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In nonintegrable Hamiltonian systems with mixed phase space and discrete symmetries, sequences of pitch-
fork bifurcations of periodic orbits pave the way from integrability to chaos. In extending the semiclassical
trace formula for the spectral density, we develop a uniform approximation for the combined contribution of
pitchfork bifurcation pairs. For a two-dimensional double-well potential and the familiar Hénon-Heiles poten-
tial, we obtain very good agreement with exact quantum-mechanical calculations. We also consider the inte-
grable limit of the scenario which corresponds to the bifurcation of a torus from an isolated periodic orbit. For
the separable version of the Hénon-Heiles system we give an analytical uniform trace formula, which also
yields the correct harmonic-oscillator SU(2) limit at low energies, and obtain excellent agreement with the
slightly coarse-grained quantum-mechanical density of states.
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I. INTRODUCTION

The goal of the research area called “quantum chaos” is to
relate the quantum-mechanical and classical properties of a
classically chaotic system. For autonomous Hamiltonian sys-
tems, the eigenvalue spectrum is, to the leading orders in",
dominated by the periodic orbits of the classical system. For
chaotic systems, the periodic orbits are isolated in phase
space and contribute individually to the semiclassical spec-
tral density [1,2], while in integrable systems the leading
contributions come from families of degenerate orbits form-
ing rational tori [3,4]. The most general case is that of a
system which is neither integrable nor ergodic but exhibits a
mixed phase space consisting of regular islands separated by
chaotic domains. The chaotic regions increase through the
destruction of rational tori when continuous symmetries are
broken, and through bifurcations of periodic orbits when the
energy or another control parameter of the system is in-
creased. Explicit semiclassical trace formulas have been
given for various systems with continous symmetries
[3,5–7], for symmetry breaking through the destruction of
rational tori [8–12], and for isolated bifurcations[13–15].
However, more complicated bifurcation scenarios which usu-
ally occur in realistic physical systems and, in particular,
bifurcation cascades[16–19] still constitute one of the most
serious problems of the semiclassical theory.

Periodic orbits contribute to the semiclassical density of
states individually only as long as they remain isolated in
phase space, i.e., as long as their actions differ by large mul-
tiples of ". Near bifurcations this condition is violated and
the standard remedy is to determine a collective contribution
of all periodic orbits participating in the bifurcation. In the
neighborhood of a bifurcation, this was achieved in Refs.
[8,9] using the theory of normal forms based on the classifi-
cation [20,21] of generic bifurcations with codimension 1
(i.e., bifurcations occurring when one control parameter is
varied) [22]. In all these classes, a central orbit of periodn is

surrounded bymù1 satellite orbits of periodnm. The cor-
responding generic bifurcations are called isochronoussm
=1d, period-doublingsm=2d, period-triplingsm=3d, period-
quadruplingsm=4d, etc. The “local” uniform approximations
developed in Ref.[8] fail at large distances from the bifur-
cations where the orbits become isolated. In Refs.[13–15]
“global” uniform approximations were developed, which in-
terpolate between the collective contribution of the orbit
cluster near a bifurcation and the sum of individual contri-
butions of the isolated orbits far from it, as correctly de-
scribed by the Gutzwiller trace formula[1]. These global
uniform approximations can, with minimal modifications,
also be applied to nongeneric bifurcations in systems with
discrete symmetries[23]. Similar global uniform approxima-
tions have also been derived for nongeneric bifurcations of
codimension 2[24,25]. Even though such bifurcations occur
only when two control parameters meet the bifurcation con-
ditions simultaneously, they are more generally of relevance
because they may appear as sequences of generic bifurca-
tions when one of the two parameters is fixed and only the
other is varied[26]. In other words: when two generic bifur-
cations lie so close that the orbits do not become isolated
between them and hence the corresponding generic
codimension-one global uniform approximations cannot be
used, a description using codimension 2(or higher) becomes
necessary. Such a description was first given in Ref.[25] for
codimension 2 along with a classification of the possible
generic bifurcation sequences according to catastrophe
theory.

In the present paper we study a sequence of two succes-
sive isochronous pitchfork bifurcations of an isolated peri-
odic orbit. This scenario which occurs in systems with dis-
crete symmetries is not included in the classification of
codimension-2 bifurcations[25] so that at present there ex-
ists no semiclassical approach for it. In fact, it may constitute
the beginning of a bifurcation cascade in which this sequence
is repeated infinitely often. Such a cascade can form a geo-
metric progression reminiscent of the Feigenbaum scenario
[27] (although there the bifurcations are generically period
doubling), and the new periodic orbits born at the bifurca-*Email address: joerg.kaidel@physik.uni-regensburg.de
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tions may exhibit self-similarity properties[18,19]. Bifurca-
tion cascades are frequently found in physical systems with
discrete symmetries and mixed classical dynamics[16,17],
so that a semiclassical approach to those situations would
seem to have been required long ago. Here we develop a
uniform approximation of codimension 2 for the contribution
of a pair of pitchfork bifurcations to the semiclassical density
of states and test it numerically by comparison with exact
quantum-mechanical calculations. The agreement turns out
to be very good. The degenerate limit, in which the two
pitchfork bifurcations coalesce, occurs generically in inte-
grable systems: there a whole family of degenerate orbits,
forming a torus, is born from the central orbit at the bifurca-
tion. For this case we can give analytical expressions for our
uniform approximation, and numerical calculations for a
separable system yield an excellent semiclassical approxima-
tion to the exact quantum-mechanical density of states.

Our paper is organized as follows. In Sec. II we present
our uniform approximation, whose detailed derivation is
given in Appendix A. The uniform approximation for the
bifurcation of a torus from an isolated orbit in the separable
limit is discussed in Sec. III, with its detailed derivation
given in Appendix B. In Sec. IV we apply our results to a
two-dimensional double-well potential and to the familiar
Hénon-Heiles system[28], as well as to its separable version,
and compare them to results of exact quantum calculations.
An alternative derivation of our uniform approximation for
the separable limit from Einstein-Brillouin-Keller(EBK)
quantization is given in Appendix C.

II. UNIFORM APPROXIMATION IN THE
NONINTEGRABLE CASE

The density of states of an autonomous system with
HamiltonianH is given by the trace of the retarded Green
function GsEd

gsEd = o
n

d sE − End = −
1

p
− Im TrGsEd,

GsEd =
1

E + i0+ − H
. s1d

As usual, we splitgsEd into a smooth and an oscillating part:

gsEd = g̃sEd + dgsEd. s2d

The smooth partg̃sEd, which semiclassically is determined
by all periodic orbits of the classical system with zero length
[29], may either be determined by the(extended) Thomas-
Fermi (TF) model[30] or, where this is not analytically pos-
sible, by a numerical Strutinsky averaging of the quantum
spectrum[30,31]. The periodic orbits of finite length make
up the oscillating partdgsEd.

The semiclassical contribution todgsEd of any regionV
on a Poincaré surface of section(PSS) of the phase space is
given by [9,13]

dgVsEd =
1

2p2"2ReE
V

dq8dp
1

n

] Ŝ

] E
U ]2Ŝ

] p ] q8
U1/2

3expF i

"
Ŝsq8,p,Ed −

i

"
q8p −

ip

2
nG . s3d

Here q8 are the final coordinates andp the initial momenta
on the PSS transverse to a periodic orbit with periodT cen-
tered in the origin. Thenth iterate of the Poincaré map is

given by its generating functionŜsq8 ,p,Ed, and the usual
canonical relations hold:

] Ŝ

] q8
= p8,

] Ŝ

] p
= q,

] Ŝ

] E
= T. s4d

The periodic orbits are the solutions of

] Ŝ

] q8
= p,

] Ŝ

] p
= q8, s5d

which are the stationary points of the phase in Eq.(3). If the
integrals in Eq.(3) are calculated in the stationary-phase ap-
proximation, one obtains the individual Gutzwiller contribu-
tions of the periodic orbitsj within V:

dgjsEd = AjsEdcosSSjsEd
"

−
p

2
mjD , s6d

where for a two-dimensional system the amplitudes have the
form

AjsEd =
TjsEd

p"nj
ÎuTrM̃j − 2u

. s7d

The quantitiesSj, Tj, nj, M̃j, andmj are the action, period,
repetition number, stability matrix, and Maslov index of the
orbit j, respectively. The stationary-phase approximation
yields good results only if the periodic orbits are isolated in
phase space. Near a bifurcation this condition is not fulfilled
so that one has to perform the integrals in Eq.(3) collectively
over the whole periodic orbit cluster involved in the bifurca-
tion. To this purpose, one inserts the normal form of the

generating functionŜsq8 ,p,Ed into Eq. (3) and solves the
resulting integrals exactly.

A sequence of two period-doubling bifurcations of peri-
odic orbits is not generic because it would imply a jump in
the stability of the central periodic orbit[25]. On the other
hand, an isochronous bifurcation creating a new orbit with a
degeneracy factor of 2 is equivalent to a generic period-
doubling bifurcation[23]. The degeneracy factor 2 has to
originate from a twofold discrete symmetry of the system.

