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Semiclassical trace formulas for pitchfork bifurcation sequences
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In nonintegrable Hamiltonian systems with mixed phase space and discrete symmetries, sequences of pitch-
fork bifurcations of periodic orbits pave the way from integrability to chaos. In extending the semiclassical
trace formula for the spectral density, we develop a uniform approximation for the combined contribution of
pitchfork bifurcation pairs. For a two-dimensional double-well potential and the familiar Hénon-Heiles poten-
tial, we obtain very good agreement with exact quantum-mechanical calculations. We also consider the inte-
grable limit of the scenario which corresponds to the bifurcation of a torus from an isolated periodic orbit. For
the separable version of the Hénon-Heiles system we give an analytical uniform trace formula, which also
yields the correct harmonic-oscillator 8) limit at low energies, and obtain excellent agreement with the
slightly coarse-grained quantum-mechanical density of states.
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I. INTRODUCTION surrounded byn=1 satellite orbits of periochm. The cor-

. _._responding generic bifurcations are called isochrongus
The goal of the research area called “quantum chaos” is ta 1), period-doublingm=2), period-tripling(m=3), period-

relate the quantum-mechanical and classical properties of Guadrupling(m=4), etc. The “local” uniform approximations
classically chaotic system. For autonomous Hamiltonian Sysdeveloped in Ref[8] fail at large distances from the bifur-
tems, the eigenvalue spectrum is, to the leading ordes in cations where the orbits become isolated. In REf8-15
dominated by the periodic_ork_)its of_the clagsical system. FOLy a1 niform approximations were developed, which in-
chaotic systems, the _pe_ru_)dlc orpits are |sqlated.|n phas, rpolate between the collective contribution of the orbit
space and contribute individually to the semiclassical SPECe|yster near a bifurcation and the sum of individual contri-
tral density[1,2], while in integrable systems the leading butions of the isolated orbits far from it, as correctly de-
contributions come from families of degenerate orbits form'scribed by the Gutzwiller trace formulﬁij. These global

Ing ratlona_l torl [3’4]‘ Th_e most general case IS that_of a uniform approximations can, with minimal modifications,
system which is neither integrable nor ergodic but exhibits Iso be applied to nongeneric bifurcations in systems with

mixed phase space consisting of regular islands separated \ . L . .
. ; ; - . screte symmetrieg3]. Similar global uniform approxima-
chaotic domains. The chaotic regions increase through thg y ] g bp

. . ; . . ons have also been derived for nongeneric bifurcations of
destruction of rational tori when continuous symmetries are,

brok dth h bif i ¢ seriodic orbits when th odimension 724,25. Even though such bifurcations occur
roken, and through bifurcations of periodic orbits when eonIy when two control parameters meet the bifurcation con-

energy or ano_ther cor)trol parameter of the system is Ngitions simultaneously, they are more generally of relevance
creased. EXpI'.C't semiclassical Llrace fqrmulas have b.eeBecause they may appear as sequences of generic bifurca-
given for various systems with continous SYMMEtes; o \when one of the two parameters is fixed and only the
[3,5-17, for symmetry breaking through the destruction of other is varied26]. In other words: when two generic bifur-

rational tori [8-12, ar_ld for |s_olateo! blfurcatlo_n$13—_1Ej. cations lie so close that the orbits do not become isolated
However, more complicated bifurcation scenarios which USUpatween them and hence the corresponding  generic

g!::y octc_ur n rea(lj|st|c6p2y3|ctf'itll systf[a{‘n;s and, '? tﬁart'cul?r’codimension—one global uniform approximations cannot be
ifurcation cascadefl6-19 still constitute one of the mos used, a description using codimensiofo? highey becomes

ser||30u§ g.roblebnjs of thebsemlclai5|cal thelory.' | densi jnecessary. Such a description was first given in R for
eriodic orbits contribute to the semiclassical density ol gimension 2 along with a classification of the possible

states individually only as long as they remain isolated in
phase space, i.e., as long as their actions differ by large mu
tiples of #. Near bifurcations this condition is violated and
the standard remedy is to determine a collective contributiogiv
of all periodic orbits participating in the bifurcation. In the
neighborhood of a bifurcation, this was achieved in Refs
[8,9] using the theory of normal forms based on the classifi
cation [20,2]] of generic bifurcations with codimension 1
(i.e., bifurcations occurring when one control parameter i
varied [22]. In all these classes, a central orbit of periois

eneric bifurcation sequences according to catastrophe
heory.

In the present paper we study a sequence of two succes-
e isochronous pitchfork bifurcations of an isolated peri-
odic orbit. This scenario which occurs in systems with dis-
crete symmetries is not included in the classification of
‘codimension-2 bifurcationf25] so that at present there ex-
ists no semiclassical approach for it. In fact, it may constitute
She beginning of a bifurcation cascade in which this sequence
is repeated infinitely often. Such a cascade can form a geo-
metric progression reminiscent of the Feigenbaum scenario
[27] (although there the bifurcations are generically period
*Email address: joerg.kaidel@physik.uni-regensburg.de doubling, and the new periodic orbits born at the bifurca-

1539-3755/2004/710)/01620621)/$22.50 70 016206-1 ©2004 The American Physical Society



J. KAIDEL AND M. BRACK PHYSICAL REVIEW E 70, 016206(2004)

tions may exhibit self-similarity propertigd8,19. Bifurca- 1 198| 28 |*?
tion cascades are frequently found in physical systems with 890(E) = ?Ref dg'dp—— -
discrete symmetries and mixed classical dynanpid17, 2mh” Jq noEldpdq

so that a semiclassical approach to those situations would p[ i i i ]

seem to have been required long ago. Here we develop a xexpl —S(q',p,E) - —-d'p—-—v|. (3)
uniform approximation of codimension 2 for the contribution h h 2

of a pair of pitchfork bifurcations to the semiclassical densityHereq, are the final coordinates anthe initial momenta

of states and test it numericglly by comparison with exacly, the PSS transverse to a periodic orbit with pefiocken-
guantum-mechanical calculations. T.hel agreement turns oWreq in the origin. Thenth iterate of the Poincaré map is
to be very good. The degenerate limit, in which the two

pitchfork bifurcations coalesce, occurs generically in inte-
grable systems: there a whole family of degenerate orbit<
forming a torus, is born from the central orbit at the bifurca- -
tion. For this case we can give analytical expressions for our ] =p' ‘9_5: q JS =T (4)
uniform approximation, and numerical calculations for a aq- "' ap T OE
separable system yield an excellent semiclassical approxim
tion to the exact quantum-mechanical density of states.
Our paper is organized as follows. In Sec. Il we present - A
our uniform approximation, whose detailed derivation is IS — ‘9_8:
given in Appendix A. The uniform approximation for the aq’ ap
bifurcation of a torus from an isolated orbit in the separable

limit is discussed in Sec. Ill, with its detailed derivation Which are the stationary points of the phase in &9, If the

given in Appendix B. In Sec. IV we apply our results to a mteg'rals.in Eq(3) are .calculat.ed 'in' the stationary—phasg ap-
two-dimensional double-well potential and to the familiar proximation, one obtains the individual Gutzwiller contribu-

Hénon-Heiles systeli28], as well as to its separable version, tions of the periodic orbitg within €):

given by its generating functiofS(q’,p,E), and the usual
anonical relations hold:

&Fhe periodic orbits are the solutions of

P, q’, (5

and compare them to results of exact quantum calculations. S(E) =

An alternative derivation of our uniform approximation for 894E) :Ag(E)cos(—g— - —,LL§>, (6)

the separable limit from Einstein-Brillouin-KellefEBK) h 2

quantization is given in Appendix C. where for a two-dimensional system the amplitudes have the
form

Il. UNIFORM APPROXIMATION IN THE T(E)
NONINTEGRABLE CASE AJE) = —F—— 7)

mhn\|[TrM - 2 .
The density of states of an autonomous system with eVl 2
HamiltonianH is given by the trace of the retarded Green e quantitiesS,, T,, n; Mg and ; are the action, period

function G(E) repetition number, stability matrix, and Maslov index of the
orbit & respectively. The stationary-phase approximation

g(E) = S S(E-E,)=- 1 Im TrG(E) yields good results only if the periodic orbits are isolated in

N " T ' phase space. Near a bifurcation this condition is not fulfilled

so that one has to perform the integrals in 8j).collectively
over the whole periodic orbit cluster involved in the bifurca-
_ 1 (1) tion. To this purpose, one inserts the normal form of the
E+i0"-H’ generating functiorS(q’,p,E) into Eg. (3) and solves the
resulting integrals exactly.
As usual, we splig(E) into a smooth and an oscillating part: A sequence of two period-doubling bifurcations of peri-
odic orbits is not generic because it would imply a jump in
9(E) =9(E) + 89(E). (2)  the stability of the central periodic orhj25]. On the other
hand, an isochronous bifurcation creating a new orbit with a
The smooth parf(E), which semiclassically is determined degeneracy factor of 2 is equivalent to a generic period-
by all periodic orbits of the classical system with zero lengthdoubling bifurcation[23]. The degeneracy factor 2 has to
[29], may either be determined by tiiextendegl Thomas-  originate from a twofold~discrete symmetry of the system.
Fermi(TF) model[30] or, where this is not analytically pos- Due to the behavior of TV near the bifurcation, a generic
sible, by a numerical Strutinsky averaging of the quantumperiod-doubling bifurcation is often called a pitchfork bifur-
spectrum[30,31. The periodic orbits of finite length make cation. The case of interest here is a sequence of two such
up the oscillating parbg(E). nongeneric pitchfork bifurcations which can arise succe-
The semiclassical contribution t@g(E) of any region{)  sively from the same central periodic orbit in systems with
on a Poincaré surface of sectid®SS of the phase space is discrete symmetries such as studied in Rgf8,19. For this
given by[9,13 scenario we propose the new normal form

G(E)
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FIG. 1. Contour plots of the normal forii8)
in dependence of the parametefsfor the case
a=-1. From left to right:ie,< €, <0, &,<0< €,
and 0< ex < €.

