
MOLECULAR PHYSICS, 1989, VOL. 66, NO. 3, 577-590 

Diffusion in simple fluids 

by R. J. SPEEDY 

Chemistry Department, Victoria University, Wellington, 
New Zealand 

F. X. PRIELMEIER,  T. VARDAG, E. W. LANG 
and H.-D. LCrDEMANN 

Institut fiir Biophysik und Physikalische Biochemie, 
Universit~it Regensburg, D8400 Regensburg, West Germany 

(Received 8 August 1988; accepted 29 September 1988) 

Computed self diffusion coefficients for the Lennard-Jones and hard sphere 
fluids are related by 

Dej = DNs(aB) exp (--e/2kB T) 

where r B = au(2/[1 + ~/(1 + 2kB T/~,)]) 116, the effective hard sphere diameter, is 
the (average) distance of closest approach in collisions between molecules which 
interact with the positive part of the LJ potential, and the Arrhenius term 
reflects the influence of the negative part. (rL~ and e are the size and well depth 
parameters. Measured diffusion coefficients of the halomethane liquids are 
reproduced by the equation over wide ranges of temperature and density and 
do not reveal any influence of the inelastic effects associated with molecular 
anisotropy. 

1. Introduction 
Boltzmann [1] stated that 'Between the centres of two molecules there acts an 

attractive force (the van der Waals cohesion force) which vanishes at macroscopic 
distances and varies so slowly with increasing distance that it may be considered 
constant within distances large compared to the average separation of two neigh- 
bouring molecules. Consequently the van der Waals cohesion forces exerted on each 
molecule in the interior of the container are very nearly equal in all directions in 
space, and they balance each other in such a way that the motion of the individual 
molecule is like that of the usual gas molecule, and is not noticeably modified by the 
cohesion forces.' 

That approximation underlies the modern day perturbation theories of liquids 
[2, 3, 4] which successfully relate the thermodynamic properties of a real fluid to 
those of a corresponding purely repulsive system (which Boltzmann refers to above 
as ' the  usual gas'), using the assumption that attractive forces do not affect the 
structure. It also underlies those interpretations of the dynamic properties of fluids 
which assume that diffusion, for example, is not influenced by attractive forces [5, 6, 
7]. 

Boltzmann also discussed the collisional trajectories of molecules which interact 
with a purely repulsive force law. He noted that if the molecules are replaced by 
elastic (hard) spheres, whose diameter is chosen as the distance of closest approach 
of the colliding pair, then the trajectories ' are indeed quantitatively different but not 
essentially qualitatively different' [8]. 
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The two statements quoted indicate that Boltzmann foresaw that the structure 
and dynamics of simple real fluids could be modelled by those of a corresponding 
hard sphere system. Furthermore, he provides a prescription for estimating the 
diameter of the hard spheres. 

One implication of those ideas is that the self diffusion coefficient of a simple real 
fluid might be represented by 

D = DHS , (1) 

where DHS (T, p, aB) is the self diffusion coefficient of a fluid of hard spheres at the 
same number density p = N / V ,  temperature T, and where the diameter of the hard 
spheres tr B is chosen to be (some form of average over collisions of) the distance of 
closest approach of colliding pairs. 

Equation (1) is familiar but Boltzmann's prescience is often overlooked and the 
assumptions which underlie it are seldom so clearly stated. His prescription for 
determining tr B has not, to our knowledge, been tested. 

The motivation for our work is to interpret the magnitude and the temperature 
and density dependence of diffusion in real fluids. We first show that for some 
selected systems, methane [9] and a purely repulsive model system defined by the 
Weeks, Chandler, Andersen core potential [10], Boltzmann's ideas lead directly to 
quantitatively accurate predictions. We then analyse computer simulation data for 
the square-well [9] and Lennard-Jones [10, 12] model and conclude that the cohe- 
sive part of the inter molecular potential plays a significant role in reducing diffu- 
sion. When that effect is accounted for it becomes possible to represent the 
experimentally measured diffusion coefficients of the halomethanes, the simplest 
class of fluids for which precise and extensive data are available [13-17], using two 
fitted parameters, the Lennard-Jones size and well depth, to characterise the mol- 
ecules. 