Due to the behavior of TrM̃j near the bifurcation, a generic
period-doubling bifurcation is often called a pitchfork bifur-
cation. The case of interest here is a sequence of two such
nongeneric pitchfork bifurcations which can arise succe-
sively from the same central periodic orbit in systems with
discrete symmetries such as studied in Refs.[18,19]. For this
scenario we propose the new normal form
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Ŝsq8,p,Ed = S0sEd + q8p −
1

2
se1p

2 + e2q82d −
a

4
sp2 + q82d2

= S0sEd + q8p − se1 cos2f + e2 sin2fdI − aI2. s8d

Hereq8=Î2I sin f and p=Î2I cosf define the polar coor-
dinatessI ,fd on the PSS, with the central orbit sitting atI
=0. The parameterse1 and e2 measure the distance to the
bifurcations and become zero at the first and second bifurca-
tion, respectively. Inserting the anglesf=0 andf=p /2 into
Eq. (8), one obtains the respective generic normal forms of
the period-doubling bifurcations[14] corresponding to two
cusp catastrophes:

Ŝ„q8s0,Id,ps0,Id,E… − S0sEd − q8s0,Idps0,Id = −
e1

2
p2 −

a

4
p4

s9d

and

ŜXq8Sp

2
,ID,pSp

2
,ID,EC − S0sEd − q8Sp

2
,IDpSp

2
,ID

= −
e2

2
q82 −

a

4
q84. s10d

The stationary points of Eqs.(9) and (10) are the stationary
points of Eq.(8) as well. The dependence of the topology of
Eq. (8) on the parametersei is sketched in Fig. 1.

The period-doubling bifurcations always have a real side
where the central orbit as well as its satellite orbits are real,
and a complex side where the central orbit is real but the
satellite orbits are complex ghost orbits. We introduce a pa-
rametersi which is +1 on the real side and −1 on the com-
plex side of the pitchfork bifurcationi with i =1,2.Addition-
ally, the sign of the difference between the actionsSi of the
new satellite orbits and the actionS0 of the central orbit is
indicated bys̃i ;sgnsDSid andDSi ;Si −S0 with i =1,2.

The uniform approximation describing the contribution of
the orbit cluster involved in the bifurcation sequence is de-
rived in detail in Appendix A. It reads

dgsEd =
1

4p2"2ReHeifs1/"dS0−sp/2dng

3E
0

2p

dffa0F0sfd + a1F1sfd + a2F2sfdgJ ,

s11d

where the functionsFisfd with i =0, 1, 2 are given by

F0sfd = esi/"dss̃i/4dẽ2sfdÎp"

2 H 1
Î2

e−isp/4ds̃i

+ sFCSÎ ẽ2sfd
2p"

D − is̃iSSÎ ẽ2sfd
2p"

DGJ ,

s12d

F1sfd = −
1

2s̃i

fi" + ẽsfdF0sfdg,

s13d

F2sfd = −
i"

2s̃i
F1 −

ẽsfd
2s̃i

−
ẽ2sfd
2i"s̃i

F0sfdG ,

and we have used

ei = − 2sis̃i
ÎuDSiu,

ẽsfd = e1 cos2f + e2 sin2f,

s = − s̃i sgnfẽsfdg. s14d

For the evaluation of Eqs.(12)–(14), any of thes̃i = ±1 can
be used, as described in Appendix A. The coefficentsa0, a1,
and a2 are given as solutions of the linear system of equa-
tions

A0 =
a0

p"Îue1e2u
, A1 =

a0 −
a1

2
e1 +

a2

4
e 1

2

p"Îu− 2e1e2 + 2e 1
2u

,

s15d

A2 =

a0 −
a1

2
e2 +

a2

4
e 2

2

p"Îu− 2e1e2 + 2e 2
2u

,

where the amplitudesAi with i =0,1,2 are given in Eq.(7).
Csxd and Ssxd are the standard Fresnel functions[32]. The
indexn is related to the Maslov indexm0 of the central orbit
by

n = m0 − ss1 + s2d/2. s16d

All coefficients in Eq.(11) are expressed by the quantities
which appear also in the Gutzwiller contributions(6), which
means that the uniform approximation is invariant under ca-
nonical transformations.

III. UNIFORM APPROXIMATION
FOR THE SEPARABLE LIMIT

In the degenerate casee;e1=e2 the normal form(8) be-
comes

FIG. 1. Contour plots of the normal form(8)
in dependence of the parametersei for the case
a=−1. From left to right:e2,e1,0, e2,0,e1,
and 0,e2,e1.
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Ŝsq8,p,Ed = S0sEd + q8p − eSp2 + q82

2
D − aSp2 + q82

2
D2

=S0sEd + q8p − eI − aI2. s17d

Here Ŝsq8 ,p,Ed−q8p is independent of the anglef, which
means that it refers to an integrable system in which the
Hamiltonian depends only on the action variables but not on
the angles. The normal form(17) and the corresponding bi-
furcation scenario has been studied in earlier works
[8,9,15,33]. What we intend here is to solve the necessary
integrals analytically and express all the coefficients by the
actions and the Gutzwiller or Berry-Tabor amplitudes of the
periodic orbits, in order to give a final formula which is easy
for implementation in actual examples.

The stationary point of the functionŜ−q8p now corre-
sponds to a family of periodic orbits, i.e., a rational torus
which is created from the central orbit at the bifurcation[9].
It consists of real periodic orbits on one side, whereas its
periodic orbits have complex coordinates on the opposite
side of the bifurcation. To distinguish between the two sides
we introduce a parameters which takes the value +1 on the
side where the torus is real and −1 on the side where it is
complex.

The uniform approximation for this degenerate limite1
=e2 of Eq. (11) is derived in Appendix B and can be given, to
the leading orders", in analytical form as

dgsEd =
AT

Î2
ReXeifs1/"dST−sp/2dngH 1

Î2
e−is̃sp/4d

+ sFCSÎ2uDSu
p"

D − is̃SSÎ2uDSu
p"

DGJC
+ ss̃SATÎ "

4puDSu
− A0DcosSS0

"
−

p

2
sn + 1dD ,

s18d

whereS0 andST are the actions of the central orbit and the
torus, respectively, and their difference is denoted by

DS; ST − S0 s19d

with s̃;sgnsDSd=sgnsad. The amplitudeA0 corresponds to
the Gutzwiller amplitude(7) of the central periodic orbit,
whereas for the torus one has to use the Berry-Tabor ampli-
tudeAT [4,33]. The Morse indexn appearing in Eq.(18) is
related to the Maslov indexm0 of the central periodic orbit
by

n = m0 + ss̃. s20d

IV. NUMERICAL RESULTS

In order to test the above uniform approximations we ap-
ply them to two model systems:(i) a double-well potential

FIG. 2. Scaled double-well potential. Left: contour plot with the four shortest periodic orbitsA andB evaluated ate=0.96. Right: cut of
the potential alongu=0.

FIG. 3. Orbits participating in a pitchfork bifurcation sequence in the double-well potential(21). Upper row: real part(left) and imaginary
part (middle) of ghost orbitR at e=0.908 64, and real orbitR at e=0.95 (right). Lower row: real part(left) and imaginary part(middle) of
ghost orbitL at e=0.94, and real orbitL at e=0.95 (right).
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which classically possesses two bifurcation cascades, one for
approaching the saddle from below and one for approaching
it from above, and(ii ) the familiar Hénon-Heiles system as
well as its separable version. We compare with results from
exact quantum calculations and discuss the validity of the
uniform approximations.

A. Two-dimensional double-well potential

We study the following Hamiltonian with a double-well
potential(in dimensionless units withm="=1):

H =
1

2
spx

2 + py
2d +

1

2
sx2 − y2d + lSy4 −

1

2
x2y2D +

1

16l
.

s21d

The potential in Eq.(21) has two minima atx=0 andy
= ±1/2Îl with energyE=0, separated by a saddle atx=y
=0 with energyE* =1/16l. Using dimensionless scaled vari-
ablesu=Îlx andv=Îly, the classical dynamics of the sys-
tem only depends on one scaled energy variablee=E/E*

=16lE, with the central saddle at the heighte=1 (see Fig.
2). At a scaled energye=9, the system possesses four other

FIG. 4. Properties of the periodic orbitsA, R, andL near their bifurcations in the double-well potential(21), plotted versus the scaled
energye. Top left, stability traces; middle left, action differences; bottom left, periods; and right, Gutzwiller amplitudes(cf. text). The dashed
portions of all curves correspond to the complex pre-bifurcation ghost orbits.

