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Abstract. The solution of Allen-Cahn variational inequalities with mass constraints is of interest
in many applications. This problem can be solved both in its scalar and vector-valued form as a
PDE-constrained optimization problem by means of a primal-dual active set method. At the heart
of this method lies the solution of linear systems in saddle point form. In this paper we propose the
use of Krylov-subspace solvers and suitable preconditioners for the saddle point systems. Numerical
results illustrate the competitiveness of this approach.
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1. Introduction. The solution of Allen-Cahn variational inequalities with non-
local constraints can be formulated as an optimal control problem, which can be solved
using a primal-dual active set method [4, 6, 7]. This method has proven very efficient
in a variety of applications [27, 29, 35, 36]. As we will show in the course of this paper
the solution to a linear system of the form Kx = b with K a real symmetric matrix
is at the heart of this method. The sparse linear systems are usually of very large di-
mension and in combination with 3-dimensional experiments the application of direct
solvers such as UMFPack [11] becomes infeasible. As a result iterative methods have
to be employed (see e.g. [24, 43] for introductions to this field). For symmetric and
indefinite systems the Minimal Residual method (minres) [39] is a common solver
as it minimizes the 2-norm of the residual rk = b − Kxk over the Krylov subspace
span

{

r0,Kr0, . . . ,K
k−1r0

}

. The convergence behaviour of the iterative scheme de-
pends on the conditioning of the problem and the clustering of the eigenvalues and can
usually be enhanced with preconditioning techniques.P−1Kx = P−1b In this paper,
we provide an efficient preconditioner P for the solution of Allen-Cahn variational
inequalities combining methods for indefinite problems [31, 39, 48, 3] and algebraic
multigrid developed for elliptic systems [15, 43, 42]. The arising linear systems lead
to matrices K which have the following saddle point block-structure which arise in a
variety of applications [3]

K =

[

A BT

B 0

]

(1.1)

with A being symmetric and positive definite. Hence, minres is our method of
choice. With some restrictions on P it is also possible to apply variants of cg [7, 5, 9,
40, 46]. For moderate sizes of K and 2D problems direct solvers such as UMFPACK
[11] or HSL MA57 [12] can show outstanding performance.

The paper is organized as follows. In Section 2 we introduce the Allen-Cahn
variational inequalities in scalar and vector-valued form with nonlocal constraints.
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We briefly introduce the primal-dual active set method and derive the linear systems
giving rise to the matrix K in question. In Section 3 we analyze the linear systems
and propose preconditioning strategies for the saddle point problems in combination
with well-known techniques for some of the underlying operators, as e.g. algebraic
multigrid. In addition, we show how the active set method can lead to a reduction
in problem size and how this can be implemented efficiently. We also discuss a semi-
implicit formulation that promises greater flexibility with respect to the choice of the
timestep size. Section 4 illustrates the competitiveness of our approach.

2. Problem setups.

2.1. Allen-Cahn equation with obstacle potential. The Allen-Cahn model,
which is used to describe the motion of an interface, plays an important role in many
applications [8, 16, 49]. Here the interface in which a phase field or order parameter
changes its value rapidly is modelled with thickness ε > 0 with ε being small. The
energy functional of interest is given by the Ginzburg-Landau energy

E(u) =

∫

Ω

γε

2
|∇u|

2
+
γ

ε
ψ(u) (2.1)

where Ω ⊂ R
d is a bounded domain, γ > 0 is a parameter related to the interfacial

energy and u : Ω → R is the phase field. The potential function ψ : R → R
+
0 ∪ {∞}

has two global minima at ±1 which describe the pure phases, e.g. the double well
ψ(u) = (1 − u2)2 or the double obstacle potential ψ(u) = ψ0(u) + I[−1,1](u) with

ψ0(u) =
1

2
(1 − u2) and I[−1,1](u) =

{

0 if |u| ≤ 1

∞ otherwise
(2.2)

which is considered in the following.
Given an initial phase distribution u(., 0) = u0 and assuming that ψ is smooth the
interface motion can be modelled by the scaled steepest descent of E with respect to
the L2-norm and we obtain the Allen-Cahn equation

ε∂tu = γε△u−
γ

ε
ψ′(u) (2.3)

with homogeneous Neumann boundary conditions on ∂Ω. In the case that the to-
tal spatial amount of the phases is conserved the steepest descent of E under the
constraint −

∫

Ω
u = m, where −

∫

Ω
f(x)dx := 1

|Ω|

∫

Ω
f(x)dx with |Ω| being the Lebesgue

measure of Ω, becomes

ε∂tu = γε△u−
γ

ε
ψ′(u) +

γ

ε
−

∫

Ω

ψ′(u). (2.4)

For the obstacle potential (2.2) the following problem has to be solved where 〈., .〉
denotes the L2-inner product (see e.g.[6]):

OS 2.1. Given u(., 0) = u0 ∈ H1(Ω) with |u0| ≤ 1 and −
∫

Ω
u0 = m find u ∈

H1(ΩT ) such that −
∫

Ω
u = m and |u| ≤ 1 a.e. in ΩT := Ω × (0, T ) and

ε〈∂tu, χ− u〉 + γε〈∇u,∇(χ− u)〉 +
γ

ε
〈ψ′

0(u), χ− u〉 ≥ 0 (2.5)
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which has to hold for almost all t and all χ ∈ H1(Ω) with |χ| ≤ 1 and −
∫

Ω
χ = m.