Our work differs in several ways from previous studies which have had similar 
objectives [5, 6, 18]: we use an improved expression for the hard sphere diffusion 
coefficient [19]; we follow Boltzmann's prescription for choosing the hard sphere 
diameter (and show that the Weeks, Chandler, Andersen prescription [4], which 
works for the structure and thermodynamic properties, overestimates the diameter 
appropriate for interpreting diffusion); and we show that when proper allowance is 
made for the influence of the cohesive energy it is not necessary (for the 
halomethanes) to attribute any reduction in diffusion to inelastic effects such as 
proposed by Chandler [7] in his ' rough hard sphere' model. 

2. The hard sphere diffusion coefficient Dns 

Values of Das from molecular dynamics simulations are re-assessed in [19] and 
represented by 

DHs = (Do~n)(1 --  n/I-09)(1 + n2(0.4 -- 0.83n2)), (2) 

where n = po -3 and D o = (3/8)tr(kB T/rcm) 1/2. tr is the sphere diameter, k B T is the 
Boltzmann's constant times the temperature and m is the mass of a sphere. 

Equation (2) is accurate from the ideal gas limit, where it is exact, to the highest 
density, ptr 3 = 1-08, at which the fluid has been studied. The density of the hard 
sphere fluid at its freezing point is ptr 3 = 0.94 and there are indications that the fluid 
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state ends in a glass transition 1,19, 20] at p0-3 = 1.09, where Des extrapolates to 
zero according to equation (2). 

3. Boltzmann's hard sphere diameter ~n 

The energy of collision between an isolated pair of molecules, E c, is the kinetic 
energy of the pair along the line of their centres, in their centre-of-mass-fixed frame 
of reference, long before or long after impact. At the distance of closest approach the 
molecules are stationary (in the above reference frame) and the kinetic energy Ec 
appears as the potential energy of their interaction. If u(r) is the potential energy of 
interaction of the molecules when they are separated by r, then the distance of 
closest approach, which we call Boltzmann's diameter aB, is determined by the 
condition 

U(aB) = Er (3) 

Chapman and Cowling 1,21] show that, for a hard sphere system, the value of Er 
averaged over all collisions, is 

E~ = 2kB T. (4) 

On that basis we identify a B as the (smallest) value which satisfies 

U(0-B) = 2kB T. (5) 

Equation (4) is exact for hard spheres at all densities and (3) is exact for a collision 
between a pair of colliding molecules whose relative velocity is uncorrelated with 
the positions of neighbouring molecules, but, clearly, some assumptions are needed 
to justify their application to real liquids. Rather than attempt a fundamental deri- 
vation we examine the validity of equation (5) empirically, by using it to predict the 
diffusion coefficient, DwcA, of a model fluid described by the purely repulsive Weeks, 
Chandler, Andersen core potential, 

~4/~((aLj/r) 12 - -  (0-Lj/r) 6) + 8, r ~. 21/60-Lj , 

u(r) = ( 0 ,  1" > 21/60-Lj ' (6) 

for which equation (5) gives 

0-a = 0-Lj(2/1'1 + X/(2kB T/e)]) 1/6. (7) 

The results in the last column of table 1 show that the values of O w c  A reported by 
Kushik and Berne 1,10] can be represented by 

DWcACo, T) = (0-9 _ 0"05)Ons(p, T, O-B). (8) 

TO satisfy equation (1) exactly, the values of 0-B from equation (7) would need to be 
revised upwards by about 1 per cent. 

The third column of table 1 tests the appealing notion that the effective hard 
sphere diameter 0-WCA, which Weeks, Chandler and Andersen 1,4] have shown to 
model the structure and thermodynamics of the Lennard-Jones model, should also 
be the appropriate diameter for modelling diffusion. 

0-WCA is defined by equation (16) of I-4]. The calculation requires values of the 
hard-sphere 'cavity-cavity'  correlation function y(r) in the range 0.70-< r <<. 21/60-, 
for which we used Ballance and Speedy's simple formula 1-22], along with Kolofa's 
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Table 1. The self diffusion coefficient for a fluid defined by the Weeks, Chandler, Andersen 
(WCA) repulsive potential (equation 6) compared with Dns (p, T, tr). In the third 
column the effective hard sphere diameter used, awc A, was calculated according to 
WCA criterion [4], as described in the text. In the fourth column tr B is calculated from 
equation (7). Data from Kushik and Berne [10]. 

ptraLj k s Tie DwcA/Dns(awcA) DWcA/DHs(trB) 

0.85 0.76 1.72 0.89 
0.85 4.64 1.52 0-94 
0.81 0.74 1.47 0-85 
0.75 0.91 1.37 0.90 
0.75 5.10 1-34 0.91 
0.65 1.42 1-24 0.92 
0-65 5.09 1.25 0.92 
0.30 1.58 1.05 0.90 

hard-sphere equation of state [23] to determine the pressure and chemical potential. 
The y(r) function that results is probably the most  accurate representation available 
over the required range of r. Table 1 shows that the values of Dns( p, T, aWCA) which 
result are too small. In other words trwc A is too large to satisfy equation (1). The 
discrepancy is worst at the highest densities where the WCA theory is most  accu- 
rate. The O-wc A values are about  5 per cent bigger than tr B . 