FIG. 5. Oscillating part of den-
sity of states in the double-well
potential (21). Solid line: exact
quantum result obtained withl
=0.0008. Dashed line: uniform
approximation including isolated
contribution of orbit B. Dotted
line: sum of Gutzwiller contribu-
tions of isolated orbits, diverging
at the two lowest bifurcations of
the A orbit. (The other bifurca-
tions, lying ate.0.9998, cannot
be seen at this resolution.) Coarse
graining by Gaussian convolution
with energy widthg=0.5.
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saddles atv= ±1 andu= ±Î3, over which a particle can es-
cape. At all energiese.0, there exist orbitsA and B that
librate along and across thev axis, respectively. OrbitB is
stable up toe=4.778 and orbitA undergoes two bifurcation
cascades, one approaching the saddle ate=1 from below,
and one approachinge=1 from above. We consider here only
energieseø1, for which all periodic orbits appear twice cor-
responding to the two potential wells. In this region, the
influence of the continuum abovee=9 can be safely ne-
glected and the quantum spectrum is real and discrete to a
very good approximation. We have obtained it numerically
by diagonalisation of Eq.(21) in a finite harmonic-oscillator
basis.

The period and action of theA orbit are given analytically
in terms of its two turning points, forv.0 given by

v1 =
1

2
Î1 −Îe, v2 =

1

2
Î1 +Îe seø 1d. s22d

The (dimensionless) period becomes

TAsEd =
Î2

v2
Ksqd, s23d

and the action is

SAsEd =
2Î2

3l
v2F1

2
Esqd − 2v1

2KsqdG , s24d

whereE andK are the complete elliptic integrals[32] with
modulusq:

q =
1

v2

Îv2
2 − v1

2. s25d

The dimensionless average(TF) level density of this system
(including a factor 2 which accounts for the two wells) is
given by the integral

gTFsEd =
2Î2

pÎl
E

v1

v2 Îsv2
2 − v2dsv2 − v1

2d
Î1 − v2

dv s26d

which we could not express in a simple closed form and
therefore integrated numerically.

At the energye=0.912 32 orbitA becomes unstable, cre-
ating a stable rotational orbitR with Maslov index 5. Ate
=0.942 72 orbitA becomes stable again, creating an unstable
librational orbitL with Maslov index 6. In Fig. 3 the periodic
orbits R and L are shown together with their complex
“ghost” predecessors which correspond to librations in the
real and imaginary parts, respectively. The bifurcation sce-
nario is seen in the upper left panel of Fig. 4 in terms of the
stability traces.

In Fig. 4 we also show the action differences and periods
of the three orbits, as well as their Gutzwiller amplitudes,
plotted versus the scaled energye. As shown analytically in
Ref. [14], the asymptotic divergences of the amplitudes of
the central orbit(hereA) and the satellite orbits(hereR and
L) must differ by a factorÎ2; this factor has been included in
the right panel of Fig. 4 in order to confirm this fact numeri-
cally.

Using these numerical results we now evaluate the uni-
form approximation(11) for the joint contribution of the or-
bits A, R, andL. The B orbits are included in the standard
Gutzwiller approximation, since they stay isolated at all en-
ergies and do not interfere with the other orbits. In Fig. 5 the
result is shown together with the result of an exact quantum-
mechanical diagonalization done forl=0.0008. One can rec-
ognize that the uniform approximation tremendously im-
proves over the diverging standard Gutzwiller approximation
(dotted line), leading to an excellent agreement with quan-
tum mechanics up to the saddle ate=1. Here, as well as in
all following comparisons with quantum mechanics, we have
coarse grained the density of states by convolution with a
Gaussian over an energy intervalg. In the semiclassical trace
formulas this leads[30] to the inclusion of an exponential
factor exph−sgTj /2"d2j in the Gutzwiller amplitudeAj of
each periodic orbitj, whereTj is its period, in regions far
enough from the bifurcations for the orbits to be isolated.
Note that in the regions between the two bifurcations, the
Gutzwiller approximation is not valid, so that our
codimension-2 uniform approximation is indispensible.

B. Hénon-Heiles system

The system of Hénon and Heiles is given by the Hamil-
tonian [28] sm="=1d

H =
1

2
spx

2 + py
2d +

1

2
sx2 + y2d + lSx2y −

1

3
y3D . s27d

When the dimensionless scaled variablesu=lx and v=ly
are introduced, the scaled total energy in units of the saddle-
point energyE* =1/6l2 becomes

e= E/E* = 6F1

2
su̇2 + v̇2d + Vsu,vdG

= 3su̇2 + v̇2d + 3su2 + v2d + 6vu2 − 2v3. s28d

In the left part of Fig. 6 we show the equipotential lines of
the potential part of Eq.(28) in the su,vd plane together with
the three shortest periodic orbitsA, B, andC, evaluated at the
scaled energye=1. Along the tree mirror axes(dashed lines)
the potential is a cubic parabola as shown alongu=0 in the

FIG. 6. The Hénon-Heiles potential. Left: equipotential contour
lines in scaled energy unitse in the plane of scaled variablesu,v.
The dashed lines are the symmetry axes. The three shortest periodic
orbits A, B, andC (evaluated at the energye=1) are shown by the
heavy solid lines. Right: cut of the scaled potential alongu=0.
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right part of Fig. 6. For an arbitrary energyeø1, the turning
points of theA orbit are determined as the solutions of the
equation

e= 3v2 + 2v3 s29d

and given by

v1 = 1/2 − cossp/3 − f/3d,

v2 = 1/2 − cossp/3 + f/3d,

v3 = 1/2 − cossf/3d, s30d

with

cossfd = 1 − 2e seø 1d. s31d

As was shown by Hénon and Heiles, the classical dynamics
is quasiregular up to energies of aboute=2/3 andthen be-
comes increasingly chaotic[28]. Thev motion of theA orbit
with the scaled energyev is given by[19]

vA
sevdstd = v1 + sv2 − v1dsn2ss,qd s32d

in terms of the Jacobi elliptic function[32] snss,qd which
depends on the arguments and the modulusq, given by

s= tÎsv3 − v1d/6 and q =Îv2 − v1

v3 − v1
. s33d

The turning pointsvi have to be evaluated according to Eqs.
(30) with e=ev.

The periodic orbits of the system have been investigated
and classified by Churchillet al. [34] as well as Davieset al.
[35]. Up to energies ofe<0.97 there exist only three types
of periodic orbits with periodsT of the order of 2p: the
librations A and B, and the rotationC. Due to theD3 sym-
metry of the potential, orbitsA andB occur in three orienta-
tions connected by rotations about 2p /3 and 4p /3 in the(u,
v) plane. OrbitC has a degeneracy of 2 because of the time
reversal symmetry which corresponds to two different orbits
with opposite senses of rotation. The orbitB is unstable for
all energies and the orbitC stays stable for energies below
e=0.8922 where it becomes unstable due to a generic period-
doubling bifurcation. The bifurcation cascades of theA orbit
and the orbits generated by them have been studied in detail
in Refs. [18,19]; we adapt the names of the orbits given in
these references, whereby the subscripts of the orbit names
denote their Maslov indices. TheA orbit undergoes its first
isochronous pitchfork bifurcation at an energye1
=0.969 309 and the second one ate2=0.986 709. At the first
bifurcation it creates a stable rotational orbitR5 which is
doubly degenerate due to its two possible senses of rotation.
At the second bifurcation, it creates an unstable librational
orbit L6 which is doubly degenerate due to the reflection
symmetry of the potential at thev axis. This scenario repeats
itself at higher energies, whereby the pairs of orbitsR7 and
L8, R9 and L10, etc., are born. The rotational or librational
character of these orbits is indicated by the lettersR andL,
respectively. In Fig. 7 the orbitsR5 and L6 are plotted to-
gether with their pre-bifurcation complex ghost orbits. All
orbits, includingA, gain one more degeneracy factor 3 due to

FIG. 7. Orbits born in the first
pitchfork bifurcation sequence in
the Hénon-Heiles potential. Upper
row: real part(left) and imaginary
part (middle) of ghost orbitR5 at
e=0.9690, and real orbitR5 at e
=0.9798 (right). Lower row: real
part (left) and imaginary part
(middle) of ghost orbit L6 at e
=0.9864, and real orbitL6 at e
=0.9870(right).

FIG. 8. Poincaré surfaces of section(PSS) of the scaled Hénon-Heiles Hamiltonian(28), taken for v=0. Left, e=0.969; middle,
e=0.982; right,e=0.989.
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the threefold discrete rotational symmetry of the potential, so
that the overall degeneracy factors ofA, R, andL orbits are
3, 6, and 6, respectively.

In Fig. 8, a part of the PSS forv=0 is plotted for energies
before the first pitchfork bifurcation(left), between the first
and second bifurcation(middle), as well as after the second
bifurcation (right). The topology in the vicinity of the bifur-
cation sequence is correctly described by the normal form
(8), as can be seen by a comparison with Fig. 1.