In [6] it is shown that (2.5) can be reformulated as follows

ε2∂tu− ε2γ△u+ γψ′
0(u) + µ− λ = 0 a.e. in Ω

∂u
∂ν = 0 a.e. on ∂Ω

−
∫

Ω
u = m

(2.6)

together with the complementary conditions

µ+ ≥ 0, µ− ≥ 0, |u| ≤ 1 a.e. in Ω,

µ+(u− 1) = µ−(u+ 1) = 0 a.e. in Ω,
(2.7)

where λ is the scaled multiplier for −
∫

Ω
u = m and µ := µ+−µ− is the scaled Lagrange

multiplier for |u| ≤ 1. Note that (2.7) is equivalent to

u = 1 a.e. in A+(t) := {x ∈ Ω : c(u(x, t) − 1) + µ(x, t) > 0} ,

u = −1 a.e. in A−(t) := {x ∈ Ω : c(u(x, t) + 1) + µ(x, t) < 0} ,

µ = 0 a.e. in I(t) := Ω \ (A−(t) ∪A+(t))

(2.8)

for an arbitrary c > 0. Here A+,A−, I are the primal-dual active and inactive sets
respectively.

A primal-dual active set method for OS 2.1 is introduced in [6] and we now
briefly discuss this method. In order to solve OS 2.1 we employ a backward Euler
discretization where for simplicity we denote u(k) := u(., kτ) by u with τ being the
time step. In space we discretize the problem using finite elements. Let T h be a
regular triangulation of Ω with maximal element size h and let J be the set of nodes
of T h. Associated with T h is the finite element space

Sh := {φ ∈ C0(Ω̄) : φ|σ is linear ∀σ ∈ T h} ⊂ H1(Ω).

Furthermore, we denote the standard nodal basis functions of Sh by χj for all j ∈ J .
Then a function uh ∈ Sh is given by uh =

∑

j∈J ujχj and the vector of coeffi-
cients is denoted by u. We introduce also the lumped mass scalar product 〈f, g〉h =
∫

Ω
Ih(fg) instead of 〈f, g〉. The interpolation operator Ih : C0(Ω̄) → Sh is defined by

(Ihf)(pj) = f(pj) for all nodes j ∈ J where pj denotes the coordinates corresponding
to the node j. Using this discrete inner product, Green’s identity and ψ′

0(u) = −u
the first equation in (2.6) can be written as

ε2

τ 〈uh−u
(k−1)
h , φ〉h+ε2γ〈∇uh,∇φ〉−γ〈uh, φ〉h+〈µh, φ〉h−λ〈1, φ〉 = 0 ∀φ ∈ Sh. (2.9)

In linear algebra terms this becomes

(( ε2

τ − γ)M + ε2γK)u +Mµ − λm = ε2

τ Mu(k−1) (2.10)

where K := (〈∇χj ,∇χi〉) is the stiffness matrix, m = [m1,m2, ...,mn]
T

with mi :=
〈1, χi〉 is the mass vector and M := (〈χj , χi〉h) = diag(m) is the lumped mass matrix.
The discretization of the constraint −

∫

Ω
uh = m uses the fact that |Ω| =

∑

mj = mT 1

and hence

mTu = m |Ω| . (2.11)
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We also discretize the complementarity conditions (2.8) which give

uj = 1 if j ∈ A+ := {j ∈ J : c(uj − 1) + µj > 0} ,

uj = −1 if j ∈ A− := {j ∈ J : c(uj + 1) + µj < 0} ,

µj = 0 if j ∈ I := J \ (A+ ∪ A−).

(2.12)

Altogether, considering a partitioning in A+,A−, I and defining b = ε2

τ Mu(k−1) and

L := ( ε2

τ − γ)M + ε2γK (2.13)

this leads to the following linear system

























LI,I LI,A+ LI,A
−

MI,I 0 0 −mI

LA+,I LA+,A+ LA+,A
−

0 MA+,A+ 0 −mA+

LA
−

,I LA
−

,A+ LA
−

,A
−

0 0 MA
−

,A
−

−mA
−

0 0 0 I 0 0 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

m
T
I m

T
A+

m
T
A+

0 0 0 0

















































uI

uA+

uA
−

µI

µA+

µA
−

λ

























=

























bI

bA+

bA
−

0I

1A+

−1A
−

m |Ω|

























.

