at CpG dinucleotides. 

Following bisulfite treatment, genomic DNA consists of two non-complementary 

single-stranded DNA populations. Subsequently, PCR primer pairs for a region of interest are 

designed to amplify both the forward and reverse strand of double-stranded genomic DNA. A 

T7 polymerase promoter tag is added to the 5′ end of the reverse primer to facilitate in vitro 

transcription and a 10-mer tag is added to the 5′ end of the forward PCR primer to minimize 

melting temperature differences between both primers during PCR cycling. Following PCR, 

unincorporated dNTPs are dephosphorylated by treatment with SAP. Reverse transcription is 

performed using a chemically modified T7 RNA polymerase which utilizes a mixture of 
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ribonucleotides and deoxyribonucleotides when synthesizing the RNA strand. In parallel with 

the reverse transcription the cleave reaction is achieved using the pyrimidine specific 

Ribonuclease A (RNaseA) enzyme which cleaves at pyrimidines (C and T) only on the newly 

synthesized transcript. By incorporating a non-cleavable dCTP (deoxyribonucleotide) into the 

transcript, RNaseA is unable to cleave at C and can only cleave at T (T specific cleavage) 

yielding a population of single-stranded cleavage fragments (Figure 4-2). A methylated 

cytosine is represented by a G nucleotide in the cleavage fragment, whereas an 

unmethylated cytosine is represented by an A nucleotide. The mass difference of 16 Da 

between G (329 Da) and A (313 Da) is easily detected by MALDI-TOF MS. Depending on 

the number of methylated CpG sites within a cleavage fragment, the difference in mass will 

increase in 16 Da units.  

As already mentioned, in the following procedure this methylation specific difference is not 

used for sequencing (see section 4.4.3) but for generating methylation depending mass 

differences to be analyzed by mass spectrometry. A detailed description of the method is 

given in Ehrich et al., 2005 and in the EpiTYPER User Guide (www.sequenom.com). 

 

 

Figure 4-2 Schematic outline of the EpiTYPER process 
Genomic DNA is treated with bisulfite and amplified using specific primers with one primer tagged with a T7 
promoter sequence. PCR products are subsequently transcribed into RNA, followed by RNase cleavage after 
every uracil residue. Cleavage products are then analyzed by MALDI-TOF MS. In the example shown here, PCR 
products are transcribed from the reverse strand. In the unmethylated template (illustrated in red) cytosine 
residues are deaminated into uracil and therefore appear as adenosine residues after PCR. Cytosine residues of 
a methylated template (indicated in yellow) are not affected and remain cytosines. The conversion of guanine to 
adenine yields 16 Da mass shifts. Cleavage product 1 comprises 2 CpGs and the mass difference constitutes 
32 Da if both CpGs are either methylated or unmethylated. Cleavage products 2 and 3 each contain only one 
CpG site that is differentially methylated and therefore yield a 16 Da mass shift (Ehrich et al., 2005).  
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4.4.6.2 Primer design 

Genomic DNA sequences were downloaded from the University of California, Santa Cruz 

genome browser (http://www.genome.ucsc.edu). In order to maximize coverage, both the 

forward and reverse strand of a target region were included for amplicon design. The 

selected genomic sequence was subsequently exported to the primer design software 

MethPrimer (http://www.urogene.org/methprimer). Once genomic DNA is uploaded into this 

application, an in silico bisulfite conversion is performed to facilitate the primer design. PCR 

primer design criteria consist of the following: An optimal primer melting temperature of 62°C 

(range: 56-64°C); Primer length ranges from 20-30 nucleotides, excluding tag addition. 

Amplicons vary from 100-500 bp in length, with a desired length of 400 bp. All primers 

designed for methylation analysis using the MassCLEAVE assay are online (Gebhard et al., 

2010) or will be available upon publication. 

Primers were ordered in 96-well format at 100 µM concentration (Integrated DNA 

Technologies, California, USA or SIGMA). Prior to PCR set up, a 96-well primer mix plate 

(Sarstedt V-bottom, Newton, USA) was assembled, with each well containing 1 µl of both the 

forward and reverse primers of a primer pair and 198 µl ddH2O to give a final concentration 

of 0.5 µM each. 

 

4.4.6.3 Bisulfite conversion 

Bisulfite treatment of genomic DNA was performed using a commercially available kit from 

Zymo Research Corporation (California, USA). The EZ DNA Methylation KitTM facilitates the 

conversion of cytosine to uracil due to the reaction that takes place between cytosine and 

sodium bisulfite. The conversion reaction was performed, using 1 µg of genomic DNA, 

according to the manufacturer’s protocol, but with the following alternative conversion 

parameter: 

 

Step 1: 95°C 30 s 

Step 2: 50°C 15 min 

Step 3: Repeat steps 1-2 for 20 cycles  

Step 4: 4°C hold 

 

4.4.6.4 PCR amplification 

PCR master mixes were prepared in 384 well plates (ABgene) and made as follows per 

reaction: 
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Component Volume for single reaction Final concentration 

ddH2O 1.42 µl N/A 

10x HotStarBuffer 0.5 µl 1× 

dNTP mix 25 mM each 0.04 µl 200 µM 

5 U/µl Hot Star Taq 0.04 ml 0.2 U 

DNA Template 1 µl 5-10 ng 

 

To each reaction 2 µl primer mix was added, giving a final reaction volume of 5 µl, with the 

concentration of 500 pM of the forward and reverse primer. Then the plate was sealed with 

AB-0558 spun down, centrifuged and incubated in a Veriti 384 well thermal cycler (Applied 

Biosystems) with the following program: 

Table 4-10 Reaction parameter for bisulfite conversion 

PCR step Cycling parameter 

Initial melting 94°C, 4 min 

45 cycles 

Melting 94°C, 20 s 

Annealing 59°C, 30 s 

Elongation 72°C, 1 min 

Final elongation 72°C, 3 min 

Cooling 4°C, forever 

 

4.4.6.5 Shrimp alkaline phosphatase (SAP) treatment 

Unincorporated nucleotides can disturb downstream applications and are therefore 

enzymatically inactivated. Under alkaline conditions SAP removes phosphate groups from 

several substrates including deoxynucleotide triphosphates, rendering it unavailable for 

further polymerase catalyzed reactions. The SAP solution was prepared as follows: 

Component Volume for single reaction 

RNAse free water 1.7 µl 

SAP 0.3 µl 

 

2 µl of the SAP solution was added to each PCR reaction with the 96 channel pipetting robot 

MassARRAY Liquid Handler and FusioTM Chip Module (Matrix). The plate was sealed with 

AB-0558, centrifuged and incubated as follows on a Veriti 384 well thermal cycler (Applied 

Biosystems): 

Step 1: 37°C 20 min 

Step 2: 85°C 5 min 

Step 3: 4°C hold 
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4.4.6.6 Reverse transcription and RNA base-specific cleavage 

Transcription and Cleavage were performed using a single mix containing: 

 

Component Volume for single reaction 

RNase free water 3.21 µl 

5× T7 Polymerase buffer 0.89 µl 

Cleavage Mix (T mix) 0.22 µl 

DTT (100 mM) 0.22 µl 

T7 R&DNA Polymerase (50 U/µl) 0.4 µl 

RNaseA 0.06 µl 

Total volume 5 µl 

 

5 µl of the mix and 2 µl of the SAP-treated PCR reaction were transferred into a new 386-well 

plate with the 96 channel pipetting robot MassARRAY Liquid Handler and FusioTM Chip 

Module (Matrix), sealed with AB-0558, centrifuged and incubated on a Veriti 384 well 

thermocycler C (Applied Biosystems) for three hours at 37°C. 

 

4.4.6.7 Desalting the cleavage reaction 

Salt ions are co-vaporized when acquired during MALDI-TOF analysis and are therefore 

visible in the mass spectra. This would irritate the analysis of the mass spectra. Therefore 

the reactions need to be desalted. For desalting of the transcription/cleavage mix 20 µl water 

was added to each reaction with the MassARRAY Liquid Handler (Matrix) followed by the 

addition of 6 mg CLEAN resin per reaction. The plates were rotated slowly for 10 minutes 

and spun down to collect the resin at the bottom of the wells. 

 

4.4.6.8 Transfer on SpectroCHIP and acquisition 

The SpectroCHIP contains the matrix on which the sample probes are spotted and consists 

of a crystallized acidic compound. When the analyte is spotted onto the matrix its solvent 

dissolves the matrix, and when the solvent evaporates the matrix recrystallizes with analyte 

molecules enclosed in the crystals. The DNA samples are transferred on a SpectroCHIP 

either with the Phusio Chip Module or the 24 pin-head nanodispenser and are analyzed with 

the MassARRAY Compact System MALDI-TOF MS (all from Sequenom). The co-crystallized 

analyte is acquired with a laser while the matrix is predominantly ionized, protecting the DNA 

from the disruptive laser beam. Eventually, the charge is transferred to the sample and 
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charged ions are created which are accelerated in a vacuum towards a detector that 

measures the particle’s time of flight. 

 

4.4.6.9 Interpretation of data output and quality control 

Acquired data was processed with the EpiTYPER Analyzer software (version 1.0.5, 

Sequenom). The MS is calibrated with a four point calibrant (Sequenom) with 1479, 3004, 

5044.4 and 8486.6 kDa particles. Relative to this calibration the accelerated analytes 

generate signal intensity (y-axis) versus mass (kDa, x-axis) plots. With the sequence of every 

amplicon known, the software can virtually process the sequence and predict the fragments 

from the in vitro transcription/RNase digestion and relocate CpG units. If expected and 

incoming information match, the signal intensities of the methylated and unmethylated DNA 

templates are compared and quantified. A normal calibrated system is able to measure 

fragments between a range of 1500 and 7000 Dalton. Fragments outside of this range and 

fragments whose mass peaks are overlapping with multiple other fragments cannot be 

analyzed. 

 

As an additional control feature to assess the quality of DNA samples and the consistency of 

the technology employed in this study, DNA methylation values for each assay were 

determined in fully methylated DNA and completely unmethylated DNA. A mixed control was 

also assembled by combining equal quantities of fully methylated and unmethylated control 

DNA. 

In order to generate fully unmethylated genomic DNA in vitro, genomic DNA was amplified 

using the REPLI-g Mini/Midi kit (Qiagen) according to the manufacturer’s instructions. 

Purification of amplification products was performed using QIAamp DNA Micro Kit (Qiagen) 

as indicated in the manufacturer’s manual. Secondary, to generate fully methylated DNA as 

a control for methylation analysis, genomic DNA was methylated using Sss I 

methyltransferase (see section 4.4.1). 

A desired percentage of methylation was generated by mixing an appropriate amount of 

unmethylated (0%) and fully methylated (100%) DNA.  

 

4.4.6.10 Calculation of EpiTYPER methylation score ratio 

To compare the high resolution mass spectrometry data with intermediate resolution 

microarray data, we assigned each microarray probe with a so-called EpiTYPER methylation 

score ratio which basically represents a mean scaled log10 ratio of all measured CpGs in a 

region 300 bp upstream and downstream of a microarray probe center. EpiTYPER 
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methylation values for individual CpGs were transformed into log10 ratios using the formula: 

(log10((T+0.01)/M+0.01) where T and M represent EpiTYPER methylation ratios of the cell 

line and normal monocytes, respectively (0.01 was added to each value to avoid division by 

zero). To account for the non-linear enrichment obtained by MCIp and to adjust the 

EpiTYPER methylation score ratio to the range of MCIp log10 ratios, the log10 ratio of 

individual CpGs was corrected by an empirically determined factor that weighted for 

methylation strength (log10(ABS(T-M))/2+1.01)*2). The EpiTYPER methylation score of a 

microarray probe was then calculated as the mean scaled log10 ratio of all measured CpGs in 

a region 300 bp upstream and downstream of a microarray probe center.  

 

4.5 De novo motif discovery 

4.5.1 Algorithm for de novo motif finding 

Motif discovery was performed using a comparative algorithm similar to those previously 

described (Barash Y. et al., 2001). An in-depth description and benchmarking of the software 

suite HOMER (Hypergeometric Optimization of Motif EnRichment; 

http://biowhat.ucsd.edu/homer/) that was developed for motif discovery will be published 

elsewhere (Benner et al., in preparation). Briefly, sequences were divided into target and 

background sets for each application of the algorithm. Background sequences are then 

selectively weighted to equalize the distributions of CpG content in target and background 

sequences to avoid comparing sequences of different sequence content. Motifs are found 

separately by first performing exhaustively screening all oligo sequences for enrichment in 

the target set compared to the background set using the cumulative hypergeometric 

distribution. Up to two mismatches were allowed in oligo sequences to increase the 

sensitivity of the method. The top 50 sequences of each length with the lowest P values were 

then converted into probability matrices and heuristically optimized to maximize 

hypergeometric enrichment of each motif in the given data set. As optimized motifs are found 

they are removed from the data set to facilitate the identification of additional motifs. 

 

4.5.2 ChIP-on-chip peak calling and motif annotation 

Transcription factor-bound regions were identified using a sliding window approach and the 

averaged data sets from two independent experiments (correlation coefficients for log10 ratios 

of replicate ChIP-on-chip experiments: r2
Sp1=0.95; r2

YY1=0.88; r2
NRF1=0.75). The window 

included five probes with a maximal distance of 500 bp between two neighboring probes. A 
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cumulative log10 ratio of ChIP/input over the five probes of 1.5 was used as a lower threshold 

for detecting a binding event. To study the correlation between motif presence and actual 

transcription factor binding, we annotated each motif for Sp1, NRF1 and YY1 with mean 

signal intensity ratios (log10) of all microarray probes from the corresponding ChIP-on-chip 

experiments in the range of ± 150 bp around it. The lower limit for binding of a motif in normal 

blood monocytes was set at a mean signal intensity log10 ratio of 0.4. A motif was grouped as 

bound if both, the sliding window approach and the motif centered approach indicated 

binding. A motif was grouped as not bound if both methods indicated non-binding. 
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5 Results 

Due to space limitations, this section only contains parts or summaries of the expression, 

MCIp-on-chip and MassARRAY data. Complete figures, tables, lists and UCSC tracks are or 

will be available online within the supplementary information of the corresponding 

publications.  

 

5.1 Detection of methylated DNA by methyl-CpG 

immunoprecipitation (MCIp) 

To date, the investigation of aberrant CpG island methylation has primarily taken a candidate 

gene approach. However, in order to assess the clinical potential of hypermethylation profiles 

and to identify relevant marker genes, methods for the genome-wide detection of 

hypermethylation are required. Because there were no suitable methods available, we 

developed a sensitive approach in our lab that enabled the detection of methylated CpG 

dinucleotides using only very little DNA quantities but which still allows for global detection of 

DNA methylation. 

 

The basis for detection of methylated DNA is provided by a recombinant antibody-like fusion 

protein that consists of the human methyl-CpG binding domain 2 (MBD2), a flexible linker 

polypeptide and the Fc-proportion of human IgG1. Design and generation of the MBD-Fc 

protein is described in section 4.2 (for further details see also Gebhard, 2005 and Gebhard et 

al., 2006). In previous studies performed in our own lab it could be shown that the MBD-Fc 

protein is able to bind methylated DNA in an antibody-like manner. As previously shown, in 

vitro methylated or unmethylated PCR fragments with different CpG density could be 

detected by MBD-Fc on nylon membranes in a linear fashion and dependent on the 5mC 

content (Gebhard, 2005 and Gebhard et al., 2006b).  

 

Based on the recombinant MBD-Fc a novel technique was developed in our lab that enables 

the unbiased genome-wide detection of CpG methylation, the so-called methyl-CpG 

immunoprecipitation (MCIp). The approach allows for the detection of the methylation status 

of specific CpG island promoters (in combination with real-time PCR) and also allows for the 

generation of genome-wide promoter methylation profiles (in combination with microarray or 

next generation sequencing technology).  
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In contrast to another recently developed immunoprecipitation approach using 5-methyl 

specific antibodies (called MeDIP or mDIP) that specifically enriches for methylated 

fragments (Weber et al., 2005), MCIp can divide the bulk of genomic DNA fragments into 

separate fractions of increasing methylation density. This is due to the fact, that MBD-Fc 

recognizes the hydration of methylated DNA rather than 5mC itself (Ho et al., 2008). 

Therefore using increasing salt concentrations allows for the fractionation of genomic DNA 

fragments according to their methylation degree (Gebhard et al., 2006b; Gebhard et al., 

2006a; Schilling and Rehli, 2007). A schematic representation of the MCIp approach is 

shown in Figure 5-1. 

 

 

 

 

Figure 5-1 Schematic presentation of the methyl-CpG immunoprecipitation approach (MCIp) 
Fragmented genomic DNA is incubated with saturating amounts of MBD-Fc Protein A-Sepharose matrix at a low 
NaCl concentration. The column is spin-washed with increasing salt concentrations leading to fractionation of the 
fragments according to the methylation density. The flow-through consists of fragments with little or no CpG 
methylation, while high salt fractions contain strongly methylated and CpG-rich fragments.  
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5.1.1 Detection of in vitro methylated DNA promoter fragments 

An initial characterization of the MBD-Fc protein and its ability to bind CpG-methylated DNA 

had already been done before starting this dissertation (Gebhard, 2005; Gebhard et al., 

2006b). To further describe the properties of MBD-Fc, we also tested whether this approach 

allows for the detection of different degrees of methylation for a single gene locus. Therefore 

a CpG island fragment (CPM) was cloned into the CpG-free vector pCpG-mcs, linearized 

and in vitro methylated using increasing amounts of the methyl donor S-adenosylmethionine 

to obtain fragments with varying methylation densities (see section 4.4.2). Subsequently, the 

fragments with different methylation levels were combined, fractionated by MCIp and 

subjected to bisulfite sequencing (see section 4.4.3). If genomic DNA is treated with sodium 

bisulfite, unmethylated cytosines are deaminated into uracil and transformed into thymidine 

residues during PCR, whereas methylated cytosines still appear as cytosines after 

amplification (Frommer et al., 1992b). Figure 5-2 demonstrates that partially in vitro 

methylated DNA fragments can be separated according to their methylation degree in the 

developed methyl-CpG immunoprecipitation approach using increasing salt concentrations. 

 

 

 

Figure 5-2 Bisulfite sequences of an in vitro partially methylated gene locus after MCIp 
A mixture of Sss I-methylated CPM CpG island promoter fragments (schematic representation on the top of A) 
with varying methylation density was fractionated using MCIp. Fragments were recovered from each fraction, 
subjected to bisulfite treatment and cloned. Several independent inserts were sequenced. Results are 
represented schematically. (A) Squares mark the position of CpG dinucleotides (empty, unmethylated; filled, 
methylated). 300-1000 indicates the salt concentration (mM) used to elute the different fragments. (B) The results 
are represented as a graph where each point represents the number of methylated CpGs in one clone. Horizontal 
bars represent the median number of methylated CpG dinucleotides at one specific salt concentration. 
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This and previous test experiments performed with specific methylated and unmethylated 

DNA fragments showed that the recombinant MBD-Fc fusion protein binds CpG-methylated 

DNA. The binding capacity is contingent on the NaCl concentration as well as on the CpG 

methylation density of the bound DNA.  

 

5.1.2 Detection of methylated genomic DNA fragments 

To test, whether the MCIp procedure could be applied to discriminate methylated and 

unmethylated DNA fragments from genomic DNA, the newly developed approach was used 

to precipitate Mse I-restricted genomic DNA. Mse I was chosen for DNA fragmentation, 

because it is known to preferentially cut in regions of low CpG content while leaving many 

CpG islands uncut (Cross et al., 1994). 

 

5.1.2.1 Combination of MCIp and real-time PCR to detect the methylation 

status of specific CpG island promoters 

To explore this type of application on a single gene level, Mse I-restricted genomic DNA of in 

vitro Sss I-methylated and untreated normal DNA from monocytes of a healthy donor were 

subjected to MCIp. The enrichment of four different CpG island promoters and one promoter 

with low CpG density in the different fractions was determined relative to the input DNA using 

LightCycler real-time PCR. As a positive control the SNRPN CpG island promoter was used. 

This gene is subject to maternal imprinting with one of its two copies being methylated also in 

normal cells (Zeschnigk et al., 1997). As expected, in normal DNA, the two differentially 

methylated allele-fragments were enriched in two separate fractions. The unmethylated 

allele-fragment was mainly eluted at 400 mM NaCl, whereas the methylated allele fragment 

was eluted at 1000 mM NaCl. However, with Sss I methylated DNA only one positive elution 

fraction could be observed because both alleles are methylated and were detected in the 

1000 mM NaCl fraction (Figure 5-3A). In the case of the CDKN2B gene (also known als 

p15INK4b) the promoter fragment was mainly recovered in the low salt fractions from normal 

DNA and in the high salt fraction from Sss I-methylated DNA (Figure 5-3B). Similar results 

were obtained for the human estrogen receptor 1 (ESR1) gene and the human Toll-like 

receptor 2 gene (TLR2) (data not shown). Another test locus used was the promoter 

fragment of the CHI3L1 gene. This gene fragment however, showed different elution profiles: 

the untreated normal fragment was mostly detected at low salt concentrations (400 and 500 

mM). When the DNA was in vitro methylated only a slight shift towards higher NaCl 

concentrations was observed (Figure 5-3C). This is due to the lower CpG density of the 
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CHI3L promoter. The detected fragment only contains 12 CpG dinucleotides and the 

difference between methylated and unmethylated fragment is only five to six methylated CpG 

residues. Together, these data show that the MCIp approach is able to discriminate even 

slight differences in CpG methylation. 

 

Analysis of elution profiles shown in Figure 5-3 suggests that (i) a 200- to 300-fold 

enrichment of stronger over less methylated genomic fragments can be obtained in either 

low or high salt fractions, (ii) fragments with low CpG density are largely excluded from the 

high salt fraction, and (iii) the fractionated MCIp approach may allow for the resolution of 

relatively small differences in CpG methylation density.  

 

 

Figure 5-3 MCIp detection of CpG methylation in specific CpG island promoters using real-time PCR 
Fractionated MCIp was used in combination with LightCycler real-time PCR to detect the methylation status of 
specific CpG island promoter fragments from untreated (blue bars) and Sss I-methylated (red bars) 
Mse I-restricted genomic DNA fragments. Recovered gene fragments from MCIp eluates (different salt 
concentrations are indicated) and an equivalent amount of input DNA are amplified using LightCycler real-time 
PCR. Values (mean ± SD, n=4 using at least two different preparations of MBD-Fc) of the different fractions 
represent the percentage of recovery and are calculated relative to the amount of the respective input DNA 
(100%). Above each figure a 3 kb region of the corresponding CpG island is schematically represented. Each 
CpG dinucleotide is represented by a vertical line. Black boxes indicate the position of the Mse I fragments that 
are detected with the number indicating the number of CpG dinucleotides within the fragment. The positions of 
exons are indicated as grey boxes and transcription start sites by an arrow. The white box represents a 100 bp 
fragment.  