In evaluating the uniform approximation, one can exploit
the fact that the actions and the periods of the orbitA can be
calculated analytically. The action is given by

SAsEd = 2E
v1

v2 Îe− 3v2 + 2v3 dv

=
2

5l2
Î6sv3 − v1dfEsqd + cKsqdg, s34d

where the modulusq of the complete elliptic integrals is
given in Eq.(33). The constantc is given by

c = −
2

9
sv3 − v2ds2v3 − v2 − v1d s35d

in terms of the turning pointsvi si =1,2,3d given in Eq.(30).
The dimensionless period is obtained as

TAsEd =
] SAsEd

] E
= 2Î3E

v1

v2 dv
Îe− 3v2 + 2v3

=
2Î6

Îv3 − v1

Ksqd.

s36d

In Fig. 9 the quantities needed to evaluate the uniform
approximation(11) of the density of states are shown as a
function of the scaled energye. One can see that the stability
trace TrM̃A of the A orbit takes on the values +2 at the
bifurcation energies. The stability traces of the orbitsR5 and
L6 are also plotted; they stay real even for energiese,e1 and
e,e2, respectively, where the two satellites are complex
ghost orbits(with their properties shown by dashed lines in
Fig. 9).

In Ref. [36], it was shown that the coarse-grained
quantum-mechanical density of states of the Hénon-Heiles
potential (obtained with a Gaussian smoothing widthg
=0.25) can be rather accurately approximated semiclassi-
cally, using just the isolated orbitsA, B, and C and their
second repetitions, for energies far enough from the
harmonic-oscillator limite=0. In Ref. [12], a uniform ap-
proximation for the symmetry breaking ate=0 was devel-
oped which continuously interpolates from the harmonic-
oscillator limit, given in Eq.(52) below, to the region where
the Gutzwiller trace formula for the isolated orbits is valid.
However, the bifurcations of theA orbit have not been
treated uniformly in Refs.[12,36], so that the accuracy of the
results decreased near the saddle ate=1. In Ref. [18] the
classical bifurcation cascade in the Hénon-Heiles potential
was discussed, in which the sequence of two successive
pitchfork bifurcations repeats itself infinitely often.

Presently we test our uniform approximation(11) to the
density of states against the quantum-mechanical result ob-
tained forl=0.03. The quantum spectrum was, as in Refs.
[12,36], obtained by diagonalization of(27) in a finite
harmonic-oscillator basis—thus neglecting the effects of

FIG. 9. The same as Fig. 4 for the Hénon-Heiles potential near the first two bifuractions of theA orbit.
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quantum tunnelling through the barrier. Both quantum and
semiclassical results were coarse grained with a Gaussian
width of g=0.4; for this resolution the inclusion of the sec-
ond repetitions of all periodic orbits in Eq.(11) was neces-
sary (cf. Ref. [12]). For the pitchfork bifurcation of the sec-
ond repetition of the orbitC at e=0.892, where a double-
loop orbit D is created[36], we used the codimension-1
uniform approximation of Ref.[14]. The upper part of Fig.
10 shows the entire energy region 0øeø1, whereas the
lower part shows the zoomed region 0.88øeø1. The solid
lines give the quantum-mechanical result, and the dashed
lines the results obtained with our uniform approximation
(11) for the first two pitchfork bifurcations of theA orbit. In
the regioneø0.5, we have included the uniform approxima-
tion for the symmetry breaking, developed in Ref.[12], in
order to obtain the correct harmonic oscillator limit fore
→0. The dotted line in the lower part of the figure corre-
sponds to the sum of the isolated periodic orbits according to
the standard Gutzwiller trace formula[1]. Here the diver-
gences due to the lowest bifurcations of theA andC orbits
are clearly visible. The uniform result(11), however, exhibits
no divergences and its agreement with the quantum result is
very satisfactory. The discrepancy arising ate*0.992 can be
attributed to the influence of the continuum that starts ate
=1 which was not taken properly into account in our quan-
tum result. In fact, the rather excessive maximum appearing
in the latter arounde,0.994 makes us believe that the latter
is erroneous, rather than our semiclassical result. Note that
the uniform approximation properly yields the asymptotic
Gutzwiller result on either side of the double-pitchfork bifur-
cation.

In the energy regione.1 above the barrier, where the
spectrum of the Hénon-Heiles Hamiltonian(27) is continu-
ous, the oscillating part of the density of states is determined
by the resonances in the continuum. In order to test the semi-
classical periodic orbit theory in this domain, it becomes
necessary to calculate both the positions and widths of the
resonances. It will then be an interesting question to study
which periodic orbits are important in the continuum region.
Work along these lines is in progress[37]. Although the con-
tinuum region is also classically unbounded, all theR andL
orbits bifurcating from theA orbit (which itself ceases to
exist abovee=1), as well as theD orbit bifurcating fromC,
continue to exist and are bounded at all energiese.1

[18,35]. In addition, three new orbits librating across the
saddles exist in this region[18,34]; since they have the short-
est periods they are expected to play a leading role in the
coarse-grained density of states.

C. Separable Hénon-Heiles system

The Hénon-Heiles system permits chaotic motion because
of the nonseparable termx2y in Eq. (27). Omitting this term
one obtains a system which is separable inx andy and hence
integrable:

H =
1

2
spx

2 + py
2d +

1

2
sx2 + y2d −

l

3
y3. s37d

Again using dimensionless scaled variablesu=lx and v
=ly the scaled energye in units of the saddle point energy
E* reads

e= E/E* = 6F1

2
su̇2 + v̇2d + Vsu,vdG

= 3su̇2 + v̇2d + 3su2 + v2d − 2v3. s38d

Figure 11 shows a contour plot of the potential part of Eq.
(38) in the su,vd plane together with the two shortest peri-
odic orbitsA and B calculated at an energye=1. The two
orbits are librations along theu and v axes. The potential
along thev axis is the same as that in the right part of Fig. 6,

FIG. 10. Oscillating part of
density of states in the Hénon-
Heiles potential. Solid lines:
quantum-mechanical results ob-
tained for l=0.03. Dotted lines:
sum of Gutzwiller contributions
(6) of all isolated orbits. Dashed
lines: codimension-two uniform
approximation(11) for the orbits
A, R5, and L6, including orbitsC
and D in the codimension-1 uni-
form approximation of Ref.[14]
and the isolatedB orbit. Coarse
graining with Gaussian widthg
=0.4.

FIG. 11. Equipotential lines in the(u,v) plane for the separable
version of the Hénon-Heiles potential. The heavy solid lines show
the two shortest periodic orbitsA andB evaluated ate=1.
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while the potential along theu axis is harmonic.
Th actions and periods of theA orbit are given by Eqs.

(34) and(36), respectively. The trace of its stability matrix is
given analytically by[18]

Tr M̃AsEd = 2 cosfTAsEdg. s39d

The u motion of theB orbit is harmonic,

uBstd =Îeu

3
sinst + fd, s40d

whereeu is the conserved scaled energy in theu direction
and the phasef is arbitrary. The action and period of the
primitive B orbit are those of a harmonic oscillator with fre-
quencyv=1:

SBsEd = 2pE, TBsEd = 2p. s41d

The trace of the stability matrix of theB orbit has the con-

stant value TrM̃B= +2, which is consistent with its appearing
as a torus in the asymptotic analysis given in Appendix C.

The kvth repetition of orbitA bifurcates whenever the
condition

Tr M̃A
kv = 2 cosskvTAd = + 2 s42d

is obeyed, which is equivalent to the resonance condition(cf.
Appendix C 2) at the bifurcation energiesEbif

kvTAsEbifd = 2pku = kuTB. s43d

Thus the bifurcations of theA orbit create the rational tori
corresponding to thekv :ku resonances. The new tori form
families of degenerate periodic orbits that are related by the
U(1) symmetry due to the freedom in choosing the phase
fP f0,2pd in their u motion,

uTsEd =Îe− ebif

3
sinst + fd, s44d

whereebif are the scaled bifurcation energies, while theirv
motion is “frozen” and identical to that of theA orbit given
in Eq. (32) at the corresponding bifurcation energy:

vTstd = vA
sebifdstd. s45d

The actions of the tori become

STsEd = kvSAsEbifd + ku2psE − Ebifd, s46d

so that their periods stay constant at

TT = ku2p = kuTB. s47d

Like for all degenerate orbit families, their stability trace is
constant:

Tr M̃T = + 2. s48d

We first apply our uniform approximation to the single
isolated bifurcation withku:kv=5:3 which happens ate
=0.987 655. In Fig. 12 we show the action differenceS1
−S0=STsEd−SAsEd, the periods T0=3TAsEd and T1=TT

=10p, the traces of the stability matrix, as well as the
Gutzwiller and Berry-Tabor amplitudes of the isolatedA or-
bit and the 5:3 torus, respectively. This figure should be com-
pared with Fig. 9 in which the corresponding quantities are
shown for the nonintegrable Hénon-Heiles potential. Here
the two bifurcations coincide, and instead of the two isolated
orbits R5 and L6 created at the two bifurcations there, we
have here only one torus whose stability trace has the con-
stant value +2.