V2

=S(E) +0'p- (.05 + &SIl -l (B { ( ?(@) - ( ?(@ﬂ
+o| C ﬂ —IO'iS ﬁ s

Hereq’ =12l sin ¢ and p:\s‘ﬁ cos ¢ define the polar coor-

dinates(l, ¢) on the PSS, with the central orbit sitting lat (12
=0. The parameters; and e, measure the distance to the

bifurcations and become zero at the first and second bifurca-

-, L1 , a , o mh) 1 . .
S@'p.B) = SH(B) +a'p- (P + )~ (p?+q'%)? Fo(g) = M@ 7{ =i

tion, respectively. Inserting the anglés-0 and¢=/2 into Fi(g)=- Zé[iﬁ +e(p)Fo(P)],
Eq. (8), one obtains the respective generic normal forms of 7i
the period-doubling bifurcationgl4] corresponding to two ) _ _ (13
cusp catastrophes: Fy(h) = — ﬁ[l ) MFO(@}
20 20, 2ihG, ’
S(a'(0,1),p(0,1),E) = Sy(E) = 4'(0,1)p(0,1) = —%pz— 3'04 and we have used
~ A ~1
(9) € == 20707\|AS],
and E(¢) = € COSP + €, SiPe,
S(q,(z,,)p(z,,),E)_%(E)_q,<£,|>p(z,,) | o="TisgiEd] . w
2 2 2 2 For the evaluation of Eq$12)—(14), any of theg;=+1 can
€ ,, 8, be used, as described in Appendix A. The coefficetsy,,
=- Eq - Zq . (10) a_md a, are given as solutions of the linear system of equa-
tions
The stationary points of Eq$9) and (10) are the stationary a a
points of Eq.(8) as well. The dependence of the topology of o G~ € + !
Eq. (8) on the parametersg is sketched in Fig. 1. Ag= %, 1= 7 =
The period-doubling bifurcations always have a real side mh|€€) mh|- 2616, + 2€ ]
where the central orbit as well as its satellite orbits are real, (15
and a complex side where the central orbit is real but the a, a 5
satellite orbits are complex ghost orbits. We introduce a pa- %o~ EEZ“L 462
rametero; which is +1 on the real side and -1 on the com- Az

= J’ _ 2|’
plex side of the pitchfork bifurcationwith i=1,2.Addition- |- 2616, + 2€5)
ally, the sign of the difference between the actiéhsf the  \where the amplitudest; with i=0,1,2 are given in Eq7).
new satellite orbits and the acticd of the central orbit is  C(x) and S(x) are the standard Fresnel functiof2]. The

indicated byo;=sgnAS) andAS=§-% with i=1,2. index v is related to the Maslov indep, of the central orbit
The uniform approximation describing the contribution of by

the orbit cluster involved in the bifurcation sequence is de-
rived in detail in Appendix A. It reads v=po= (o1 +0)/2. (16)

All coefficients in Eq.(11) are expressed by the quantities
89(E) = 1 Re! dl(mS-(m2)v] which appear also in the Gutzwiller contributiof@®, which

472h? means that the uniform approximation is invariant under ca-
nonical transformations.

IIl. UNIFORM APPROXIMATION

2m
Xf d¢lagFo(¢) + asF1(¢) + a2F2(¢)]},
FOR THE SEPARABLE LIMIT

0

(12)
In the degenerate cage= €;=¢, the normal form(8) be-
where the function§;(¢) with i=0, 1, 2 are given by comes
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FIG. 2. Scaled double-well potential. Left: contour plot with the four shortest periodic &lzitel B evaluated ae=0.96. Right: cut of
the potential alongi=0.

S(q’,p,E)=So(E)+q’p—e< > 5 2

=S(E)+q'p-el —al’. (17 +g{c< @)“7’5( %)”)

Here S(q’,p,E)—q’p is independent of the angl$, which - [ & S 7

means that it refers to an integrable system in which the too| Ar 4m|AY ~ Ao Jco Z_E(’”l) ’
Hamiltonian depends only on the action variables but not on (18)
the angles. The normal forigl7) and the corresponding bi-
furcation scenario has been studied in earlier worksyhereS, andS; are the actions of the central orbit and the
[8,9,15,33. What we intend here is to solve the necessanyorus, respectively, and their difference is denoted by
integrals analytically and express all the coefficients by the

actions and the Gutzwiller or Berry-Tabor amplitudes of the AS=5-% (19

periodic orbits, in order to give a final formula which is easy;ith o=sgnAS) =sgr(a). The amplitude4, corresponds to
for implementation in actual examplesA. the Gutzwiller amplitude(7) of the central periodic orbit,
The stationary point of the functioB-q’'p now corre-  whereas for the torus one has to use the Berry-Tabor ampli-
sponds to a family of periodic orbits, i.e., a rational torustude A; [4,33. The Morse indexs appearing in Eq(18) is
which is created from the central orbit at the bifurcat{f®h  related to the Maslov index, of the central periodic orbit
It consists of real periodic orbits on one side, whereas itgy
periodic orbits have complex coordinates on the opposite
side of the bifurcation. To distinguish between the two sides V= ot 00, (20
we introduce a parameter which takes the value +1 on the
side where the torus is real and -1 on the side where it is
complex. o . i IV. NUMERICAL RESULTS
The uniform approximation for this degenerate linaijt
=, of EqQ.(11) is derived in Appendix B and can be given, to  In order to test the above uniform approximations we ap-

2 12 2 12\ 2
p°+q ) _ a(&) 59(E) = i:Re<ei[(l/h)S-|——(7T/2)V]{ L itma
V2 |

the leading order4, in analytical form as ply them to two model systemsi) a double-well potential
0.01 0.02 T
0.m75 0.06
0.005 . o0l 0.04
= 00025 = 0.02
5 0 = o o
& —0.0025 = - 002
-0.005 ~ 0.0l - 0.04
-0.0075 - 0.06
0 01 02 03 04 05 06 07 -1 -05 0 0.5 1 01 02 03 04 05 06 07
Re(v) Im(v) v
1 o
—_ 05 . 0.01 0:01
5 o g o 5 0
[ = o001 - 001
-0.5 - U - 0.02
1 - 0.02 - 003
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FIG. 3. Orbits participating in a pitchfork bifurcation sequence in the double-well poté¢2tinlUpper row: real partleft) and imaginary
part(middle) of ghost orbitR at e=0.908 64, and real orbR at e=0.95(right). Lower row: real partleft) and imaginary par¢middle) of
ghost orbitL at e=0.94, and real orbit at e=0.95(right).
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FIG. 4. Properties of the periodic orbifs R, andL near their bifurcations in the double-well potent{al), plotted versus the scaled
energye. Top left, stability traces; middle left, action differences; bottom left, periods; and right, Gutzwiller ampliafdesf). The dashed

portions of all curves correspond to the complex pre-bifurcation

which classically possesses two bifurcation cascades, one

approaching the saddle from below and one for approaching H=

ghost orbits.

for 1
+ —

} 2 2 } 2 _\,2 < _122>
S (Pt Pp) + S0 =y + Ayt = Oy Ton

it from above, andii) the familiar Hénon-Heiles system as

well as its separable version. We compare with results from
exact quantum calculations and discuss the validity of the o

uniform approximations.