 

 

In the next step it was determined whether the fractionating MCIp approach is able to detect 

aberrant hypermethylation in tumor samples. Mse I-digested genomic DNA from three 

leukemia cell lines KG-1 (acute myeloid leukemia), U937 (histiocytic lymphoma, monocytic), 

THP-1 (acute monocytic leukemia) as well as from monocytes of a healthy donor were 

subjected to MCIp. Using LightCycler real-time PCR the enrichment of four different CpG 

island promoters in the 1000 mM NaCl fraction was detected relative to the input DNA. The 

imprinted SNRPN gene promoter was used as a positive control. Another test locus, the 

promoter of the human Toll-like receptor 2 gene (TLR2) was chosen, because our group had 

previously shown that this promoter fragment is strongly methylated in U937 cells, but not in 



 Results 

 - 81 -    

THP-1 cells (Haehnel et al., 2002). The promoters of the human estrogen receptor 1 (ESR1) 

(Dodge et al., 2001) gene and the human CDKN2B (p15INK4b) (Chim et al., 2003; Dodge et 

al., 1998; Haehnel et al., 2002) gene were used because they are known to be frequently 

methylated in leukemic cells. The results are summarized in Figure 5-4. The SNRPN gene 

promoter was significantly enriched in all leukemia cell lines as well as in normal cells which 

is in concordance with its imprinting-related methylation status. The TLR2 locus was 

enriched and therefore methylated in KG-1 and U937 cells, but not in THP-1 or normal cells. 

The methylation pattern of the TLR2 promoter fragment was confirmed by bisulfite 

sequencing (Haehnel et al., 2002). The results for ESR1 (KG-1) and CDKN2B (KG-1 and 

U937) were also in line with previously published studies (Chim et al., 2003; Dodge et al., 

2001; Gebhard, 2005; Issa et al., 1996). In THP-1 cells the PCR amplification of the 

CDKN2B promoter fragment failed due to a deletion of this locus. None of the three Mse I 

fragments (with an exception of the imprinted SNRPN gene locus) were significantly enriched 

in the DNA from normal monocytes which correlates with the normally unmethylated state. 

From these results it can be concluded that MCIp fractionates genomic DNA according to the 

degree of methylation and specifically enriches strongly methylated DNA fragments in the 

high salt fraction. 

 

 

Figure 5-4 MCIp detection of CpG island methylation in specific CpG island promoters using real-time 
PCR 
SNRPN, TLR2, ESR1, and CDKN2B gene fragments in the high salt fraction of three human myeloid leukemia 
cell lines (KG-1, U937, THP-1) as well as normal blood monocytes (N) were analyzed using real-time PCR as 
described in Figure 5-3. 

 

5.1.2.2 Sensitivity and linearity of the MCIp approach 

To test the sensitivity of the fractionation approach, decreasing amounts of Mse I-treated 

U937 DNA were subjected to MCIp. The enrichment of the TLR2 (strong methylation in 

U937) and CDKN2B gene fragments (no methylation in U937) were determined by 

LightCycler real-time PCR. Figure 5-5A shows that a significant enrichment of the TLR2 
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fragment could be achieved using as little as 1 ng DNA, which corresponds approximately 

150 tumor cells.  

 

Samples derived from tumors may contain a specific and variable number of normal cells 

that would be expected to be unmethylated at most CpG islands. To test the linearity of the 

MCIp approach with respect to cell purity, mixtures of Mse I-treated DNA from normal 

monocytes and the leukemia cell line KG-1 were fractionated using increasing salt 

concentrations and again analyzed by real-time PCR with specific primers for the TLR2 locus 

(methylated in KG-1 and unmethylated in normal blood cells). As shown in Figure 5-5B the 

TLR2 fragment was only detected in samples containing KG-1 DNA and the signal increased 

gradually with increasing amount of KG-1 cells in the mixture.  

 

 

 

Figure 5-5 Sensitivity (A) and linearity (B) of the MCIp approach 
(A) Decreasing amounts of Mse I-treated U937 DNA were subjected to MCIp. TLR2 and CDKN2B gene 
fragments were analyzed by LightCycler real-time PCR as described in Figure 5-3. (B) MCIp was performed with 
mixtures of Mse I-treated normal blood monocytes (N) and increasing amounts of KG-1 cells. TLR2 enrichment in 
the 1000 mM salt fraction was determined by LightCyler real-time PCR.  

 

 

As demonstrated above, MCIp combined to real-time PCR was very sensitive. However, for 

early diagnosis as well as methylation detection from body fluids and trace amount analysis 

in the post therapy, a method for an ultrasensitive methylation detection may be necessary 

and suggestive. Because MassARRAY Quantitative Gene Expression (QGE) provides orders 

of magnitude greater sensitivity than real-time quantitative PCR, and permits very closely 

related genes to be assayed reliably and quantitatively, MCIp was combined with QGE. This 

type of assay could provide an alternative method for the methylation specific PCR (MSP) 

which suffers from many disadvantages. Firstly, MSP is based on bisulfite treatment, 

secondly it requires very extensive validation, thirdly it is only an indirect measurement of 

DNA methylation and finally, it has only limited possibilities for quantitation. Using MCIp and 
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subsequent MassARRAY (QGE), we wanted to circumvent the disadvantages of the MSP 

method and create a system to detect methylated DNA in an ultrasensitive and reproducible 

manner.  

In the QGE assay, quantitation is based on a competitive PCR in which a cDNA template of 

interest and a competitor (internal standard) are co-amplified in the same reaction. Each 

competitor molecule matches its target cDNA sequence at all nucleotide positions except a 

single base so the two can be resolved using mass spectrometry-based genotyping. Titration 

of competitor concentrations is used to determine the competitor concentration at which 

amplification between cDNA and competitor is equal. This point, termed the EC50, is 

determined by plotting cDNA allele frequency vs. competitor concentration. Non-linear 

regression is used to calculate the point at which the cDNA and competitor are at a 1:1 ratio. 

Each assay uses a single base extension to distinguish between the target cDNA and 

competitor template (for more detailed information see section 4.3.4.4, primers and 

competitors are listed in section 3.6.7). 

 

First, it was tested whether MCIp combined with QGE is able to detect the correct number of 

copies of methylated and unmethylated DNA fragments subjected to MCIp in the lower or 

higher salt fractions, respectively. As a test system, the MGMT (O-6-methylguanine-DNA 

methyltransferase) locus of unmethylated DNA from normal monocytes as well as the same 

locus of in vitro methylated monocyte DNA was used. In a first step, both unmethylated and 

methylated DNA from monocytes were restricted using Msp I. Afterwards 1,500 copies of 

unmethylated DNA and methylated DNA, respectively, and in addition two times a 50:50 

mixture (750 copies of each, methylated and unmethylated DNA) were subjected to MCIp. 

DNA fragments were separated using increasing salt concentrations (200, 300, 350, 400, 

450, 500, 600 and 1000 mM NaCl) and the different fractions were analyzed for enrichment 

of the MGMT gene locus using QGE and primers as well as competitors specific for the 

MGMT Msp I-restricted gene fragment. As illustrated in Figure 5-6 MCIp is able to detect the 

copies of unmethylated as well as methylated DNA with high specificity and accuracy.  

The MassARRAY system allows for the detection of almost all DNA fragments from the input 

DNA. 70-80% of the unmethylated DNA fragments were detected in the lower salt 

concentrations. A similar percentage of methylated DNA fragments were recovered and 

detected in the high salt fractions. The remainder of the DNA probably got lost during the 

procedure. 
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Figure 5-6 MCIp detection of the MGMT locus using quantitative gene expression (QGE) 
Fractionated MCIp was used in combination with QGE to detect the methylation status of the MGMT locus from 
untreated (blue bars) and Sss I-methylated (red bars) Msp I-restricted genomic DNA fragments. In (A) 1500 
copies of the unmethylated, in (B) 1500 copies of the methylated genome and in (C) and (D) 750 copies of the 
unmethylated genome mixed with 750 copies of the methylated genome were subjected to MCIp. Recovered 
gene fragments from MCIp eluates (different salt concentrations are indicated) were quantified using QGE. 
Values of the different fractions represent the measured number of copies and were calculated related to the 
competitor concentration using the EC50 value. Above each figure the exact number of detected copies is 
represented.  

 

To test the sensitivity of the approach, a 10% mixture of DNA (150 copies of methylated DNA 

together with 1363 copies of unmethylated DNA) and a 1:2 ,1:4 and 1:8 dilution of the same 

mixture were subjected to MCIp and subsequently to QGE. 16 replicates proofed the high 

reproducibility of the approach. After inactivating the outliers, the values were averaged. As 

shown in Figure 5-7 the method allows the detection of as little as 24 copies of methylated 

DNA. Furthermore the graph illustrates again the accuracy of the method: the correct copy 

number of unmethylated and methylated DNA fragments is detected dependent on the 

degree of dilution in a linear fashion (r2=0.99) in a range of more than three logarithmical 

stages.  

A future aim would be to further improve this method and to achieve a multiplexing for 

high-throughput screening of patient samples for risk assessment.  
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Figure 5-7 Sensitivity and linearity of the MCIp approach combined to QGE 
(A) MCIp was performed with decreasing amounts of Msp I-treated 10% mixtures (1363 copies unmethylated 
monocyte DNA mixed with 150 copies Sss I-methylated DNA). Enrichment of the MGMT gene fragments (the 
unmethylated fragments in the lower salt concentrations, the methylated ones in the higher salt concentrations) 
were analyzed by QGE. (B) Correlation between methylated and unmethylated copy numbers within the dilution 
series of a 10% mixture (r

2
=0.99). Values are mean ± SD (n=4). 

 

5.2 Combination of MCIp and 12K CpG island microarray 

analysis  

Data from this section have been published in the journal Cancer Research. Microarray data 

were deposited with GEO (gene expression analyses: GSE 3280; comparative MCIp 

hybridizations: GSE).  

 

To achieve a genome-wide identification of aberrant methylation patterns, the MCIp 

approach was combined with microarray technology. For unbiased genome-wide analysis of 

aberrant methylation profiles, the MCIp technique had to be adapted to the microarray 

technology and a series of optimization steps in terms of amplification, labeling as well as 

hybridization were already performed previously (Gebhard, 2005).  

Methyl-CpG immunoprecipitations were performed with 300 ng Mse I-restricted DNA from 

three leukemia cell lines (KG-1, U937, THP-1) as well from normal blood monocytes. The 

high salt fractions (600-1000 mM) containing the strongly methylated CpG island promoter 

fragments were spin purified and afterwards amplified using ligation-mediated PCR. The 

resulting amplicons were directly labeled with Cy5-dCTP (normal DNA) and Cy3-dCTP 

(tumor DNA) using the Exo-Klenow enzyme. Subsequently each leukemia sample was 

cohybridized with the normal control sample to CpG island microarrays (UHN Microarray 

Centre, Toronto, Canada). Figure 5-8 represents the schematic workflow of the procedure for 

DNA methylation profiling.  
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Figure 5-8 Schematic representation of DNA methylation profiling using MCIp and CpG island microarrays 
(A) Global methylation levels were determined using MCIp (steps 1-3) and subsequent cohybridization of 
amplified tumor (Cy3-labeled) and normal DNA (Cy5-labeled) on microarrays (steps 4-6). (B) Frequently 
methylated U937 DNA shows a higher fluorescence for Cy3 (blue color) and normal DNA for Cy5 (yellow color). 
(C) Representative two-dimensional scatter plots are shown for a control hybridization experiment of human blood 
monocytes DNA (normal/normal) (left)  and a hybridization displaying the differentially methylated CpG fragments 
between U937 (tumor) and human blood monocytes (normal) (right). 

 

The CpG island array contains 12,192 CpG island clones from a Mse I-CpG DNA library that 

was originally prepared by MeCP2-column purification of non-methylated CpG island 

fragments (Cross et al., 1994). Representative scatter plots of microarray hybridizations are 

presented in Figure 5-8C. On the left side the scatter plot for the control hybridization 

experiment is shown: Cy3-labeled normal monocytes are plotted against Cy5-labeled normal 

monocytes. On the right side the Cy3-labeled U937 tumor sample is plotted against 

Cy5-labeled normal monocytes. Comparing the two plots, differently methylated CpG 

fragments between the U937 tumor cell line and normal human blood monocytes are 

displayed. Signals corresponding to both hypo- and hypermethylated fragments in the tumor 

sample were observed. This work focused on the analysis of hypermethylated fragments. To 

identify possible tumor suppressor genes or other marker genes that are affected by 

hypermethylation, results of three independent MCIp experiments (using two different 

MBD-Fc preparations and three independent DNA preparations) were analyzed in 
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conjunction. Hybridization signals that were more than twofold enriched in the leukemia 

sample and consistently different in at least one cell line were selected for further analysis.  

In total, THP-1, U937 and KG-1 cells showed 277, 454 and 330 differential hybridization 

signals, respectively. 191 out of 535 spots analyzed were unambiguously annotated and 

located within close proximity (approximately ± 3,000 bp) to predicted transcriptional start 

sites and were chosen for further analysis. Since some sequences were represented more 

than once on the CpG island microarray, the final, non-redundant list of differentially 

methylated DNA fragments contained 131 entries that were in close proximity of 134 genes 

(Table 5-1). The hypermethylated genes shown in Table 5-1 are involved in many important 

biological functions. Most strikingly, half of the genes with an assigned biological function (46 

of 89) are involved in DNA binding and transcriptional regulation. Nine of the listed genes 

have been previously identified as hypermethylation targets in cancer: LMX1A (Paz et al., 

2003), TFAP2A (Douglas et al., 2004), CR2 (Schwab and Illges, 2001), DCC (Sato et al., 

2001), MYOD1 (Jones et al., 1990), DLEC1 (Yuan et al., 2003), AKAP12 (Choi et al., 2004), 

SSIAH2 (LOC28314) and FOXF1 (Weber et al., 2005).  

 

Table 5-1 Hypermethylated gene fragments in myeloid leukemia cell lines 

Gene                           CpG-methylation               mRNA expression 

Name Symbol Location KG1 U937 THP1  Positon KG1 U937 THP1 N Probe Set ID 

hypothetical gene LOC400027 12q12 1.82 1.16 1.19 down NC/P NC/P NC/P A 226413_at 

branched chain aminotransferase 2, mitochondrial BCAT2 19q13 1.24 1.18 1.29 proximal 1 1.8 NC/P P 203576_at 

chondrolectin CHODL 21q11.2 1.52 1.49 1.44 down NC/A NC/A NC/A A 219867_at 

collagen, type XIV, alpha 1 (undulin) COL14A1 8q23 2.02 2.97 2.03 down NC/A NC/A NC/A A 1562189_at 

cytochrome P450, family 27, subfamily B, polypeptide 1 CYP27B1 12q13.1-q13.3 1.55 1.87 2.15 down NC/A NC/P 0.8 A 205676_at 

v-erb-a erythroblastic leukemia viral oncogene homolog 4 ERBB4 2q33.3-q34 1.63 1.34 1.36 down NC/A NC/A NC/A A 241581_at 

family with sequence similarity 5, member B FAM5B 1q24.1-q25.3 2.55 1.32 1.92 proximal NC/A NC/A NC/A A 214822_at 

fibroblast growth factor 12 FGF12 3q28 1.20 1.76 1.52 proximal/down NC/A NC/A NC/A A 240067_at 

hypothetical gene FLJ13192 15q14 1.79 1.49 1.37 down NC/A NC/A NC/A A 233382_at 

hypothetical gene FLJ20366 

8q23.2 1.90 1.39 1.45 

up/down NC/A NC/A NC/A A 218692_at 

hypothetical gene FLJ36633 up ND ND ND ND NA 

hypothetical protein FLJ20972 1p34.2 1.46 1.29 1.82 down NC/M NC/P NC/P P 230897_at 

hypothetical protein FLJ35074 

6p24 2.07 1.09 1.59 

down NC/A 1.6 NC/A A 1560503_a_at 

transcription factor AP-2 alpha  TFAP2A up NC/A 2.4 NC/A A 204653_at 

laeverin FLJ90650 5q23.1 2.14 3.00 2.77 up/down NC/A NC/A NC/A A 235382_at 

forkhead box F1 FOXF1 16q24 1.40 1.84 2.72 down 2.7 NC/A NC/A A 205935_at 

glycoprotein M6A GPM6A 4q34 1.30 2.05 1.19 down NC/A NC/A NC/A A 209469_at 

GS homeobox 2 GSH2 4q11-q12 1.34 2.29 1.26 down NC/A NC/A NC/A A 230338_x_at 

hypocretin (orexin) receptor 2 HCRTR2 6p11-q11 1.08 1.46 1.62 down NC/A NC/A NC/A A 207393_at 

Hey-like transcriptional repressor HELT 4q35.1 1.37 3.51 1.52 up ND ND ND ND NA 

homeo box C10 HOXC10 12q13.3 1.13 1.62 1.01 up NC/A 0.8 NC/P A 214562_at 

iroquois homeobox protein 1 IRX1 5p15.3 2.20 2.32 2.07 down NC/A NC/A NC/A A 230472_at 

hypothetical protein KIAA1024 15q25.1 1.04 2.06 1.73 down NC/A NC/A NC/A A 215081_at 

LIM homeobox transcription factor 1, alpha LMX1A 1q22-q23 2.42 2.08 2.29 down NC/A NC/A NC/A A 1553541_at 

similar to seven in absentia 2 (SSIAH2) LOC283514 13q14.13 2.43 2.73 1.54 proximal NC/A NC/A NC/A A 1560676_at 

hypothetical protein MGC12982 

1p33 2.17 2.36 1.92 

up NC/P NC/A NC/A A 207653_at 

forkhead box D2  FOXD2 down NC/P NC/A NC/A A 224457_at 

hypothetical protein MGC42090 7p21.1 2.62 4.03 1.97 proximal NC/A NC/A NC/A A 1552293_at 

hypothetical protein MGC4767 12q24.31 1.68 2.58 2.23 proximal 1 1.2 NC/P P 223114_at 

myogenic differentiation 1 MYOD1 11p15.4 2.49 2.57 1.14 down NC/A NC/A NC/A A 206657_s_at 

NK2 transcription factor related, locus 3 (Drosophila) NKX2-3 10q24.2 2.96 4.06 1.30 down NC/A NC/A 3.3 A 1553808_a_at 

one cut domain, family member 1 ONECUT1 15q21.1-q21.2 1.58 2.64 2.49 up NC/A NC/A NC/A P 210745_at 

protocadherin gamma subfamily B, 1 PCDHGB1 5q31 1.12 1.69 3.19 proximal ND ND ND ND NA 

phospholipase A2, group VII  PLA2G7 6p21.2-p12 1.39 1.36 2.27 proximal -8.9 -5.1 -5.7 P 206214_at 
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Name Symbol Location KG1 U937 THP1  Positon KG1 U937 THP1 N Probe Set ID 

phospholipase D family, member 5 PLD5 1q43 1.43 1.69 1.92 down NC/A NC/P NC/A A 1563933_a_at 

scinderin SCIN 7p21.3 1.52 1.42 1.15 proximal/up NC/A NC/A NC/A A 239365_at 

SLIT and NTRK-like family, member 3 SLITRK3 3q26.1 2.56 1.42 2.56 down NC/A NC/A NC/A A 206732_at 

Sp5 transcription factor SP5 2q31.1 1.30 1.89 1.00 down NC/A NC/A NC/A A 235845_at 

transcription factor AP-2 gamma  TFAP2C 20q13.2 1.60 1.02 1.07 up NC/P NC/A NC/A A 205286_at 

transmembrane protein 39A TMEM39A 3q13.33 1.61 1.48 1.64 prom NC/P NC/P 0.6 P 222690_s_at 

zinc finger protein 483 ZNF483 9q31.3 1.98 1.71 2.43 down NC/A NC/P NC/P A 1570534_a_at 

zinc finger protein 565 ZNF565 19q13.12 2.08 1.74 1.80 down NC/P NC/P 0.9 P 228305_at 

hypothetical gene AF086288 9p24 1.75 1.34 -0.52 proximal NC/A NC/A NC/A A 237421_at 

hypothetical gene AY358245 15q24 1.02 1.33 0.01 proximal ND ND ND ND NA 

hypothetical gene BC026095 11q12.1 1.40 1.26 -0.11 down NC/A NC/A NC/A A 1570068_at 

bone morphogenetic protein 4 BMP4   14q22-q23 2.07 1.10 0.82 down NC/A NC/A NC/A A 211518_s_at 

chromosome 16 open reading frame 45 C16orf45 16p13.11 1.00 1.17 -0.23 proximal NC/A NC/A NC/A A 239971_at 

chromosome 1 open reading frame 126 C1orf126 1p36.21 1.84 1.44 -0.40 proximal ND ND ND ND NA 

chromosome 20 open reading frame 39 C20orf39 20p11.21 1.08 1.70 0.08 down NC/P NC/A NC/A A 231619_at 

calponin 1, basic, smooth muscle CNN1 19p13.2-p13.1 1.31 1.27 -0.37 proximal NC/A NC/A NC/A A 203951_at 

hypothetical gene CR611340 6p22.1 2.15 1.70 0.38 proximal ND ND ND ND NA 

chemokine (C-X-C motif) ligand 5 CXCL5 4q12-q13 1.22 1.35 0.84 proximal NC/A NC/A NC/A A 207852_at 

cytochrome P450, family 1, subfamily B, polypeptide 1 CYP1B1 2p21 1.25 2.83 0.90 down 1.7 -6.6 -2.1 P 202435_s_at 

fatty acid desaturase 3 FADS3 11q12-q13.1 1.01 1.15 -0.13 up NC/A NC/A NC/A A 204257_at 

hypothetical protein FLJ42262 8q12.3 2.67 2.22 0.96 up NC/A NC/A -3.4 A 242193_at 

homeo box D10 HOXD10 2q31.1 1.91 1.70 0.72 up -1,5 -1,2 NC/A A 229490_at 

hypothetical protein KIAA1465 15q24.1 1.34 1.49 0.30 up/down NC/A NC/A NC/A A 232208_at 

Kruppel-like factor 5 KLF5 13q22.1 1.82 2.09 0.29 down -3.7 NC/A NC/A A 209212_s_at 

ladybird homeobox homolog 1 (Drosophila) LBX1 10q24 1.03 1.64 0.97 up NC/A NC/A NC/A A 208380_at 