Given (2.12), i.e. uA+
= 1,uA

−

= −1 and µI = 0, this linear system can be reduced
to the following form

[

LI,I −mI

−mT
I 0

][

uI

λ

]

=

[

bI − LI,A+
uA+

− LI,A
−

uA
−

−m |Ω| + mT
A+

uA+
+ mT

A
−

uA
−

]

. (2.14)

The Lagrange multipliers µ on A± are then given by

MA+,A+
µA+

= bA+
− LA+,IuI − LA+,A+

uA+
− LA+,A

−

uA
−

+ λmA+

MA
−

,A
−

µA
−

= bA
−

− LA
−

,IuI − LA
−

,A+
uA+

− LA
−

,A
−

uA
−

+ λmA
−

.
(2.15)

For practical purposes we look at the system matrix

K :=

[

L −m

−mT 0

]

(2.16)

as we do not form the matrix LI,I but rather use L and implicitly work only on
the free variables uI (see [41, 48] for details). In short, we want to create a Krylov
subspace for the matrix given in (2.14). Therefore, we make sure the Lanczos process
for K is started with zeros corresponding to all elements in the active sets A+ and
A− in the vector r0. Then at every step of the algorithm we have to carry out a
multiplication with K that maintains these zeros, i.e.,

Kp =













LI,I LI,A+
LI,A

−

−mI

LA+,I LA+,A+
LA+,A

−

−mA+

LA
−

,I LA
−

,A+
LA

−
,A

−

−mA
−

mT
I mT

A+
mT

A+
0



























p
(1)
I

p
(1)
A+

= 0

p
(1)
A

−

= 0

p(2)















(2.17)
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where p represents the vector in the iterative solver that has to be multiplied by K.
It can easily be seen that if we eliminate the entries of Kp corresponding to the sets
A+ and A− working with system 2.16 is a feasible approach.

In general, the primal-dual active sets of the solution are unknown. Hence not
only the variables but also A±, I are unknowns in (2.14). The primal-dual active
set method proposed in [6] as solver for the Allen-Cahn problem iterates now with
regards to the active sets. This algorithm can be written as follows and is applied in
each time step iteration.

1: Given A
(0)
+ and A

(0)
−

2: for n = 0, 1, . . . do

3: Set u(n) = ±1 on A
(n)
± and µ(n) = 0 on I(n)

4: Solve (2.14) to obtain u(n) on I(n) and λ(n)

5: Compute µ(n) on A
(n)
± using (2.15)

6: Compute A
(n+1)
± using (2.12) with u(n) and µ(n)

7: if A
(n+1)
+ = A

(n)
+ and A

(n+1)
− = A

(n)
− then

8: STOP (Algorithm converged)
9: end if

10: end for

Algorithm 1: Primal dual active set method (PDAS)

2.2. Vector-valued Allen-Cahn equation with multi obstacle potential.

The scalar Allen-Cahn equation describes the motion of an interface separating two
phases. In practical applications often more than two phases occur [7, 18, 30] and the
phase field concept has been extended to deal with multi phase systems [17]. There
a vector-valued order parameter u : Ω → R

N is introduced, where each ui describes
one phase, i.e. if ui = 0 then the phase i is absent in that region, if ui = 1 only phase

i is present in that region. Hence
N
∑

i=1

ui = 1 and ui ≥ 0 is required. The motion of

the interfaces separating N bulk regions can be modelled again with the Ginzburg
Landau energy (2.1) where the potential function ψ : R

N → R
+
0 ∪{∞} is now a multi

obstacle potential given by

ψ(ξ) =

{

ψ0(ξ) = −1
2ξ ·Wξ for ξ ≥ 0, ξ · 1 = 1

∞ otherwise
(2.18)

with a symmetric matrix W ∈ R
N,N . In [2] it is discussed that W must have at least

one positive eigenvalue. Taking the scaled L2-gradient of the energy (2.1) leads to the
vector valued Allen-Cahn variational inequality

ε〈∂tu, χ− u〉 + γε〈∇u,∇ (χ− u)〉 −
γ

ε
〈Wu,χ− u〉 ≥ 0 (2.19)

which has to hold for all χ ∈ G := {χ ∈ (H1(Ω))N : χ · 1 = 1, χi ≥ 0 a.e. in Ω} and
for almost all t.

Again systems where the total spatial amount of the phases is conserved are
considered, i.e.,

−

∫

Ω

u = m =
[

m1,m2, ...,mN
]T
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where mi ∈ (0, 1) and
∑N

i=1m
i = 1 due to u ∈ G. Defining Gm := {u ∈ G : −

∫

Ω
u = m}

the following problem can be obtained
OS 2.2. For a given u(., 0) = u0 ∈ Gm find u ∈ L2(0, T ;Gm)∩H1(0, T ; (L2(Ω))N)

such that for almost all t ∈ (0, T )

ε〈∂tu, χ− u〉 + γε〈∇u,∇ (χ− u)〉 −
γ

ε
〈Wu,χ− u〉 ≥ 0 ∀χ ∈ Gm.