A. Two-dimensional double-well potential

We study the following Hamiltonian with a double-well
potential(in dimensionless units witm=#=1):

(21)

potential in Eq(21) has two minima ak=0 andy
=+1/2V\ with energyE=0, separated by a saddleaty

=0 with egergyE*:lLl@\. Using dimensionless scaled vari-
ablesu=\\x andv=1\y, the classical dynamics of the sys-
tem only depends on one scaled energy varias®&/E"
=16\E, with the central saddle at the height1 (see Fig.
2). At a scaled energg=9, the system possesses four other

og(e)

FIG. 5. Oscillating part of den-
‘ sity of states in the double-well
potential (21). Solid line: exact
quantum result obtained with
=0.0008. Dashed line: uniform

0.2 0.4 0.6 0.8

approximation including isolated

1.0 contribution of orbit B. Dotted

og(e)

line: sum of Gutzwiller contribu-
tions of isolated orbits, diverging
at the two lowest bifurcations of
the A orbit. (The other bifurca-
tions, lying ate>0.9998, cannot
be seen at this resolutignCoarse
graining by Gaussian convolution

0.95

0.85 0.9

0162

1.0 with energy widthy=0.5.
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saddles ab=+1 andu=+3, over which a particle can es-
cape. At all energieg>0, there exist orbitA and B that
librate along and across theaxis, respectively. OrbiB is
stable up toe=4.778 and orbiA undergoes two bifurcation
cascades, one approaching the saddle=at from below,
and one approaching=1 from above. We consider here only
energiee<1, for which all periodic orbits appear twice cor-
responding to the two potential wells. In this region, the
influence of the continuum above=9 can be safely ne-

glected and the quantum spectrum is real and discrete to .

PHYSICAL REVIEW E 70, 016206(2004)

1.0

0.5
>
0.0

0.5 L

-1.0

very good approximation. We have obtained it numerically

by diagonalisation of Eq21) in a finite harmonic-oscillator
basis.

The period and action of th& orbit are given analytically
in terms of its two turning points, fovy >0 given by

=

1 | 1 !,_
Ul:g\/l-y’e, Vo= 5\'1+\e“e (e< 1) (22)
The (dimensionlessperiod becomes
\5
TaA(E) = —K(a), (23
U2
and the action is
22 [1
Sa(E) = sz{ EE(q) - ZUiK(q)] : (24)

whereE andK are the complete elliptic integra|82] with
modulusg:
1 —_—
q= _\/Ug—vi.
U2

(25)

The dimensionless averag€F) level density of this system
(including a factor 2 which accounts for the two welis
given by the integral

U1

—_

2\2

7TV”)\

2 V- -vd)

E) =
gre(E) 1-02

(26)

which we could not express in a simple closed form and

therefore integrated numerically.
At the energye=0.912 32 orbitA becomes unstable, cre-
ating a stable rotational orbR with Maslov index 5. Ate

=0.942 72 orbitA becomes stable again, creating an unstable

librational orbitL with Maslov index 6. In Fig. 3 the periodic
orbits R and L are shown together with their complex

FIG. 6. The Hénon-Heiles potential. Left: equipotential contour
lines in scaled energy unitsin the plane of scaled variablesuv.
The dashed lines are the symmetry axes. The three shortest periodic
orbits A, B, andC (evaluated at the energr1) are shown by the
heavy solid lines. Right: cut of the scaled potential alorg.

Using these numerical results we now evaluate the uni-
form approximation(11) for the joint contribution of the or-
bits A, R, andL. The B orbits are included in the standard
Gutzwiller approximation, since they stay isolated at all en-
ergies and do not interfere with the other orbits. In Fig. 5 the
result is shown together with the result of an exact quantum
mechanical diagonalization done for0.0008. One can rec-
ognize that the uniform approximation tremendously im-
proves over the diverging standard Gutzwiller approximation
(dotted ling, leading to an excellent agreement with quan-
tum mechanics up to the saddleestl. Here, as well as in
all following comparisons with quantum mechanics, we have
coarse grained the density of states by convolution with a
Gaussian over an energy intervalln the semiclassical trace
formulas this lead$30] to the inclusion of an exponential
factor exg—(yT,/24)%} in the Gutzwiller amplitudeA, of
each periodic orbi€, whereT, is its period, in regions far
enough from the bifurcations for the orbits to be isolated.
Note that in the regions between the two bifurcations, the
Gutzwiller approximation is not valid, so that our
codimension-2 uniform approximation is indispensible.

B. Hénon-Heiles system

The system of Hénon and Heiles is given by the Hamil-
tonian[28] (m=A=1)

1 1 1
H= 2o+ p) + (¢ +y) + >\<x2y— §y3> .2

When the dimensionless scaled variables\x and v=\y

“ghost” predecessors which correspond to librations in theare introduced, the scaled total energy in units of the saddle-

real and imaginary parts, respectively. The bifurcation sce

nario is seen in the upper left panel of Fig. 4 in terms of the

stability traces.

In Fig. 4 we also show the action differences and periods

of the three orbits, as well as their Gutzwiller amplitudes,
plotted versus the scaled energyAs shown analytically in

Ref. [14], the asymptotic divergences of the amplitudes of

the central orbi(hereA) and the satellite orbit¢hereR and

L) must differ by a factor/2; this factor has been included in
the right panel of Fig. 4 in order to confirm this fact numeri-
cally.

point energyE” =1/6\? becomes
. 1. .
e=E/E = G{E(uz +02) + V(u,v)}

=3(U?+0?) + 3(U? +vd) + 6uu? - 203, (28)

In the left part of Fig. 6 we show the equipotential lines of
the potential part of Eq28) in the (u,v) plane together with
the three shortest periodic orbis B, andC, evaluated at the
scaled energe=1. Along the tree mirror axeglashed lines
the potential is a cubic parabola as shown alar® in the
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right part of Fig. 6. For an arbitrary energy= 1, the turning
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0.8
L 04 FIG. 7. Orbits born in the first
0.0 pitchfork bifurcation sequence in
0.4 the Hénon-Heiles potential. Upper
-0.040.00 0.04 row: real part(left) and imaginary
u part (middle) of ghost orbitRs at
€=0.9690, and real orbiRg at e
0.8 =0.9798(right). Lower row: real
0.4 part (left) and imaginary part
>0.0 (middle) of ghost orbitLg at e
=0.9864, and real orbitg at e
04 =0.9870(right).

-0.010.00 0.01
u

The periodic orbits of the system have been investigated

points of theA orbit are determined as the solutions of theand classified by Churchiét al. [34] as well as Daviest al.

equation
e=3v?+ 203 (29)
and given by
v, =1/2 - co$m/3 — ¢/3),
v, =1/2 - cogm/3 + ¢p/3),
v3=1/2 - cog¢/3), (30
with
codp)=1-2 (e<1l). (31

[35]. Up to energies oé~0.97 there exist only three types

of periodic orbits with periodsT of the order of 2r: the
librations A and B, and the rotatiorC. Due to theD; sym-
metry of the potential, orbité andB occur in three orienta-
tions connected by rotations about/3 and 47/3 in the(u,

v) plane. OrbitC has a degeneracy of 2 because of the time
reversal symmetry which corresponds to two different orbits
with opposite senses of rotation. The orBiis unstable for

all energies and the orb® stays stable for energies below
€=0.8922 where it becomes unstable due to a generic period-
doubling bifurcation. The bifurcation cascades of ferbit

and the orbits generated by them have been studied in detalil
in Refs.[18,19; we adapt the names of the orbits given in
these references, whereby the subscripts of the orbit names

As was shown by Hénon and Heiles, the classical dynamicgenote their Maslov indices. Th& orbit undergoes its first

is quasiregular up to energies of ab@at2/3 andthen be-
comes increasingly chaotj28]. Thev motion of theA orbit
with the scaled energg, is given by[19]

0'&(t) = vy + (v~ vy)SI(S,Q) (32

in terms of the Jacobi elliptic functiof82] sn(s,q) which
depends on the argumesiind the modulus, given by

isochronous pitchfork bifurcation at an energg,
=0.969 309 and the second oneegt 0.986 709. At the first
bifurcation it creates a stable rotational orBi which is
doubly degenerate due to its two possible senses of rotation.
At the second bifurcation, it creates an unstable librational
orbit Lg which is doubly degenerate due to the reflection
symmetry of the potential at theaxis. This scenario repeats
itself at higher energies, whereby the pairs of orlisand

Ls, Ry and L, etc., are born. The rotational or librational
character of these orbits is indicated by the letRrandL,
respectively. In Fig. 7 the orbitR; and Lg are plotted to-

The turning pointe); have to be evaluated according to Eqgs.gether with their pre-bifurcation complex ghost orbits. All

s=t\(vz3-vy)/6 and q= LAY (33
U3~ U1
(30) with e=e,.