LIM homeobox 9 LHX9 1q31-q32 2.65 1.60 0.59 up/down NC/A NC/A NC/A A 1565407_at 

hypothetical protein LOC282992 10q24.32 1.52 2.34 0.60 down NC/A NC/A NC/A A 244209_at 

myeloid leukemia factor 1 MLF1 3q25.1 1.68 1.79 0.23 proximal -2.9 -1.3 2 A 204784_s_at 

5'-nucleotidase, cytosolic IA NT5C1A 1p34.3-p33 1.53 1.57 0.80 up NC/A NC/A NC/A A 224529_s_at 

phosphodiesterase 4B, cAMP-specific  PDE4B 1p31 1.64 1.01 -0.28 proximal -4.7 -3.6 -4.8 P 211302_s_at 

properdin P factor, complement PFC Xp11.3-p11.23 1.31 1.79 0.44 down -5.9 -7.8 -8.2 P 206380_s_at 

retina and anterior neural fold homeobox RAX 18q21.32 1.54 1.27 -0.26 down NC/A NC/A NC/A A 208242_at 

RGM domain family, member A RGMA 15q26.1 1.33 1.92 0.46 up -0.9 -0.8 NC/A A 223468_s_at 

Rap2-binding protein 9 RPIB9 7q21.12 1.31 1.68 0.20 up 6.7 NC/A NC/A A 215321_at 

SHC (Src homology 2 domain containing) family, member 4 SHC4 15q21.1-q21.2 1.45 1.48 -0.11 up NC/A NC/P NC/A A 230538_at 

SET binding protein 1 SETBP1 18q21.1 1.47 1.75 -0.07 down -0.9 -0.7 -2.8 P 205933_at 

SRY (sex determining region Y)-box 9 SOX9 17q24.3-q25.1 1.49 1.00 0.71 up NC/A NC/A NC/A A 202935_s_at 

transcription factor 2, hepatic TCF2 17cen-q21.3 1.99 2.92 -0.35 up NC/A NC/A NC/A A 205313_at 

ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2  ELAVL2 9p21 1.15 0.61 1.55 up/down NC/A NC/A NC/A A 1560905_at 

forkhead box A1 FOXA1 14q12-q13 1.03 0.92 1.47 up NC/A NC/A NC/A A 204667_at 

potassium channel, subfamily T, member 2 KCNT2 1q31.3 2.52 0.63 1.45 up NC/A NC/A NC/A A 244455_at 

multiple PDZ domain protein MPDZ 9p24-p22 2.14 0.93 1.79 down NC/A NC/A NC/A A 213306_at 

paired box gene 9 PAX9 14q12-q13 1.41 0.59 1.48 up NC/M NC/A NC/A A 207059_at 

serum deprivation response  SDPR 2q32-q33 1.19 0.52 1.61 down 1.9 -5.4 -1.9 P 222717_at 

complement component (3d/Epstein Barr virus) receptor 2 CR2 1q32 1.45 0.55 -0.17 down NC/A NC/A NC/A A 244097_at 

hypothetical protein FLJ40542 22q11.21 1.36 0.43 0.60 down -1.5 -1 -2.8 P 1556072_at 

glial cell derived neurotrophic factor GDNF 5p13.1-p12 1.35 0.37 0.04 up/down NC/A NC/A NC/A A 221359_at 

Kruppel-like factor 11 KLF11 2p25 1.79 0.86 -0.18 up -3.8 -3.1 -1.4 P 218486_at 

LIM homeobox 4 LHX4 1q25.2 2.26 0.89 0.51 down NC/A NC/P NC/A A 1553157_at 

zinc finger protein 215 ZNF215 11p15.4 1.82 0.78 0.43 proximal NC/A NC/A NC/A A 1555510_at 

A kinase (PRKA) anchor protein (gravin) 12 AKAP12 6q24-q25 0.90 1.50 1.66 up -3.3 -6.1 -5.4 P 210517_s_at 

hypothetical gene LOC389372 6p22.1 0.46 2.99 2.21 proximal NC/A NC/A NC/A A 1568826_at 

hypothetical protein FLJ10159 6q21 0.78 2.25 1.46 up NC/A NC/A NC/A A 1563906_at 

formin binding protein 1 FNBP1 9q34 0.47 1.18 1.09 up NC/P -2.7 -3 P 230389_at 

homeo box A9 HOXA9 7p15-p14 -0.02 2.14 1.09 up 5.8 6.3 4.6 A 209905_at 

zinc finger protein 312-like LOC389549 7q31.32 ND 1.78 1.09 up ND ND ND ND NA 

v-maf musculoaponeurotic fibrosarcoma oncogene B  MAFB 20q11.2-q13.1 0.40 1.38 1.12 up -10.9 -10.6 -6.1 P 218559_s_at 

hypothetical protein MGC33530 7p11.2 0.99 1.06 1.84 proximal NC/A NC/A NC/A A 1554530_at 

netrin 4 NTN4 12q22-q23 0.91 2.82 2.43 up NC/A NC/A NC/A A 234202_at 

orthopedia homolog (Drosophila) OTP 5q13.3 0.89 1.45 1.40 down NC/A NC/A NC/A A 237906_at 

protocadherin 19 PCDH19 Xq13.3 0.45 1.45 1.51 down NC/A NC/A NC/A A 227282_at 

protein tyrosine phosphatase, receptor type, K PTPRK 6q22.2-23.1 0.80 1.52 1.75 down NC/A NC/A NC/A A 233770_at 

toll-IL 1 receptor (TIR) domain containing adaptor protein TIRAP 11q24.2 0.83 1.12 1.46 up NC/P NC/P NC/P P 1552360_a_at 

zinc finger protein 37 homolog (mouse) ZFP37 9q32 0.91 1.71 1.24 proximal NC/A NC/A NC/A A 207068_at 

zinc finger protein 229 ZNF229 19q13.31 0.23 2.64 1.37 proximal NC/P NC/A NC/A A 1562789_at 

zinc finger protein 312 ZNF312 3p14.2 0.22 2.02 1.05 up NC/A NC/A NC/A A 221086_s_at 

zinc finger protein 629 ZNF629 16p11.2 0.98 1.27 1.50 down -1.7 NC/P 1.2 P 213196_at 
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deleted in colorectal carcinoma DCC 18q21.3 0.71 1.30 0.34 proximal NC/A NC/A NC/A A 206939_at 

deleted in lung and esophageal cancer 1 DLEC1 3p22-p21.3 0.91 1.32 -0.12 proximal NC/A NC/A NC/A A 207896_s_at 

distal-less homeo box 3 DLX3 17q21 0.21 1.22 -0.03 down NC/A NC/A NC/A A 231778_at 

dual oxidase 2 DUOX2 15q15.3 0.82 1.97 -0.25 down NC/A NC/A NC/A A 219727_at 

endothelial PAS domain protein 1 EPAS1 2p21-p16 0.21 2.57 -0.46 down -3.9 1.8 1.6 P 200878_at 

EPH receptor A10 EPHA10 1p34.3 0.65 1.15 0.54 up NC/A NC/A NC/A A 243717_at 

ES cell expressed Ras ERAS Xp11.23 0.99 1.00 0.62 up ND ND ND ND NA 

FERM, RhoGEF and pleckstrin domain protein 1 FARP1 13q32.2 0.44 2.57 0.44 proximal/up NC/A NC/A NC/A A 227996_at 

hypothetical protein FLJ42461 17p13.2 0.45 2.18 0.40 proximal NC/A NC/A NC/A A 229730_at 

gamma-glutamyl hydrolase  GGH 8q12.3 0.28 3.10 -0.10 proximal 4.4 -2.9 2.6 P 203560_at 

glycoprotein V (platelet) GP5 3q29 0.08 1.36 -0.18 down NC/P NC/P NC/A A 207926_at 

hyperpolarization activated cyclic nucleotide-gated K+4  HCN4 15q24-q25 0.68 1.28 0.53 up NC/A NC/A NC/A A 206946_at 

histone 1, H4l HIST1H4L 6p22-p21.3 -0.63 3.21 ND proximal NC/A NC/A NC/A A 214562_at 

v-jun sarcoma virus 17 oncogene homolog (avian) JUN 1p32-p31 0.11 2.07 -0.08 up -4.5 -5.1 -4.3 P 201466_s_at 

potassium channel beta 3 chain KCNAB1 3q26.1 0.66 1.48 0.98 down/down NC/A 5.4 NC/A A 210471_s_at 

protocadherin 8 PCDH8 13q14.3-q21.1 0.79 1.66 -0.09 up NC/P NC/P NC/P A 206935_at 

RAB38, member RAS oncogene family RAB38 11q14 0.53 1.37 0.55 down NC/P NC/P NC/P A 234666_at 

RAB3C, member RAS oncogene family RAB3C 5q13 0.00 1.57 0.19 proximal NC/A NC/A 1.7 A 242328_at 

ribonuclease P/MRP 30kDa subunit RPP30 10q23.31 -0.22 1.68 -0.14 up 0.4 -1 NC/P P 203436_at 

secretogranin III SCG3 15q21 0.96 2.30 0.12 down NC/A NC/A NC/A A 219196_at 

sonic hedgehog homolog (Drosophila) SHH 7q36 0.99 1.29 0.50 down NC/A NC/A NC/M A 207586_at 

synaptojanin 2 SYNJ2 6q25.3 0.01 1.15 0.07 up 2.3 2.2 1.3 P 212828_at 

zinc finger protein 36, C3H type-like 1 ZFP36L1 14q22-q24 -0.02 2.07 -0.03 down -1.2 -5.5 -3.8 P 211965_at 

zinc finger protein 222 ZNF222 19q13.2 0.06 1.56 0.00 proximal 2.2 NC/A 3.4 A 206175_x_at 

zinc finger protein 516 ZNF516 18q23 -0.51 1.86 -0.12 down NC/P -1.6 NC/P P 203604_at 

zinc finger protein 582 ZNF582 19q13.43 0.10 1.27 0.47 proximal NC/P NC/P NC/P A 1553221_at 

zinc finger protein 610 ZNF610 19q13.41 0.96 1.72 0.47 up/down 1.9 NC/A NC/P A 235953_at 

hypothetical gene AK055761 12q24.2 0.43 0.75 2.18 down ND ND ND ND NA 

doublesex and mab-3 related transcription factor 2 DMRT2 9p24.3 0.03 0.12 2.08 up NC/A NC/A 2.9 A 223704_s_at 

NK6 transcription factor related, locus 1 (Drosophila) NKX6-1 4q21.2-q22 -0.09 0.86 2.02 down NC/A NC/A NC/A A 221366_at 

 
Hybridization results of CpG island microarrays are presented as mean log2 ratios between normal and tumor cell 
lines of three independent microarray experiments (log2 ratios above 1 are boxed in black). Results of expression 
array analysis are presented as mean log2 ratios between normal and tumor cell lines if a significant change was 
detected (negative log2 ratios indicate lower expression in tumor cell lines and are boxed in black). P, present;  A, 
absent; NC, no change (boxed in gray); ND, not detected. Genes that were independently analyzed by MCIp and 
real-time PCR (see Figure 5-9 and Figure 5-10) are indicated in bold lettering. Confirmed targets of aberrant 
hypermethylation are indicated in bold italics. Genes that have been shown to be hypermethylated in other types 
of tumors are in italics and boxed in yellow. 

 

5.2.1 Experimental validation of microarray results 

A representative number of gene fragments that were identified using combined 

MCIp-on-chip analyses were selected for further validation. Mse I-digested DNA from three 

different myeloid cell lines (KG-1, THP-1, U937) was subjected to MCIp. Afterwards 

LightCycler real-time PCR was chosen to validate the MCIp enrichment in the 1000 mM 

fraction of 29 candidate genes. Out of these, no significant differences were detected at the 

LDLR, TGIF and CBX6 gene fragments. However, 26 gene fragments were enriched in a 

manner comparable to the results obtained by microarray analyses. The results for the 26 

gene fragment validations are represented in Figure 5-9.  
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Figure 5-9 Validation of CpG island microarray results by MCIp and real-time PCR 
Detection of the methylation status of the indicated human genes in three Mse I-restricted human myeloid cell 
lines (KG-1, U937, THP-1) as well as normal human blood monocytes (N) after MCIp. The corresponding 
CpG island is represented on top of each figure as described in Figure 5-3. Results are shown relative to the PCR 
product generated from the input DNA (100%) of each cell type. Values are mean ± SD (n≥3) using at least two 
different preparations of MBD-Fc. Genes framed in red were validated by bisulfite sequencing (Figure 5-11). 
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Figure 5-9 continued from page- 90 - 
 

In several cases, the Mse I fragment represented on the microarrays did not include the 

proximal promoter. Since transcription factors may play an important role in leukemogenesis, 

DNA fragments that include transcriptional start sites of the transcription factor genes JUN, 

MAFB, KLF11 and ZNF516 were additionally analyzed using MCIp and real-time PCR. While 

JUN promoter fragments were not significantly detected in any of the samples (data not 

shown), MAFB, KLF11 and ZNF516 promoter fragments also showed significant methylation 

(Figure 5-10).  

 

 

Figure 5-10 Real-time PCR of DNA fragments including transcription start sites 
Schematic representation of the MCIp enrichment detected by single gene real-time LightCycler PCR for MAFB, 
KLF11 and ZNF516 Mse /Csp6 I promoter fragments in the three leukemia cell lines (KG-1, THP-1 and U937) as 
well as normal human blood monocytes (N). The corresponding CpG island is represented on top of each figure 
as described in Figure 5-3. Results are shown relative to the PCR product generated from the input DNA (100%) 
of each cell type. Values are mean ± SD (n≥3) using at least two different preparations of MBD-Fc. 

 

To validate the MCIp detected methylation differences using an independent approach, the 

methylation status of six CpG island fragments (JUN, RAB3C, MAFB, KLF11, ZNF516 and 
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SSIAH2 (LOC283514)) was additionally analyzed using bisulfite sequencing. As shown in 

Figure 5-11 the degree of methylation as determined by bisulfite sequencing correlated well 

with the results obtained by MCIp and real-time PCR validation. 

 

 

Figure 5-11 Bisulfite sequencing of six differentially methylated gene loci 
DNA methylation was analyzed in genomic DNA from three human myeloid leukemia cell lines (KG-1, THP-1, 
U937) as well as normal blood monocytes (N) at the represented loci by bisulfite sequencing. The CpG islands 
are represented on top of each figure as described in Figure 5-3. The gray boxes represent the regions that were 
amplified from bisulfite-treated DNA and cloned. Several independent inserts were sequenced and results are 
presented schematically. Squares mark the position of CpG dinucleotides (empty: unmethylated; filled: 
methylated).  
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5.2.2 Global comparison of CpG island methylation and mRNA 

expression 

RNA from KG-1, U937, and THP-1 cells as well as from freshly isolated human blood 

monocytes of a healthy donor was isolated and complementary mRNA expression data were 

generated by microarray experiments using the human HGU-133 Plus 2 Array from 

Affymetrix. Table 5-1 represents a side by side comparison of CpG methylation and mRNA 

expression concerning the identified CpG island fragments. Interestingly, more than half of 

the genes (69/125) were undetectable in all samples using the microarray approach. In 

cases where significant mRNA levels were detected, transcription was often downregulated 

in tumor cell lines compared to normal monocytes when the gene was methylated. Examples 

include PLA2G7, FNBP1, MAFB, or ZNF516. In some cases there was no correlation 

between the degree of methylation and gene expression (e.g. HOXA10, EPAS1, or SYNJ2). 

In those cases CpG methylation probably targets regions not relevant for enhanced 

transcription.  

To confirm the downregulation of a few representative genes with hypermethylated CpG 

islands (JUN, MAFB, KLF11, SSIAH2, and ZNF516) in leukemia cell lines compared to 

human blood monocytes, reverse transcription and quantitative real-time PCR analysis were 

performed (data not shown). A significant derepression in U937 cells could be achieved 

when treated with 5 µM decitabine (5-aza-2’-deoxycytidine). Figure 5-12 demonstrates the 

effect of demethylation which was most striking for MAFB and SSIAH2 that were induced up 

to 100-fold in treated cells.  

 

 

 

Figure 5-12 Derepression of hypermethylated target genes by decitabine 
Quantitative real-time PCR of MAFB, JUN, KLF11, SSIAH2, and ZNF516 detects the mRNA expression levels in 
myeloid leukemia cell lines at the time point 0 and after 2 and 4 days of decitabine treatment (5 µM). Expression 
levels are relative to HPRT expression. Value are mean ± SE of two experiments. ND, not detected. 
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5.2.3 Aberrant hypermethylation in patients with acute myeloid 

leukemia 

Tumor cell lines only represent in vitro models of primary tumors. Cell lines often have 

acquired additional alterations both on genetic and epigenetic levels. It has been reported 

that a large proportion of genes are hypermethylated across multiple cancer cell lines, 

suggesting that these differences are due to intrinsic properties in generating cell lines 

(Smiraglia et al., 2001). The potential role of culture effects has been further highlighted by a 

recent study demonstrating that DNA methylation profiles of human embryonic stem cells 

vary over time in culture, with different genes affected in different cell lines (Allegrucci and 

Young, 2007).  

To test whether genes that were found to be hypermethylated in the leukemia cell lines are 

also affected in primary tumors, DNA from blast cells derived from twelve AML patients was 

analyzed for hypermethylation at 21 different promoter loci (Figure 5-13). For each locus a 

number of patients showed significant hypermethylation compared to normal donors. In the 

case of the PFC gene, nine AML patients were markedly hypermethylated whereas at the 

RAB3C or RPIB9 loci at least two patients showed significant enrichment. These results 

suggest that the CpG island fragments identified in tumor cell lines can also be subject to 

hypermethylation in primary tumor cells and may represent novel disease markers for 

leukemias. It is well established that regional methylation levels tend to increase with age in 

the mammalian genome. Notably, the youngest patient (20 years old, P20) was 

hypermethylated at 15 (out of 21) loci, whereas the eldest patient (67 years old, P07) was 

significantly hypermethylated only at the PFC locus, indicating that methylation of the above 

tested loci does not correlate with aging.  
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Figure 5-13 Methylation profiles of AML patients 
Schematic representation of the MCIp enrichment detected by single real-time LightCycler PCR for the 21 
indicated promoter fragments in Mse I/Csp6 I-restricted DNA in the twelve AML samples (AML-Patient number. 
(age in years)) as well as two normal human blood monocytes (N1, N2). Results are shown relative to the amount 
of PCR product generated from the input DNA (100%) of each cell type. Values are mean ± SE of at least two 
LightCycler amplifications using at least two different preparations of MBD-Fc. p means that the fragment is 
located within the promoter region and n is the number of experiments performed.  
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5.3 Global profiling of cancer-associated CpG island 

hypermethylation using MCIp combined to 244K CpG 

island arrays 

5.3.1 Establishment of a new microarray platform 

In our early studies the MCIp technique in combination with human 12K CpG island 

microarrays (HCGI12K, Microarray Center, UHN, Toronto, Canada) was used to identify 

more than one hundred genes with aberrantly methylated CpG islands in three myeloid 

leukemia cell lines. These results showed that the MCIp technique discriminates DNA 

fragments according to the methylation degree and allows an unbiased genome-wide 

detection of hypermethylation. 

 

However, the initial experiments performed with the Human CpG 12K microarrays 

highlighted several issues. Besides quality problems, many other aspects encouraged us to 

switch to another microarray platform. The previously used 12K microarray platform 

contained many genomic Mse I fragments with high variation in fragment length. In addition, 

the array contained repetitive fragments leading to unwanted cross-hybridization events 

(non-specific binding), which possibly gave rise to misleading results. Furthermore, the 

number of the representative genes on the array was relatively small. Thus, for global 

analysis of patient samples, another array platform provided by the company Agilent seemed 

to be better suited for this purpose. This array contains 244,000 probes (50-60 mer 

oligonucleotides) covering about 23,000 CpG islands within coding and non-coding regions 

of the human genome (Agilent 244K CpG island microarrays). 

 

To adapt the fractionation approach to the new Agilent DNA microarrays, several 

modifications were required. Instead of the previously used Mse I digestion, genomic DNA 

was sonicated to a mean fragment size of 350-400 bp. Sonication of genomic DNA leads to a 

statistical fragmentation which is necessary for an unbiased genome-wide methylation 

profiling. Moreover, large-scale MCIp (4 µg DNA instead of 300 ng) was used in order to 

provide sufficient amount of gDNA for subsequent labeling and microarray hybridization. 

Therefore PCR bias caused by ligation-mediated amplification (LM-PCR) (see section 

4.3.6.2) could be avoided. Empirical evidence showed that the coating of the protein A 

sepharose beads influences the fractionation behavior. In order to compensate for possible 

variations concerning the coating (due to varying quality of different protein batches) prior to 

each set of fractionation of the normal and tumor samples, a test MCIp with DNA derived 
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from the U937 cell line was performed with a part of the freshly coated beads to define the 

cut-off for highly methylated DNA. The individual MCIp fractions from U937 were spin-

purified (PCR purification kit, Qiagen) and eluted in 100 µl EB buffer. Subsequently the 

fractionation of U937 DNA was controlled by qPCR using control primers covering the 

imprinted region of SNRPN as well as a genomic region lacking CpGs (Empty 6.2) and the 

CpG island region RPIB9 (strongly methylated in U937). While both alleles of the imprinted 

SNRPN are eluted in different fractions (the unmethylated one with a low salt buffer, the 

methylated one with a high salt concentration), the bulk of the unmethylated CpG empty 

region (negative control) is enriched in the low salt fractions due to the complete absence of 

CpGs (data not shown). In contrast, the RPIB9 fragments which are highly methylated in the 

U937 cell line were detected in the high salt fractions. According to these results a threshold 

is defined at a salt concentration which separates the strongly methylated DNA fragments 

from the intermediate and low methylation fragments. Assuming that the other samples were 

enriched for methylated DNA in the same manner, MCIp was performed with the actual 

samples (tumor and normal samples) according to the determined cut-off. The high salt 

fractions containing the highly methylated CpG island fragments were directly labeled for 

microarray hybridization. Cancer cell DNAs were labeled with Alexa Fluor 647 and DNA from 

normal cells was labeled with Alexa Fluor 555 using the Bioprime Plus Array CGH Genomic 

labeling System (Invitrogen, Carlsbad, CA, USA). Efficiency of the labeling reaction was 

controlled with UV-spectroscopy and comparative hybridization on CpG island 

oligonucleotide microarray was performed using the recommended protocol (Agilent). Image 

data was extracted with Agilent feature extraction software and imported to Microsoft Excel 

for further analysis.  