These quantities are now used to evaluate the uniform
approximation for the integrable case, given in Eq.(18). The
result is shown in Fig. 13 by the dashed line. It is compared
to the exact quantum-mechanical curve(solid line) obtained
for l=0.04, as well as to the result of including indepen-
dently the Berry-Tabor contribution of the torus and the
Gutzwiller contribution of the isolatedA orbit which di-
verges at the bifurcation(dotted line). All results have been
coarse grained by convolution with a Gaussian with smooth-
ing parameterg=0.1. We see that the uniform approximation
reproduces the quantum result very accurately.

So far, we have discussed and tested our uniform approxi-
mations for a double-pitchfork sequence, based on the nor-
mal form(8), and its separable limit. In Appendix C, we give
an alternative derivation of the uniform approximation for

FIG. 12. The same as Fig. 4 for the separable
Hénon-Heiles system(37) for the bifurcation of
theku:kv=5:3 resonance at energye=0.987 655.
The centralA orbit is labeled by “0,” the bifur-
cated 5:3 torus by “1.”
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the separable limit, starting from the EBK quantization and
exploiting the convolution property of the density of states
for separable systems. There we do not require any normal
form, but we start from a one-dimensional integral(C15) for
the density of states which by construction is uniform in the
sense that it does not diverge at any energy. By expanding
the amplitude and phase functions of the integrand around
the bifurcation energiesEbif up to first and second order,
respectively, we arrive at approximate integrals which pre-
cisely correspond to those obtained from the normal form
(8), and which can be reexpressed in terms of the Gutzwiller
amplitude of the isolated A orbit and the Berry-Tabor ampli-
tudes of the rational tori. Furthermore, the starting point
(C15) allows us also to include the limite→0, in which the
amplitude of the isolatedA orbit also diverges, in a uniform
way.

Since all amplitudes, actions and periods of the isolatedA
orbit and the tori bifurcating from it can be given analytically
for the integrable Hénon-Heites(IHH) potential, it poses no
problem to sum over the repetitions of theA orbit and all the
tori bifurcating from them. As shown in detail in Appendix
C, this leads to the following “grand” uniform approximation
which is valid and finite also in the harmonic-oscillator limit
e→0:

dgunisEd = o
kv=1

`

o
ku=kv

`

s− 1dku+kvHSAAkukv
sEd

−
1

2
skukvÎ "

pDSkukv

ATkukv
DcosFkv

"
SAsEd −

p

2
G

+
ATkukv

2
Refseip/4f1 − dkukv

g + Î2fCsjkukv
d

+ iSsjkukv
dgdesi/"dSTkukv

sEdgJ + dgas
sA0dsEd + dgas

sB0dsEd.

s49d

Here we have defined

AAkukv
sEd =

1

p"

2kvfTAsEdg2

hfkvTAsEdg2 − s2pkud2j
,

skukv
= sgnsE − Ekukv

* d, s50d

and

jkukv
= skukv

Î2DSkukv

p"
, s51d

DSkukv
sEd = kvSAsEd − STkukv

sEd ù 0,

and the amplitudesATkukv
and actionsSTkukv

of the tori are

given in Eqs.(C19) and(C20), respectively, of Appendix C.
The first term in Eq.(49) yields, upon summation over all

ku and kv and adding the termdgas
sA0dsEd in the last line,

precisely the Gutzwiller trace formula(C23) of the isolatedA
orbit which diverges at the bifurcations and atE=0. The
second term in the first line is a counter term from the tori
that cancels all divergences of the Gutzwiller amplitudes.
The second line of Eq.(49) yields the Berry-Tabor trace
formula (C18) far away from the bifurcations; near the bifur-
cations it contains the Stokes factor that interpolates between
the Berry-Tabor amplitudes above and zero below the bifur-
cations, yielding exactly half the Berry-Tabor amplitudes at
the bifurcations. The two contributions in the last line of Eq.
(49) are small boundary terms, given in Eqs.(C21) and
(C24) of Appendix C, which are numerically insignificant
but have been included in order to be consistent up to order
"−1 in the amplitudes.

In the limit e→0, where we can neglect all bifurcations,
only the diagonal terms withku=kv=k contribute. The trace
formula (49) then leads uniformly to the correct SU(2) har-
monic oscillator limit whose trace formula is given in Eq.
(C13) of Appendix C(for v=1):

FIG. 13. Oscillating part of level density for
the separable Hénon-Heiles system(37) near the
5:3 resonance, coarse-grained with a Gaussian
width g=0.1. Solid line, quantum-mechanical re-
sult obtained withl=0.04; dotted line, sum of
Berry-Tabor contribution of 5:3 torus and
Gutzwiller contribution of isolatedA orbit;
dashed line, uniform approximation(18).

FIG. 14. Oscillating part of level density of
the separable Hénon-Heiles system(37), coarse
grained with g=0.1. Solid lines: quantum-
mechanical result forl=0.04. Dashed lines:
semiclassical results withku,kvø8.
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dgunisEd → dgho
isosEd =

2E

"2 o
k=1

`

cosS k

"
2pED sfor e→ 0d.

s52d

(The same limit was obtained in a uniform approximation for
the full nonintegrable Hénon-Heiles potential in Ref.[12]
neglecting, however, the bifurcations.)

In Figs. 14 and 15, we compare the results obtained from
the grand uniform approximation(49) with those of
quantum-mechanical calculations for system(38) with l
=0.04 (with saddle energyE* =104.666 corresponding toe
=1), both coarse grained by a Gaussian convolution with an
energy rangeg=0.1, including repetition numbers up to
ukuu , ukvuø8 into the semiclassical trace formula(49). Figure
14 shows the lowest energy range which exhibits fore
&0.1 the harmonic-oscillator limit(52) where the amplitude
of dgsed is linear ine.

In the top panel of Fig. 15 we compare the quantum result
to the standard Berry-Tabor trace formula, given in Eq.
(C18) of Appendix C, which takes into account only the tori
with semiclassical amplitudes proportional to"−3/2. In the
center panel, we have added to them theA orbit contribution
described by the Gutzwiller trace formula, given in Eq.
(C23) of Appendix C, with amplitudes proportional to"−1.
The latter is seen to diverge at all bifurcations corresponding
to resonances withku:kvù5:4. Between the bifurcations, the
result is clearly improved by adding theA orbit contribution

and comes very close to the quantum result. In the bottom
panel, finally, we show the grand uniform approximation
(49) which reproduces the quantum result very well through-
out the whole energy region. The bifurcation corresponding
to the resonances withku:kv=2:1 happens at the scaled en-
ergy e=0.998 491; all bifurcations withku:kv.2:1 happen
thus in the top 0.15 percent of the energy scale very near the
barrier. In this region, the bifurcations are lying so densely
that their independent summation in Eq.(49) is strictly not
justified. However, at the present resolution of the spectral
density this does not appear to affect our numerical result.
On the other hand, the good agreement which we find in Fig.
15 at all lower energies demonstrates that our grand uniform
approximation(49) successfully sums all partial bifurcation
cascades of theA orbit limited by the repetition numbers 2
økv ,kuø8.

We should stress that, like for the nonintegrable Hénon-
Heiles potential, the quantum spectrum was obtained here by
diagonalisation in a finite harmonic-oscillator basis. The per-
sistence of our good agreement up toe.1 therefore suggests
that the barrier tunneling effects are negligible—at least
within the resolution given here by the coarse graining width
g=0.1.

V. SUMMARY, CONCLUSIONS, AND OUTLOOK

We have derived a codimension-2 uniform approximation
for the joint contribution of the periodic orbits involved in a

FIG. 15. Oscillating part of level density of the separable Hénon-Heiles system(37), coarse grained withg=0.1. Solid lines: quantum-
mechanical result. Dashed lines: semiclassical results withku,kvø8. Top: Berry-Tabor result for the tori. Center: sum of Berry-Tabor result
for the tori plus Gutzwiller result for the isolatedA orbit. Bottom: uniform approximation(49).
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double pitchfork bifurcation sequence by constructing a suit-
able normal form. This bifurcation scenario only occurs in
systems with discrete symmetries and cannot be treated by
the codimension-1 uniform approximations developed in
Ref. [14] due to the vicinity of the two pitchfork bifurca-
tions. Furthermore, it does not belong to the unfoldings clas-
sified in Ref.[25], so that a different approach became inevi-
table. We have also studied the limit where both pitchfork
bifurcations coincide, resulting in the bifurcation of a torus
from an isolated orbit such as it happens in integrable sys-
tems. For separable potentials, the same uniform approxima-
tion could be rederived from an EBK trace formula that ac-
counts both for an isolated orbit and for the tori bifurcating
from it.

Our uniform approximation was tested numerically for
two well-known systems with mixed classical dynamics: a
double-well potential and the familiar Hénon-Heiles system.
In both cases the uniform approximation was shown to reach
the asymptotic Gutzwiller approximation on either side of
the double-pitchfork bifurcation, while yielding finite ampli-
tudes throughout the whole energy region. The agreement of
the semiclassical and quantum-mechanical coarse-grained
level densities was found to be excellent.