0.04 —

0.04 -

orbits, includingA, gain one more degeneracy factor 3 due to

0.02 0.02

-0.02 -0.02

0.04 |

0.02

Pu

-0.02

-0.04 0 0.04
u

FIG. 8. Poincaré surfaces of sectioRSS of the scaled Hénon-Heiles Hamiltonid@8), taken forv=0. Left, e=0.969; middle,

e=0.982; right,e=0.989.
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FIG. 9. The same as Fig. 4 for the Hénon-Heiles potential near the first two bifuractions Afottiot.

the threefold discrete rotational symmetry of the potential, so In Fig. 9 the quantities needed to evaluate the uniform
that the overall degeneracy factorsAfR, andL orbits are  approximation(11) of the density of states are shown as a
3, 6, and 6, respectively. function of the scaled energy One can see that the stability

In Fig. 8, a part of the PSS far=0 is plotted for energies trace TrM, of the A orbit takes on the values +2 at the
before the first pitchfork bifurcatiofleft), between the first bifurcation energies. The stability traces of the orlittsand
and second bifurcatiofmiddle), as well as after the second Lg are also plotted; they stay real even for energies; and
bifurcation (right). The topology in the vicinity of the bifur- e<e,, respectively, where the two satellites are complex
cation sequence is correctly described by the normal fornghost orbits(with their properties shown by dashed lines in
(8), as can be seen by a comparison with Fig. 1. Fig. 9).

In evaluating the uniform approximation, one can exploit In Ref. [36], it was shown that the coarse-grained
the fact that the actions and the periods of the otbian be  quantum-mechanical density of states of the Hénon-Heiles

calculated analytically. The action is given by potential (obtained with a Gaussian smoothing width
=0.25 can be rather accurately approximated semiclassi-

cally, using just the isolated orbita, B, and C and their
second repetitions, for energies far enough from the
harmonic-oscillator limite=0. In Ref.[12], a uniform ap-
proximation for the symmetry breaking a0 was devel-
oped which continuously interpolates from the harmonic-
o . oscillator limit, given in Eq(52) below, to the region where
where the modulug) of the complete elliptic integrals IS {he Gutzwiller trace formula for the isolated orbits is valid.

v
SA(E) = 2] ve-3v?+ 203 dv

U1

= o3\l v[E@ K@), (39

given in Eq.(33). The constant is given by However, the bifurcations of thé\ orbit have not been
2 treated uniformly in Refd.12,36, so that the accuracy of the
c=- §(v3—v2)(2v3—v2—vl) (35) results decreased near the saddle=af. In Ref.[18] the

classical bifurcation cascade in the Hénon-Heiles potential
in terms of the turning points; (i=1,2,3 given in Eq.(30).  Was discussed, in which the sequence of two successive

The dimensionless period is obtained as pitchfork bifurcations repeats itself infinitely often.
Presently we test our uniform approximati@tl) to the

9 Sy(E) — (v dv 216 dgnsity of states against the quantum-mechanical r.esult ob-
TAE)=—"——=283] —— 37120 (oo K(@.  tained forn=0.03. The quantum spectrum was, as in Refs.
vy VETSUTF AT NUzT Uy [12,36, obtained by diagonalization of27) in a finite

(36) harmonic-oscillator basis—thus neglecting the effects of

016206-8



SEMICLASSICAL TRACE FORMULAS FOR PITCHFORK. PHYSICAL REVIEW E 70, 016206(2004)

8 FIG. 10. Oscillating part of
4 density of states in the Hénon-
L\ | A i Heiles potential. Solid lines:
B I I quantum-mechanical results ob-

4 tained for A=0.03. Dotted lines:

-8 sum of Gutzwiller contributions

0.0 0.2 0.4 e 0.6 0.8 1.0 (6) of all isolated orbits. Dashed

lines: codimension-two uniform
approximation(11) for the orbits
A, Rs, andLg, including orbitsC
and D in the codimension-1 uni-
form approximation of Ref[14]
and the isolatedB orbit. Coarse

: : graining with Gaussian widthy
0.9 0.925 e 095 0.975 1.0 =04,

og(e)

quantum tunnelling through the barrier. Both quantum and18,35. In addition, three new orbits librating across the

semiclassical results were coarse grained with a Gaussiaaddles exist in this regidi8,34; since they have the short-

width of y=0.4; for this resolution the inclusion of the sec- est periods they are expected to play a leading role in the

ond repetitions of all periodic orbits in E¢l1) was neces- coarse-grained density of states.

sary(cf. Ref.[12]). For the pitchfork bifurcation of the sec-

ond repetition of the orbiC at e=0.892, where a double-

loop orbit D is created[36], we used the codimension-1

uniform approximation of Ref[14]. The upper part of Fig. The Hénon-Heiles system permits chaotic motion because

10 shows the entire energy regior<@<1, whereas the of the nonseparable tersiy in Eq. (27). Omitting this term

lower part shows the zoomed region 0s88<1. The solid one obtains a system which is separablg andy and hence

lines give the quantum-mechanical result, and the dasheidtegrable:

lines the results obtained with our uniform approximation

(12) for the first two pitchfork bifurcations of thé orbit. In H = }(pz +pd) + }(Xz +y?) - Eys_ (37)

the regione<0.5, we have included the uniform approxima- 270 Y2 3

tion for the symmetry breaking, developed in REf2], in

order to obtain the correct harmonic oscillator limit fer : . .

—0. The dotted line in the lower part of the figure corre- E)\y the scaled energg in units of the saddle point energy
. - . . reads

sponds to the sum of the isolated periodic orbits according to

C. Separable Hénon-Heiles system

Again using dimensionless scaled variablesax and v

the standard Gutzwiller trace formu[d]. Here the diver- . 1., .,

gences due to the lowest bifurcations of theand C orbits e=E/E =6 E(U +v°) +V(u,v)

are clearly visible. The uniform result1), however, exhibits

no divergences and its agreement with the quantum result is = 3(U +v?) + 3(U* +v?) - 20°. (38)

nbuted (o the influence of the continum that siarts at 19U 11 shows a confour piot of the potential part of Eq,

=1 which was not taken properly into account in our quan-(38) in the (u,v) plane together with the two shortest peri-

tum result. In fact, the rather excessive maximum appearin d".: orb|tsA anq B calculated at an energy=1. The tWQ
rbits are librations along the andv axes. The potential

in the latter aroun@~ 0.994 makes us believe that the latter lona they axis is the same as that in the right part of Fid. 6
is erroneous, rather than our semiclassical result. Note th(% 9 gntp 9.5

the uniform approximation properly yields the asymptotic
Gutzwiller result on either side of the double-pitchfork bifur- N\
cation. 1
In the energy regiore>1 above the barrier, where the
spectrum of the Hénon-Heiles Hamiltonigd?) is continu-
ous, the oscillating part of the density of states is determined
by the resonances in the continuum. In order to test the semi-
classical periodic orbit theory in this domain, it becomes 0
necessary to calculate both the positions and widths of the
resonances. It will then be an interesting question to study
which periodic orbits are important in the continuum region.
Work along these lines is in progre&7]. Although the con- 040 04
tinuum region is also classically unbounded, all BhandL
orbits bifurcating from theA orbit (which itself ceases to FIG. 11. Equipotential lines in theu,v) plane for the separable
exist abovee=1), as well as thé orbit bifurcating fromC,  version of the Hénon-Heiles potential. The heavy solid lines show
continue to exist and are bounded at all energiesl  the two shortest periodic orbis andB evaluated ae=1.

0.5

-05
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FIG. 12. The same as Fig. 4 for the separable
Hénon-Heiles systeni37) for the bifurcation of
thek,:k,=5:3resonance at energyr0.987 655.
The centralA orbit is labeled by “0,” the bifur-
cated 5:3 torus by “1.”
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while the potential along tha axis is harmonic.

Th actions and periods of th& orbit are given by Eqgs.
(34) and(36), respectively. The trace of its stability matrix is
given analytically by{18]

Tr MA(E) = 2 co$TA(E)]. (39)
The u motion of theB orbit is harmonic,
e, .
ug(t) = 4/ gsm(t +¢), (40)

whereeg, is the conserved scaled energy in thalirection
and the phaseb is arbitrary. The action and period of the
primitive B orbit are those of a harmonic oscillator with fre-
quencyw=1:

Sy(E)=27E, Tg(E)=2m. (41)

The trace of the stability matrix of thB orbit has the con-
stant value TMg=+2, which is consistent with its appearing
as a torus in the asymptotic analysis given in Appendix C.