 

Because the signal intensities were quite low compared to the background noise and the 

method was not as robust as expected, the application had to be further improved. Different 

conditions were tested to achieve optimal results. First, after MCIp, each fraction was purified 

using MinElute Columns to reduce the volumes (elution in 20 µl EB). Therefore loss of DNA 

by lyophilization could be circumvented. To achieve a better control after MCIp, not only a 

pretest with U937 DNA was performed, but all individual samples were controlled by qPCR 

with control primers to determine the cut-off. Moreover to attain improved labeling, a new Kit 

from Invitrogen was used (Bioprime total Genomic Labeling System). Consequently, 

enriched methylated DNA fragments of the high salt MCIp fractions were labeled with Alexa 

Fluor 5-dCTP (cancer cells) and Alexa Fluor 3-dCTP (normal cells).  

Since GC-rich probes have the tendency to cross-hybridize, the stringency of hybridization 

was increased by a combination of a higher incubation temperature (67°C instead of 65°C) 

and by addition of formamide (15%) to the hybridization reaction mix. Therefore misleading 
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results such as false positive and false negative signals should be minimized. This step 

probably had the major impact on better results. Figure 5-14 demonstrates that using 

stringent hybridization conditions, many more probes could be detected as hypermethylated 

in the tumor cell line.  

 

 

 

Figure 5-14 Comparison of both hybridization protocols 
(A) The two diagrams demonstrate the difference between the standard (65°C, without formamide) and the 
stringent (67°C, 15% formamide) hybridization protocol. The signal ratio between U937 and monocytes is shown 
as a function of the average signal intensity. (B) The diagrams demonstrate the difference when the signal ratios 
of both protocols are directly compared showing that with the stringent protocol much more probes are detected 
as hypermethylated than with the standard hybridization conditions, especially when the probes have a high GC 
content (˃60%).  

 

 

To explore if the signal intensities increased with greater quantities of DNA, MCIp and 

subsequent microarray analysis were performed with 1 µg, 2 µg and 4 µg DNA. Figure 5-15 

and Figure 5-16 compare data using different amounts of DNA and different hybridization 

protocols. Figure 5-15 illustrates a comparison of genome-wide hypermethylation profiles, 

whereas Figure 5-16 depicts three selected regions (FOXP3, MARVELD2, IRX3). The 

studies showed that robust methylation profiles could be obtained with as little as 1 µg of 

genomic DNA using the stringent (new) protocol. Best results were achieved with 4 µg of 

genomic DNA while 2 µg DNA were sufficient for good, reproducible results.  

Because we were limited in patient material, all following experiments were performed with 

2 µg DNA instead of 4 µg DNA.  
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Figure 5-15 Major modifications of the MCIp-on-chip protocol in global screening for tumor-specific 
hypermethylation 
The old hybridization protocol using standard hybridization conditions (65°C and no formamide) was compared to 
the newer stringent hybridization protocol (67°C and 15% formamide). The new stringent protocol was performed 
with three different amounts of input DNA (1 µg, 2 µg, 4 µg subjected to MCIp). The signal ratios between tumor 
and normal DNA were plotted as a function of the average signal intensity.  

 

 

Figure 5-16 Examples of microarray results using different hybridization conditions and increasing 
amounts of DNA 
Shown are data points for three CpG island regions of FOXP3, MARVELD2 and IRX3 using different hybridization 
conditions. Each data point represents one microarray probe. The old standard protocol involved hybridization at 
a temperature of 65°C, whereas in the new stringent protocol the hybridization temperature was increased to 
67°C and 15% formamide was added. The log ratio (tumor/normal) is plotted as a function of the relative position 
on chromosome 1. 
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5.3.2 Comprehensive validation of genome-wide CpG island 

methylation profiles for two human leukemia cell lines 

Data from this section have been published in the journal Cancer Research. Comparative 

MCIp hybridization data were deposited with the GEO Data Library under Series Entry: 

GSE17455, GSE17510, GSE17512. 

 

To establish and test the newly adapted and improved MCIp-on-chip technique, the first 

genome-wide methylation analyses using Agilent 244K CpG island microarrays were 

performed with MCIp-enriched methylated fragments of the well-established leukemia cell 

lines U937 and THP-1 in comparison with enriched fragments of blood monocytes of a 

healthy donor.  

Because the signal intensities were biased in correlation to their GC content (higher GC 

content lowered the average signals), the probe signals were GC normalized. Three 

independent replicates of each cell line were highly similar (mean r2=0.79 and 0.87 for log10 

ratios of THP-1- and U937-monocyte comparisons, respectively). A typical scatter plot 

(Figure 5-17) of a comparative hybridization of MCIp-enriched material from U937 cells 

highlights the three types of hybridization behavior: probes that show low signal intensities in 

both samples (absence of DNA methylation), probes indicating specific enrichment (aberrant 

DNA methylation) in the leukemia samples, and probes that show high signal intensities but 

low signal ratios in both samples (methylated in both samples). Altogether, more than one 

third of all microarray probes showed significant enrichment in the U937 cell line. 
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Figure 5-17 Comparative DNA methylation analysis of U937 cells and normal human blood monocytes 
using methyl-CpG immunoprecipitation (MCIp) 
Representative scatter plot of a comparison of MCIp-enriched material from 2 µg genomic DNA of a leukemia cell 
line (U937) and a pool of normal human blood monocytes from healthy donors on human 244K CpG island 
arrays. Signal intensity ratios are plotted against average signals (MvA plot, log10 scale). More than one third of all 
microarray probes show significant enrichment in the cell line. 

 

All CpG islands that were validated as hypermethylated in the first study (with 12K CpG 

island arrays) were again detected as hypermethylated in these experiments (performed with 

244K Agilent arrays). In total, approximately 11,300 or 8,700 (out of 23,000) independent 

regions were significantly enriched or depleted (>2.5-fold different) in U937 or THP-1, 

respectively. The majority of differentially enriched regions showed signs of hypermethylation 

(or amplification) in both cell lines. In U937 cells 10,700, in THP-1 cells 6,800 differential 

methylated regions (DMR) were detected. Hypomethylation or deletion of individual regions 

were mainly found in THP-1 cells.  

Large-scale validation of MCIp microarray data using mass spectrometry analysis was 

performed to quantify methylation differences at the resolution of single CpGs. Therefore a 

representative set of differential methylated regions (DMRs) as well as regions without 

methylation difference between cell lines and monocytes as a negative control were chosen 

to be analyzed by the MassARRAY system. This method is based on Matrix-Assisted Laser 

Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) measurement of 

bisulfite converted DNA using the EPITYPER platform (Sequenom, San Diego, US). Bisulfite 

treatment generates methylation dependent sequence variations, which can be measured by 

the MassARRAY system. Moreover, this procedure allows the analysis of multiple CpGs in 

one amplicon and the comparison of their methylation status between different samples (for 
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more details see section 4.4.6). The validation panel comprised a set of 140 genes that were 

selected based on the comparative MCIp methylation profiles of 23,000 CpG islands from the 

two myeloid leukemia cell lines (U937 and THP-1). In total, 1,150 primer pairs, which cover 

about 13,500 CpG sites, were designed for the amplification of bisulfite-treated DNA. 

Besides THP-1 and U937, MALDI-TOF MS was also performed with DNA derived from 

monocytes of three different healthy donors and with unmethylated and fully methylated 

DNAs as controls. The complete MALDI-TOF MS data are provided in the supplementary 

part of the corresponding publication (Gebhard et al., 2010).  

Validation using mass spectrometry analysis of bisulfite-treated DNA (MassARRAY System 

Sequenom) was highly consistent with the microarray data. Figure 5-18 shows examples of 

microarray-MassARRAY comparisons for four genes (MLL, SMAD6, HOXB5 and EPAS1) 

which demonstrate a high degree of correlation between both approaches.  

 

 

Figure 5-18 Examples for correlation between MCIp and bisulfite data 
The panel on top shows microarray results (log10 ratios; blue: U937 versus monocytes; red: THP-1 versus 
monocytes) for selected CpG island regions (MLL, Chr 8: 9798000-97992000; SMAD6, Chr 15: 
64781200-64783000; HOXB5, Chr 17: 44025400-44026600; EPAS1, Chr 2: 46378600-46380800). The middle 
panel depicts the GC-content of microarray probes. The bottom panel shows quantitative MALDI-TOF MS 
(EpiTYPER) methylation levels for individual CpG residues within the analyzed region. Each spot represents one 
CpG unit.  

 

 

In a next step all results extracted from both data sets were compared. To correlate 

differential signal intensities on CpG island microarrays with data points for individual CpG 

dinucleotides, the mean methylation difference between tumor cell lines and monocytes of all 

measured CpG dinucleotides that are located in a 300 bp radius around a microarray probe 

was calculated (“EpiTYPER methylation ratio”, for further information see section 4.4.6.10). 
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Figure 5-19 illustrates the high consistency of both approaches regarding the comparison of 

the two leukemia cell lines THP-1 and U937. 

When plotting the “methylation ratio” against the probes’ signal ratio, a good correlation 

(r2 = 0.51 for U937 and r2 = 0.67 for THP-1) was observed between microarray probe 

intensity ratios on microarrays and mean bisulfite methylation ratios of CpG dinucleotides 

located around the microarray probe for the U937 as well as the THP-1 cell line. The high 

reproducibility of both approaches is shown exemplary for U937 leukemia cells and normal 

monocytes in Figure 5-20A.  

 

 

Figure 5-19 Correlation of microarray and mass spectrometry data 
Differential methylation between the two cell lines THP-1 and U937 can be reliably detected using both methods, 
MCIp combined to microarray analysis and MALDI-TOF MS. Differential methylation of the microarray data is 
illustrated by plotting the signal ratios from one cell line against the signal ratios from the other cell line. For the 
EpiTYPER data methylation ratios for both cell lines are calculated and plotted against each other. In the lower 
graph, the high consistency between microarray signal ratios and EpiTYPER methylation ratios is illustrated on 
probe level. 

 

A similar comparison was performed to correlate both data sets based on region level 

instead of probe level. Here, mean methylation ratios (log10) for 225 regions (covering more 

than 300 bp each) (see section 5.4.2) based on the above amplicons were calculated and 

then plotted against mean signal ratios of all microarray probes within each region. As shown 

in Figure 5-20C and D, a good correlation between microarray and EpiTYPER data was 

observed (r2 = 0.62 for U937 and r2 = 0.75 for THP-1).  

The correlation between both methods increased on the region level compared to the probe 

level, mainly because the resolution of the microarray approach dropped at extremely 

GC-rich microarray probes which tended to cross-hybridize, even under stringent 

hybridization conditions. Mass spectrometry data was also able to provide higher resolution 
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of the boundaries between methylated and unmethylated domains. Stretches of 

unmethylated DNA in close vicinity to metylated domains were often detected as methylated 

due to the DNA fragmentation range. Nevertheless, the MCIp approach clearly discriminated 

methylation levels between the two leukemia cell lines U937 and THP-1 (Figure 5-20B and 

Figure 5-19). Thus, our comprehensive validation demonstrates a good overlap of MCIp and 

MALDI-TOF MS data and suggests that our technique allows for reproducible and valid 

detection of comparative CpG methylation levels.  

 

 

Figure 5-20 Methyl-CpG immunoprecipitation and its validation using MALDI-TOF MS 
(A) Microarray probe-based correlation of MALDI-TOF MS (EpiTYPER) and MCIp microarray results of 
U937/monocyte comparisons. Microarray probe signal log10 ratios were plotted against an EpiTYPER score that 
consists of a scaled, average methylation level of all CpGs located in a radius of 300 bp around the microarray 
probe (r

2
 = 0.51 for U937 and r

2
 = 0.67 for THP-1, data not shown). (B) Microarray probe-based correlation of 

differential CpG methylation ratios measured by MALDI-TOF MS (EpiTYPER) and MCIp microarray. MCIp reliably 
detects differential methylation between the two cell lines (r

2
 = 0.65). Correlation of MALDI-TOF MS (EpiTYPER) 

and MCIp microarray results of U937/monocyte (C) and THP-1/monocyte (D) comparisons for regions covered by 
the EpiTYPER analysis. Mean probe signal log10 ratios are plotted against mean log10 transformed EpiTYPER 
methylation ratios (r

2
 = 0.62 for U937 and r

2
 = 0.75 for THP-1).  

 

5.3.3 Genome-wide hypermethylation profiling in AML and patients 

with colorectal carcinoma 

Cancer is associated with disease-related epigenetic abnormalities, including the aberrant 

hypermethylation of CpG islands which can lead to the abnormal silencing of tumor 

suppressor genes. A major challenge of current clinical research is to find ways of exploiting 
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the diagnostic and therapeutic implications of these abnormalities. Since hypermethylation of 

CpG islands seems to be a tumor-type specific event, the knowledge of global DNA 

methylation patterns of a given tumor might provide important information for risk 

assessment, diagnosis, monitoring and treatment. The design for a study to screen patient 

samples to find out new potential marker genes is shown in Figure 5-21. 

 

 

 

Figure 5-21 Study design for identifying disease markers for AML 
In principle, the study comprises three steps that should finally help to identify disease markers.  

 

Since global methylation profiling of tumor cell lines showed high sensitivity and 

reproducibility of the MCIp approach using the stringent (new) protocol, in a next step global 

comparative CpG island methylation profiling for more than 25 AML samples with mostly 

normal karyotype was performed, using MCIp in combination with 244K CpG island 

microarrays. As a reference a pool of DNA derived from three different healthy donors (male) 

was used. Image-data was extracted using Feature Extraction Software 9.5.1 (Agilent) and 

the standard CGH protocol. Processed signal intensities were further normalized using 

GC-dependent regression and imported into Microsoft Office Excel 2007 for further analysis. 

(Complete microarray data sets will be submitted with the corresponding publication.) 

Clustering of samples based exclusively on the X- and Y-chromosomal genes demonstrated 

that male and female samples can be clearly distinguished as expected due to an 

enrichment of the X-chromosomal gene fragments and simultaneous depletion of the 

Y-chromosomal genes (Figure 5-22). This resulted from the fact that the reference pool 

consisted of DNA derived from three different healthy male donors. 
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Figure 5-22 Hierarchical cluster analysis of AML samples in X- and Y-chromosomal genes only 
DNA methylation ratios (tumor/normal) from 244K CpG island microarray analyses are represented on a 
continuous scale from non-methylated (yellow) to fully methylated (blue). Male (♂) and female (♀) samples can 
be clearly distinguished due to an enrichment of the X chromosome gene fragments and depletion of the 
Y chromosome gene fragments.  

 

To evaluate differences in the methylation patterns between 27 AML patients and three 

leukemia cell lines (KG-1, U937, THP-1) as well as normal blood monocytes and colon cells 

from a healthy donor, a hierarchical cluster analysis was performed (Figure 5-23). The 

analysis was limited to autosomal genes in order to account for the effects introduced from 

X-chromosomal imprinting.  

 

Figure 5-23 Hierarchical clustering of tumor samples and one monocyte as well as one colon sample 
Two-way hierarchical cluster analysis of 27 AML samples, 1 colon sample from a healthy donor (CO; framed in 
red), 1 monocyte sample from a healthy donor (MO) and 3 leukemia cell lines (KG-1, U937, THP-1; framed in 
green) are shown in the different columns. CpG island regions are represented as lines on a continuous scale 
from non-methylated (yellow) to fully methylated (dark blue).  
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Hierarchical clustering revealed a complex methylation pattern of AML patients. The results 

demonstrate that more than 6,000 CpG island regions (out of 23,000) were hypermethylated 

in at least three AML patients. At this level there was no obvious correlation between 

karyotype, age and other parameters. Cell lines showed a much higher degree of 

methylation than primary tumors. About 3,000 CpG islands were methylated in cell lines but 

never in primary tumor cells. Furthermore, the methylation pattern of the normal colon tissue 

DNA showed that many CpG islands methylated in AML become also methylated in the 

colon during aging. This became apparent by comparing hypermethylation profiles of healthy 

colon samples (derived from 60-year-old donors) and monocyte samples (derived from 20- to 

30-year-old healthy donors). Colon samples showed a high degree of hypermethylation 

compared to monocytes: 6,000 out of 23,000 CpG island regions can be hypermethylated in 

AML samples, 3,000 (out of 6,000 CpG island regions) were also hypermethylated in normal 

colon samples. This high amount of hypermethylated regions cannot only be reduced to 

tissue-specific effects. They rather represent age-dependent differences. Genes affected by 

hypermethylation during aging are mainly genes involved in developmental processes like 

homeobox genes or Polycomb targets as demonstrated in Figure 5-24.  

 

 

Figure 5-24 Age-related hypermethylation correlates with developmental genes 
Hierarchical clustering revealed a group of 3,000 CpG islands that were methylated not only in U937 and THP-1 
cell lines but also in normal colon samples, however not in normal blood monocytes. Genes associated with this 
cluster are enriched for gene ontology (GO) terms including homeobox genes, developmental processes and 
transcription factors. Three independent experiments for THP-1 and four independent experiments for U937 
showed high consistency, as well as two independent experiments performed with different normal colon samples 
(CO) and three independent experiments performed with normal blood monocytes derived from different healthy 
donors (MO).  

 

One possibility to make sure that those differences are really age-dependent, would be the 

comparison with colon samples from a set of younger healthy donors. However, during the 

time of my thesis there were no samples available for such experiments. 
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Because a large number of CpG islands showed variable methylation aberrations in AML, we 

decided to focus on genes that are likely to include functionally relevant candidates. In total, 

400 target regions that are important for transcription, gene regulation, or signaling, were 

chosen for validation using the MassARRAY platform (MALDI-TOF MS). Although we include 

some examples for putative age-dependent methylation, the majority of amplicons did not fall 

into this category. 

 

So far, we concentrated on leukemia samples. To compare the methylation profiles obtained 

from AML samples with an independent tumor entity, about 20 DNA samples derived from 

colorectal carcinomas were analyzed using MCIp with subsequent microarray hybridizations. 

A reference pool of three different colon DNAs (50-, 56- and 63-year-old donors) purchased 

from Lonza were also used. Complete microarray data sets will be submitted with the 

corresponding publication. The data analysis of the colon patients has not been completed at 

time of writing this thesis. Future aims are the mass spectrometric analysis and validation of 

hypermethylated genes to define potential marker genes for this tumor entity. 

 

5.3.4 Confirmation by MassARRAY (EpiTYPER) data 

Mass spectrometry yields quantitative methylation data of short stretches of subsequent 

CpGs in a high-throughput manner and consequently allows for the validation of large 

genomic regions. Approximately 350 genes that were differentially methylated between AML 

patients and normal monocytes were selected based on the array results (Figure 5-23). For 

all genes a total of 670 PCR amplicons were designed. Before analyzing the patient 

samples, all primers were tested with the cell lines (THP-1 and U937). The results of all 

amplicons were screened for selection for follow-through methylation analysis in the AML 

samples. Several criteria were considered when choosing the best amplicons: 

1. Spectral quality: All amplicons designed across a CGI were assessed for spectral 

quality from the MALDI-TOF MS output to determine the success of PCR 

amplification and the presence / absence of primer dimers or amplification bias. 

 

2. Cleavage pattern: The cleavage pattern of each amplicon following base-specific 

cleavage was also assessed to determine whether a sufficient amount of cleavage 

fragments fell within the mass range of detection for MALDI-TOF MS 

(1,500 Da - 6,500 Da). In some situations, a large proportion of cleaved fragments 

were either too small or too large for detection. 

 



 Results 

 - 109 -    

3. CpG density and length: Larger (>400 bp), CpG-dense amplicons were preferable, in 

order to maximize the quantity of data available. 

 

4. Location: Amplicons adjacent to or upstream of the transcription start site were 

considered ideal, in order to cover any putative transcription factor binding sites. 

 

5. Methylation levels: When methylation ratios were considered across several 

amplicons covering a CGI, amplicons in regions where methylation levels changed 

dramatically between samples (from unmethylated to methylated or vice versa) or 

where tumor sampes were methylated were preferable, rather than amplicons where 

no methylation was observed. 

Following manual inspection of all methylation data quality, a final set of about 400 amplicons 

(˃7000 CpG sites) in about 300 genes were chosen for validation of the microarray data with 

AML patient samples.  

Again, MassARRAY EpiTYPER data correlated well with microarray data. Examples for the 

excellent consistency of the two different techniques are shown in Figure 5-25.  

We finally asked, if specific markers for disease diagnosis or prognosis can be identified. To 

address this issue, a further 200 AML patients were screened using the 400 amplicons as 

described above to identify relevant disease markers. (The complete MALDI-TOF MS data 

will be available online upon publication.)  

Figure 5-26 shows exemplary methylation patterns of two different gene amplicons (CEBPA 

and RHOB) for 165 AML patients, CD34+ cells derived from three different healthy donors 

and monocytes derived from four healthy 20-year-old donors and eleven healthy 60-year-old 

donors. CEBPA (CCAAT/enhancer binding protein α) is a basic leucine zipper transcription 

factor that regulates differentiation-dependent genes during granulocyte differentiation. While 

hypermethylation of the CEBPA promoter has already been reported in AML as well as in 

other malignancies (Figueroa et al., 2009), the distal CpG island which is located about 20 kb 

downstream of the promoter was often hypomethylated in AMLs but methylated in normal 

monocytes and stem cells (Figure 5-26). In contrast, more than one third of the analyzed 

AML patients showed significant hypermethylation of an amplicon within the RHOB gene 

whereas hematopoietic stem cells (CD34+ cells) as well as monocytes of all healthy donors 

were unmethylated. It is already known that the expression of the RHOB gene, a member of 

the Rho family of small GTPases, is often downregulated in lung cancer (Sato et al., 2007). 

Computational analyses of the EpiTYPER data set was still in progress at the time of writing 

this thesis. Therefore, no correlations between methylation profiles and clinical parameters 

could be detected or, likewise, no potential marker genes could be identified at this time.  
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Figure 5-25 Examples of aberrantly methylated CpG islands in AML samples 
Microarray and MassARRAY data are shown for CpG islands of four different genes in AML samples and two 
blood monocytes from two different healthy donors. Each sample is represented by one column. Each line of the 
microarray results represents one probe and each line of the EpiTYPER results represents one CpG unit. The 
same region is detected by microarray or EpiTYPER analysis, respectively. DNA methylation values regarding 
EpiTYPER results are represented on a continuous scale from non-methylated (white) to fully methylated (dark 
blue) (non-detectable CpGs are marked in gray), whereas signal log ratios (tumor versus normal) are represented 
on a continuous scale from blue (strongly hypermethylated in tumor) to yellow (strongly hypomethylated in tumor). 
The top diagrams were extracted from the Genome Browser showing the relative position of transcripts, CpG 
islands (green) as well as position of amplicons detected by MassARRAY experiments. 