4. Diffusion in methane 

Methane is the simplest real fluid for which precise and extensive diffusion 
measurements have been reported over a wide range of temperature and pressure 
[9]. To predict its diffusion coefficient we use literature values [24] of the Lennard- 
Jones parameters trLj = 3"81/~ and elk s = 148 K in the LJ potential function 

u ( r )  = 4~((O'Lj / / ' )  12 - -  (O 'Lj / r )6) .  (9) 

Boltzmann's diameter, from equation (5), is then 

tr B = ~Lj(2/[1 + X/(1 + 2k n T/e)]) 1/6. (10) 

Values of DHS (p, T, ira) calculated from (2) then agree with the measured values for 
methane to within 20 per cent. 

The above Lennard-Jones parameters derive [24] from equation of state and 
viscosity measurements on the gas and it is unlikely that a non spherical molecule 
like methane can be represented accurately by the same parameters over the whole 
density range. An optimized choice of a u = 4.14/~ and e/ka = 30 K fits the diffusion 
data for liquid methane (0.3 < ptr 3 < 0.86) with a standard deviation of 2.3 per cent, 
which is better than the accuracy of the data (the two D (p, T) data sets mismatch 
by 4 per cent where they meet [9]). 

The difference between the literature values, of O'Lj and e, and the optimized 
values is not as significant as it looks. The values of tr B that they yield agree to 
within 1.3 per cent over the temperature range of the diffusion measurements, as 
shown in figure 1. With the optimized parameters (10) accurately represents the 

 



0 - 4 2  

0.40 

E 

0 - 3 8  

E 

~5 

0 - 3 6  

"X 

Diffusion in simple fluids 581 

0 " 3 4  , , , , I , , , , I , , , , I , 

0 1 0 0  2 0 O  3 O O  

T/K 

Figure 1. The effective hard sphere diameters a(T) for methane plotted against temperature. 
The points show best fit values obtained by fitting each isothermal data set [9] to 
equation (2). The dashed line shows values predicted by equation (10) using literature 
values [24] of trLj and e/k B. The solid line shows the values obtained from equation 
(10) when OLj and e/kB are chosen so as to minimize the root mean square percentage 
difference between the combined data of [9] and equation (2). 

values of a which give the best fit of equation (2) to the individual isothermal data 
sets. 

Our fit of the liquid methane data to equation (2) using the optimized para- 
meters also gives a good account of lower density measurements, as shown in figure 
2. The fact that the experimental results form a single curve in figure 2 means that 
the isochoric temperature dependence of D is accounted for the x /T  term in equa- 
tion (2) and the temperature dependence of a B from equation (10). The other halo- 
methanes studied show a stronger temperature dependence, which cannot be 
accounted for in that way. That led us to the following examination of the influence 
of the cohesive energy on diffusion. 

5. Influence of the cohesive energy on diffusion 

In this section we compare computer simulation results for diffusion in the 
square-weU [11] and Lennard-Jones [10, 12] model fluids with results for the hard- 
sphere [19] and WCA core potentials [10] to demonstrate that the effect of the 
cohesive energy is to reduce diffusion, and to quantify the effect. 

Note that we distinguish between the cohesive force and the cohesive energy. In 
the Weeks, Chandler, Andersen perturbation theory [4] the total potential function 
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Figure 2. The reduced self diffusion coefficient of methane D* (D* -- DID o equation (2)) 
plotted against the effective hard sphere density pog. The solid line represents equa- 
tion (2) with t% given by equation (10) and using the parameter values tr u = 4.14A 
and e/kB --- 30K which give the best fit to the liquid (0-3 < p~a < 0-86) and is extrapo- 
lated to lower densities. 

is divided up into its attractive and repulsive parts according to the sign of the force 
f(r) = -du(r)/dr. For  the purpose of interpreting diffusion we choose to separate u(r) 
into its positive and negative parts, that is according to the sign of u(r) rather than 
the sign off(r). The cohesive energy, in the van der Waals or Boltzmann sense, is the 
energy difference between a system of molecules which interact with the full poten- 
tial u(r) and a system of molecules, at the same density, which interact with only the 
positive part  of u(r). 