The k,th repetition of orbitA bifurcates whenever the
condition

Tr I\?I,ﬁv =2 cogk,Tp) = +2 (42)

is obeyed, which is equivalent to the resonance conditin
Appendix C 3 at the bifurcation energies,;;

K, Ta(Epif) = 27k, =k, Tp. (43)

Thus the bifurcations of thé orbit create the rational tori
corresponding to thé,:k, resonances. The new tori form

families of degenerate periodic orbits that are related by th

U(1) symmetry due to the freedom in choosing the phas
¢ €[0,2m) in their u motion,

Ur(E) = \/%sim + ),

whereeg,;; are the scaled bifurcation energies, while their
motion is “frozen” and identical to that of th& orbit given
in EQ. (32 at the corresponding bifurcation energy:

(44)

0.988

0.992

vr(t) = ol (1). (45)
The actions of the tori become
St(E) = k,Sa(Epif) + k27(E = Eyig) (46)
so that their periods stay constant at
Tr=k27=Kk,Tg. (47)

Like for all degenerate orbit families, their stability trace is
constant:

TrMy= +2. (48)

We first apply our uniform approximation to the single
isolated bifurcation withk,:k,=5:3 which happens ae
=0.987 655. In Fig. 12 we show the action differenge
~S=S(E)-SA(E), the periods T,=3TA(E) and T,=Ty
=10m, the traces of the stability matrix, as well as the
Gutzwiller and Berry-Tabor amplitudes of the isola#&ar-
bit and the 5:3 torus, respectively. This figure should be com-
pared with Fig. 9 in which the corresponding quantities are
shown for the nonintegrable Hénon-Heiles potential. Here
the two bifurcations coincide, and instead of the two isolated
orbits Ry and Lg created at the two bifurcations there, we
have here only one torus whose stability trace has the con-
stant value +2.

These quantities are now used to evaluate the uniform
approximation for the integrable case, given in Ef). The
result is shown in Fig. 13 by the dashed line. It is compared
to the exact quantum-mechanical cukgelid line) obtained
for A=0.04, as well as to the result of including indepen-

ently the Berry-Tabor contribution of the torus and the

utzwiller contribution of the isolated\ orbit which di-
verges at the bifurcatiofdotted ling. All results have been
coarse grained by convolution with a Gaussian with smooth-
ing parametery=0.1. We see that the uniform approximation
reproduces the quantum result very accurately.

So far, we have discussed and tested our uniform approxi-
mations for a double-pitchfork sequence, based on the nor-
mal form(8), and its separable limit. In Appendix C, we give
an alternative derivation of the uniform approximation for
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FIG. 13. Oscillating part of level density for
the separable Hénon-Heiles syst€3@) near the
5:3 resonance, coarse-grained with a Gaussian
width y=0.1. Solid line, quantum-mechanical re-
sult obtained withA=0.04; dotted line, sum of
Berry-Tabor contribution of 5:3 torus and
Gutzwiller contribution of isolatedA orbit;
dashed line, uniform approximatiqii8).

og(e)

0.9825 0.985 e 09875 0.99

the separable limit, starting from the EBK quantization and 1 2k, [TA(E)T?

exploiting the convolution property of the density of states AAkuk (B)= E{[k TAE) P - (27k)3
v v u

for separable systems. There we do not require any normal

form, but we start from a one-dimensional integi@L5) for

the density of states which by construction is uniform in the

sense that it does not diverge at any energy. By expanding

the amplitude and phase functions of the integrand around

the bifurcation energieg€;; up to first and second order, and

respectively, we arrive at approximate integrals which pre-

cisely correspond to those obtained from the normal form 205,

(8), and which can be reexpressed in terms of the Gutzwiller b =0 ok (51)

amplitude of the isolated A orbit and the Berry-Tabor ampli- ko ™ Tk, ah

tudes of the rational tori. Furthermore, the starting point

(C15) allows us also to include the limg— 0, in which the

amplitude of the isolated orbit also diverges, in a uniform ASkukv(E) =k,SA(E) - STk kU(E) =0

way. ’

Since all amplitudes, actions and periods of the isoldted i

orbit and the tori bifurcating from it can be given analytically @nd the amplitudesiy, , and actionsSy  of the tori are

for the integrable Hénon-HeitgtHH) potential, it poses no given in Eqs.(C19 and(C20), respectlvely of Appendix C.

problem to sum over the repetitions of tAeorbit and all the The first term in Eq(49) yields, upon summation over all

tori bifurcating from them. As shown in detail in Appendix k, and k, and adding the termSg (A0) (E) in the last line,

C, this leads to the following “grand” uniform approximation precisely the Gutzwiller trace formu{§:23) of the isolatedA

which is valid and finite also in the harmonic-oscillator limit orbit which diverges at the bifurcations and B£0. The

e—0: second term in the first line is a counter term from the tori
that cancels all divergences of the Gutzwiller amplitudes.

ik, = SONE - E’;uku), (50)

The second line of Eq(49) yields the Berry-Tabor trace
— — 1kt A . ’
Quni(B) = kE:l k%( (-t (AAkukU(E) formula(C18) far away from the bifurcations; near the bifur-
v v cations it contains the Stokes factor that interpolates between
1 h k, T the Berry-Tabor amplitudes above and zero below the bifur-
T 5k, WASKUKUATkuk,, co %SA(E) ) cations, yielding exactly half the Berry-Tabor amplitudes at

the bifurcations. The two contributions in the last line of Eq.
Tk, ‘ _ (49) are small boundary terms, given in Eq€21) and
+—“Re[(e"7’4[1—6kukv]+ \"Z[C(gkuku) (C24) of Appendix C, which are numerically insignificant
2 but have been included in order to be consistent up to order
#71in the amplitudes.
+iS(& 4 )My BT+ 59l (E) + 5920 (E). In the limit e—0, where we can neglect all bifurcations,
only the diagonal terms witk,=k,=k contribute. The trace
(49) formula (49) then leads uniformly to the correct &) har-
monic oscillator limit whose trace formula is given in Eq.

Here we have defined (C13) of Appendix C(for w=1):

60

40 RERIERRRRNR R AR L{ptd] FIG. 14. Oscillating part of level density of
© 20 | ' TR ‘ the separable Hénon-Heiles syst¢&Y), coarse
Q& 0 ‘ grained with y=0.1. Solid lines: quantum-

o mechanical result forA=0.04. Dashed lines:

i semiclassical results witk,, k,<8.

0.0 0.1 02 ¢ 0.3 0.4
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FIG. 15. Oscillating part of level density of the separable Hénon-Heiles sy&@&mcoarse grained wity=0.1. Solid lines: quantum-
mechanical result. Dashed lines: semiclassical resultskyijth, < 8. Top: Berry-Tabor result for the tori. Center: sum of Berry-Tabor result
for the tori plus Gutzwiller result for the isolated orbit. Bottom: uniform approximatio49).

. 2E K and comes very close to the quantum result. In the bottom

89uni(E) — agﬁg(E):—ZE co —27TE> (fore—0). panel, finally, we show the grand uniform approximation
=i h (49) which reproduces the quantum result very well through-
(52) out the whole energy region. The bifurcation corresponding

to the resonances witk,:k,=2:1 happens at the scaled en-

(The same limit was obtained in a uniform approximation for€'dy €=0.998 491; all bifurcations withk,:k,>2:1 happen
the full nonintegrable Hénon-Heiles potential in REE2] thus in the top 0.15 percent of the energy scale very near the
neglecting, however, the bifurcations. barrier. In this region, the bifurcations are lying so densely

In Figs. 14 and 15, we compare the results obtained froni1at their independent summation in Eg9) is strictly not
the grand uniform approximatior49) with those of justified. However, at the present resolution of the spectral
quantum-mechanical calculations for systgB8) with \ density this does not appear to affect our numerical result.
=0.04 (with saddle energyE" =104.666 corresponding @ On the other hand, the good agreement which we find in Fig.
=1), both coarse grained by a Gaussian convolution with art> &t all lower energies demonstrates that our grand uniform
energy rangey=0.1, including repetition numbers up to approximation(49) su_cc_es_sfully sums all p_a_rtlal bifurcation
ky/,|k,| <8 into the semiclassical trace formui9). Figure cascades of tha orbit limited by the repetition numbers 2

14 shows the lowest energy range which exhibits éor <k, k,=8.

<0.1 the harmonic-oscillator limit52) where the amplitude e should stress that, like for the nonintegrable Hénon-
of &g(e) is linear ine. Heiles potential, the quantum spectrum was obtained here by

In the top panel of Fig. 15 we compare the quantum resylfiiagonalisation in a finite harmonic-oscillator basis. The per-
to the standard Berry-Tabor trace formula, given in Eq.SiStence of our good agreement ugets 1 therefore suggests

(C18) of Appendix C, which takes into account only the tori that the barrier tunneling effects are negligible—at least
with semiclassical amplitudes proportional #6%2. In the within the resolution given here by the coarse graining width
center panel, we have added to them Aherbit contribution y=0.1.
described by the Gutzwiller trace formula, given in Eq.