Similar to OS 2.1 a primal-dual active set method can be employed and we quickly
review some of the details for OS 2.2. In [7, 5] the following formulation of OS 2.2 is
given

ε2∂tu− ε2γ△u− γWu− µ− λ− η1 = 0 a.e. in Ω
∂u
∂ν = 0 a.e. on ∂Ω

−
∫

Ω
u = m,

∑N
i=1 ui = 1,

∑N
i=1 λi = 0

(2.20)

together with the complementary conditions u ≥ 0, µ ≥ 0 a.e. in Ω and 〈µ, u〉 = 0.
Here µ is the Lagrange multiplier associated with u ≥ 0, λ is the Lagrange multiplier
for −
∫

Ω
u = m with

∑N
i=1 λi = 0 and η is the Lagrange multiplier for

∑N
i=1 ui = 1. Note

that λ(t) ∈ R
N , η(x, t) ∈ R, µ(x, t) ∈ R

N and u(x, t) ∈ R
N for a.e. (x, t) ∈ Ω × [0, T ].

For each component ui we have an active set and the complementarity conditions can
be reformulated for i = 1, ..., N as

ui(., t) = 0 a.e. in Ai(t) := {x ∈ Ω : c(u(x, t))i − (µ(x, t))i < 0}

µi(., t) = 0 a.e. in Ii(t) := Ω \ Ai(t).
(2.21)

Again in order to solve the underlying optimization problem we discretize the equa-
tions using the backward Euler method in time and finite elements in space and then
employ a slight modification of Algorithm 1. We obtain the discretized problem:
Given u(k−1) find λ ∈ R

N , u, µ ∈ (Sh)N , η ∈ Sh such that −
∫

Ω
u = m,

∑N
i=1 ui = 1,

∑N
i=1 λi = 0, furthermore (2.21) is fulfilled in each node j ∈ J and the following

equation holds for all φ ∈ Sh and i = 1, ..., N :

ε2

τ 〈ui − u
(k−1)
i , φ〉h + ε2γ〈∇ui,∇φ〉 − 〈γ(Wu)i + µi + η, φ〉h − λi〈1, φ〉 = 0. (2.22)

Using ui =
∑N

i=1(ui)jχj ∈ Sh for i = 1, . . . , N with the nodal basis functions χj of
Sh (2.22) can be written in linear algebra terms as

( ε2

τ M + ε2γK)ui − γM
N
∑

l=1

wilul −Mµi − λim −Mη = ε2

τ Mu
(k−1)
i . (2.23)

Moreover, we have the constraints

mT ui = mi |Ω| ,

N
∑

i=1

ui = 1,

N
∑

i=1

λi = 0. (2.24)

In addition we have λN = −
∑N−1

i=1 λi. As in the scalar case we work implicitly only
on the free variables (ui)Ii

, λi,η. The variables (µi)Ai
are then determined by (2.23).

Hence using L as defined in (2.13) we can reduce (2.23) to the following system, where
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we take W = I and N = 3 to simplify matters (see [7]):

2

6

6

6

6

6

6

6

6

6

4

LI1,I1 0 0 −mI1 0 −MI1,:

0 LI2,I2 0 0 −mI2 −MI2,:

0 0 LI3,I3 mI3 mI3 −MI3,:

−m
T
I1

0 m
T
I3

0 0 0

0 −m
T
I2

m
T
I3

0 0 0

−M
T
:,I1

−M
T
:,I2

−M
T
:,I3

0 0 0

3

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

4

(u1)I1

(u2)I2

(u3)I3

λ1

λ2

η

3

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

4

“

ε2

τ
Mu

(k−1)
1

”

I1
“

ε2

τ
Mu

(k−1)
2

”

I2“

ε2

τ
Mu

(k−1)
3

”

I3

(m3 − m
1) |Ω|

(m3 − m
2) |Ω|

−m

3

7

7

7

7

7

7

7

7

7

7

7

5

.

(2.25)

For a different choice of W the first 3 by 3 block changes and might loose the diagonal
structure but remains symmetric.
To solve this system for unknown active sets we again apply a PDAS-algorithm like

Algorithm 1, i.e. in the n-th iteration we update the sets A
(n)
i , I

(n)
i using (2.21),

solve with these sets the equation system (2.25), set (ui)A(n)
i

= 0, (µi)I(n)
i

= 0,

λN = −
∑N−1

i=1 λi and finally (µi)A(n)
i

is obtained from equation (2.23). For one

iteration the main numerical effort is therefore the solution of the system (2.25).
Again, assembling the matrices on the free variables or reassigning parts of the

matrix blocks in (2.25) is not feasible. Hence, using reordering and (ui)Ai
= 0 and

(µi)Ii
= 0 we work with the full blocks which are given by the following system























L 0 0 −M −m 0

0 L 0 −M 0 −m

0 0 L −M m m

−MT −MT −MT 0 0 0

−mT 0 mT 0 0 0

0 −mT mT 0 0 0













































u1

u2

u3

η

λ1

λ2























=

























Mµ1 + ε2

τ Mu
(k−1)
1

Mµ2 + ε2

τ Mu
(k−1)
2

Mµ3 + ε2

τ Mu
(k−1)
3

−m

(m3 −m1) |Ω|

(m3 −m2) |Ω|

























.