Figure 3 shows Alley and Alder's [9] results for diffusion in the square well (SW) 
model 

0% r < (7, 

u(r) = --e, ~ < r < ~.~, (11) 

0, r > ~ .  

In this case there is no ambiguity in the choice of the diameter, tr B = a. The results 
can be summarized empirically by 

Dsw "- DHS(1 -- 0"6e/ka T) 

Dns exp (--elk  B T). (12) 
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Figure 3. The self diffusion coefficient of a square well (equation (11)) fluid relative to that in 

hard spheres, plotted against I/T* =- e/keT. The lines represent equation (12). Data 
from Alley and Alder [11]. 

It can be argued [25] that because the SW potential is impulsive and does not 
conform to Boltzmann's description of the slowly varying cohesive force quoted at 
the beginning of this paper, the reduction in Dsw due to the well is not a general 
feature of realistic attractive potentials. Against that argument, Alley and Alder I-9] 
show that the reduction can be predicted by a 'local density' assumption as follows: 
if it is assumed that Dsw(P ) is the same as Dns(Pl) , where Pl is the local density 
inside the square well, then the slope of about 0.6 of the straight line drawn in figure 
3 is predicted (in the high temperature limit). Qualitatively, that argument applies 
equally well to, say, a Lennard-Jones system although quantitatively there is, with a 
continuous potential, some arbitrariness in the choice of the region over which the 
local density is defined. 

While the square well system shows the most dramatic influence of the negative 
part of u(r) on D we need not rely on it for evidence that the effect is a general 
feature of realistic potentials. 

Levesque and Verlet [12] studied diffusion in the Lennard-Jones system in 1970. 
Their conclusion was that DLj '~" DFI s if the hard sphere diameter was chosen by the 
criterion that the height of the first peak in the structure factors for the two systems 
should match. Weeks, Chandler and Andersen [4] showed that criterion to be 
accurately satisfied by their prescription for choosing the diameter trwc A equation 
(16) of [4]. 

Figure 4 shows, as open symbols the ratio DLj/DHs(trwcA). aWCA was recalculated 
as described in w 3. Again, it is clear that trwc A is too large to satisfy equation (1). 
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Figure 4. The self diffusion coefficient for the Lennard-Jones fluid (equation (9)) relative to 

that for hard spheres, plotted against I/T* =- e/k B T. Open symbols show results when 
the WCA prescription [4] is used to estimate the effective hard sphere diameter trwc A . 
Filled symbols show results when Boltzmann's diameter, aB, from equation (10) is 
used. The solid line represents equation (13). Symbols distinguish different densities: 
ptr~j = 0-85 and 0.844, circles; pt73j = 0"75 and 0.65, squares; pa~j = 0"3 and 0.4, 
diamonds. Data from Levesque and Verlet 1-12]. 

The filled symbols show the ratio DLj/DHs(trn) with tr B calculated from equation 
(10). In this case there is a systematic trend which can be represented by 

DLj ~ Drls(aBX1 -- 0"4e/kB T) 

~- Dns(trn) exp (--e/2ka T). (13) 

The exponential form represents Levesque and Verlet's [12] values of Du with a 
standard deviation of 6-8 per cent and Kushik and Berne's [10] values of DLj with a 
standard deviation of 6.4 per cent. Heyes [26] presents more extensive DLj data but 
they seem to be much less precise. For  example, over the density and temperature 
range for which the accuracy of equation (13) is established, by the data of Levesque 
and Verlet [12] and Kushik and Berne [10], Heyes [26] results show a standard 
deviation of 13 per cent from equation (13), increasing to 16 per cent when Heyes 
higher density results are included. 

Note that the exponential term in equation (13) accommodates not only the 
effect of the potential well but also the effect of any error in the choice of tr n . Those 
two effects are not separable without some further assumption. One can, for 
example, compare DLj with Dwc A and attribute the difference to attractive forces, or 
one could compare DLj with Dss, the diffusion coefficient for the soft sphere poten- 
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tial u(r)= 4e(O'Lj/r) 12. Those comparisons are independent of trB but they yield 
different measures of the effect of attractive forces. 