) ) : . 1
(C23) of Appendlx C, _W|th amphtud_es prqpomonal to - . V. SUMMARY, CONCLUSIONS, AND OUTLOOK
The latter is seen to diverge at all bifurcations corresponding
to resonances witk,: k,=5:4. Between the bifurcations, the ~ We have derived a codimension-2 uniform approximation
result is clearly improved by adding ti#eorbit contribution  for the joint contribution of the periodic orbits involved in a
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double pitchfork bifurcation sequence by constructing a suitknowledges financial support from the Deutsche Forschungs-
able normal form. This bifurcation scenario only occurs ingemeinschaft through the Graduiertenkolleg GRK 638 “Non-
systems with discrete symmetries and cannot be treated Binearity and Nonequilibrium in Condensed Matter.”

the codimension-1 uniform approximations developed in

Ref. [14] due to the vicinity of the two pitchfork bifurca- APPENDIX A: DERIVATION OF THE UNIFORM

tions. Furthermore, it does not belong to the unfoldings clas- APPROXIMATION

sified in Ref.[25], so that a different approach became inevi-

table. We have also studied the limit where both pitchfork In this section we describe the procedure leading to the
bifurcations coincide, resulting in the bifurcation of a torus uniform approximation11) following the ideas outlined in
from an isolated orbit such as it happens in integrable sysRef.[25]. The semiclassical approximation of the density of
tems. For separable potentials, the same uniform approxim&tates is given by

tion could be rederived from an EBK trace formula that ac- 1 i -

counts both for an isolated orbit and for the tori bifurcating sg(E) ~ —ZRef dq'dp \If(q’,p)exp[ —d(q',p) - i—y}

from it. 22 h 2

Our uniform approximation was tested numerically for (A1)
two well-known systems with mixed classical dynamics: a
double-well potential and the familiar Hénon-Heiles systemwith a phase function
In both cases the uniform approximation was shown to reach -
the asymptotic Gutzwiller approximation on either side of ®(q',p)=Sd’,p)-a'p (A2)
the double-pitchfork bifurcation, while yjelding finite ampli- 5ng an amplitude function
tudes throughout the whole energy region. The agreement of
the semiclassical and quantum-mechanical coarse-grained 19S| &S
level densities was found to be excellent. va',p=-"2| T

Our uniform approximation is only valid as long as the ndE[dq"Ip
considered pair of pitchfork bifurcations is isolated from The integration is done over any regiéhof the PSS and
other bifurcations. In the examples studied here, this is theorresponds to the Morse Index. We canrse® in Eq.(A3)
case for the lowest pair of bifurcations of the isolafedrbit.  because the nongeneric pitchfork bifurcations are equivalent
Since this orbit undergoes an infinite bifurcation cascade cuto generic period-doubling bifurcatiorj23]. Using the nor-
mulating at the barrier energy=1, our approximation will  mal form(8) of the generating function the phase functibn
eventually fail for higher double-pitchfork bifurcations; the can be expressed in canonical polar coordinataisd ¢ as
precise energy where this happens depends on the value of , . )
the nonlinearity parametek. However, for the coarse- (q'($,1),p(h,1)) = S~ (€ COS'P + ¢, siF )| —al
grained shell structure obtained with a limited resolution (A4)
(given by a sufficiently large Gaussian widih, the higher )
bifurcations become less important and the correspondin@"th
divergences in the level density cannot be resolved.

For the separable limit of the Hénon-Heiles system we
have obtained analytical expressions for the uniform apThe periodic solutions in Eq5) correspond to the stationary
proximation. This allowed us to sum over a large part of thepoints of ® at
bifurcation cascade corresponding to ratiokalk, tori with

1/2

(A3)

p=12lcos¢, g =12l sin . (A5)

ky,k,<8. The resulting grand uniform approximati@49) @: , @:0, (AB)
for the semiclassical density of states, which also correctly d¢ al
describes the S(@) symmetry-restoring limit foe— 0, leads ieldin
. ) . g
to an excellent agreement with the slightly coarse-gramety
quantum-mechanical density of states even up to the barrier Sin(2¢) =0, (e coSd+ e, sifgp) +2al=0. (A7)

energye=1.

An extension of the semiclassical analysis of the densityl "€re are four solutions of EGA7): two with cos2¢)=1,
of states to the energy region above the barféer 1), in- corresponding to a satellite orbit which is labeled by 1 in the

cluding a rigorous quantum-mechanical determination of thd2!lowing, and two with cog2¢)=-1 corresponding to a sat-
widths and energy shifts due to barrier tunneling in the quagalhte orbit labeled by 2. At the stationary points the values of

sibound region of the spectrum and of the resonances in tHe@r®
continuum region, is in progre$s7].
Ii =50 (A8)
ACKNOWLEDGMENTS wherei=1,2. With g;=sgr(l;) the satellite orbit is real if
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Lo (A9) 59(E) ~ —=—Re ex is0 iz
= —. —lzv
S=% 0. J Wzﬁz 2
2m o0
The periods ard(=dS,/JE and xf quf dl (ag+ oyl + a5l?)
0 0
T=Te+ 28 A10 i
=0T e (A10) X exp) — %[(el cogo + ¢, sirfg)l +al?] (.
The traces of the stability matrix can be calculated from (A19)
~ N\ o1 .\ 2 A The parameterg; measure the distance to the bifurcation
el = ( ’S ) l ( ’S ) B ’Sd %S ] They are given by the actiori9) of the new born orbits as
- ’ ’ 2 12
apaq apaq apaq =— 2507\ , (A20)
(A11)
where we have set
evaluated at the stationary poirts3—15. One obtains ~
Y PO =7, = sgrAS). (A21)
Tr |\7|O =2-¢e, Tr Ml =2+ 2616, - 26%: In order to achieve a uniform approximation one evaluates

Eqg.(A19) in stationary-phase approximation at the stationary
points which yields

TrM,=2 + 26,6, - 2€3. A12
2 €16 2 ( ) 5g(SB(E) ~ i (ag+ agl; + azliz)
For all orbits the actiongA9), periods(A10), and stabilities wh  \|det®"(l;)]
(A12) are real quantities even though the orbits themselves 1
can be complex. This characteristic of period-doubling bifur- X cos{—[so— (€, COSP; + €, i)l = a|i2]}.
cations which is due to a Stokes transition was already men- fi
tioned in Ref.[14]. (A22)
The Maslov indicegy; of the periodic orbits are related to ] N
the Morse indexv appearing in Eq(A1) by One can now determine the coefficients, @; and a, by
identifying the Gutzwiller amplitudes!; with
1 2
Mi=v+ E(I’]r| - np), (A13) = i—(ao * alli * azli) , (A23)

"k \|detd (1))

where n, and n, are the number of negative and positive wherei=1,2,3. Defining
eigenvalues of the matrix

€ P) = €, C0LP + €, SiP, (A24)
az_q>2 PP the integrals with respect toin Eq. (A19) can be calculated
aq’ aq ap analytically using
P = , Al4
#D PP (A14) -
aq ap [7_p2 F = f d||ne—(i/ﬁ)[z(¢)|+a|2]
0
evaluated at the stationary points. They follow as ~ <|h J )nf Al M) (AZ5)
Je(p)
o= v+ [sr(ey) +sar(e) )2, (AL5) ¢
They yield forn=0,1, and 2 theesults given in Eqs(12)
_ o and(13). The remainingg integral over the intervdl0, 2]
p=vrisgrie~e) - sgrie))2, (A16)  an easily be calculated numerically.
mo=v+[sgrie — &) - sgre) /2. (A17)  Appendix B: Derivation of the uniform approximation for the

. . . separable limit
For the amplitude function the following ansatz was found to
be sufficient: In the cases; = €, = € the phase functiofA4) simplifies to

(q'(¢,1),p(h,1) =S~ el —al? (B1)

and becomes independent ¢f corresponding to an inte-
Equation (Al), expressed in canonical coordinates, nowgrable system. The stationary point @f corresponds to a
takes on the following form: torus with the radial coordinate

V(1) = ag+ oyl + ayl?. (A18)
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I < (B2) furcations. Using the integrald2) and(13), one arrives at
T4
2a 18 S
E)z—Pood 2-T(h41
With the definition 50(E) = — 2 cod - Z(u+ ))

o=sgrly), (B3) 1 T Be
+ 32\ M(ao_ 5)

the torus is real ifo=+1, while it is imaginary ifo=-1

which can be understood from _ _ g i(maT
x Rd eli/)(So+l4a)-i(mi2)v
p*+q'? e( \2
|=——. (B4)
2 [ &\ ([ &
The action of the torus becomes to| C 2mh|a| 108 27ti|al '
é_2
S=S+ o, (85) (BLY
It remains to express all parameters by the quantities that
and for the period one obtains enter into the asymptotic contributions of the torus and the
central orbit. A stationary phase approximation of Hl1)
Tr=To+ jﬁ_ (B6) would deliver the contribution of the stationary point corre-
2adE sponding to the torus only. In order to obtain the contribution