(2.26)
The system matrix in (2.26) is denoted by Kvv for the remainder of the paper.

3. Preconditioning. As for any meaningful computation the assembly of the
matrices on the free variables (see (2.25) and (2.14)) will be unfeasible, we consider
in the following the preconditioning of the matrices K and Kvv. Numerical results
illustrate the efficiency of this approach.

3.1. K–The scalar case. To clarify some ideas we first consider the scalar case.
In (2.16) a linear symmetric and indefinite system in saddle point form is shown to be
at the heart of the computation. Systems of this form have been analyzed carefully
in [3, 14]. A common ansatz for preconditioning a saddle point matrix of the form
(1.1) is given in [38]. Here the preconditioning matrix is given by an approximation,
respectively of the inverse of

P =

[

A 0

0 S

]

(3.1)

where S is the Schur-complement −BTA−1B. If one is willing to approximate the
Schur-complement, which is in this case −mTL−1m ∈ R, techniques based on the
Lanczos process [37] and its connection to Gauss quadrature [20] can be used [19].
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Then a few steps of the Lanczos process applied to L and an eigenvalue calcula-
tion for a tridiagonal matrix [22] should provide a good approximation to the Schur-
complement.

However we would like to avoid the approximation of S. Therefore, let us for the
moment assume that the preconditioner for (2.16) is given by

PBD =

[

L 0

0 1

]

. (3.2)

Here we employ that L is symmetric and positive definite which we show in Section

3.3. Assuming that

(

λ,

[

v1

v2

])

represents an eigenpair of the preconditioned saddle

point matrix K, that means of P−1
BDK, we get

Lv1 − mv2 = λLv1 (3.3)

−mT v1 = λv2. (3.4)

For λ = 1 we get from (3.3) v2 = 0 and hence (3.4) becomes −mT v1 = 0. I.e. the
hyperplane given by m⊥ determines the eigenspace and the multiplicity n−1 of λ = 1.
Now, for λ 6= 1 we get for the remaining two eigenvalues λ1/2

v1 = 1
1−λL

−1mv2, − 1
1−λmTL−1mv2 = λv2 ⇒ λ1/2 = 1

2 ±
√

1
4 + σ

where σ is mTL−1m.
This analysis indicates that for the Allen-Cahn variational inequality with volume

constraint the preconditioning of the (1, 1) block L of K given by (2.13) is crucial as it
can result in a clustering of the eigenvalues that guarantees fast convergence. Thus,
we will only focus on efficient preconditioning strategies for the Allen-Cahn equation
and then consider a preconditioner

PBD =

[

A0 0

0 1

]

(3.5)

where A0 approximates the Allen-Cahn block L.
We also want to discuss one other way of solving the given linear system

K

[

x

y

]

=

[

b

−c

]

that is used in [23, 34]. The linear system is the first order condition of

min 1
2x

TLx− bTx s.t. mTx = c. (3.6)

This optimization problem is equivalent to minxT
(

L+ mmT
)

x − (b + cmT )x and
hence to solving the linear system

(

L+ mmT
)

x = b+ cm. (3.7)

Since L+mmT is a symmetric and positive definite matrix one can employ the classical
cg method [26] with a preconditioner for L (see Section 2.1). In the idealized case
we would get the preconditioned matrix L−1

(

L+ mmT
)

= I +L−1mmT and as the
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matrix L−1mmT is a rank-one matrix the disturbance with term mmT would result
in one additional cg iteration. It is also possible to construct a multigrid method for
the matrix L+mmT . However, the rank-one perturbation might make the multigrid
convergence slow as the eigenvalues of L + mmT might be close to 1 (see [28] for
eigenvalue bounds on rank-one perturbed matrices). Again a good preconditioner for
L will provide a fast solution of this reformulation.

3.2. Kvv–the vector-valued case. As in the previous section we focus on the
properties of the symmetric and indefinite system matrix Kvv of (2.26) and devise
suitable preconditioning strategies. Going back to the notation of the classical 2 × 2
saddle point problem we have to decide how to split Kvv to achieve the best pre-
conditioning strategy. Here, we propose the following splitting, formulated for three
phases

A =













L 0 0 −M

0 L 0 −M

0 0 L −M

−MT −MT −MT 0













and B =

[

−mT 0 mT

0 −mT mT

]

(3.8)

which we motivate by the following eigenvalue analysis. A is of size nN := (N + 1)n,
B has rank r := N−1 and Kvv is of size nN +r, where N is the number of phases and
n = |J | the number of nodal basis functions of Sh. Assume that an eigenpair (λ, v)
of the generalized eigenvalue problem, respectively of the preconditioned matrix Kvv,
is given