Our uniform approximation is only valid as long as the
considered pair of pitchfork bifurcations is isolated from
other bifurcations. In the examples studied here, this is the
case for the lowest pair of bifurcations of the isolatedA orbit.
Since this orbit undergoes an infinite bifurcation cascade cu-
mulating at the barrier energye=1, our approximation will
eventually fail for higher double-pitchfork bifurcations; the
precise energy where this happens depends on the value of
the nonlinearity parameterl. However, for the coarse-
grained shell structure obtained with a limited resolution
(given by a sufficiently large Gaussian widthg), the higher
bifurcations become less important and the corresponding
divergences in the level density cannot be resolved.

For the separable limit of the Hénon-Heiles system we
have obtained analytical expressions for the uniform ap-
proximation. This allowed us to sum over a large part of the
bifurcation cascade corresponding to rationalku:kv tori with
ku,kvø8. The resulting grand uniform approximation(49)
for the semiclassical density of states, which also correctly
describes the SU(2) symmetry-restoring limit fore→0, leads
to an excellent agreement with the slightly coarse-grained
quantum-mechanical density of states even up to the barrier
energye=1.

An extension of the semiclassical analysis of the density
of states to the energy region above the barrierse.1d, in-
cluding a rigorous quantum-mechanical determination of the
widths and energy shifts due to barrier tunneling in the qua-
sibound region of the spectrum and of the resonances in the
continuum region, is in progress[37].
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APPENDIX A: DERIVATION OF THE UNIFORM
APPROXIMATION

In this section we describe the procedure leading to the
uniform approximation(11) following the ideas outlined in
Ref. [25]. The semiclassical approximation of the density of
states is given by

dgsEd <
1

2p2"2ReE
V

dq8dp Csq8,pdexpF i

"
Fsq8,pd − i

p

2
nG

sA1d

with a phase function

Fsq8,pd = Ŝsq8,pd − q8p sA2d

and an amplitude function

Csq8,pd =
1

n

] Ŝ

] E
U ]2Ŝ

] q8 ] p
U1/2

. sA3d

The integration is done over any regionV of the PSS andn
corresponds to the Morse Index. We can setn=2 in Eq.(A3)
because the nongeneric pitchfork bifurcations are equivalent
to generic period-doubling bifurcations[23]. Using the nor-
mal form (8) of the generating function the phase functionF
can be expressed in canonical polar coordinatesI andf as

Fsq8sf,Id,psf,Idd = S0 − se1 cos2f + e2 sin2fdI − aI2

sA4d

with

p = Î2I cosf, q8 = Î2I sin f. sA5d

The periodic solutions in Eq.(5) correspond to the stationary
points ofF at

] F

] f
= 0,

] F

] I
= 0, sA6d

yielding

sins2fd = 0, se1 cos2f + e2 sin2fd + 2aI = 0. sA7d

There are four solutions of Eq.(A7): two with coss2fd=1,
corresponding to a satellite orbit which is labeled by 1 in the
following, and two with coss2fd=−1 corresponding to a sat-
ellite orbit labeled by 2. At the stationary points the values of
I are

I i = −
ei

2a
, sA8d

where i =1,2. With si ;sgnsI id the satellite orbiti is real if
si = +1 and represents a ghost solution with complex coordi-
natesq andp if si =−1. The phase function(A4) evaluated at
the stationary points(A8) corresponds to the actions of the
two satellite orbits,

SEMICLASSICAL TRACE FORMULAS FOR PITCHFORK… PHYSICAL REVIEW E 70, 016206(2004)

016206-13



Si = S0 +
e i

2

4a
. sA9d

The periods areT0=]S0/]E and

Ti = T0 +
ei

2a

] ei

] E
. sA10d

The traces of the stability matrix can be calculated from

Tr M̃ = S ] 2Ŝ

] p ] q8
D−1F1 +S ] 2Ŝ

] p ] q8
D2

−
] 2Ŝ

] p2

] 2Ŝ

] q82 G ,

sA11d

evaluated at the stationary points[13–15]. One obtains

Tr M̃0 = 2 −e1e2, Tr M̃1 = 2 + 2e1e2 − 2e1
2,

Tr M̃2 = 2 + 2e1e2 − 2e2
2. sA12d

For all orbits the actions(A9), periods(A10), and stabilities
(A12) are real quantities even though the orbits themselves
can be complex. This characteristic of period-doubling bifur-
cations which is due to a Stokes transition was already men-
tioned in Ref.[14].

The Maslov indicesmi of the periodic orbits are related to
the Morse indexn appearing in Eq.(A1) by

mi = n +
1

2
snn − npd, sA13d

where nn and np are the number of negative and positive
eigenvalues of the matrix

F9 =1
]2F

] q82

]2F

] q8 ] p

]2F

] q8 ] p

]2F

] p2
2 , sA14d

evaluated at the stationary points. They follow as

m0 = n + fsgnse1d + sgnse2dg/2, sA15d

m1 = n + fsgnse2 − e1d − sgnse1dg/2, sA16d

m2 = n + fsgnse1 − e2d − sgnse2dg/2. sA17d

For the amplitude function the following ansatz was found to
be sufficient:

Csf,Id = a0 + a1I + a2I
2. sA18d

Equation (A1), expressed in canonical coordinates, now
takes on the following form:

dgsEd <
1

4p2"2Re expF i

"
S0 − i

p

2
nG

3E
0

2p

dfE
0

`

dI sa0 + a1I + a2I
2d

3 expH−
i

"
fse1 cos2f + e2 sin2fdI + aI2gJ .

sA19d

The parametersei measure the distance to the bifurcationi.
They are given by the actions(A9) of the new born orbits as

ei = − 2s̃isi
ÎuDSiu, sA20d

where we have set

a = s̃i ; sgnsDSid. sA21d

In order to achieve a uniform approximation one evaluates
Eq. (A19) in stationary-phase approximation at the stationary
points which yields

dgsSPdsEd =
1

p"

sa0 + a1I i + a2I i
2d

ÎudetF9sI idu

3 cosH 1

"
fS0 − se1 cos2fi + e2 sin2fidI i − aIi

2gJ .

sA22d

One can now determine the coefficientsa0, a1 and a2 by
identifying the Gutzwiller amplitudesAi with

Ai =
1

p"

sa0 + a1I i + a2I i
2d

ÎudetF9sI idu
, sA23d

wherei =1,2,3. Defining

ẽsfd ; e1 cos2f + e2 sin2f, sA24d

the integrals with respect toI in Eq. (A19) can be calculated
analytically using

Fn ; E
0

`

dIIne−si/"dfẽsfdI+aI2g

= Si"
]

] ẽsfd
DnE

0

`

dIe−si/"dfẽsfdI+aI2g. sA25d

They yield for n=0,1, and 2 theresults given in Eqs.(12)
and (13). The remainingf integral over the intervalf0,2pg
can easily be calculated numerically.

Appendix B: Derivation of the uniform approximation for the
separable limit

In the casee1=e2;e the phase function(A4) simplifies to

F„q8sf,Id,psf,Id… = S0 − eI − aI2 sB1d

and becomes independent off, corresponding to an inte-
grable system. The stationary point ofF corresponds to a
torus with the radial coordinate
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IT = −
e

2a
. sB2d

With the definition

s ; sgnsITd, sB3d

the torus is real ifs= +1, while it is imaginary ifs=−1
which can be understood from

I =
p2 + q82

2
. sB4d

The action of the torus becomes

ST = S0 +
e 2

4a
, sB5d

and for the period one obtains

TT = T0 +
e

2a

] e

] E
. sB6d

Using Eq.(A11) one finds that TrM̃ = +2 which is charac-
teristic of an orbit family. The amplitude function can be
derived from Eq.(A18), resulting in

CsId = a0 + bI , sB7d

with

b = a1 −
e

2a
a2 sB8d

usinga0, a1, anda2 from Eq.(A18). This can be seen by the
following integration by parts,

−
e

2a
E

0

`

dII expS i

"
FD

=
1

2a
E

0

`

dII expS i

"
FDs− e − 2aI + 2aId

=
1

2a
E

0

`

dII expS i

"
FDS ] F

] I
+ 2aID

=E
0

`

dII2 expS i

"
FD + Os"d, sB9d

where the integral that was neglected in the last step is of
relative order". Thus we obtain, to leading order in", the
result (B7).