 

To find out if monocytes also show age-related differences in methylation patterns similar to 

colon samples, and therefore to make sure that the identified potential marker genes are 

really methylated due to tumorigenesis and not due to aging, DNA samples derived from 

monocytes of about 60-year-old donors were analyzed using MALDI-TOF MS for the 400 

CpG island regions. Unlike colon samples, monocyte samples did not show age-dependent 

changes in DNA methylation (Figure 5-26). One explanation could be that crypt stem cells 

possess an exceptionally high rate of proliferation, resulting in further DNA methylation due 

to the higher mitosis rate. 
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Figure 5-26 Examples of abnormal methylation patterns in AML patients 
Mass spectrometry analysis of CpG island fragments of two different genes (CEBPA (on the left) and RHOB (on 
the right)) in 165 AML patients, three CD34+ samples and monocytes derived from four healthy 20-year-old 
donors and eleven healthy 60-year-old donors. Samples (rows) are clustered according to the average 
methylation degree of all CpG units (columns) within the amplicon. DNA methylation values are depicted by a 
color scale as indicated (methylation increases from white (non-methylated) to dark blue (fully methylated)). Gray 
denotes data of poor quality. The top diagrams were extracted from the Genome Browser showing the relative 
position of transcripts (black), the transcription start sites (arrows), CpG islands (green) and the position of 
amplicons detected by MassARRAY experiments (red).  
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5.4 General transcription factor binding at CpG islands in 

normal cells correlates with resistance to de novo 

methylation in cancer 

 

The data from this section have been published in the journal Cancer Research. Microarray 

data were deposited with GEO (gene expression analyses: GSE16076; comparative MCIp 

hybridizations: GSE17455, GSE17510, GSE17512; ChIP-on-chip hybridizations: 

GSE16078). 

 

Cancer is associated with disease-related epigenetic abnormalities, including the aberrant 

hypermethylation of CpG islands leading to loss of tumor suppressor gene expression. 

Methylation profiling studies have demonstrated that although there may be hundreds of 

different CpG islands methylated in any one tumor, some are methylated in multiple tumor 

types, whereas others are methylated in a tumor-type specific manner. Moreover, each 

tumor type tends to exhibit a characteristic set of aberrantly methylated genes. However, 

despite numerous examples of methylation–associated gene silencing events in human 

cancer cells, the molecular pathways underlying aberrant DNA methylation remain elusive. 

Different mechanisms for cancer-dependent, aberrant de novo methylation have been 

proposed so far, largely based on the behavior of individual CpG islands (see section 1.7.2). 

Besides other proposed mechanisms, one possible mechanism suggests that Alu and other 

repetitive elements may serve as foci from which de novo methylation can spread (Feltus et 

al., 2003), whereas other elements could provide a “protective” function. The absence of 

such ”protective” transcription factors may lead to the spreading of DNA methylation into 

affected CpG islands (Turker, 2002). To address this issue, methylation-prone and 

methylation-resistant CpG islands were defined by analyzing the methylation status of 

23,000 CpG islands of the human genome in acute leukemia cell lines as well as normal 

blood monocytes. Understanding the nature of these differences could provide insight into 

the molecular basis for aberrant methylation. The corresponding MCIp-on-chip experiments 

as well as the extensive validation by bisulfite conversion and subsequent MALDI-TOF are 

described in 5.3.2.  
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5.4.1 Basic properties of hypermethylated CpG islands  

Analyzing the results obtained from three comparative microarray hybridizations from 

monocytes and two leukemia cell lines, about 9,000 CpG island regions were detected 

reproducibly different (p<0.05 for repeated measures, three replicates each) between any of 

the comparisons (monocyte - monocyte (MO), THP-1 - monocyte (THP-1), U937 - monocytes 

(U937)). Hierarchical clustering of these CpG island regions revealed a group of CpG islands 

that are commonly hypermethylated in the cell lines but not in normal monocytes. Genes 

associated with this cluster exhibited an enrichment for gene ontology terms related to 

developmental processes, transcription factor or receptor functions, as well as homeobox 

proteins, that are often targeted by Polycomb group repressors. These associations were 

highly significant and in line with earlier evidence suggesting a link between aberrant DNA 

methylation in cancer and Polycomb group repressors that often target genes involved in 

development like homeobox transcription factors (Bracken et al., 2006b). CpG islands that 

were specifically methylated only in one of two leukemia cell lines were not significantly 

enriched for functional properties (data not shown). The heatmap is represented in Figure 

5-27A. 

 

 

 

Figure 5-27 Functional analysis of commonly hypermethylated CpG island regions 
(A) About 9,000 CpG island regions were significantly different (p<0.05 for repeated measures) between any of 
the comparisons (monocyte - monocyte (MO), THP-1 - monocytes (THP-1), and U937 - monocytes (U937)). 
Hierarchical clustering of these CpG island regions reveals a group of CpG islands that are commonly 
hypermethylated in the cell lines. Genes associated with this cluster are enriched for gene ontology (GO) terms 
including developmental processes, transcription factors and homeobox genes. (B) Averaged microarray signal 
intensities were plotted as a function of distance towards the known transcription start sites (TSS; bin size 100 bp, 
motif in 5’-3’ orientation). 
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Plotting the average probe signal ratio between one of the two cell lines (THP-1 and U937) 

and normal blood monocytes as a function of the distance to the transcription start site (TSS) 

reflects that regions around known TSSs are less often targeted by de novo methylation in 

leukemia cells than promoter distal sites (Figure 5-27B). This is confirmed by previous 

observations suggesting that proximal promoters are less frequently de novo methylated 

than other genomic regions (Irizarry et al., 2009). 

 

5.4.2 Defining CpG island regions 

CpG methylation often spreads over large genomic regions. In order to perform a 

region-based analysis of comparative methylation data instead of a microarray probe-based 

analysis, regions were first mapped and a cumulative hypermethylation value based on 

probe behavior within the region was assigned. Based on the array design, CpG island 

regions were defined to include all neighboring microarray probes of a region with a 

maximum distance of 500 bp and a minimum of three microarray probes in total. For each of 

the approximately 23,000 CpG island regions an integral value for hypermethylation based 

on area size was calculated and log10 intensity ratios of microarray probe signals were 

smoothed above a threshold (2.5-fold enrichment) as described in Figure 5-28A. To 

normalize for region size, these integral values were divided by one hundredth of an arbitrary 

‘maximal’ integral value that was calculated for each region assuming a 100-fold enrichment 

of each microarray probe in leukemia versus normal DNA.  

Figure 5-28B shows a diagram of the cell line U937, where normalized integral 

hypermethylation ratios are plotted against the corresponding average signal intensities of 

individual areas. The comparative analysis on the region level (Figure 5-28B) also clearly 

separated the three different classes of CpG island regions as shown before on probe level 

(Figure 5-17): (i) CpG islands that show low signal intensities in both samples. Those were 

lost during the MCIp procedure and are thus unmethylated. (ii) CpG islands that are 

specifically enriched and therefore methylated specifically in the leukemia samples. (iii) CpG 

islands that show high signal intensities in both samples. They were enriched in both 

samples and are thus methylated in both. We could not identify specific properties 

associated with the latter type of CpG islands which is heterogeneous and includes 

monoallelic (e.g. imprinted regions) as well as biallelic (tissue- or soma-specific) DNA 

methylation events (Straussman et al., 2009) and therefore concentrated on properties of 

unmethylated or de novo methylated genes in the following analyses. 
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Figure 5-28 Integral hypermethylation values and DNA methylation status in CpG island regions 
(A) Calculation of integral hypermethylation values for a CpG island region. Probes (red boxes) within a region 
(except the ones located at the edges) were assigned mean log10 ratios of the center probe and the two 
neighboring probes. The integral hypermethylation value assigned to each CpG island region corresponds to the 
area in blue and is the sum of integral probe areas (green boxes) above the threshold: ∑[extended probe length x 
(smoothed log10 ratio-2.5)] All probes with a smoothed log10 ratio below the threshold (2.5, blue dotted line) were 
ignored. (B) Normalized integral hypermethylation values of CpG island regions are plotted against their average 
log signal intensities for a comparative MCIp of U937 cells and monocytes. Three populations are distinguished: 
CpG islands that show low signal intensities in both samples (low average log signal intensities and low integral 
hypermethylation values: lost during the MCIp procedure and thus unmethylated; CpG both, framed in red); CpG 
islands that are characterized by intermediate average log signal intensities and high integral hypermethylation 
values (specifically enriched and methylated in the leukemia samples; mCpG U937, framed in green); CpG 
islands that show high signal intensities (but low signal ratios) in both samples (high average log signal intensities 
and low integral hypermethylation values: enriched in both samples and thus methylated in both; mCpG both, 
framed in blue). 

 

 

To get insight into the correlation of DNA methylation and mRNA expression, the previously 

performed CpG island microarray hybridizations (U937-monocyte, THP-1-monocyte) were 

compared with global mRNA expression analyses, which were performed with RNA isolated 

from monocytes (CD14+ cells), CD34+ progenitor cells and the leukemia cell line U937.  

 

Confirming earlier observations (Gebhard et al., 2006b; Keshet et al., 2006), the comparison 

of global mRNA expression data of normal (CD14+ cells and CD34+ cells) and leukemia 

cells (U937) between the two major CpG island classes (unmethylated in cancer as well as 

normal cells and de novo methylated in cancer cells) demonstrated that the majority of de 

novo methylated CpG islands are characterized by low or absent transcription of neighboring 

genes irrespective of their position relative to TSS (promoters, intragenic or intergenic 

regions) in normal as well as in cancer cells. Box plots in Figure 5-29 illustrate the distribution 

of mRNA expression ratios. 
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Figure 5-29 Expression status of genes associated with CpG island regions 
The box plots show the distribution of mRNA expression ratios (CD34+ progenitor cells, CD14+ normal blood 
monocytes, U937) conditional on the methylation status (unmethylated in both: CpG; hypermethylated in 
leukemia: mCpG) for THP-1 and U937 at individual probes that were divided into the three position classes: 
promoters (prom), intragenic (intra) and intergenic (inter). The red lines denote medians, boxes the interquartile 
ranges, and whiskers the 5th and 95th percentiles. Pair wise comparisons of mRNA expression ratios associated 
with unmethylated and hypermethylated regions are significant (P<0.001, Mann–Whitney U test, two-sided). 

 

5.4.3 Strategies for de novo motif discovery 

If certain transcription factors are to be involved in establishing and/or maintaining the CpG 

methylation status of a certain CpG island region, it should be possible to isolate their 

respective binding motifs by comparing methylation-prone and methylation-protected CpG 

islands. A number of previous bioinformatics attempts indeed identified specific nucleotide 

sequences and general CpG island attributes (Das et al., 2006; Feltus et al., 2003; Feltus et 

al., 2006) or structural features (Bock et al., 2006) that contribute to the protection from or 

susceptibility to aberrant methylation. However, no defined consensus sites for known 

transcription factors could be identified so far. After analyzing the methylation status of 

23,000 CpG islands of the human genome we defined sequence patterns characteristic for 

methylation states in CpG island regions using de novo motif analysis. 

 

Motif discovery was performed using the comparative algorithm HOMER (Hypergeometric 

Optimization of Motif EnRichment) ( see section 4.5.1 for more details). Different strategies 

for the analysis of the data in this thesis were applied in order to avoid identifying biased 

results due to CpG island nucleotide content, length etc. CpG island regions intrinsically have 

a high CpG content (in contrast to a large fraction of the genome that is relatively CpG-poor) 
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and they differ in sequence lengths. De novo motif finding, however, requires target and 

background sequence sets of constant lengths and similar nucleotide compositions.  

 

The following approaches were used to isolate enriched motifs: We first searched for motifs 

in all selected CpG island regions (unmethylated in both or methylated only in tumor) in a 

fixed radius around the CpG island region center (± 250, 500, 750, and 1000 bp) against 

either a non-overlapping, CpG-matched background set from all known promoters, or from all 

microarray-defined CpG island regions. Independently, CpG island regions were divided into 

regions <750 bp, 750-1250 bp, 1250-1750 bp and >1750 bp and separately analyzed as 

above. These region sizes were chosen because the CpG islands in this study ranged in size 

from 0.2-3.2 kb and because cis-acting features might lie within or flanking CpG islands. The 

identified motifs as described below as well as slight modifications thereof generally 

appeared in most analyses. The region approach is always associated with some degree of 

impreciseness, since some CpG island regions (in particular the larger ones) tend to display 

heterogeneous methylation patterns. For example, if a CpG island is methylated on one side, 

but unmethylated on the other side, the whole region will be considered as methylated. When 

compared with our large bisulfite data sets (see section 5.3.2), approximately 10% (U937) or 

20% (THP-1) of the CpG island regions’ overall hypermethylation score did not match the 

methylation status of the actual sequence around the motif (data not shown).  

 

Because the resolution of region data is relatively low, we applied a more accurate motif 

centered approach to improve resolution and accuracy of motif-methylation status 

correlations. For this purpose each of the identified motifs on the CpG island array was 

annotated with the mean signal intensities of all microarray probes in the range of ± 150 bp 

around it. The lower limit for hypermethylation of a motif in the tumor cell line was set at the 

mean signal intensity log10 ratio of 0.8. A motif was counted as unmethylated if it had the 

mean signal intensity log10 ratio between 0.4 and -0.4 and an average log10 signal intensity 

below 3.0-3.5 depending on the overall microarray probe behavior in individual 

hybridizations. In comparison with the bisulfite data, this approach was much more accurate: 

in U937, 135/140 motifs (97%) and in THP-1 124/135 motifs (92%), were correctly classified 

as hypermethylated or unmethylated.  

 

 

 



Results 

- 118 - 

5.4.4 Sequence motifs associate with CpG island regions that 

remain unmethylated or become hypermethylated in cancer 

The hypothesis that CpG islands differ in their inherent susceptibility to aberrant methylation 

presupposes that there are cis-acting features that distinguish methylation-prone and 

methylation-resistant CpG islands. To address this question, the de novo motif discovery 

algorithm HOMER was used to search for sequence patterns associated with CpG island 

regions that are either specifically and highly methylated in leukemia cell lines or not 

methylated in any sample. Altogether a set of eight non-redundant sequence motifs could be 

identified that were highly enriched in either population in comparison with all CpG island 

regions on the array (Figure 5-30A). These motifs were highly similar to known matrices from 

the TRANSFAC database. Hypergeometric P values for the enrichment of the indicated 

sequence motifs were assigned based on motif-centered methylation data. The calculation 

was performed with the mean signal intensities of all microarray probes in the range of 

± 150 bp around each motif (see section 5.4.3). Two repetitive motifs were highly enriched in 

the hypermethylated CpG island set, one of them (GAGA) (P value = 5.7×10-51 for U937) 

resembling the consensus motif for Drosophila GAGA-binding factor, a trithorax group 

member that has been implicated in preventing heterochromatin spreading. CA-repeats 

(CACA) (P value = 7.5×10-76 for U937) may play a role in RNA splicing and are bound by the 

heterogeneous nuclear ribonucleoprotein (hnRNP) L in a repeat length dependent manner. 

But there is no known link to DNA methylation or chromatin structure. More strikingly, the de 

novo motif algorithm revealed six sequences highly enriched in the unmethylated CpG island 

population. Five of them corresponded to consensus binding sites for known transcription 

factors, including nuclear transcription factor (NF) Y, GA binding protein (GABP), specific 

protein (SP) 1, nuclear respiratory factor (NRF) 1, ying-yang (YY) 1, whereas one of them 

was an unknown factor. The latter motifs were enriched with high significance with 

hypergeometric P values from 10-148 to <10-300 (motif distribution and P values are submitted 

with the corresponding publication). The ratios of expected versus observed motif 

appearance show the clear enrichment/depletion of the above motifs in unmethylated or 

methylated CpG island regions in U937 and THP-1 cells, respectively (Figure 5-30B). 
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Figure 5-30 Sequence motifs associated with aberrantly DNA methylated (mCpG) and commonly 
unmethylated CpG island regions (CpG) 
(A) P values (hypergeometric) for the enrichment of the indicated sequence motifs were assigned based on 
motif-centered methylation data (based on mean signal intensities of all microarray probes in the range of 
± 150 bp around each motif. Motifs identified de novo are shown in comparison to known matrices from the 
TRANSFAC database. (B) The two upper diagrams depict ratios of observed versus expected motif occurrences 
in CpG island regions that are aberrantly DNA methylated specifically in cell lines (mCpG, blue bars) or 
unmethylated in monocytes and the cell lines (CpG, red bars). The distribution of sequence motifs was also 
analyzed in acute leukemia samples (AML n=8) or colorectal carcinomas (CRC n=10). Here, median ratios of 
observed versus expected motif occurrences are shown as described above. Error bars mark the interquartile 
range. Hypergeometric P values for individual enrichments are listed in the supplementary material of the 
corresponding publication.  

 

Cell lines have been extensively cultured and may therefore have acquired genetic and 

epigenetic alterations that are not necessarily found in primary cells. To explore whether the 

sequence motifs identified in the two cell lines (individual motif distribution and P values are 

available online in the supplementary part of the corresponding publication) were also 

apparent in primary tumors, comparative methylation profiles of eight samples from acute 

leukemia (compared to normal monocytes) (see section 5.3.3) were analyzed concerning to 

the distribution of the above identified motifs. All sequence motifs were again significantly 

enriched in either unmethylated or methylated CpG island regions in primary AML samples 

(Figure 5-30B) indicating that the identified motifs are also relevant in vivo. 

To obtain evidence whether the protective role of the identified motif panel was also relevant 

in a different class of tumor, we analyzed ten colorectal carcinomas (compared to normal 

colon) (see section 5.3.3). Again, the same set of motifs showed a high enrichment in either 

unmethylated or methylated CpG island regions (Figure 5-30B). Thus, the provided data 
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strongly suggest that the identified consensus sequences are of general importance and may 

serve to protect CpG islands (preferably those acting as promoters) from aberrant 

methylation.  

 

Next, similar analyses were also performed with groups of unmethylated or methylated CpG 

island regions that were classified according to their genomic position (promoter: 

-1000 - +100 of RefGene TSS; intragenic (all exons and introns of RefGenes); intergenic: all 

non-transcribed regions). All six sequence motifs identified in CpG island regions that are 

unmethylated in normal cells and also remain unmethylated in tumor cells were enriched 

within the proximal promoter regions of known genes. Ratios of observed versus expected 

motif occurrence are demonstrated in Figure 5-31A. This is in line with previously published 

data that describe motifs isolated from unmethylated CpG islands as prominent constituents 

of proximal promoters (Rozenberg et al., 2008; Xie et al., 2005b). In Figure 5-31B the 

distribution of motifs is illustrated with respect to transcription start sites (TSS) of known 

genes. All motifs except the two repeat sequences are enriched within proximal promoters. 

Interestingly, most of the discovered promoter motifs (GABP, Sp1, NFY, NRF1 and the 

unknown motif) show positional bias with respect to TSS towards the 5’-direction.  

 

 

 

Figure 5-31 Motif enrichment in cell lines depending on genomic location 
(A) The distribution of sequence motifs was analyzed conditional on their genomic location. Enrichments or 
depletions at the three position classes were highly significant (hypergeometric test: P<0.001) except for the 
cases marked with a hash. (B) Distribution of motifs relative to transcription start sites of known genes (TSS). 
With the exception of the two repeat sequences, all motifs show strong peaks close to proximal promoters. 
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In contrast, the two repeat sequences (CACA, GAGA) showed no specific enrichment around 

transcription start sites (TSS), but both showed a higher enrichment in promoter proximal 

than in distal sites that acquired methylation during leukemic transformation (data not 

shown). Motif searches conditional on their genomic position additionally identified a CTCF 

consensus motif specifically enriched in the unmethylated intergenic CpG island regions 

(Figure 5-31). The 20 bp motif used for further analysis was extracted from published 

Chip-sequencing data (Barski et al., 2007) using HOMER: 

CTCF motif: 

 

 

 

 

 

Despite the significant over-representation of the “protective” motifs in promoters, they were 

also enriched with high significance in unmethylated CpG island regions that were located in 

intergenic or intragenic regions as shown in Figure 5-32 for U937 and THP-1 cells. In 

contrast, CTCF, a transcription factor which can act as a chromatin barrier by preventing the 

spread of heterochromatin structures, showed only enrichment in the intergenic regions in 

both cell lines.  

 

 

Figure 5-32 Sequence motifs associated with aberrantly methylated (mCpG) and commonly unmethylated 
CpG island regions (CpG) depending on their genomic location 
The diagrams depict ratios of observed versus expected motif occurrences at sequences that are 
hypermethylated specifically in cell lines (mCpG, blue bars) or unmethylated in monocytes and cell lines (CpG, 
red bars). Enrichments or depletions at the three position classes were highly significant (hypergeometric test: 
P<0.001) except for the cases marked with a hash. 
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If a certain factor was able to confer methylation protection, this property should be limited to 

its vicinity. Therefore distal sequences should be less protected than proximal ones. By 

plotting average MCIp signal intensities (normalized for GC-content) as a function of motif 

distance for each of the “protective” motifs, it could be demonstrated that each of the 

protective motifs showed a similar distribution of signal ratios: values were lowest at the 

center and progressively increased with distance. Curve progression was flat in primary, 

normal cells. However, distance-related differences in signal ratios markedly increased in 

leukemia cells, suggesting that these motifs are indeed associated with lower methylation 

levels and that this association depends on motif distance (Figure 5-33). Interestingly, the 

signal ratio distribution was not always symmetrical (e.g. at the unknown motif or the NRF1 

motif), implying that some factors may preferentially protect regions upstream or downstream 

of the element. Repeat elements showed an inverse distribution: mean signal ratios were 

usually higher at the motif center and tended to drop with distance. The distribution of signal 

ratios also appeared unsymmetrical. This is consistent with the preferential de novo 

methylation of CpG regions located up to 2 kb distant from CpG island promoters. Those 

so-called CpG island shores were previously detected in colon cancer (Irizarry et al., 2009).  

 

Figure 5-33 Distribution of DNA methylation relative to motif distance in monocytes and leukemia cell 
lines 
Averaged microarray signal intensities were calculated as a function of motif distance (bin size 100 bp, motif in 
5’-3’ orientation), distance dependent values were normalized for the average, GC-content matched signal 
intensities of all array microarray probes and ratios were plotted against motif distance. Negative values are below 
the average of all microarray probes (and therefore less methylated), whereas positive values imply that regions 
are methylated above the average of all regions. 
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This phenomenon was not only evident in the human genome but also in the murine 

genome. Averaged DNA methylation ratios of individual CpGs derived from high-throughput 

Reduced Representation Bisulfite Sequencing (RRBS) of mouse embryonic stem (ES) cells, 

ES-derived and primary neural cells, and eight other primary tissues (Meissner et al., 2008) 

were calculated for all available CpG dinucleotides and plotted as a function of motif distance 

(bin size 100 bp, motif in 5’-3’ orientation). As shown in Figure 5-34 a similar, motif 

distance-dependent distribution in the masked as well as in the unmasked mouse genome 

became obvious. Interestingly, on this global (less CpG island biased) scale, the relatively 

short NFY motif was less protective, especially when annotated on the unmasked mouse 

genome. A likely explanation may be that the ratio between actual factor binding and motif 

occurrence is lower in non-CpG island regions.  