[

A BT

B 0

]

v = λ

[

A 0

0 I

]

v (3.9)

one can show [31, 38, 47] that there are nN−r = (N+1)n−(N−1) eigenvalues at 1, i.e.
clustering takes place. The remaining 2r = 2(N − 1) eigenvalues can be found based
on the eigenvalues of the Schur-complement of BA−1BT . A good preconditioner for
Kvv is hence

Pvv =

[

A 0

0 I

]

(3.10)

and built on a good preconditioner of A. The matrix A itself is of saddle point
structure

A =

[

Ã B̃T

B̃ 0

]

with Ã = blkdiag(L, . . . , L)1 and the “skinny” matrix B̃ =
[

−MT . . . −MT
]

.

As mentioned before a preconditioner of A can be built upon a good approximation
of the inverse of Ã and of the inverse of the Schur-complement S of A, which is given
by

S = N(MTL−1M).

1Using Matlab notation
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The inverse of the Schur-complement can used exactly since

S−1 = 1
N (MTL−1M)−1 = 1

N {(
ε2

τ
− γ)M−T + ε2γM−1KM−T }

where M is a diagonal matrix and hence can be inverted easily. A good approximation
(or preconditioner) to Ã is naturally based on how to approximate or precondition
the relevant Allen-Cahn block L. This discussion we defer to the next Section.

Again, if one is willing to put more effort into preconditioning using instead of the
identity block in Pvv the Schur-complement −BTA−1B of Kvv, then for the approx-
imation of −BTA−1B Block-Lanczos techniques as used in [19, 21] to approximate
BT f(A)B can be employed. The techniques are similar to the ones mentioned in the
scalar case, but typically rely on block methods.

3.3. Preconditioning for the Allen-Cahn equation. In this subsection we
comment on the preconditioning of the block L, which is essential for the scalar as well

as for the vector valued case. The system matrix L = ( ε2

τ − γ)M + ε2γK reflects the
space discretization of the time discretized Allen-Cahn type equation (2.3), namely

−ε2γ∆u+ (
ε2

τ
− γ)u =

ε2

τ
u(k−1).

As K is the finite element discretization of the Laplace operator we know that it is
symmetric and positive semidefinite and M being the lumped mass matrix is sym-
metric and positive definite. Hence L is symmetric and positive definite whenever

ε2 > γτ. (3.11)

Therefore the interface thickness ε and the time-step τ of the implicit Euler scheme
are coupled. This time step restriction is due to the implicit treatment of the non-
convex potential term and similar restrictions are obtained for other choices of ψ, see
e.g. [34].

Explicit treatment of the potential: So far we considered only the implicit
time discretization, i.e. we implicitly treated the terms coming from the discretization
of ψ′

0(u). This leads to restrictions on the time step τ .If the term ψ′
0(u) is discretized

explicitly, equation (2.10) becomes

( ε2

τ M + ε2γK)u +Mµ − λm = ( ε2

τ + γ)Mu(k−1)

Respectively the equation (2.23) of the vector valued case changes. Hence L is given as
ε2

τ M + ε2γK in the considerations, which is positive definite for all time steps τ . The
same preconditioning techniques proposed earlier can be applied. Even though the
time-step can be arbitrarily large for the linear algebra considerations, computations
show that the results obtained for large time-steps are highly inaccurate [6].

Larger τ for implicit discretization: For the scalar Allen-Cahn case we can
relax the time step restriction to some extend, which is argued now. The invertibility
of the system matrix (2.16) is given whenever L is positive definite on ker

(

mT
)

= m⊥.
The space m⊥ reflects the condition −

∫

Ω
v = 0 for v ∈ Sh. For the function space

{v ∈ H1(Ωh)|−
∫

Ω
v = 0} the Poincare inequality ||v||L2(Ωh) ≤ c̃p||∇v||L2(Ωh) holds with

a Poincare constant c̃p for appropriate conditions on ∂Ωh [10]. If one applies this
inequality and incorporates mass lumping, we obtain

λM
min||u||

2 ≤ uTMu ≤ cpu
TKu ∀u ∈ m⊥ (3.12)
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where λM
min > 0 is the minimal eigenvalue (here the minimal coefficient) of M . Con-

sequently we obtain

uTLu ≥ (
ε2

τ
− γ +

ε2γ

cp
)λM

min||u||
2 ∀u ∈ m⊥

and L is positive definite on ker
(

mT
)

if

ε2 > γτ(1 − ε2

cp
).

If one is more specific and considers the system (2.14), hence the positive definiteness
of LI,I on m⊥

I , then in one space dimension one can show in a similar way as above
that no time restriction is necessary due to cp = 1

4ε
2 (see [6]).