The functions in Eq.(A24) no longer depend onf so that
the integration overf can be performed giving a factor of
2p. The remaining expression fordgsEd then has the form

dgsEd =
1

2p"2Re expF i

"
S0 − i

p

2
nGE

0

`

dIsa0 + bId

3expF−
i

"
seI + aI2dG . sB10d

Exactly the same formula can be found in Ref.[15] in rela-
tion with a special case of a generic period-quadrupling bi-

furcations. Using the integrals(12) and (13), one arrives at

dgsEd =
1

p"

b

2a
cosSS0

"
−

p

2
sn + 1dD

+
1

p"3/2Î p

2uau Sa0 −
be

2a
D

3 ReXesi/"dsS0+e2/4ad−isp/2dnHe−isp/4ds̃

Î2

+ sFCSÎ e2

2p"uau
D − is̃SSÎ e2

2p"uau
DGJC .

sB11d

It remains to express all parameters by the quantities that
enter into the asymptotic contributions of the torus and the
central orbit. A stationary phase approximation of Eq.(B11)
would deliver the contribution of the stationary point corre-
sponding to the torus only. In order to obtain the contribution
of the central periodic orbit atI =0 one has to include also
the end-point corrections to the stationary phase approxima-
tion (cf. Appendix C 2). This amounts to an asymptotic ex-
pansion of the Fresnel functions for large argumentsx@1
(cf. Ref. [32]). Keeping their two leading terms,

Csxd ,
1

2
+ sinspx2/2d, sB12d

Ssxd ,
1

2
− cosspx2/2d, sB13d

leads to

dgsEd =
1

p"

a0

ueu
cosSS0

"
−

p

2
fn + sgnsedgD

+
1

p"3/2

1 + s

2
Î p

uau Sa0 −
be

2a
D

3cos3S0 +
e2

4a

"
−

p

2
Sn +

s̃

2
D4 . sB14d

Two asymptotic contributions can be recognized. One is of
the order"−1, corresponding to the central periodic orbit, and
one is of the order"−3/2 which is the torus contribution.
Asymptotically one obtains a torus contribution only on the
real side of the bifurcations= +1 whereas on the complex
side s=−1 the torus contribution asymptotically vanishes
even though the torus amplitude itself must not necessarily
go to zero. The fact that it still gives no contribution asymp-
totically is due to a Stokes transition of the torus.

Expressing now Eq.(B11) with the Gutzwiller amplitude
AA of the central orbit,

A0 = AA =
1

p"

a0

ueu
, sB15d

and the Berry-Tabor amplitude of the torus,
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AT =
1

p"3/2Î p

uau Sa0 −
be

2a
D , sB16d

and settingDS;ST−S0 as well as n=m0−sgnsed finally
yields the uniform approximation(18).

APPENDIX C: ALTERNATIVE DERIVATION OF THE
UNIFORM APPROXIMATION FOR THE SEPARABLE

LIMIT FROM EBK QUANTIZATION

In this appendix we give an alternative derivation of the
uniform approximation for the separable limit, starting from
EBK (or WKB) quantization in one dimension and using the
fact that the two-dimensional density of states can be ob-
tained by a convolution of the two one-dimensional densities
of state. We present the general formula in the first subsec-
tion and derive from it the known exact trace formula for
harmonic oscillators. In the second subsection we specialize
to the integrable Hénon-Heiles system and present a uniform
trace formula which sums over all bifurcations and leads to
the correct harmonic-oscillator limit fore→0.

1. Semiclassical trace formula for separable Hamiltonians

For a separable Hamiltonian in two dimensionssu,vd,

H = Husu,pud + Hvsv,pvd = Eu + Ev, sC1d

the Schrödinger equation separates

ĤFnmsu,vd = EnmFnmsu,vd,

Fnmsu,vd = fnsudcmsvd, Enm= en + «m, sC2d

and the exact quantum density of states can be written as a
convolution integral over the two level densities of the one-
dimensional systems:

gsEd =E
0

E

gusE − E8dgvsE8ddE8, sC3d

where

gusEd = o
n

d sE − end, gvsEd = o
m

d sE − «md, sC4d

and we have assumed«m,en.0. We now use EBK quanti-
zation si =u,v ;nu=n,nv=md,

Hi = HsI id, I i =
1

2p
Si =

1

2p
rpidqi = "sni + 1/2d,

sC5d

and Poisson summation(cf. Refs. [4,30]) to obtain the fol-
lowing semiclassical trace formula for each of the one-
dimensional level densities:

gisEd =
TisEd
2p"

o
ki=−`

`

s− 1dki cosFki

"
SisEdG , sC6d

which is identical to the Gutzwiller trace formula[1] for a
one-dimensional system and yields the corresponding EBK

(WKB) spectrum. Using Eq.(C3), we thus get the two-
dimensional trace formula for the separable Hamiltonian
(C1),

gsEd =
1

s2p"d2 o
ku,kv=−`

`

s− 1dku+kv

3E
0

E

TusE − E8dTvsE8dcosFku

"
SusE − E8dG

3 cosFkv

"
SvsE8dGdE8. sC7d

If the convolution integral is done exactly, this trace formula
yields the spectrumEnm in Eq. (C2) in the EBK approxima-
tion. The contribution fromku=kv=0 yields the average
Thomas-Fermi(TF) level density which becomes a simple
convolution integral over the primitive periods of the two
one-dimensional motions:

g̃sEd = gTFsEd =
1

s2p"d2E
0

E

TusE − E8dTvsE8ddE8.

sC8d

The semiclassical trace formula(C7), which contains the
smooth part(C8), requires only the classical periodsTisEd
and actionsSisEd of the one-dimensional systems as an input.
Nevertheless, it contains all information about the periodic
orbits of the two-dimensional system—not only the degener-
ate families forming two-dimensional rational tori, but also
the existing isolated orbits as will be shown explicitly in the
following. It also handles all possible bifurcations uniformly.
The formula (C7) therefore goes far beyond the standard
trace formulas[4,7] for integrable systems which only take
the leading rational tori into account and cannot account for
bifurcations.

The integral in Eq.(C7) can, in general, not be done ana-
lytically. For a harmonic oscillator,

H =
1

2
spu

2 + pv
2d +

1

2
svu

2u2 + vv
2v2d, sC9d

we haveSisEd=2pE/vi andTisEd=2p /vi si =u,vd. The in-
tegral then is elementary and yields

ghosEd =
1

2p"vuvv
o

ku,kv=−`

`

s− 1dku+kve−ip/2

3H 1

sku/vu − kv/vvd
eiku2pE/"vu

+
1

skv/vv − ku/vud
e−ikv2pE/"vvJ . sC10d

For irrational frequency ratiosvu:vv, no singularities arise
and using the identity[32]
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1

sinszd
= o

k=−`

`
s− 1dk

sz− kpd
szÞ npd, sC11d

we can sum the first term in Eq.(C10) over all kv and the
second term over allku. The result is the exact Gutzwiller
trace formula for the irrational harmonic oscillator[30,40]
which yields its correct quantum-mechanical spectrum,

ghosEd =
E

"vu"vv
+

1

"vu
o
ku=1

`
s− 1dku

sinSkup
vv

vu
DsinSku

2pE

"vu
D

+
1

"vv
o
kv=1

`
s− 1dkv

sinSkvp
vu

vv
DsinSkv

2pE

"vv
D . sC12d

The last two terms contain the sums over the(only) isolated
periodic orbits along theu andv axes. Corresponding trace
formulas for rational frequency ratios can be obtained from
the above by taking suitable limits[40]. E.g., in the isotropic
limit vu=vv=v one obtains

gho
sisodsEd =

E

s"vd2H1 + 2o
k=1

`

cosSk
2pE

"v
DJ , sC13d

which is again a quantum-mechanically exact trace formula
in terms of the twofold degenerate families of periodic orbits
with SU(2) symmetry, having the primitive actionsSsEd
=2pE/v. Note that the standard methods to derive the trace
formula for integrable systems[4,7] cannot be used for har-
monic oscillators, since the(“curvature”) tensor of second
derivatives of the Hamiltonian(C9) with respect to the torus
actionsI i =Ei /vi is identically zero.

For systems in which the actionsSisEd are no simple func-
tions, the integral in Eq.(C7) can in general only be done
numerically. This becomes practically impossible if one
wants to generate the semiclassical EBK spectrum by sum-
ming (C7) over all ku and kv. In the example treated in the
next subsection, we show how an asymptotic evaluation of
the integral can be used to establish the relation to the Berry-
Tabor type trace formula for the tori and the Gutzwiller trace
formula for isolatedA orbit, and to derive the same uniform
approximation for the bifurcations of the isolatedA orbit as
we have obtained in Appendix B using the normal form
theory.

2. Asymptotic evaluation for the separable Hénon-Heiles
system and global uniform approximation

In the following we specialize to the integrable Hénon-
Heiles (IHH) system(37), expressed in the scaled coordi-
natesu,v as in Eq. (38). Here Tu=TB=2p, SusEd=SBsEd
=2pE, and the periodTAsEd and actionSAsEd of the v mo-
tion are given in Eqs.(34)–(36). The TF level density is then
given by

gTFsEd =
1

2p"2SAsEd sC14d

and the oscillating part can be written as

dgsEd =
1

2p"2 o
ku,kv=−`

`

8 s− 1dku+kv

3E
0

E

TAsEvdeifkvSAsEvd+2pkusE−Evdg/"dEv,

sC15d

where the prime indicates that the TF contribution fromku
=kv=0 must be left out. Note that upon independent summa-
tions overku andkv the imaginary parts cancel, consistently
with the general real expression(C7).