 

 

Figure 5-34 Distribution of DNA methylation relative to motif distance in murine ES cells 
CpG methylation ratios were extracted from high-throughput Reduced Representation Bisulfite Sequencing 
(RRBS) data (GEO database accession no. GSE11034) of murine embryonic stem (ES) cells, ES-derived and 
primary neural cells, and eight other primary tissues. Average CpG methylation ratios were calculated for all 
available CpG dinucleotides and plotted as a function of motif distance (bin size 100 bp, motif in 5’-3’ orientation). 
Motifs are mapped against a repeat-masked (A) or unmasked (B) mouse genome. On this global (less CpG island 
biased) scale, the relatively short NFY motif was less “protective”, especially when annotated on the 
non-repeat-masked (unmasked) mouse genome which may be related to the fact that the ratio between actual 
NFY binding and motif occurrence is lower in non-CpG island regions. Total number of motifs is given in brackets. 
Gray areas represent distance-dependent standard deviations of CpG methylation ratios. 
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5.4.5 Sequence motifs and transcription factor binding in normal 

cells correlate with CpG methylation status in leukemia 

To study the correlation between motif appearance, transcription factor binding in normal 

cells and aberrant DNA methylation in the tumor cell lines, ChIP-on-chip (chromatin 

immunoprecipitation combined to microarray) analyses with antibodies for the transcription 

factors Sp1, NRF1 and YY1 in normal peripheral blood monocytes were performed. The 

distribution of binding events was analyzed based on their genomic location (promoter, 

intergenic and intragenic regions) (for ChIP-on-chip peak calling and motif annotation see 

section 4.5.2). As their consensus sites, these three general factors preferentially bound to 

promoter regions (Figure 5-35A). Enrichments or depletions at the three position classes 

were highly significant (hypergeometric test: P<0.001). Furthermore they often bound in the 

vicinity (± 250 bp) of each other as illustrated in Figure 5-35B. Using the bound regions 

defined by ChIP-on-chip experiments, de novo motif analysis revealed enriched consensus 

sequences for general transcription factors at a peak size of 200-500 bp (Figure 5-35C). In a 

distance of 100 bp to the Sp1-bound motifs all the other four motifs for the general 

transcription factors (NFY, GABP, YY1 and NRF1) as well as the unknown motif were 

significantly enriched. At NRF1-bound peaks, motifs for Sp1, NFY and GABP showed an 

enrichment with high significance in a radius of 100 bp around the bound motif. At 

YY1-bound peaks also with a peak size of 200 bp, consensus sites for YY1 and GABP and 

the unknown motif were enriched. Within a distance of ± 250 bp around the Sp1-bound motif, 

in addition to the other motifs, the consensus site for CREBP1 was enriched with high 

significance (P value: 2.7×10-101) and the YY1-bound peaks were additionally co-enriched 

with motifs for NRF1 and vJUN within the greater distance. 

 

 

 



 

 

Figure 5-35 Basic analysis of ChIP
(A) The distribution of binding events was analyzed 
depletions at the three position classes were highly significant (hypergeomet
diagram illustrates the overlap of bound regions between the three studied transcription factors. (Maximum 
distance between two peaks: 250
ChIP-on-chip experiments. Shown are enriched motifs and corresponding TRANSFAC motifs for each 
transcription factor analyzed at a peak size of 200 or 500
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Basic analysis of ChIP-on-chip experiments for Sp1, NRF1 and YY1 
(A) The distribution of binding events was analyzed dependent on their genomic location. Enrichments or 
depletions at the three position classes were highly significant (hypergeometric test: P<0.001). (B) The Venn 
diagram illustrates the overlap of bound regions between the three studied transcription factors. (Maximum 
distance between two peaks: 250 bp). (C) De novo motif analysis using the bound regions defined by 

riments. Shown are enriched motifs and corresponding TRANSFAC motifs for each 
ed at a peak size of 200 or 500 bp. 
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lotting the enrichment of one of the six consensus sites for known transcription factors 

bound motif (NRF1, Sp1, YY1) reflects that some motifs showed 

preferences in terms of orientation or distance to each other as demonstrated in
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The next question to be addressed was how the binding of specific factors to their consensus 

motif influences transcription of the respective gene. Comparing the expression data of 

CD34+, CD14+ and U937 cells with the ChIP-on-chip data revealed that genes associated 

with transcription factor-bound CpG islands generally showed significantly higher mRNA 

levels in CD34+ cells, CD14+ cells or the leukemia cell line as compared to all genes. The 

box plots showing the distribution of mRNA expression ratios are illustrated in Figure 5-37A. 

Moreover, the expression data were analyzed according to the number of bound transcription 

factors. Figure 5-37B demonstrates that binding of more factors generally increased overall 

expression levels of associated genes. 

 

 

Figure 5-37 Expression status dependent on the binding of general transcription factors 
(A) The box plots show the distribution of mRNA expression ratios (CD34+ progenitor cells, CD14+ normal blood 
monocytes, U937 cells) conditional on the binding status at individual, gene-associated peaks. The red lines 
denote medians, boxes the interquartile ranges, and whiskers the 5th and 95th percentiles. Pair wise 
comparisons of total mRNA expression ratios (all genes) and transcription factor-bound regions are significant 
(P<0.001, Mann–Whitney U test, two-sided). (B) The box plots show the distribution of mRNA expression ratios 
(CD34+ progenitor cells, CD14+ normal blood monocytes, U937 cells) conditional on the binding status (binding 
of one, two or three factors) at individual, gene-associated peaks. The red lines denote medians, boxes the 
interquartile ranges, and whiskers the 5th and 95th percentiles. Pair wise comparisons of total mRNA expression 
ratios (all genes) and transcription factor-bound regions are significant (P<0.001, Mann–Whitney U test, two-
sided). 

 

To directly compare transcription factor binding patterns in normal cells with aberrant 

methylation profiles of leukemia cell lines, the signal intensity ratios of ChIP enrichment for 

each transcription factor was plotted against the MCIp enrichment of the leukemia cell lines 

(THP-1 and U937) versus normal human blood monocytes. Figure 5-38 demonstrates that 

both events were mutually exclusive for all three transcription factors in U937 as well as 

THP-1 cells. This demonstrates that transcription factor binding protects from de novo 

methylation in leukemia cells. 
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Figure 5-38 Correlation between transcription factor binding in normal cells and aberrrant 
methylation in leukemia cells 
The three transcription factors Sp1, NRF1 and YY1 were
island arrays. In the diagrams the signal intensity ratios of ChIP
against the MCIp enrichment of the leukemia cell line (
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Correlation between transcription factor binding in normal cells and aberrrant 

, NRF1 and YY1 were analyzed using ChIP-on-chip on human 244K CpG 
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genes associated with transcription factor-bound motifs showed significantly higher mRNA 

levels as compared to genes that were associated with non-bound motifs. The mRNA 

expression levels in CD34+ progenitor cells, CD14+ normal blood monocytes and U937 cells 

conditional on the binding status of the associated motif (NRF1, Sp1, YY1) are demonstrated 

in Figure 5-39C. The data suggest that the stable binding of these general transcription 

factors (as measured by ChIP) to their consensus motif depends on the presence of 

neighboring motifs that are cooperatively bound by other general transcription factors. Thus, 

the combinatorial presence of two or more of the identified consensus sequences may serve 

to stabilize transcription factor binding and to confer the resistance of certain CpG islands 

(preferably those acting as promoters) to aberrant methylation. 

 

 

Figure 5-39 Properties of consensus sequences that are bound or not bound by the corresponding 
transcription factor 
(A) Based on ChIP-on-chip data, the motifs for Sp1, NRF1 and YY1 could be subdivided into those that are not 
bound and those that are actually bound by the corresponding factor in CpG islands. De novo motif searches of 
bound motifs against non-bound motifs revealed a highly significant association of bound motifs with consensus 
sites for other general factors within the range of ± 250 bp around each motif. (B) Ratios of observed versus 
expected motif occurrences are shown for sequence motifs that are either bound by the corresponding factor 
(blue bars) or not bound (green bars) and had at least one (top panel) or two other consensus sites (bottom 
panel) within a 250 bp distance. Enrichment in the bound fraction and depletion in the unbound fraction were 
highly significant (hypergeometric test: P<0.001) except for the cases marked with a hash. (C) The box plots show 
the distribution of mRNA expression ratios (CD34+ progenitor cells, CD14+ normal blood monocytes, U937 cells) 
conditional on the binding status of the associated motif. The red lines denote medians, boxes the interquartile 
ranges, and whiskers the 5th and 95th percentiles. Pair wise comparisons of mRNA expression ratios associated 
with bound and non-bound motifs are significant (P<0.001, Mann–Whitney U test, two-sided). 
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5.4.6 Properties of CpG island-associated genes in conjunction with 

CpG island methylation status and transcription factor binding 

We finally asked the question whether DNA methylation status or transcription factor binding 

events at CpG islands are associated with attributes or distinct properties of the 

corresponding genes or their products. In order to assess their biological interpretation the 

annotation tool in the HOMER software was used to determine enrichment or depletion of 

about 37,000 attributes. Since CpG islands were intrinsically enriched for many attributes as 

compared to the whole genome, enrichment and depletion as well as corresponding P values 

were calculated for individual gene groups against the total CpG island associated gene 

group. Hierarchical clustering of log10-transformed P values was performed using Genespring 

Software 10.0 (Agilent) using all attributes with enrichment or depletion P values <10-10 in at 

least one gene list. Thirteen databases (see section 3.12) were analyzed for enrichment of 

specific terms or properties including gene ontology terms, pathway association, protein 

domains or interactions, chromosomal localization and predicted miRNA targets in regions 

that were associated with a particular DNA methylation status or bound by any of the three 

transcription factors Sp1, NRF1 or YY1 (Figure 5-40).  

Hierarchical clustering of P values clearly separated the three classes of CpG islands into 

functional groups (Figure 5-40). DNA methylation-free and transcription factor-bound regions 

included properties and terms that were associated with basic cellular functions required for 

cell survival and proliferation. In line with earlier observations (Bracken et al., 2006a) (Figure 

5-27A), CpG island regions that are commonly targeted by aberrant DNA methylation in both 

myeloid cell lines exhibited highly significant associations with gene ontology terms related to 

developmental processes, transcription factor or receptor functions, as well as homeobox 

proteins, that are often targeted by Polycomb group repressors. Those regions are not bound 

by the three general transcription factors (NRF1, Sp1, YY1). Interestingly, these associations 

were also found in regions that contained unbound consensus motifs for at least one of the 

three above general transcription factors, and to a lesser extend in regions that were 

methylated also in normal somatic cells (human blood monocytes). (The complete list of 

gene attributes and properties and the correspondent P values is given within the 

supplementary material of the corresponding publication.) If a region is only bound by one 

transcription factor alone, the protection from de novo methylation is very low and no 

significant enrichment or depletion of the CpG island regions bound by a single transcription 

factor within the distinct CpG island classes (the CpG island regions which remain 

unmethylated in normal as well as in cancer cells and those CpG island regions that become 

methylated during tumorigenesis) could be observed.  
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Figure 5-40 Hierarchical clustering of significance values for gene ontology enrichment 
Enrichment or depletion was calculated for gene attributes and properties including gene ontology terms, pathway 
association, protein domains or interactions, chromosomal localization and predicted miRNA targets (a complete 
list of databases is given in the corresponding publication) in regions that were associated with a DNA methylation 
status (mCpG, methylated; CpG unmethylated), motif presence without DNA binding of the respective factor or 
transcription factor binding (any of the three transcription factors Sp1, NRF1 or YY1, in total (all), alone (only), or 
in combination). P values for enrichment or depletion of each attribute was calculated using the hypergeometric 
test (the complete list of P values is given within the supplementary material of the corresponding publication) and 
attributes with P < 10

-10
 were used to perform hierarchical clustering (Pearson centered, average linkage). Data is 

presented as a heatmap where red coloring indicates the significant depletion and blue coloring the significant 
enrichment of an attribute. Main clusters of attributes are indicated and top terms are given for each group.  
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6 Discussion & perspectives 

DNA methylation and modifications of histone tails are key cooperating mechanisms involved 

in maintaining epigenetic memory in mammalian cells. Along with genetic alterations, 

epigenetic abnormalities play an important role in gene deregulation in cancer (Jones and 

Baylin, 2007). Hundreds of genes show aberrant hypermethylation in specific tumor types. 

Initially, this was shown to be part of a silencing mechanism for tumor suppressor-like genes 

(Jones and Baylin, 2002), but subsequent experiments demonstrated that a large variety of 

different gene types (Costello et al., 2000; Yu et al., 2005) can be affected by this 

phenomenon. This aberrant methylation is set up early in tumor development. In order to 

identify potential disease markers, three cell lines as well as 25 AML and 10 colorectal 

carcinoma samples were screened for DNA methylation on a genome-wide level using the 

newly developed methyl-CpG immunoprecipitation (MCIp) approach. To get insights into the 

molecular basis for aberrant methylation profiles the MCIp data was analyzed using a 

powerful de novo motif search algorithm. 

 

6.1 MCIp in comparison with existing methods 

We developed a novel application allowing for the rapid and sensitive screening of DNA 

methylation. The central technique, called MCIp (methyl-CpG immunoprecipitation), is based 

on the binding of methylated DNA fragments to the bivalent, antibody-like fusion protein 

MBD-Fc (a methyl binding domain fused to an Fc-tail) in an immunoprecipitation-like 

approach. Enriched methylated DNA fragments can be efficiently detected both, on single 

gene level and throughout the genome. The power of this novel technique was demonstrated 

by the identification and subsequent validation of a large number of genes that are affected 

by aberrant hypermethylation in myeloid leukemias.  

 

At present, several techniques are applied for the detection of CpG methylation (Dahl and 

Guldberg, 2003). Commonly used assays rely on two basic principles to distinguish 

methylated and unmethylated DNA: digestion with methylation-sensitive restriction enzymes 

or bisulfite treatment of DNA (Ammerpohl et al., 2009; Dahl and Guldberg, 2003; Frommer et 

al., 1992b). Approaches based on methylation-sensitive restriction enzymes enrich 

fragments dependent on the digestion of methylated (Irizarry et al., 2008) or unmethylated 

DNA (Hatada et al., 2006) followed by size fractionation. A major disadvantage of these 

methods is that the enzyme pairs only recognize specific sequence motifs, thus the selection 
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of restriction enzymes automatically limits the number of detectable sequences – a global 

analysis of CpG methylation can therefore not be achieved (Ammerpohl et al., 2009; Dahl 

and Guldberg, 2003). In addition, when differences in global methylation patterns are 

reported between samples, it is impossible to decipher what proportion of these differences 

are located in promoter CpG islands (CGIs) rather than within intronic or repetitive elements. 

Treatment of genomic DNA with sodium bisulfite (NaHSO3) overcomes this limitation and 

allows the analysis of virtually any CpG position within the genome. If genomic DNA is 

treated with sodium bisulfite, unmethylated cytosines are deaminated into uracil and 

transformed into thymidine residues during PCR, whereas methylated cytosines still appear 

as cytosines (Frommer et al., 1992b). Consequently, bisulfite treatment results in methylation 

dependent sequence variations of C to T after amplification. The PCR product can then be 

sequenced, directly or after subcloning of the amplified fragment. Direct sequencing yields 

information about the average methylation of a CpG site in a sample, while sequencing of 

cloned DNA allows the analysis of individual CpG sites on independent half strand DNA 

molecules (Ammerpohl et al., 2009; Dahl and Guldberg, 2003). The major disadvantage of 

cloning and sequencing is that a high number of clones have to be sequenced to gain 

reliable results. Furthermore, artifacts relating to PCR infidelity, incomplete bisulfite 

conversion, or erroneous bisulfite conversion of 5’-methylcytosine to thymine can significantly 

influence the results of this method (Ammerpohl et al., 2009; Dahl and Guldberg, 2003). Until 

recently, it was thought that bisulfite-treated DNA cannot be analyzed on a genome-wide 

level. Technical advances, in particular the next generation sequencing approaches, now 

enable high-throughput analysis of bisulfite sequences and the determination of CpG 

methylation virtually across the whole genome. However, this approach is extremely 

resource and labour intensive and certainly not suited for the analysis of large sample 

numbers.  

Previous attempts to identify new genes that are differentially methylated in human disease 

have primarily taken candidate gene approaches relying on the use of techniques for 

gene-specific methylation analysis as described above. Within recent years, however, new 

high-throughput methods have made it possible to simultaneously analyze the methylation 

status of thousands of CGIs. However, most of those techniques like Restriction Landmark 

Genomic Scanning (RLGS) (Costello et al., 2002) or Methylated CpG Island Amplification 

(MCA) (Dahl and Guldberg, 2003; Smith et al., 2003) depend on methylation-sensitive 

restriction enzymes and suffer from the same limitations as described above.  

 

In contrast to the methods described above, which rely on a chemical reaction leading to a 

modification of the DNA molecules, the bases of DNA will stay unmodified when using methyl 

binding proteins to precipitate and thereby enrich methylated DNA (Ammerpohl et al., 2009). 



Discussion & perspectives 

- 134 - 

The utility of naturally occurring methyl-CpG binding (MBD) proteins to separate methylated 

and unmethylated DNA fragments is known for more than a decade. Already in 1994, the 

laboratory of A. Bird developed a method for enrichment of methylated DNA fragments by 

means of affinity chromatography using recombinant MeCP2 (Cross et al., 1994) (Cross et 

al., 1994). The technique has been used, improved and combined with further techniques by 

other groups (Brock et al., 2001; Shiraishi et al., 1999). A disadvantage of MeCP2-affinity 

chromatography is the large amount of genomic DNA required (50-100 µg) and the relatively 

time-consuming procedure. Also, a recent report by Klose et al. (Klose et al., 2005) 

demonstrated that MeCP2 requires an A/T run adjacent to the methylated CpG dinucleotide 

for efficient DNA binding, suggesting that MeCP2-affinity chromatography may be biased 

towards certain CpG motifs. In contrast, MBD2 showed no binding requirements or 

preferences in these and previous studies. Fraga et al. could show that recombinant MBD2 

has a 50 to 100 times stronger affinity towards CpG-methylated DNA than recombinant 

MeCP2 (Fraga et al., 2003).  

 

Therefore, we believed that the high methyl-CpG affinity of MBD2 (Fraga et al., 2003) 

combined with the bivalent, antibody-like structure of the recombinant MBD-Fc polypeptide 

could largely increase its binding capacity, thereby enabling the efficient retention of DNA 

fragments in dependence on their methylation degree. We could show that an unmethylated 

DNA fragment may be 200- to 500-fold depleted and that up to 80% of a highly methylated 

fragment were recovered in the high salt MCIp fraction demonstrating the high affinity of our 

recombinant polypeptide. The fractionation procedure works efficiently with DNA fragments 

obtained by restriction digest or ultrasonication (data not shown).  

The properties of the recombinant MBD-Fc polypeptide allow for its application in small-scale 

assays requiring only little amounts of DNA (<300 ng) and therefore permit the profiling of 

DNA methylation of candidate genes from very limited cell numbers including biopsy samples 

or cells collected by laser-mediated microdissection. In addition, complete genome-wide 

methylation profiling is possible when a non-specific LM-PCR amplification step and 

subsequent hybridization to microarrays are performed. The PCR step causing potential 

amplification bias may be omitted if sufficient starting material (2 µg DNA) is available.  

At about the same time when we developed the MCIp approach, Weber et al. designed a 

related approach (MeDIP) using a 5-methylcytosine (5mC) antibody that requires a 

denaturing step before the immunoprecipitation of DNA fragments (Weber et al., 2005). Their 

analysis revealed only a small set of promoters being differentially methylated in a normal 

and a transformed cell line, suggesting that aberrant methylation of CpG island promoters in 

malignancy might be less frequent than previously hypothesized. In contrast to their 

observations, we detected a much higher percentage of differentially methylated genes, 
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much more in line with previous estimates, using the same CpG island microarray platform 

(12K microarrays). This may reflect an inherent property of the cell lines used, however, may 

also point to a lesser sensitivity of the 5mC antibody approach as compared to our 

fractionated MCIp approach. A further advantage of the MCIp approach compared to the 

MeDIP technique is that MBD-Fc can separate the bulk of genomic DNA fragments into 

different fractions of increasing methylation density. This is due to the fact, that MBD-Fc 

recognizes the hydration of methylated DNA rather than 5mC itself (Ho et al., 2008). 

Methylated and unmethylated DNA fragments show differential elution behaviors from the 

MBD-Fc fusion protein when using increasing salt concentrations and can be fractionated 

according to their methylation degree. Thus, during the MCIp procedure, not only the highly 

methylated DNA can be enriched, but also intermediately methylated or unmethylated DNA 

is recovered without detectable sample loss. This allows for the simultaneous analysis of the 

whole range of DNA methylation density, including both hyper- and hypomethylated DNA 

fragments either within CpG island promoters or within non-CpG island promoters (Schilling 

et al., 2009; Schmidl et al., 2009). In contrast, the MeDIP approach specifically enriches for 

methylated fragments and is dependent on the CpG content of the analyzed fragments, 

resulting in a strong bias towards CpG-rich DNA regions (Keshet et al., 2006; Suzuki and 

Bird, 2008; Weber et al., 2007).  

 

Recently, methods based on second generation sequencing such as 454 sequencing 

(Roche) or Solexa sequencing (Illumina) got into the focus of the epigenetic research 

(Ammerpohl et al., 2009; Lister and Ecker, 2009). As with bisulfite-modified DNA, 

MCIp-enriched material can be subjected to next generation sequencing technologies 

instead of hybridization to microarrays. The new sequencing technologies enable the global 

mapping of DNA methylation sites at single-base resolution. However, a high error rate is 

encountered when base-calling is performed with bisulfite-converted DNA, as after bisulfite 

conversion, the DNA being sequenced is effectively composed mainly of three bases. Since 

the resulting sequences are highly similar, this loss of complexity makes the subsequent 

aligning strategy much more difficult (Ammerpohl et al., 2009; Dahl and Guldberg, 2003; 

Lister and Ecker, 2009). Nevertheless, sequencing of bisulfite-converted DNA was feasible 

when using control lanes for autocalibration of the base-calling parameters to enable 

accurate base calling on the bisulfite-converted libraries (Lister and Ecker, 2009). 