As a preconditioning strategy for L we propose an algebraic multigrid (AMG)
preconditioner for the Allen-Cahn equation. Algebraic multigrid methods typically
exhibit geometric multigrid-like properties by only using algebraic information. This
has the advantage that it works well in general even for complicated geometries and
meshes. We refer to [42, 15] for more information on AMG. We illustrate the perfor-
mance of AMG for the Allen-Cahn equation in Section 4.

However geometric multigrid methods are possible too. In [32, 33] a multigrid
method is developed to solve discrete elliptic variational inequalities arising from ob-
stacle problems. The monotone multigrid algorithm is based on a subspace correction
approach (see [50]) where a subspace is decomposed into smaller spaces, which leads to
a polygonal Gauss-Seidel relaxation (see [50]) as the fine grid smoother. This is com-
bined with a coarse grid correction. This idea has been extended for the vector-valued
Allen-Cahn equation [34]. Recently,in [30] this technique is applied to problems in im-
age segmentation. A review on various multigrid methods for obstacle problems can
be found in [23]. A comparison of multigrid methods in case of Allen-Cahn equations
is still missing due to the lack of comparable software.

3.4. Choice of Krylov-subspace solver. As the saddle point systems are
symmetric and indefinite we choose minres [39]. For the preconditioned version
of minres the preconditioner P has to be symmetric and positive definite, which is
fulfilled by the block-diagonal preconditioners presented earlier. An implementation of
minres with preconditioning can be found in [14]. In its standard version minres
minimizes the 2-norm of the residual ‖rk‖2 and with the preconditioner P symmetric
and positive definite the residual is now minimized in the P−1-norm. In this paper
we only present results based on minres but other Krylov subspace solvers might
also be applicable. One other option is the Bramble-Pasciak cg method [9] which
uses a block-triangular preconditioner

PBT =

[

A0 0

B −I

]

(3.13)

where A0 here approximates the saddle point block A, which we developed previously.
The resulting preconditioned matrix P−1K is symmetric in the non-standard inner
product given by

H =

[

A0 −A 0

0 I

]

(3.14)
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and is positive definite under certain conditions on the preconditioner which allows
the implementation of a non-standard inner product version of the cg method (see
[9, 40, 13]).

Another alternative solver would be to use symmlq [39] as this can sometimes
be advantageous to minres (see [45]).

4. Numerical results. For the numerical results presented in this section we
choose ε = 0.09, τ = 0.0001 and γ = 1. The domain Ω is set to be [−1, 1]

d
but different

domains provide no additional difficulty for the preconditioners. The tolerance in
minres was set to 1e − 6 in all examples. As a preconditioner for the block L we
chose the Trilinos AMG [25]. For one application of the preconditioner we take in
general 5 steps of a Gauss-Seidel smoother and one V-cycle. The implementation of
the primal-dual active set method is performed with deal.II [1], which allows the use
of the Trilinos library. This reasons the fact that all numerical experiments listed
here are generated with finite elements on rectangles, while above results are stated
for a regular triangulation T h. However, two dimensional numerical results using
triangulations, which are implemented with the finite element toolbox Alberta 2.0 [44],
generate similar results. Unfortunately, Alberta 2.0 does not provide any interfaces to
external linear algebra routines such as Trilinos AMG [25], which limits its efficiency
for more complex problems.

4.1. Results for the scalar problem. In this section we show results for the
scalar problem. We start with a random data problem in two space dimensions where
we set the initial value u0(x) for the order parameterrandomly between −0.1 and 0.1,
i.e. no pure phases are present at time t = 0. The volume constraint is chosen to be
m = 0.4. Figure 4.1 shows the initial configuration and the result of the Allen-Cahn
evolution after 300 time steps. For this problem we considered various uniform mesh-
sizes and we compared the average number of minres iterations needed per Newton
iteration with (Figure 4.2a) and without (Figure 4.2b) preconditioning. In the legend
the number of unknowns and the total time for computation is listed. As can be
seen from this the preconditioned version always outperforms the unpreconditioned
method. Especially when the number of mesh points is very large the preconditioning
reduces the number of iterations significantly, e.g. for roughly one million number of
unknowns from 72 to 14 iterations at the last time step. Also, at the beginning of the
computation when no pure phases are present and all mesh points are inactive the
preconditioning works extremely well. In all our computations we use the solution
from the previous Newton iteration or time step iteration as the initial guess x0 for
MINRES. Hence we note that when the phases and consequently the solution from
one time-step to the next are hardly changing the initial guess x0 is sufficiently close
to the new solution and only very few iterations with or without preconditioning will
be needed.

It can be seen that in the first time steps the preconditioned results have very low
minres iteration numbers (sometimes even one iteration). In not listed numerical
test without preinitialization of x0, i.e. x0 set to zero, the iteration numbers in the
first time steps are slightly larger but typically less than 5 iterations.