In order to evaluate the integral in Eq.(C15) in the semi-
classical limit"→0, we use the following general formula
[38,39]:

E
a

b

TsxdeiSsxd/"dx, o
i

TsxidÎ 2p"

uS9sxidu
eiSsxid/"+isgnfS9sxidgp/4

+ Tsbd
"

S8sbd
eiSsbd/"−ip/2

+ Tsad
"

S8sad
eiSsad/"+ip/2, sC16d

neglecting corrections of higher order in". Equation(C16) is
a generalization of the standard stationary-phase integration,
taking into account the end-point corrections whose contri-
butions are of order"1/2 relative to those from the stationary
points. The sum in the first line above is to be taken over all
stationary pointsxi which lie in the integration intervala
øxi øb. If either of the end pointsa or b is a stationary
point, its contribution to the sum has to be divided by two
and the corresponding term in the second line above has to
be omitted. If there is no stationary point at all in the interval
fa,bg, there is no contribution to the first line and the leading
terms of the integralI are of order" as given by the end-
point contributions in the second line alone.

The stationarity condition for the phase in the integral
(C15) leads to the resonance condition for the rational tori,

kvTAsEkukv

* d = 2pku = kuTB. sC17d

Note that this condition is independent of the energyE. The
stationary pointsEv=Ekukv

* are the energies at which thekvth
repetition of theA orbit bifurcates, cf. Eqs.(42) and (43) in
Sec. IV C. The condition(C17) can only be fulfilled ifku and
kv have the same sign and ifukuuù ukvu. In most formulas
below, we takeku and kv to be positive(or zero for one of
them) and account for the two signs by an extra factor of 2 in
the summations, taking real parts where necessary. Forku
=kv=k, the stationary point is atEkk

* =0, for all other tori the
stationary points are at finite energies. This gives, according
to the first line in Eq.(C16), the following asymptotic con-
tribution to lowest order in":
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dgas
sTdsEd = o

kv=1

`

o
ku=kv

`

ATkukv
cosF1

"
STkukv

sEd +
p

4
GQsE − Ekukv

* d,

sC18d

which is exactly the Berry-Tabor trace formula[4,7] with the
amplitudes

ATkukv
= fkukv

s− 1dku+kv

"3/2

ku

kv
Î 2p

kvTAsEkukv

* d
,

sC19d

fkukv
= H2

1
for

ku Þ kv

ku = kv
J .

The actions of the tori are

STkukv
sEd = kvSAsEkukv

* d + 2pkusE − Ekukv

* d sE ù Ekukv

* d.

sC20d

The diagonal torusTkk, which comes from the lower end
point Ev=0 of the integral in Eq.(C15), corresponds to the
kth repetition of the classicalB orbit. This is somewhat puz-
zling, since classically this orbit appears to be isolated along
theu axis, but semiclassically it contributes in the same way
as the two-dimensional tori withkuÞkv with an amplitude
proportional to"−3/2. The reason for this is connected to the
fact that the energyEkk

* =0 at which it bifurcates is simulta-
neously the limit of the isotropic two-dimensional harmonic
oscillator in which all orbits form a two-dimensionally de-
generate family with SU(2) symmetry. The contributions
from kv=0 andkuÞ0 lead to a small correction,

dgas
sB0dsEd =

1

p"
o
ku=1

`
s− 1dku

ku
sinSku

"
2pED , sC21d

which is of orderÎ" with respect to Eq.(C19) and found to
be negligible in our numerical calculations.

The upper end pointEv=E of the integral in Eq.(C15)
corresponds to motion along thev axis which classically
gives the isolatedA orbit. According to the second line in Eq.
(C16), this yields the asymptotic contribution

dgas
sAdsEd =

TAsEd
p"

o
kv=1

`

o
ku=−`

`
s− 1dku+kv

fkvTAsEd − 2pkug
eifkvSAsEd/"−p/2g.

sC22d

Using the identity(C11) we can do the summation overku
analytically and find

dgas
sAdsEd =

TAsEd
2p"

o
kv=1

`
s− 1dkv

sinfkvTAsEd/2g
cosFkv

"
SAsEd −

p

2
G ,

sC23d

which is exactly the Gutzwiller trace formula for the isolated
A orbit. Of course, this expression cannot be used at the
bifurcation energies of theA orbit where, on one hand, Eq.
(C11) is not valid and, on the other hand, the upper end-point
correction from the integral(C15) should be replaced by
one-half of the corresponding torus contribution to Eq.
(C18). The contributions fromku=0 andkvÞ0 in Eq. (C22)
lead to a small correction,

FIG. 16. Shell structure in the level density of the integrable Hénon-Heiles system. Solid lines: exact EBK integral(C15). Dashed lines:
asymptotic approximations. Upper panel: Berry-Tabor contributions(C18) of theT tori plus Gutzwiller contribution(C23) of the isolatedA
orbit. Lower panel: uniform approximation(49). In both cases, repetition numbersuku,kvuø8 are included. Here the lowest energy region is
shown where the isolatedA orbit contribution diverges in the limite→0.
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dgas
sA0dsEd =

1

p"
o
kv=1

`
s− 1dkv

kv
sinSkv

"
SAsEdD , sC24d

which is included in Eqs.(C22) and (C23) and will be re-
ferred to below.

We have thus established that the isolatedA orbit emerges
asymptotically, with its standard Gutzwiller amplitude[41],
from the upper end-point corrections of the EBK trace for-

mula (C15), whereas the tori with their standard Berry-Tabor
amplitudes come from the stationary points of the phase in
the integral(C15).

In order to obtain finite amplitudes at the bifurcations and
the symmetry pointe=0, we have to develop a uniform ap-
proximation. This can be done quite easily by expanding the
phase and the amplitude of the integrand in Eq.(C15) around
the stationary pointsEkukv

* up to first and second order in
Ev−Ekukv

* , respectively. Noting that the torus actionSTsEd in

FIG. 17. The same as Fig. 16 in an intermediate energy region. The top panel exhibits the divergence of the Gutzwiller contributions of
the A orbit (dashed line) near theku:kv=9:8 and 8:7resonances.

FIG. 18. The same as Fig. 16 in the top energy range, covering the resonances withku:kvù3:2.
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Eq. (C20) represents the first two terms of the same expan-
sion of SAsEd aroundE−Ekukv

* , this leads to the approximate
contributions

ReHesi/"dSTkukv
sEd−ipsku+kvdE

0

E

sbkukv
+ ckukv

Evd

3esi/2"dakukv
sEv − Ekukv

* d2dEvJ , sC25d

which are exactly of the same type as those which we have
derived from the normal form theory in Appendix B, and
which can be integrated analytically using the formulas(12)
and(13). The parametersakukv

, bkukv
, andckukv

must be deter-
mined by the requirement that the asymptotic amplitudes and
actions of both theA orbit and theTkukv

torus be recovered
far away from the bifurcation energyEkukv

* . This procedure is
completely analogous to what has been discussed in the ear-
lier appendixes and need not be repeated here. The final uni-
form approximation which we obtain after summing over all
tori is given in Eq.(49).

The uniform trace formula(49) is discussed and tested
versus quantum-mechanical results in Sec. IV C. Here we
compare its results with those of a numerical integration of
the EBK trace formula(C15). We choose the valuel=0.04,
where the saddle energy isE=104.666, and a resolution of
the energy spectrum limited byukuu , ukvuø8. In Figs. 16–18,

covering different energy regions, the upper panels show the
results of Eq.(C15) by the solid lines and the sum of the
asymptotic Berry-Tabor contributions of the tori(C18) plus
the Gutzwiller contribution(C23) of the isolatedA orbit by
the dashed lines. In the lower panel, the same results of Eq.
(C15) (solid lines) are compared to those of the uniform
approximation(49) (dashed lines). In all cases, the latter
proves to be an excellent approximation to the exactly inte-
grated EBK trace formula(C15).

In Fig. 16 the lowest energy region is shown, where the
Gutzwiller contributions of theA orbit are seen to diverge in
the limit e→0. The divergences disappear in the uniform
approximation. In Fig. 17, an intermediate energy region is
shown which includes the divergences of the isolatedA con-
tributions at the bifurcations of theku:kv=9:8 and 8:7reso-
nances. Figure 18 shows the top energy region containing all
resonances withku:kvù3:2.

These results demonstrate that the uniform approximation
(49), which expresses the level density in terms of the Berry-
Tabor and Gutzwiller amplitudes of the periodic orbits, re-
produces the numerically integrated EBK trace formula
(C15) to a high degree of accuracy.

Finally we stress that our above derivation of the uniform
approximation(49) is not limited to the separable Hénon-
Heiles system, but can easily be modified to any separable
potential by starting from the general EBK trace formula
(C7) rather than from Eq.(C15).
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