The value of a n from equation (10) is the solution of equations (5) and (9) for the 
full Lennard-Jones potential. However, it is also the solution of equations (5) and 
(14) for the positive part of the LJ potential 

f4~((O'Lj/r) 12 -- (O'Lj/r)6), r < O'Lj , 
u(/') (14) 

(0 ,  r > crL~. 

The term Dns(trB) in (13) is therefore a prediction of the diffusion coefficient of a 
system of molecules interacting with the potential defined by equation (14). No data 
are available to verify the accuracy of that prediction directly, but since the positive 
LJ potential (equation (14)) is steeper and narrower than the repulsive WCA poten- 
tial (equation (7)) it is likely that our prediction of its diffusion coefficient is at least 
as accurate as our prediction of DwcA, shown in the last column of table 1. 

With that identification of DHS(trB), the exponential term in equation (13) then 
represents the effect on  DLj of turning on the negative energy well of the complete 
Lennard-Jones potential. That assignment of the exponential term is supported by 
the similarity of its form (figure 4) to the square well case (figure 3) where its 
assignment is not dependent on any assumption. 

While our object is to relate diffusion in real liquids to Dns, it may also be 
useful, for Lennard-Jones systems, to relate DLj to DWCA, the diffusion coefficient in 
the WCA core system (equation (6)). Kushik and Berne [10] have calculated both 
DLj and Dwc A at the densities and temperatures listed in table 1. Their results can be 
represented by 

DLj = DWCA(1 -- O'14e/ka T), (15) 

with a standard deviation of 3.8 per cent. This result shows that when the reference 
system is chosen by the repulsive force criterion f(r) > 0, rather that by the positive 
energy criterion u(r) > 0, turning on the remainder of the LJ potential has a smaller 
effect o n  DEe , but not a negligible effect. 

6. Diffusion in the halomethanes 

Previous analyses of diffusion in the halomethanes [13-17] and other simple 
liquids [18] have established that, in contrast to methane, they do not conform to 
(1). The usual explanation is that provided by Chandler's 'rough hard sphere' 
model, which attributes a reduction in diffusion to the dissipation of velocity correl- 
ations by inelastic effects like translation-rotation coupling. Chandler [7] proposes 
that 

O = AOns(a), (16) 

where A ~< 1 is a temperature independent translation-rotation coupling constant. 
When experimental data are fitted to equation (16) to obtain best fit values of A and 
tr for each isothermal data set, the values of A which result show a strong tem- 
perature dependence [13-18]. Hence the temperature dependence is stronger than 
can be accounted for by the x/T dependence of Dns and the temperature dependence 
of o-. 

Figure 4 shows that an Arrhenius type temperature dependence is manifested by 
the Lennard-Jones system and is therefore to be expected in real liquids. It accounts 
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Table 2. Diffusion data fitted to D = Dns(T, p, a ) e -  g/2kBT with a = au(2/(1 + v/(1 
+ 2kB T/g))) 1/6 and Dns given by equation (2). 

Substance Source T/K ptr 3 au/nm (e/kB)/K % Std. dev. 

CH 4 9 110--328 0.334).89 0-414 t 30 t 2-3I" 
0.412 29 4.0 

CHaCI 13~ 210--440 0"534)-88 0.436 129 8"2 
CHzC12 13:~ 186--406 0.65-1"02 0"479 162 3"3 
CHC1 a 13:~ 233-397 0.734)'98 0"534 107 4"5 
CCI 4 14 283-328 0.874)'99 0"575 145 6-3 
CH3F 15:~ 153--440 0-214)-90 0-405 56 8-5 
CHF 3 16~ 142-433 0"314)'99 0"434 86 6"6 
CHC1F 2 17:~ 147-383 0.49-1.04 0"461 164 6"8 

t Using the equation D = Dns(T, p, tr) for methane (w 3). 
:~ Some densities were extrapolated graphically from measured values as discussed 

references. 
in the 

quant i ta t ively for the reduct ion in D which has hi ther to been a t t r ibuted to inelastic 
effects. 

Table  2 summar izes  the results of  fitting measured  diffusion coefficients for the 
ha lomethanes  with equat ion  (13), using (10) for tr B . The  quali ty of  the fits is illus- 
t ra ted in figures 5-8. 
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Figure 5. The self diffusion coefficient of CF3H plotted against density. For clarity several 
isothermal data sets are omitted. Densities below 273 K are extrapolated. The solid 
lines represent equation (13) with tr B given by equation (10) using the parameter values 
listed in table 1. 
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Figure 6. 
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The self diffusion coefficient of CH2CI 2 plotted against density as in figure 5. 
Densities below 300 K are extrapolated. 