The next example, starts with a 2D dumbbell as the initial configuration. Table
4.1 shows the average number of minres iterations per Newton iteration. For this
computation we used an adaptively refined and coarsened mesh with the minimal size
of an element hmin = 1/512 and the maximal size hmax = 1/16. We also used uniform
mesh sizes and compared the average number of minres iterations for the first 20
time steps. Figure 4.3 shows that the average number of minres iterations stays
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(a) Initial state of the phase (b) After 300 time steps

Figure 4.1: Computation with random initial data
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(a) with preconditioning
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(b) no preconditioning

Figure 4.2: Results for 30 time steps of a random data with different mesh-sizes

(almost) constant for one mesh size. For all the dumbbell computations we used the
preconditioned MINRES. We observe a very benign mesh dependence. However the
number of iterations stay low with at most 16 iterations for a mesh with roughly one
million unknowns.

In the last computation for the scalar case we consider a three dimensional do-
main and we choose a Doughnut as initial state, see Figure 4.4. Figure 4.4c shows
the average number of MINRES iterations with and without preconditioning for the
first 30 time step iterations. It can clearly be seen that the preconditioned version
outperforms the unpreconditioned version. However, the effect in this case is not as
drastic as in the random data case. A reason for this is that the active sets do not
change very much from one Newton iteration to the next which means that the pre-
vious solution provides a good initial guess for minres and hence only a relatively
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time step dimension Newton minres per Newton

0 16641 4 5
1 28509 5 8
2 35589 7 11
3 51390 10 16
4 75936 9 17
5 73456 10 17
6 78339 10 17
7 75430 10 17
8 77710 10 17
9 75061 10 16
10 77036 10 17
11 75113 10 16
12 76800 10 17
13 74908 10 17
14 76604 10 18
15 75411 10 17
16 76359 10 18
17 74921 10 17
18 75633 10 18
19 74852 10 16

Table 4.1: Number of Newton and minres iterations for the dumbbell computation
with adaptive mesh
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Figure 4.3: Dumbbell computation: 20 time steps for different uniform mesh sizes

small number of iterations is needed in general.
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(a) Initial setup (b) Doughnut after 200 time
steps
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(c) 30 time steps for 274625 grid points
with and without preconditioner for
Doughnut computation

Figure 4.4: Results for 3D doughnut

4.2. Results for the vector-valued problem. In this section we present re-
sults for the vector-valued problem with three phases (N = 3). The parameters for τ,
ε and γ remain unchanged. Our first example is the so-called double bubble as shown
in Figure 4.5. We use a non-adaptive strategy and start with a uniform partitioning
of the hypercube [−1, 1]3 that has 274625 degrees of freedom. For this example we
consider preconditioning and no preconditioning and we compare the results. Figure
4.5c shows the average number of minres iterations per Newton step for 50 time
steps. The effect of using a preconditioner is much more dramatic than in the scalar
case (a factor of 10 in iteration numbers could often be observed). We would ex-
pect this to be even more significant if a larger number of phases is simulated. The
computation times are given by 18413 seconds with 4651.22 seconds for the AMG
setup plus application in the case with preconditioning and 72825 seconds without
preconditioner.

(a) Initial setup (b) Double bubble after 2000 time
steps
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(c) Preconditioning vs. no preconditioning
with 274625 degrees of freedom

Figure 4.5: Initial configuration, evolution and iteration numbers of the 3D double
bubble

The next example is concerned with a configuration of N = 3 phases in [−1, 1]2

where two phases represent an ellipse each and we focus on a comparison between
an adaptive mesh and a uniform mesh. The initial configuration and the adaptively
refined mesh are shown in Figure 4.6 with hmax = 1/16 and hmin = 1/256. The

15



results of 10 time steps are shown in Figure 4.6c where we compare a uniform grid
with 263169 degrees of freedom against an adaptively refined mesh (around 34000
unknowns after initial refining and coarsening), where the uniform mesh is of size
hmin. In this example we used 10 steps of the Chebyshev smoother rather than
5 Gauss-Seidel smoother steps. The Chebyshev smoother is rather cheap to apply
and we can see that the preconditioning results using this type of smoother produce
satisfactory results. The computation times for the uniform vs. adaptive grid with
and without preconditioning are shown in Figure 4.6c, where the dramatic difference
in computation times and average minresiteration numbers can be observed.

(a) Initial setup with uniform mesh (b) Adaptive mesh after 4 time steps
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(c) Uniform grid vs. adaptive grid

Figure 4.6: Results for two 2D ellipses

4.3. Conclusions. In this paper we analyzed the linear systems arising from the
primal-dual active set method for the scalar and vector-valued Allen-Cahn equation
with volume constraints. In order to make the primal-dual active set method more
efficient we proposed to use the linear algebra solver minres and hence we analyzed
block-diagonal preconditioners. We further showed that for both problems the crucial
part is a good approximation of the block coming from the discretization of the Allen-
Cahn equation. We chose an algebraic multigrid as preconditioner for the Allen-Cahn
equation and the numerical results for both the scalar and the vector-valued case
justify this choice.
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