Furthermore, in order to optimize the base calling performance, a multidimensional Gaussian 

mixtures model was developed (Cokus et al., 2008). Three techniques were recently used to 

generate bisulfite sequencing libraries compatible with next generation sequencing, namely 

MethylC-seq (Lister et al., 2008), BS-seq (Cokus et al., 2008) and Reduced representation 

BS sequencing (RRBS) (Meissner et al., 2008).  
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Comparable with microarrays, these sequencing technologies can also be restricted to 

distinct regions. Techniques that may be used prior to BS sequencing include not only 

binding of methylated DNA by proteins or an antibody (MCIp or MeDIP) but also capture of 

specific sequences by hybridization on a microarray or binding to beads in solution (Lister 

and Ecker, 2009). The disadvantage of these readout techniques is that they are still 

resource intensive compared with direct hybridization to microarrays. However, in contrast to 

large-scale sequencing approaches, microarrays produce data with only moderate 

resolution. To overcome resolution restrictions of the microarray platform in our studies the 

MCIp-microarray approach was combined with independent technologies (like MALDI-TOF 

MS) allowing the analysis of selected CGI at up to single CpG resolution. These validation 

experiments showed a high degree of consistency between both approaches.  

 

6.2 Hypermethylated genes in leukemia cell lines and 

primary tumor samples 

Aberrant hypermethylation in cancer cells may affect hundreds of CpG islands in a 

tumor-type specific manner (Issa, 2004; Kroeger et al., 2008). Therefore, DNA methylation 

patterns of a given tumor may offer important information for risk assessment, early detection 

and prognostic classification. Abnormal methylation patterns have been frequently described 

in acute myeloid leukemia (AML) (Issa, 2004; Toyota et al., 2001), and recent studies further 

support a crucial role for epigenetic changes in AML (Hackanson et al., 2008; Kroeger et al., 

2008; Whitman et al., 2008; Wouters et al., 2007). Epigenetic silencing by DNA methylation 

of cyclin-dependent kinase inhibitors (Herman et al., 1996; Kikuchi et al., 2002; Shen et al., 

2003), DNA repair genes (Scardocci et al., 2006), apoptosis mediators (Furukawa et al., 

2005; Murai et al., 2005), nuclear receptors (Liu et al., 2004; Rethmeier et al., 2006), 

transcription factors (Agrawal et al., 2007a), cell adhesion molecules (Roman-Gomez et al., 

2003), and many other genes have already been reported (Boumber et al., 2007; Kroeger et 

al., 2008; Toyota et al., 2001; Youssef et al., 2004). However, most epigenetic studies in 

hematological neoplasms focused on the analysis of few candidate tumor suppressor genes 

because of the lack of suitable technologies to quantitatively evaluate DNA methylation on a 

genome-wide level as well as in large sample sets. Until recently, this has prevented 

extensive exploration of the role of DNA methylation in leukemia and its impact in diagnosis 

and outcome prediction. 

 

For us, the establishment of the MCIp approach opened up new avenues towards unbiased 

genome-wide screening of methylated CpG islands. Using 12K CGI microarrays global 
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methylation profiles of three leukemia cell lines were generated and a large number of gene 

fragments (more than 100) that are likely to be methylated in neoplastic cells could be 

identified. Interestingly, most genes that were detected as hypermethylated in leukemia cell 

lines showed extremely low or undetectable mRNA expression levels in corresponding 

microarray experiments. A comparison with published expression profiles for human bone 

marrow, CD33 positive bone marrow cells, as well as mature myeloid cells from healthy 

donors (http://symatlas.gnf.org/SymAtlas/; data not shown) indicates that a large proportion 

of these genes may not be significantly transcribed in myeloid cell types. This is in keeping 

with a recent study showing that a series of studied genes had low or undetectable 

expression levels in blood or bone marrow cells (Kroeger et al., 2008). A hypothetical (so far 

unknown) targeting mechanism may therefore induce CpG methylation of genes independent 

of their transcriptional status during cellular differentiation. Although such genes may not 

have a significant suppressor role in tumor development and/or progression, they may still 

serve as valuable biomarkers, provided that the targeting mechanism is specific for the 

disease. 

 

Acute leukemia is characterized by a block of differentiation of early progenitors, which leads 

to the accumulation of immature cells in bone marrow and blood. The frequent mutation or 

downregulation of a relatively small number of transcription factors in AML patients suggests 

that the inactivation of transcriptional regulators may be critically involved in the malignant 

transformation process. Our methylation profiling of leukemia cell lines preferentially 

identified genes that are involved in transcriptional regulation. Half of the listed genes with an 

assigned molecular function (46/89) are involved in DNA-binding and transcriptional 

regulation, which indicates a significant over-representation. Aberrant hypermethylation of 

these transcription factor genes may lead to their epigenetic downregulation and likely 

contributes to the observed differentiation arrest in leukemia cells. This observation is in line 

with a previous study from Rush et al. (Rush and Plass, 2002) that investigated the 

methylation status of a large set of CpG islands in AML patients using RLGS and also found 

that a large proportion of the known methylated promoters (4/11) corresponded to genes 

involved in transcriptional regulation.  

The list of hypermethylation targets contains several transcription factor genes, including 

MAFB, JUN and KLF11 which are highly expressed in normal myeloid cells. A good tumor 

suppressor candidate e.g. is represented by the bZip transcription factor MAFB, which is 

expressed specifically in the myeloid lineage of the hematopoietic system. Its expression is 

upregulated successively during myeloid differentiation from multipotent progenitors to 

macrophages suggesting an essential role of MAFB in early myeloid and monocytic 

differentiation (Kelly et al., 2000b; Kelly et al., 2000a).  
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A major aim of this thesis was to develop methodology to enable screening of larger patient 

cohorts. Methylation profiling may help to clarify the pathophysiology of hypermethylation and 

provide new information on whether aberrant methylation of CpG islands in malignancies is 

random or specific and therefore help to identify new epigenetic marker genes. Experiments 

performed with the human CGI 12K microarrays, as described above, highlighted several 

technical limitations of this platform, including the presence of repetitive fragments leading to 

unwanted cross-hybridization events (non-specific binding which possibly gave rise to 

misleading results), and a relatively small number of representative genes. For global 

analysis of patient samples, another array platform provided by Agilent Technologies 

seemed to be better suited for this purpose. This array contains 244,000 probes (50-60 mer 

oligonucleotides) and covers about 23,000 CpG islands within coding and non-coding 

regions of the human genome (Agilent 244K CpG island microarrays). After improving and 

refining the MCIp method and its adaptation to the 244K microarray platform, the MCIp-on-

chip approach was much more sensitive and provided much more information. 

Using this newly adapted MCIp-on-chip approach, global methylation analysis of the cell 

lines was repeated. All CpG islands validated as hypermethylated in the first study (with 12K 

CpG island arrays) were again detected as hypermethylated in these experiments 

(performed with 244K Agilent arrays) provided they were included in the array design. In 

total, approximately 11,300 or 8,700 (out of 23,000) independent regions were significantly 

enriched or depleted (>2.5-fold different) in U937 and THP-1, respectively. Validation using 

mass spectrometry analysis (1,150 amplicons covering about 140 genes) showed high 

consistency for both approaches.  

To provide a general overview of global DNA methylation changes not only in tumor cell lines 

but also in primary tumor samples, we have characterized the DNA methylation profile of 25 

AML patients (of primary normal karyotype) as well as 10 colorectal carcinoma patients. 

Major findings of this study were: (i) more than 6,000 hypermethylated CGI regions common 

in at least three AML patients could be identified, (ii) the analyzed AML samples showed 

highly variable DNA methylation for the analyzed CGI regions, (iii) tumor cell lines showed a 

much higher degree of methylation than primary tumors, (iv) many genes that were 

hypermethylated in AML samples represent PcG targets, and (v) colon DNA derived from 

60-year-old healthy donors showed age-dependent methylation.  

The finding that tumor cell lines showed a notably higher degree of methylation than primary 

tumors is probably due to the fact that cell lines often acquire additional alterations both on 

genetic and epigenetic levels during prolonged in vitro culture. It has been reported that a 

large proportion of genes are hypermethylated across multiple cancer cell lines, suggesting 

that these differences are due to intrinsic properties in generating cell lines (Smiraglia et al., 

2001). The potential role of culture effects has been further highlighted by a recent study 
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demonstrating that DNA methylation profiles of human embryonic stem cells vary over time 

in culture, with different genes affected in different cell lines (Allegrucci and Young, 2007).  

A large number of genes hypermethylated in AML represent PcG targets which is in line with 

earlier studies (Grubach et al., 2008). The T-Box (TBX) 4 protein, for instance, is a classical 

PcG target that is often de novo methylated in leukemia and colorectal carcinoma but also in 

normal aged colon (Jin et al., 2009; Yasunaga et al., 2004). The encoded transcription factor 

is involved in the regulation of developmental processes and also showed a high degree of 

methylation in our studies: almost all AML patients were highly methylated within the 

promoter CpG island of this gene. 

Remarkably, the methylation pattern of the normal colon tissue DNA derived from older 

healthy donors showed that many CpG islands methylated in AML become also methylated 

in healthy colon epithelium during aging. This is in line with published studies confirming that 

molecular changes accumulate over time with a contribution of environmental influences 

resulting in methylation changes as shown for the promoter regions of MLH1 (Kurkjian et al., 

2008), ER, IGF2, N33 and MyoD (Ahuja and Issa, 2000) and eventual progression to 

colorectal cancer. Consistent with our study, Ahuja et al. reported that age-related 

methylation involves at least 50% of the genes which are hypermethylated in colon cancer 

(Ahuja and Issa, 2000). The association between aging and increased predisposition to 

develop cancer has long been noted (Kurkjian et al., 2008), however, there is no 

experimental or mechanistic evidence of a direct relationship (Fraga and Esteller, 2007). It 

has been demonstrated that normal aging cells and tissues show global hypomethylation 

(Calvanese et al., 2009), but there is also evidence for regional age-related increases in 

methylation of specific gene promoters (Calvanese et al., 2009) such as RUNX3, TIG1, 

E-cadherin, c-fos and collagen alpha 1 (Fraga and Esteller, 2007). Once a critical 

methylation density is reached, those promoters have the potential to permanently silence 

gene expression (Issa, 2003). 

The genes affected by hypermethylation during aging detected in this work were mainly 

those genes involved in developmental processes like homeobox genes or Polycomb 

targets. In contrast to colon, monocytes did not show age-dependent differences in 

methylation patterns at a large set (400) of typical de novo methylation targets. One 

explanation could be, that colon crypt stem cells may be characterized by an exceptionally 

high proliferation rate, resulting in a higher tendency to de novo DNA methylate certain CGIs. 
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6.3 Towards relevant disease markers for AML  

Despite considerable progress during recent years, AML still remains a highly fatal disease. 

Many patients who already achieved complete remission relapse and die of this 

heterogeneous disease. The main outcome predictors of AML include age, white blood cell 

count and a history of a preceding malignancy. However, to complete treatment stratification, 

in particular for AML with normal karyotype, molecular markers are necessary. 

Notwithstanding the advances in molecular genetics, the current classification system does 

not completely reflect the heterogeneity of AML (Bullinger et al., 2009). In order to improve 

the molecular AML classification global analysis approaches have been applied. Expression 

studies already achieved considerable results by identifying novel AML subgroups and 

prognostic gene expression signatures (Bullinger et al., 2004; Valk et al., 2004; Verhaak et 

al., 2009). However, expression analyses will not be sufficient for classification and 

therapeutic decision making of AML. Microarray expression analyses measure the 

abundance of mRNA, a molecule that is highly susceptible to degradation. Therefore, the 

standardization of microarray experiments is still challenging. In contrast, changes in DNA 

methylation represent a stable DNA modification which is conserved throughout sample 

preparation and therefore less prone to sample preparation-related changes. Thus, a 

DNA-based prognostic marker might provide a significant advantage to RNA-based methods 

(Bullinger et al., 2009). Several studies describing large-scale DNA methylation analysis to 

identify clinically relevant marker genes have been published recently. One publication by 

Martin-Subero et al. compared DNA methylation profiles of a wide range of different 

hematological neoplasies. Using bead arrays, they identified hypermethylation targets 

specific for the respective hematological tumor type as well as targets that were methylated 

in all hematological tumor types. But the study focused on candidate genes, selected from 

807 genes, previously reported to be differentially methylated (Martin-Subero et al., 2009). 

Another study defined a methylation-based outcome predictor for patient survival supporting 

the hypothesis for possible correlations. They reported that the most predictive region 

comprises the promoter sequence for KIAA1447 (BAHCC1) (Bullinger et al., 2009). However, 

this DNA methylation study is again based on the analysis of specific candidate genes, but 

nevertheless suggests that the integration of DNA methylation data into a clinically relevant 

prediction model might be possible. Furthermore, the methylation of tumor suppressor genes 

seems to be implicated in the relapse risk of AML (Agrawal et al., 2007b; Kroeger et al., 

2008). Using the HELP (Hpa II tiny fragment enrichment by ligation-mediated PCR) assay, 

Figueroa et al. performed genome-wide CGI promoter methylation studies with a set of 344 

newly diagnosed primary AML samples. The large-scale epigenetic analyses revealed 
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unique AML subgroups and methylation patterns that are associated with clinical outcome 

(Figueroa et al., 2010).  

All these published studies point to a role of DNA methylation as a molecular biomarker. 

However, most of the underlying experiments either depended on restriction enzymes and 

therefore on specific sequence motifs or they just focused on a panel of candidate genes. 

Using an unbiased genome-wide approach to detect global DNA methylation combined with 

validation by MALDI-TOF MS, the aim of our studies was to identify the most predictive 

epigenetic markers in AML. Furthermore the CpG islands in our studies were not restricted to 

promoter regions, but also covered intragenic and non-coding intergenic regions. We 

decided to investigate the methylation of CGIs as the vast majority of CpG islands are 

usually completely unmethylated in normal tissues in both active and inactive genes (with the 

exception of imprinted loci and the inactive X chromosome of females) and therefore do not 

relate to tissue-specific gene expression (Estecio and Issa, 2009; Esteller, 2002). 

Consequently, hypermethylation of normally unmethylated CGIs should be due to a 

tumor-specific event. 

Our comprehensive methylation profiling led to the identification of more than 6,000 

hypermethylated CGI regions common in at least three AML patients. In concordance with 

the heterogeneous expression patterns of AML samples (Valk et al., 2004), we detected very 

heterogeneous and highly variable methylation patterns throughout the analyzed AML 

samples. These results indicate that multiple mechanisms may operate to generate the 

observed epigenetic aberrations. 

However, despite the overall variable patterns, a large number of genes were affected by 

methylation in almost all AML patients. These genes are mainly involved in transcriptional 

regulation and support earlier reports that point to a role of HOX and Polycomb as target 

genes in leukemia (Bullinger et al., 2009; Grubach et al., 2008). Besides transcriptional 

regulation, hypermethylation targets in our studies were also involved in cell-cell adhesion, 

cadherins and peptide receptor activity or age-dependent methylation as described above. 

Some of the detected hypermethylated genes are already known as potential candidate 

genes of tumors (e.g. CDKN2B, CDKN2A, NPM2 (Kroeger et al., 2008), SLIT2) while most of 

them have not yet been described as commonly methylated genes (SMUG1, ZIC1, 

MAP3K13, FGF12). AML is one of the few neoplasms that show methylation of CDKN2B 

(also known as p15/INK4B) (Herman et al., 1997), a gene that plays an important role in 

TGF-β (transforming growth factor β)–induced growth arrest. In our study, the frequency of 

CDKN2B promoter methylation was relatively lower than previously reported (Herman et al., 

1997), but is in line with studies performed by Toyota et al. (Toyota et al., 2001).  

In order to define biomarkers specific for acute myeloid leukemia, 400 target regions (out of 

6,000 regions affected by hypermethylation in AML) that are important for transcription or 
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gene regulation or show age-dependent methylation, were chosen for screening a larger 

patient collection (200 AML patients) using the MassARRAY EpiTYPER approach. Both 

approaches (MCIp-on-chip and MALDI-TOF MS) were highly consistent and reliable results 

can be achieved using a combination of both techniques. The computational analysis of this 

data is not yet finalised. But the final objective will be to discover potential marker genes as 

well as correlations between methylation data and clinical parameters. Finally, such 

biomarkers then offer new possibilities for targeted treatment of patients and outcome 

prediction.  

 

6.4 Establishing DNA methylation patterns through         

cis-acting sequences and combinatorial transcription 

factor binding 

One of the main questions concerning CpG islands (CGIs) is why these sequences are 

protected from the wave of de novo methylation at the time of implantation when almost the 

entire genome undergoes de novo methylation, or likewise, why some CGIs become de novo 

methylated in cancer while others are protected from it. It was often assumed that this may 

be a function of local CpG ratio or the GC content. Some experiments however, in ES cells 

(Brandeis et al., 1994) and transgenic mice (Siegfried et al., 1999) indicated that CpG island 

methylation is controlled by specific local cis-acting sequences (Straussman et al., 2009) 

which can be bound by specific factors.  

The hypothesis that a transcription factor provides methylation protection dates back to the 

reports of two independent groups in 1994, showing that a Sp1-binding site plays a role in 

protecting the adenine phosphoribosyltransferase (APRT) gene from de novo methylation in 

humans and mice (Brandeis et al., 1994; Macleod et al., 1994). Since Sp1-deficient animals 

had no obvious ‘methylation defects’, the concept of methylation protection by transcription 

factors has been controversially discussed. Likewise, binding of the insulator protein CTCF 

has been shown to protect a linked transgene from heterochromatin-mediated extension and 

subsequent de novo DNA methylation (Feltus et al., 2006; Mutskov et al., 2002). Indeed, 

CTCF can act as chromatin barrier by preventing the spread of heterochromatin structures. 

Furthermore CTCF binding to a differentially methylated domain upstream of the H19 gene is 

required to maintain the unmethylated state and proper expression of the maternal H19 

allele.  

Anecdotal evidence clearly supports a role of additional specific DNA binding proteins in 

establishing and maintaining DNA methylation patterns. Boumber et al., for example, 
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described a polymorphism in the RIL (a candidate tumor suppressor gene) promoter that 

creates a Sp1/Sp3 binding site and therefore protects against methylation in cancer. Thereby 

it serves as direct proof that genetic polymorphisms can influence an epigenetic state 

(Boumber et al., 2008). Another study demonstrated that glucocorticoid hormones were 

found to induce stable DNA demethylation within a key enhancer of the rat liver-specific 

tyrosine aminotransferase (TAT) gene (Thomassin et al., 2001). Also other studies showed 

that regulation of local DNA methylation status by transcription factors could indeed provide a 

way to modulate gene expression during development (Han et al., 2001; Kress et al., 2006; 

Lin and Hsieh, 2001; Macleod et al., 1994; Tagoh et al., 2004). However, it is still unclear 

whether the reported observations represent isolated cases or whether methylation 

protection represents a general mechanism.  

Earlier computational studies identified specific nucleotide sequences that correlated with 

CGIs which are either prone or resistant to methylation in cancer samples. Feltus et al. 

identified a set of 13 sequence motifs derived from methylation-prone or 

methylation-resistant CGIs in multiple DNMT1 overexpressing clones using MEME and 

MAST algorithms. These sequence features were thought to act in cis to play a role in the 

local susceptibility of CGIs to aberrant DNA methylation (Feltus et al., 2006). Using an 

algorithm program, called HDFINDER, Das et al. was able to identify sequence motifs using 

data from normal human adult brain DNA which had similar sequence dependence on the 

epigenetic state of some selected CGIs as demonstrated in studies from Feltus et al. (Das et 

al., 2006). Studies from Keshet et al. showed a statistical enrichment of several short 

sequence motifs in hypermethylated promoter regions from Caco-2 and PC3 cells performing 

mDIP combined to microarray (containing approximately 10,000 promoter elements) 

analyses. Hypergeometric P values of the subsequent motif finding algorithm ranged from  

10-4 to 10-9 (Keshet et al., 2006). A paper from Bock et al. demonstrated that besides 

sequence patterns also repeat frequencies and predicted DNA structures are highly 

correlated with CpG island methylation (Bock et al., 2006). 

On the basis of the above computational analyses, it was postulated that most de novo 

methylation in cancer takes place in an instructive manner through interactions between 

cis-acting sequences on the DNA and trans-acting protein complexes capable of recruiting 

DNA methyltransferases. An example for this mechanism has been observed in 

promyelocytic leukemia: the PML-RAR fusion protein can induce gene hypermethylation and 

gene silencing at specific target promoters (Keshet et al., 2006).  

All studies described above were based on few CpG islands and none of them was able to 

identify defined consensus sequence motifs resembling consensus sites for known 

transcription factors (Straussman et al., 2009). Only one recent survey of methylation states 

at CpG islands in normal human tissues described the association of unmethylated CpG 
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islands with the consensus motif for the human zinc finger transcription factor specific protein 

(SP) 1 and for the signal transducer and activator of transcription (STAT) 1 transcription 

factor (Straussman et al., 2009). 

To address the question why some CGIs are resistant to CpG methylation in cancer cells 

while others are prone to methylation, we used the global methylation profiles generated by 

the newly developed and adapted MCIp-microarray (MCIp-on-chip) approach. Using a 

powerful de novo motif analysis (HOMER) it could be shown that a number of defined 

sequence motifs are strongly enriched in CpG islands that are generally resistant to de novo 

methylation in cancer. These sequence motifs were previously shown to represent the most 

conserved motifs in mammalian promoters such as NRF-1, NFY, Sp1 and GABP (Xie et al., 

2005a). However, the observed correlation is also evident at intergenic, promoter-distal CpG 

islands that are not directly associated with transcription.  

We also showed that the sole presence of a consensus motif for any of the general factors is 

not sufficient to confer ‘protection’ from de novo methylation. In fact, protection from de novo 

methylation requires the stable binding of these factors to their binding sites which, in turn, 

requires the presence of neighboring motifs that are co-bound by at least one other 

ubiquitous (or in some cases cell type-specific) transcription factor. The stable binding of 

these factors likely recruits co-factors that in turn create a protective chromatin environment, 

e.g. by introducing protective histone marks like H3K4 methylation. A schematic model 

describing the methylation protection hypothesis is shown in Figure 6-1.  