) _ ~ o of the central periodic orbit at=0 one has to include also
Using Eq.(A1l) one finds that TM=+2 which is charac- the end-point corrections to the stationary phase approxima-
teristic of an orbit famlly The amplitude function can be tion (Cf Appendix C a This amounts to an asymptotic ex-

derived from Eq(A18), resulting in pansion of the Fresnel functions for large argumerisl
V()= ap+ B, (B7) (cf. Ref.[32]). Keeping their two leading terms,
i 1
with C(9 ~ 5 + sin(mei2), (B12)
€
B=ai- 2202 (B8)
a 1
- 2
usingayg, a4, anda, from Eq.(A18). This can be seen by the S(x) 2 cogmx’/2), (B13)

following integration by parts,

B _ leads to
€ i
-— dll exp(—d)) 1 T
ZaJo h 8Y(E) = %I%I)CO%% -l sgr{e)])
“5al, ool jo) Jz
=— dil exp —® |(— e—2al + 2al) 1 1+ T B
zaly s o)
o, e[ 22 :
=— dil exp —® || — + 2al
2al, h al e 4 3
I i XCo 5 —E V+§ . (B14)
:f dllzexp<%cp> +0(h), (B9)
0

Two asymptotic contributions can be recognized. One is of

where the integral that was neglected in the last step is dhe o_rderh‘l, corresponding to th_e central periodic (_)rbi'g, and
relative orderfi. Thus we obtain, to leading order iy the ~ One is of the orderi™* which is the torus contribution.
result(B7). Asymptotically one obtains a torus contribution only on the

The functions in Eq(A24) no longer depend o so that ~ "€@l side of the bifurcationr=+1 whereas on the complex
the integration overp can be performed giving a factor of Side o=-1 the torus contribution asymptotically vanishes

277, The remaining expression f@g(E) then has the form  €ven though the torus amplitude itself must not necessarily
go to zero. The fact that it still gives no contribution asymp-

1 [ LT * totically is due to a Stokes transition of the torus.
(E) = zﬂ—ﬁZRe exp{%so— 'Ev] jo di(ao+ A1) Expressing now EqB11) with the Gutzwiller amplitude
. A, of the central orbit,
[
xexp[— —(el + a|2)] . (B10) 1 ap
h Ao= A= =71, (B15)
i ||

Exactly the same formula can be found in R@f] in rela-
tion with a special case of a generic period-quadrupling bi-and the Berry-Tabor amplitude of the torus,
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L = Jif)
AT—ﬂ,hslz |a|(ao 2a)"

and settingAS=S;—-S, as well asv=puy—sgrie) finally
yields the uniform approximatio(i8).

(B16)

APPENDIX C: ALTERNATIVE DERIVATION OF THE
UNIFORM APPROXIMATION FOR THE SEPARABLE

PHYSICAL REVIEW E 70, 016206(2004)

(WKB) spectrum. Using Eq(C3), we thus get the two-
dimensional trace formula for the separable Hamiltonian
(C1),

©

1
E)=—— -1 kutky
9(B) 2 ’)Zku,kuzz—w( )

E K

LIMIT FROM EBK QUANTIZATION Xfo TW(E- E’)TU(E’)COS{#SU(E - E’)}

In this appendix we give an alternative derivation of the
uniform approximation for the separable limit, starting from
EBK (or WKB) quantization in one dimension and using the
fact that the two-dimensional density of states can be ob-
tained by a convolution of the two one-dimensional densitiedf the convolution integral is done exactly, this trace formula
of state. We present the general formula in the first subseqields the spectrunk,, in Eq. (C2) in the EBK approxima-
tion and derive from it the known exact trace formula fortion. The contribution fromk,=k,=0 yields the average
harmonic oscillators. In the second subsection we specializEhomas-Ferm{(TF) level density which becomes a simple
to the integrable Hénon-Heiles system and present a uniforronvolution integral over the primitive periods of the two
trace formula which sums over all bifurcations and leads tone-dimensional motions:
the correct harmonic-oscillator limit fag— 0.

X co{%su(E’)}dE’. (C7)

E

= — — 1 —_ = ! ’
g(E)—gTF(E)—(2 ) fo T(E-E)T,(E")dE'".

1. Semiclassical trace formula for separable Hamiltonians

For a separable Hamiltonian in two dimensidosv),

(C8)
H=Hy(u,py) +H,(v,p,) =B, +E,, (C The semiclassical trace formul@€7), which contains the
the Schrédinger equation separates smooth part(C8), requires only the classical periodyE)
and actions§(E) of the one-dimensional systems as an input.
H® (U, 0) = Eny®pm(U,0), Nevertheless, it contains all information about the periodic
orbits of the two-dimensional system—not only the degener-
Dpr(U,0) = AW thn(v),  Enm= €+ emy (c2)  ate families forming two-dimensional rational tori, but also

the existing isolated orbits as will be shown explicitly in the

and the exact quantum density of states can be written asfgllowing. It also handles all possible bifurcations uniformly.
convolution integral over the two level densities of the one-The formula(C7) therefore goes far beyond the standard
dimensional systems: trace formulag4,7] for integrable systems which only take
the leading rational tori into account and cannot account for
bifurcations.

The integral in Eq(C7) can, in general, not be done ana-
lytically. For a harmonic oscillator,

E
g(E):f gu(E-E")g,(E"dE’, (C3
0

where

BE)=2,6(E-¢), 9,(E)=2 6(E-¢g,), (C4 1 1
gu( ) % ( en) g ( ) % ( 8m) ( ) H= E(pﬁ+ pg) +§((1)5U2+a)51)2), (Cg)
and we have assumeyl,, €,>0. We now use EBK quanti-
zation(i=u,v;n,=n,n,=m), we haveS(E)=27E/w; and T;(E)=27/ w; (i=u,v). The in-
1 1 tegral then is elementary and yields
H=H(), 1=5-8=5"Ppda=h(n+1/2,
T 2T

o]

1
o) =5 — X

2hwyw, g =

(CS) (_ 1)ku+kve—i77/2
and Poisson summatiqgef. Refs.[4,30]) to obtain the fol-
lowing semiclassical trace formula for each of the one-
dimensional level densities:

ik 2mE/w,

wlr
hw%—m%)

1 .
e—IKUZ'n'E/fLu)v} . (ClO)

. * k
g(E) = e > (1)K COS{%‘S(E)} , (C6) * (k/w, = kjwy)

2nti 2,

which is identical to the Gutzwiller trace formu[d] for a  For irrational frequency ratios,: w,, Nno singularities arise
one-dimensional system and yields the corresponding EBland using the identity32]
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1 < (1 o
sin) =, (z—km) (z#nm), (C1) 89(E) =

we can sum the first term in EC10) over allk, and the xfE

> (- DR
27Tﬁ2 ku'kU:—oo

. . i[k,SA(E,)+2mky(E-E,) Ik
second term over ak,. The result is the exact Gutzwiller TA(E,) el Ku dE,,

trace formula for the irrational harmonic oscillatf80,4Q 0

which yields its correct quantum-mechanical spectrum, (C1H
) _ ku
Oho(E) = ——— 1 (-1 sin(ku27E> where the prime indicates that the TF contribution frigmn
hoho,  howz sin(k W&) hay =k,=0 must be left out. Note that upon independent summa-
"oy, tions overk, andk, the imaginary parts cancel, consistently
w K with the general real expressig@7).
+ 1 D D% sin(k ZWE)_ (C12) In order to evaluate the integral in E@15) in the semi-
hoye K * fiw, classical limitz— 0, we use the following general formula
SIN| o T ] [38,3q
The last two terms contain the sums over ¢bely) isolated
periodic orbits along the andv axes. Corresponding trace b o 2Th s hrisar S ) m
formulas for rational frequency ratios can be obtained from T()eS¥/ dx ~ E T(x) |S’(x-)|e| O /AHsarS Gplmid
the above by taking suitable limifg0]. E.g., in the isotropic é ' '
limit w,=w,=w one obtains +T(b) h gSlbi-imi2
- 27E S®)
(is0)() = 1+23 cod kK== ) . (C13
Oho (E) (hw)? gl P (C13 +T(a) S/(a)eis(a)/ﬁ+ifr/2’ (C16)

which is again a quantum-mechanically exact trace formula

in terms of the twofold degenerate families of periodic orbits

with SU(2) symmetry, having the primitive actionS(E) neglecting corrections of higher orderfinEquation(C16) is
=2mE/ . Note that the standard methods to derive the trac& generalization of the standard stationary-phase integration,
formula for integrable systenid,7] cannot be used for har- taking into account the end-point corrections whose contri-
monic oscillators, since thé‘curvature” tensor of second butions are of ordefi'/? relative to those from the stationary

derivatives of the HamiltoniadC9) with respect to the torus Points. The sum in the first line above is to be taken over all
actionsl,=E;/ w; is identically zero. stationary pointsq which lie in the integration intervaa