The standard deviations listed in table 1 are comparable to the estimated preci- 
sion of the measurements (5 to 10 per cent), but there are some systematic deviations 
of up to 20 per cent. In most cases density measurements are not available over the 
whole temperature and pressure range of the diffusion measurements and graphical 
extrapolations from available density data have been used [13-17]. In the worst 
cases the extrapolated densities are uncertain to 1 or 2 per cent corresponding to 
uncertainties of 10 to 20 per cent in D at high density, and the worst systematic 
deviations occur in those cases. 

The intermolecular potentials of the substances listed in table 2 can be, at best, 
crudely approximated by the Lennard-Jones function (equation (9)) and that 
approximation is the most likely source of the systematic deviations. In particular, 
the (orientationally averaged) repulsive potential between the globular polyatomic 
molecules is probably steeper, on the molecular length scale, than that between 
atoms. Thus the LJ potential tends to overestimate the temperature dependence of 
~B (equation (10)) and better fits (standard deviations listed in table 2 are reduced by 
2 percentage points in some cases) are obtained by replacing the parameter e in 
equation (10). by 2e, which, effectively, gives a steeper repulsive potential with the 
same well depth. 

The density of the measurements is higher than the highest density p~Laj = 0"85 
to which the accuracy of equation (13) is established by the precise simulation data 
of Levesque and Verlet [12] and Kushik and Berne [10]. Heyes [26] computed 
values of D u at higher densities are systematically lower than the predicted values 
but they are not sufficiently precise to determine a quantitative trend. 

 



588 R.J.  Speedy et  al. 

~ 4 

�9 

6 

397~ 

\ 

3 3 9  K 

2 

0 ' 

�9 �9 

~  ~ 
4\  

~ N 
oX,,,o �9 

z95 K 

o ~  
�9 

% 

233 K o,~.~ 

1300 1500 1700 
Density/(Kg m a) 

Figure 7. The self diffusion coefficient of CHC1 a plotted against density as in figure 5. 
Densities below 300 K are extrapolated. 

The experimental data were also fitted to equation (15) using equation (8) for 
Dwc A . The standard deviations were significantly higher than those in table 2 except 
for methane (std dev = 2.5 per cent). The worse fit in this case is attributable to the 
inadequacy of the LJ potential. The diameter aB for the WCA core potential 
(equation (7)) is more sensitive to the form of the potential than is the diameter tr, 
for the positive part of the LJ potential (equation (10)) and it has a stronger tem- 
perature dependence. 

We conclude that equation (13) offers a plausible, physically sound and reason- 
ably precise two parameter description of the magnitude, temperature and density 
dependence of diffusion in simple liquids. Some quantitative improvement is no 
doubt possible, for data fitting purposes, at the expense of extra parameters, but 
there is no indication that the asymmetric polyatomic molecules studied show any 
qualitative, or significant quantitative, difference from the Lennard-Jones model 
system. In particular, the observation that diffusion in these fluids is less than that in 
the corresponding hard sphere system is explained by the influence of the negative 
energy potential well. That reduction is present in the Lennard-Jones system and it 
is not necessary to invoke inelastic effects like translation-rotation coupling to 
explain it. 

7. Summary 
Our development of Boltzrnann's observation: that the collisional trajectories of 

repelling molecules are not essentially different from the trajectories of a pair of 
hard spheres with diameters equal to the distance of closest approach; leads directly 
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The self diffusion coefficient of CF2HCI plotted against density as in figure 5. 
Densities below 250 K are extrapolated. 

to quantitatively accurate predictions of diffusion in methane and in the Weeks, 
Chandler-Andersen repulsive reference system. 

But his other suggestion: that molecular dynamics are not affected by the van 
der Waals cohesion energy; is only approximate. The results of computer simulation 
studies allow us to quantify the effect for the square well and Lennard-Jones fluids 
and, thereby, to represent DLj by equation (13). The calculated diffusion coefficients 
of several model systems are simply interrelated when Boltzmann's diameter is used 
to take account of differences in the positive parts of their intermolecular potentials. 

Measured self diffusion coefficients of the halomethanes have essentially the 
same magnitude and temperature and density dependence as DLj and do not reveal 
the influence of any inelastic effects associated with molecular anisotropy. To reveal 
such effects will require more precise and extensive measurements, or measurements 
on more asymmetric systems. 
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