 

 

Figure 6-1 A model for DNA methylation protection by the combinatorial action of general transcription 
factors 
If two or more consensus sites for general transcription factors are located in close proximity, these sites are likely 
to be bound stably by the corresponding factors. The stable binding of these factors likely recruits co-factors that 
in turn create a protective chromatin environment, e.g. by introducing protective histone marks like H3K4 
methylation. These regions are only rarely methylated during neoplastic transformation or aging. A single, isolated 
motif is less likely to be bound by its corresponding factor and will have a less protective chromatin environment. 
These regions are more likely targeted by de novo methylation in cancer. 
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Most methylation-resistant CpG islands were bound by combinations of ubiquitous 

transcription factors and were also associated with attributes associated with basic cellular 

functions like cell survival and proliferation, whereas methylation-prone CpG islands 

generally associated with organismic development, differentiation and cell communication, 

which are frequently regulated by cell type-specific transcription factors. A schematic model 

which describes the different role of ubiquitous transcription factors compared to cell 

type-specific transcription factors with regard to protection from de novo methylation is 

shown in Figure 6-2. 

 

 

Figure 6-2 Transcription factors protect from de novo methylation 
Protective motifs are bound by general transcription factors (marked in blue) creating a chromatin environment 
that excludes DNA methylation. Therefore the probability of acquiring de novo methylation is permanently low. In 
contrast, cell type-specific transcription factors (marked in yellow) may only offer temporary protection (e.g. during 
embryonic development) and have an increased probability of acquiring de novo methylation over time. The loss 
of epigenetic boundaries (marked as stars) (e.g. CTCF) may further increase probability of acquiring de novo 
methylation.  

 

Interestingly, genes that are associated with CpG islands that were commonly methylated in 

normal and cancer cells were enriched for predicted targets of specific (mostly 

uncharacterized) miRNAs (Figure 5-40), however, the relevance of this observation is 

uncertain and requires functional validation.  

We also observed that methylation-prone regions are significantly enriched for certain repeat 

motifs (GAGA, CACA) implying that they may also act as cis-acting sequences and direct de 

novo DNA methylation. GAGA resembles the consensus motif for Drosophila GAGA-binding 

factor, a trithorax group member that has been implicated in preventing heterochromatin 

spreading (Nakayama et al., 2007), however, a mammalian homologue has not been 

described so far. CA-repeats may play a role in RNA splicing and are bound by the 

heterogeneous nuclear ribonucleoprotein (hnRNP) L in a repeat length dependent manner 

(Hui et al., 2003), but there is no known link to DNA methylation or chromatin structure. 
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With the exception of the Sp1/3 motif, none of the other motifs has previously been 

associated with the establishment or maintenance of DNA methylation (Boumber et al., 2008; 

Brandeis et al., 1994; Straussman et al., 2009) but all are known to recruit epigenetic 

modifiers to their binding sites. NFY (also known as CAAT-binding factor), a regulator of 

many cell cycle control genes, actively recruits co-activators (like p300) that induce histone 

acetylation at NFY-bound promoters (Faniello et al., 1999). Ubiquitously expressed NRF1 

and GABP (also called NRF2) are able to recruit co-activators (PCG1, p300/CBP) that create 

a chromatin environment favoring transcription (Izumi et al., 2003). YY1 has been shown to 

recruit Polycomb group proteins that control H3K27 methylation, a mark that is established 

on unmethylated CGI genes early in development and then maintained in differentiated cell 

types by the presence of an EZH2-containing Polycomb complex. In cancer cells, as 

opposed to normal cells, the presence of this complex brings about the recruitment of DNA 

methyltransferases, leading to de novo methylation and therefore to aberrant silencing during 

tumorigenesis (Schlesinger et al., 2007; Vire et al., 2006). However, a recent study by 

Lindroth et al. elegantly demonstrated that H3K27 methylation (recruited by YY1) and CpG 

DNA methylation at the murine Rasgrf1 locus are mutually exclusive, suggesting that both 

epigenetic marks are interdependent and antagonistic (Lindroth et al., 2008). This is also 

consistent with a recent study globally mapping key histone modifications and subunits of 

Polycomb-repressive complexes 1 and 2 (PRC1 and PRC2) in ES cells (Ku et al., 2008). 

PRC2 contains EZH2, which catalyzes H3K27me3. PCR1 components, in turn, contain 

proteins with affinity for H3K27me3. Genome-wide analysis of PRC1 and PRC2 occupancy 

identified a YY1-like motif enriched in CpG islands that were not targeted by PRC2. 

Additional motifs identified in this study (ETS, NFY, AP-1, MYC and NRF1) (Ku et al., 2008), 

partially overlapped with those observed in the present study. Motifs enriched in EZH2 

negative CGIs are recognized by several well-characterized classes of transcriptional 

activators that are highly enriched in ES cells. Some of the implicated factors have key 

functions in the ES cell regulatory network (e.g. NFY, Myc) while others are constitutive 

activators with general housekeeping functions (e.g. Ets1). In contrast, in PRC2-positive 

CGIs transcriptional activator motifs are depleted while repressor motifs are enriched. Thus, 

PCR2 appears to localize to CGIs that are transcriptional silent in ES cells because they lack 

activating DNA sequence motifs. These findings further corroborate the negative correlation 

of repressive epigenetic marks and cis-acting sequences conferring transcriptional activity. 

 

In line with several recent observations demonstrating that the DNA methylation status 

correlates with histone modifications (Brunner et al., 2009; Meissner et al., 2008; Schmidl et 

al., 2009), the factors binding the identified sequences likely share the ability to recruit RNA 

polymerase II and to create an ‘active’ chromatin environment that may prevent or at least 
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impede de novo CpG methylation at particular CpG islands (Figure 6-1). A recently 

published, analogous study demonstrated that the presence of RNA polymerase II, active or 

stalled, predicts the epigenetic fate of promoter CpG islands in cancer (Takeshima et al., 

2009). Through performing chromatin immunoprecipitation combined to microarray 

hybridization (ChIP-on-chip) analysis of RNA polymerase II (Pol II) and histone modifications 

it could be shown that even among the genes with low transcription, the presence of Pol II 

was associated with marked resistance to DNA methylation while H3K27me3 was associated 

with increased susceptibility (Takeshima et al., 2009). 

RNA polymerase II does not stably bind DNA on its own – its stable recruitment requires 

cis-acting factors of which Sp1 is one of the best studied so far (Lemon and Tjian, 2000). A 

high level of overlap between transcription factor and Pol II binding is expected and the 

association of Pol II with resistance to de novo methylation is likely a consequence of its 

interaction with combinations of transcription factors present at the promoter. However, our 

data also clearly shows that the correlation of motif occurrence or transcription factor binding 

and ‘methylation protection’ are found not only in promoter proximal but also in promoter 

distal sites, thus ruling out a direct link with the process of transcription or the presence of 

Pol II. Therefore the present thesis suggests that cis-acting factors may have a protective 

role independent of Pol II binding.  

 

In conclusion, these data provide strong experimental and computational evidence that 

specific sequence motifs are associated with the DNA methylation states of CpG islands in 

normal and malignant cells. Most of the identified sequence motifs are identical to consensus 

motifs for known, general transcription factors and our data strongly suggests that the 

combinatorial binding of these factors plays a dominant role in regulating the DNA 

methylation status at a large set of CpG islands. These findings also imply that the aberrant 

methylation patterns in cancer cells may at least in part result from a ‘loss of protection’. This 

would also imply a default tendency to methylate and repress DNA sequences during 

successive cell divisions that are not marked by activating transcription factors or histone 

modifications.  

 

6.5 Perspectives 

The results of the present thesis led to the identification of hundreds of hypermethylated 

genes of potential pathogenic relevance in cancer development. Comparing the methylation 

patterns of the different patients should highlight correlations between methylation of specific 

genes and clinical parameters such as subclasses or prognosis. The final aim of our studies 
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is the identification of specific marker genes that in the future may provide a novel basis for 

improved patient outcome prediction, prognostication, diagnosis, monitoring and treatment.  

However, additional studies will be necessary to find an optimal set of epigenetic biomarkers 

and evaluate the significance of these markers in a routine clinical setting before the clinical 

implementation will become accomplishable. A new method with this potential would be to 

screen patient samples by multiplexing (12-30 plex) of an optimal set consisting of 12-30 

biomarkers using QGE after MCIp enrichment. This quantitative and multiplexed methylation 

analyses should be much more sensitive than the methylation-specific PCR (MSP), which 

was used for the detection of tumor-related DNA methylation in serum/plasma, urine and 

other fluids. Thus, MCIp combined with QGE might be helpful to identify patient subgroups 

that are likely to benefit from demethylation therapy. Moreover, in future established 

methylation markers might be used to detect therapeutic success of demethylating agents 

during the course of treatment.  

DNA methylation is an early event that often precedes the appearance of a tumor. As the 

early stages of cancer development have the highest potential for therapeutic interventions, 

the inhibition or the withdrawal of these epigenetic modifications could open up new 

possibilities for cancer prevention in the future. Furthermore, as DNA methylation possibly 

also changes during the course of the disease, integrated approaches could be superior for 

outcome prediction. A combination of methylation and gene expression markers as well as 

known prognostic factors such as cytogenetics and molecular alterations could account for 

refining AML classification. 

Our global and locus-wide analyses of DNA methylation patterns strongly suggest that the 

combinatorial binding of cis-acting transcription factors plays a major role in shaping a cells’ 

methylome, both in health and disease. Proximal promoter regions that are often studied in 

the context of cancer may reflect only a small proportion of regulatory regions that are 

subject to alterations in cancer. In order to understand the relevance of alterations in 

transcription factor networks for the establishment of global DNA methylation patterns, we 

probably need to study not only CGIs, but basically all regions within the whole range of CpG 

densities, because many transcription factors (like C/EBPs, RUNX1, or PU.1) do not have 

preferences for CpG islands. One possibility to reduce the candidate sequences from the 

complete human genome to potentially regulatory relevant regions would be to define 

putative regulatory sites by mapping histone H3 lysine 4 mono-methylation (H3K4me1) as 

this histone mark is often associated with enhancers. Defining the methylation profiles of 

those regions could allow the identification of further cis-acting sequences and corresponding 

transcription factors associated with differentiation and disease states. 

Another future study could include the characterization of the exact mechanism establishing 

and maintaining the DNA methylation patterns during leukemogenesis. Using a knockdown 
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test sytem our hypothesis that transcription factors normally confer methylation protection 

could be corroborated. Since DNA methylation, in particular within CGIs, may be a 

consequence of the absence or inactivation of transcriptional activators, knockdown of 

transcription factors should then lead to methylation of the respective CGI. In a 

complementary approach, the epigenetic profile of stably introduced plasmids into THP-1 

cells containing CGIs of varying motif composition could be studied over time. These 

experiments could show whether certain motifs actually do confer methylation protection to 

the surrounding sequences. If the expected changes are reproducible, the exact timing of 

DNA methylation changes and other associated epigenetic events (like the recruitment of 

DNMTs, the loss of activating or the deposition of repressive histone marks) could be studied 

sequentially.
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7 Summary 

Aberrant DNA methylation of CpG islands (CGIs) is a common alteration during malignant 

transformation that leads to the abnormal silencing of tumor suppressor genes and plays a 

role in disease initiation and progression. The major aim of the present thesis was the 

implementation of methodologies to identify epigenetic marker genes that can be used for 

the diagnosis as well as for the targeted treatment of tumors. Furthermore, the molecular 

mechanisms controlling the methylation status of CpG islands in normal and malignant cells 

should be analyzed. To address these issues, a novel and robust technique, called 

methyl-CpG immunoprecipitation (MCIp) was developed that allows for the unbiased 

genome-wide profiling of CpG methylation in DNA samples where quantity is limited. This 

approach is based on a recombinant, antibody-like protein that efficiently binds native 

CpG-methylated DNA and enables the fractionation of DNA fragments depending on the 

particular methyl-CpG content. This application facilitates the monitoring of CpG island 

methylation either on single gene or on genome-wide levels. Initial genome-wide methylation 

profiling of myeloid leukemia cell lines using 12K CpG island microarrays identified over one 

hundred genes with aberrantly methylated CpG islands. Interestingly, the comparison with 

gene expression data revealed that more than half of the identified genes were not 

expressed in various healthy cell types, indicating that hypermethylation in cancer may be 

largely independent of the transcriptional status of the affected gene. The majority of 

individually tested genes were also hypermethylated in primary blast cells from AML patients.  

The MCIp approach was further optimized and adapted for a more suitable microarray 

platform (Agilent 244K CGI microarrays). The in-depth comparison of MCIp and 

MassARRAY for two established cell lines showed an excellent correlation over a set of 140 

genes (1,150 amplicons covering approximately 13,500 CpG dinucleotides). In order to 

identify potential marker genes, global comparative CpG island methylation profiles for more 

than 25 AML samples (of mostly normal karyotype) and ten patients with colorectal 

carcinoma using MCIp in combination with microarray were generated. Our comprehensive 

analysis identified a large array of CGIs that are previously unrecognized targets of 

hypermethylation in AML. For the identification of potential marker genes, approximately 400 

regions were selected based on the array results for screening a large set of 200 AML 

patients. The data are now ready to be subjected to computational analyses.  

In order to get insights into the process regulating the methylation status of CpG islands, 

factors should be identified that are responsible for maintaining or establishing methylated 

states of CGIs in health and disease as well as for de novo methylation in cancer. De novo 

motif discovery analysis revealed two repetitive sequence motifs (GAGA, CACA) that were 
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commonly enriched in CpG islands that were methylated in cancer. More strikingly, the 

global analysis demonstrated a highly significant association of unmethylated CpG islands 

with consensus sequences for GA binding protein (GABP), specific protein (Sp) 1 and 3, 

nuclear respiratory factor (NRF) 1, nuclear factor (NF) Y, yin-yang (YY) 1 and an unknown 

factor in all analyzed samples. Using ChIP-on-chip assays we also showed that most of the 

identified motifs for Sp1, NRF1 and YY1 were actually bound by the respective factors in 

normal cells and that these regions did not acquire de novo methylation in leukemia cells. In 

addition, the data provide global evidence that the stable binding of any of these transcription 

factors to their consensus motif depends on their co-occurrence with neighboring consensus 

motifs. Thus, the results of the present thesis suggest a major role for cooperative 

transcription factor binding in maintaining the unmethylated status of CpG islands in health 

and disease. The data also implies that the majority of de novo methylated CpG islands are 

characterized by the lack of sequence motif combinations and the absence of activating 

transcription factor binding. 
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8 Zusammenfassung 

Tumorzellen zeichnen sich häufig durch ein verändertes DNA-Methylierungsmuster aus. 

Fehlerhafte DNA-Methylierung von CpG-Inseln (CGIs) kann zur abnormen Repression von 

Tumorsuppressorgenen führen und Tumorwachstum fördern. Hauptziel der vorliegenden 

Arbeit war es, Methoden zu etablieren, um diagnostisch oder therapeutisch verwertbare 

epigenetische Biomarker zu identifizieren. Desweiteren sollten die molekularen 

Mechanismen analysiert werden, die den Methylierungsstatus von CGIs sowohl in gesunden 

als auch in entarteten Zellen regulieren. 

Für den unvoreingenommenen, globalen Nachweis von differentieller genomischer 

CpG-Methylierung wurde eine neuartige Methode, die sogenannte 

Methyl-CpG-Immunpräzipitation (MCIp), entwickelt und etabliert. Diese Technologie basiert 

auf einem rekombinanten Antikörper-ähnlichen Protein, das doppelsträngige, methylierte 

DNA binden kann und eine Fraktionierung der DNA-Fragmente hinsichtlich ihres 

Methylierungsgrades ermöglicht. Die Detektion methylierter DNA kann sowohl auf 

Einzelgenebene als auch genomweit durchgeführt werden. Die ersten genomweiten 

Methylierungsanalysen von myeloischen Leukämiezelllinien mit 12K CpG-Insel-Mikroarrays 

führten zur Identifizierung von über einhundert Genen, die in den Zelllinien im Vergleich zu 

normalen Blutmonozyten von Hypermethylierung betroffen waren. Ein Vergleich mit 

Expressionsdaten zeigte, dass ein Großteil der methylierten Gene weder in normalen 

myeloischen Zellen noch in den untersuchten Tumorzellen exprimiert war. Dies könnte 

darauf hindeuten, dass die tumorspezifische Hypermethylierung unabhängig vom 

transkriptionellen Status eines Gens ist. Die meisten der getesteten Genfragmente waren 

auch in primären AML-Blasten hypermethyliert.  

Die MCIp-Technik wurde weiter optimiert und auf eine neue und besser geeignete 

Mikroarray-Plattform angepasst (Agilent 244K CpG-Insel Mikroarrays). Die Validierung der 

Mikroarraydaten mittels MassARRAY-Technologie (1150 Amplikons aus 140 Genen, welche 

13500 CpG Dinukleotide abdeckten) zeigte eine sehr gute Korrelation beider Methoden. Zur 

Identifizierung von potentiellen Biomarkern wurden globale DNA-Methylierungsprofile 

einerseits von Blasten aus 25 AML-Patienten mit primär normalem Karyotyp, aber auch von 

zehn Patienten mit kolorektalem Karzinom erstellt. Unsere Analysen identifizierten eine 

Reihe von Genen von denen bislang nicht bekannt war, dass sie von Hypermethylierung 

betroffen sein können. Um relevante Markergene zu identifizieren, wurden ca. 400 Regionen 

anhand der Arrayergebnisse ausgewählt und in einem größeren Patientenkollektiv (200 AML 

Proben) mithilfe der MassARRAY-Technologie validiert. Die entsprechenden Daten werden 

aktuell noch bioinformatischen Analysen unterzogen. 
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Um Einblick in den Mechanismus zu gewinnen, wie die Methylierung von CpG-Inseln 

reguliert wird, sollten Faktoren identifiziert werden, welche einen entscheidenden Einfluss bei 

der Entstehung und Aufrechterhaltung von Methylierungsmustern sowohl in gesunden als 

auch in Tumorzellen haben. Mittels de novo-Motivanalysen konnte gezeigt werden, dass 

zwei repetitive Sequenzmotive (GAGA, CACA) häufig in CGIs angereichert waren, welche in 

Tumorzellen methyliert wurden. Darüber hinaus stellten wir mittels globaler Analysen eine 

hochsignifikante Assoziation von unmethylierten CGIs mit Konsensussequenzen für GABP 

(GA binding protein), Sp1 (Specific protein 1), NRF1 (nuclear respiratory factor 1), NFY 

(nuclear factor Y), YY1 (ying-yang 1) und einem unbekannten Faktor in allen untersuchten 

Proben fest. 

Mittels ChIP-on-Chip Analysen konnte außerdem gezeigt werden, dass die meisten der 

identifizierten Motive für Sp1, NRF1 und YY1 tatsächlich von dem betreffenden Faktor in 

normalen Zellen gebunden wurden, und dass diese Regionen in Leukämiezellen nicht von 

einer de novo-Methylierung betroffen waren. Desweiteren verdeutlichten die Ergebnisse, 

dass die stabile Bindung eines dieser Transkriptionsfaktoren an seine Konsensussequenz 

vom gleichzeitigen Vorkommen benachbarter Konsensusmotive abhängig ist. Folglich führen 

die Ergebnisse dieser Dissertation zu der Annahme, dass die kooperative Bindung von 

Transkriptionsfaktoren eine entscheidende Rolle für die Aufrechterhaltung des 

unmethylierten Status von CGIs in gesunden wie auch in kranken Zellen spielt. Die Daten 

implizieren auch, dass die Mehrheit der de novo methylierten CGIs durch das Fehlen von 

Kombinationen bestimmter Sequenzmotive und der daraus resultierenden Abwesenheit 

aktivierender Transkriptionsfaktoren charakterisiert ist. 
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10 Abbreviations 

AML     Acute myeloid leukemia 

AS     Antisense 

5mC     5-methylcytosine 

bp     Base pair 

BS     Bisulfite 

BSA     Bovine serum albumin 

°C     Degree Celsius 

cDNA     Complementary DNA 

CGI     CpG island 

ChIP     Chromatin immunoprecipitation 

CIAP     Calf intestinal alkaline phosphatase 

CpG     Cytosine-guanine dinucleotide 

dd     Double distilled 

DEPC     Diethyl pyrocarbonate 

DMEM     Dulbecco’s Modified Eagle Medium 

DMR     Differential methylated region 

DMSO     Dimethyl sulfoyde 

DNMT     DNA methyltransferase 

dNTP     Deoxiribonucleotide triphosphate 

ECL     Enhanced chemiluminescence 

EDTA     Ethylenediaminetetraacetic acid 

ES cell     Embryonic stem cell 

EtOH     Ethanol 

FACS     Fluorescence activated cell sorting 

FCS     Fetal Calf Serum 

gDNA     Genomic DNA 

GO     Gene ontology 

H     Hour 

HELP     Hpa II tiny fragment Enrichment by LM-PCR 

HSC     Hematopoietic stem cell 

H3K4me1    Histone 3 lysine 4 monomethylation 

H3K4me2    Histone 3 lysine 4 dimethylation 

H3K4me3    Histone 3 lysine 4 trimethylation 

HAT     Histone acetyltransferase 

HDAC     Histone deacetylase 

HMT     Histone methyltransferase 

IP     Immunoprecipitation 
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LM-PCR    Ligation-mediated polymerase chain reaction 

MALDI-TOF MS Matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry 

MBD     Methyl-CpG binding domain 

MCIp     Methyl-CpG immunoprecipitation 

MeCP2     Methyl-CpG binding Protein 2 

MeDIP     Methylated DNA immunoprecipitation 

Min     Minute 

MO     Monocyte 

MOPS     3-(N-Morpholino) propanesulfonic acid 

mRNA     Messenger RNA 

MSP     Methyl-specific PCR 

MvA     Signal log ratio vs. average log intensity 

NaOAc     Sodium acetate 

NK cell     Natural killer cell 

NP-40     Nonidet P-40 

O/N     Overnight 

PB-MNCs    Peripheral blood mononuclear cells 

PBS     Phosphate buffered saline 

PEG     Polyethyleneglycol 

PCR     Polymerase chain reaction 

qPCR     Quantitative PCR 

RLGS     Restriction landmark genomic scanning 

rpm     Rounds per minute 

RT     Room temperature 

RT-qPCR    Quantitative reverse transcription PCR 

s     Second 

S     Sense 

SAM     S-adenosylmethionine 

SAP     Shrimp alkaline phosphatase 

SD     Standard deviation 

SDS     Sodium dodecyl sulfate 

SNP     Single nucleotide polymorphism 

TAE     Tris acetate /EDTA electrophoresis buffer 

TE     Tris-EDTA 

TEMED     N,N,N’,N’,-Tetramethylenediamine 

TSS     Transcription start site 

UCSC     University of California, Santa Cruz 

X-gal     5-Bromo-4-chloro-3-indoyl-β-D-galactopyranosid 
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