For systems in which the actioS{E) are no simple func- <X =<b. If either of the end points or b is a stationary
tions, the integral in Eq(C7) can in general only be done POINt, its contrlbutlo_n to the sum has to be _lelded by two
numerically. This becomes practically impossible if one@nd the corresponding term in the second line above has to
wants to generate the semiclassical EBK spectrum by sunfe omitted. I_f there is no s'_cat|0nary p_omt _at all in the mteryal
ming (C7) over allk, andk,. In the example treated in the [a,b], there is no contribution to the first line and the leading
next subsection, we show how an asymptotic evaluation oferms of the integral are of orders as given by the end-
the integral can be used to establish the relation to the Berrnyj20int contributions in the second line alone.
Tabor type trace formula for the tori and the Gutzwiller trace  The stationarity condition for the phase in the integral
formula for isolatedA orbit, and to derive the same uniform (C15) leads to the resonance condition for the rational tori,
approximation for the bifurcations of the isolat@dorbit as
we have obtained in Appendix B using the normal form

theory. K, TA(Ey ) = 27k, = Ky Ta. (C17)

2. Asymptotic evaluation for the separable Hénon-Heiles . o
system and global uniform approximation Note that this condition is independent of the enegyrhe

stationary pointh:ELukU are the energies at which tlkgth

In the following we specialize to the integrable Hénon- o S, .
. : . repetition of theA orbit bifurcates, cf. Eqs(42) and(43) in
Helles (IHH) system(37), expressed in the scaled coordi- oo "/ ¢ The conditioiC17) can only be fuffilled ifk, and

natesu,v as in Bq.(38). Here T,=Tg=2m, S,(B)=S(E) k, have the same sign and fik,/=k,|. In most formulas

=2mE, and the perioda(E) and actionSy(E) of thew mo- b, e takek, andk, to be positive(or zero for one of
tion are given in Eqy34~36). The TF level density is then them) and account for the two signs by an extra factor of 2 in

given by the summations, taking real parts where necessarykfor
1 =k, =Kk, the stationary point is &’;k:o, for all other tori the
gre(E) = ﬁSA(E) (C149  stationary points are at finite energies. This gives, according
to the first line in Eq.(C16), the following asymptotic con-
and the oscillating part can be written as tribution to lowest order irh:
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FIG. 16. Shell structure in the level density of the integrable Hénon-Heiles system. Solid lines: exact EBK (@#&BraDashed lines:
asymptotic approximations. Upper panel: Berry-Tabor contributi@is$) of the T tori plus Gutzwiller contributioC23) of the isolatedA

orbit. Lower panel: uniform approximatia@9). In both cases, repetition numbeks, k,| <8 are included. Here the lowest energy region is
shown where the isolate@l orbit contribution diverges in the limi— 0.

oo e}

1 7 . 1w (D% (K
D(E) = A; cod = E)+— |@E-E BoE) =—=> —— (—“2 E) c21
O3 3 A, cof 75, O+ 7 |OE-EL,) WE= 5 S e ). 2
(C18 which is of ordery with respect to Eq(C19) and found to
which is exactly the Berry-Tabor trace formyi 7] with the ~ be negligible in our numerical calculations.
amplitudes The upper end poinE,=E of the integral in Eq(C15
- corresponds to motion along the axis which classically
A =f (=% Ky 2m gives the isolated orbit. According to the second line in Eq.
Tk, — Kk 302 k, \ k,Ta(E; ku)’ (C16), this yields the asymptotic contribution
(Clg) o % _ ku+
)2 k, # k, 592@(5 - @ >y Lei[kvs“am—w/z]_
fkukv 11 for k,=k, | wh k,=1 ky=— [k, TA(E) — 27k, ]
The actions of the tori are (€22
_ * = * Using the identity(C11) we can do the summation ovéy,
Srkuku(E) KoSa(Bp) + 2mU(E =By ) (B=By)- analytically and find
(C20 . .
. . TA(E -1 k
The diagonal torusTy,, which comes from the lower end  SgX(E) = Al )E : Y co —”SA(E)—E],
point E,=0 of the integral in Eq(C15), corresponds to the 2t i,z Sink, TA(E)/2] h 2
kth repetition of the classicd orbit. This is somewhat puz- (C23
zling, since classically this orbit appears to be isolated along

the u axis, but semiclassically it contributes in the same waywhich is exactly the Gutzwiller trace formula for the isolated
as the two-dimensional tori witk, # k, with an amplitude A orbit. Of course, this expression cannot be used at the
proportional to =32, The reason for this is connected to the bifurcation energies of thé orbit where, on one hand, Eq.
fact that the energ¥,, =0 at which it bifurcates is simulta- (C11) is not valid and, on the other hand, the upper end-point
neously the limit of the isotropic two-dimensional harmonic correction from the integra{C15 should be replaced by
oscillator in which all orbits form a two-dimensionally de- one-half of the corresponding torus contribution to Eq.

generate family with S(2) symmetry. The contributions (C18). The contributions fronk,=0 andk,+ 0 in Eq.(C22
from k,=0 andk,# 0 lead to a small correction, lead to a small correction,
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FIG. 17. The same as Fig. 16 in an intermediate energy region. The top panel exhibits the divergence of the Gutzwiller contributions of
the A orbit (dashed lingnear thek,:k,=9:8 and 8:7resonances.

which is included in Eqs(C22) and (C23) and will be re-

E)—ﬂﬁ

ferred to below.

We have thus established that the isoladearbit emerges
asymptotically, with its standard Gutzwiller amplitu¢il],

(- D% K mula(C15), whereas the tori with their standard Berry-Tabor
E n(fivSA(E)>’ (C24)  amplitudes come from the stationary points of the phase in
k,=1 K, the integral(C15).

In order to obtain finite amplitudes at the bifurcations and
the symmetry poine=0, we have to develop a uniform ap-
proximation. This can be done quite easily by expanding the
phase and the amplitude of the integrand in @45 around
the statlonary pomtfk k, Up to first and second order in

from the upper end-point corrections of the EBK trace for-E,-E, s respectively. Notmg that the torus acti®i(E) in
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18. The same as Fig. 16 in the top energy range, covering the resonancég: Wjth 3: 2.
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Eq. (C20 represents the first two terms of the same expaneovering different energy regions, the upper panels show the
sion of Sy(E) aroundE—Ekukv, this leads to the approximate results of Eq.(C15 by the solid lines and the sum of the

contributions asymptotic Berry-Tabor contributions of the t¢€18) plus
£ the Gutzwiller contributionC23) of the isolatedA orbit by
R e(i/h)Srkukv(E)—iw(ku+kv)f (bkuku + G E,) the dasheq Ilnes. In the lower panel, the same resultg of Eq.
0 v (C15 (solid lineg are compared to those of the uniform

approximation(49) (dashed lines In all cases, the latter

, (C25) proves to be an excellent approximation to the exactly inte-
grated EBK trace formul&C15).

In Fig. 16 the lowest energy region is shown, where the
Butzwiller contributions of theé orbit are seen to diverge in
: X . . the limit e—0. The divergences disappear in the uniform
which can be integrated analytically using the formu(bg) approximation. In Fig. 17, an intermediate energy region is
and(13). The parametergy y , by , andcy x must be deter- o, which includes the divergences of the isolaezbn-
mined by the requirement that the asymptotic amplitudes anglihytions at the bifurcations of the,:k,=9:8 and 8:7reso-
actions of both theA orbit and theT  torus be recovered pances. Figure 18 shows the top energy region containing all
far away from the bifurcation energ?%(u . This procedure is  resonances with,: k,=3:2.
completely analogous to what has been discussed in the ear- These results demonstrate that the uniform approximation
lier appendixes and need not be repeated here. The final uri49), which expresses the level density in terms of the Berry-
form approximation which we obtain after summing over all Tabor and Gutzwiller amplitudes of the periodic orbits, re-
tori is given in Eq.(49). produces the numerically integrated EBK trace formula

The uniform trace formulg49) is discussed and tested (C15) to a high degree of accuracy.
versus quantum-mechanical results in Sec. IV C. Here we Finally we stress that our above derivation of the uniform
compare its results with those of a numerical integration ofapproximation(49) is not limited to the separable Hénon-
the EBK trace formulgC15. We choose the value=0.04, Heiles system, but can easily be modified to any separable
where the saddle energy E5=104.666, and a resolution of potential by starting from the general EBK trace formula
the energy spectrum limited Hi|,|k,|<8. In Figs. 16-18, (C7) rather than from Eq(C15).

x glil2ha . (€, - E*kuku)zd E,

which are exactly of the same type as those which we hav
derived from the normal form theory in Appendix B, and
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