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Abstract. – We study the influence of structural lattice fluctuations on the elastic electron
transport in single-wall carbon nanotubes within a density-functional-based scheme. In the
linear response regime, the linear conductance is calculated via configurational averages over
the distorted lattice. Results obtained from a frozen-phonon approach as well as from molecular
dynamics simulations are compared. We further suggest that the effect of structural fluctuations
can be qualitatively captured by the Anderson model with bond disorder. The influence of
individual vibrational modes on the electronic transport is discussed as well as the role of
zero-point fluctuations.

Introduction. – Carbon nanotubes (CNTs) have become a paradigm in the physics of
low-dimensional systems due to their fascinating properties [1]. Especially, the close intercon-
nection between their chirality and their electronic structure make them an ideal candidate
for applications in the field of molecular electronics. As a consequence, extensive experimental
and theoretical research has been carried out in the past years to clarify their structural and
conducting properties [1].

Concerning quantum transport in CNTs, it is theoretically well-established that the linear
conductance is quantized in units of G0 = e2/h [1]. In the case of metallic tubes, effective
low-energy theories as well as tight-binding and ab initio calculations have demonstrated
that two massless electronic bands with linear dispersion cross the Fermi points at K(K

′

) =
+(−)2π/3a0, a0 being the CNT lattice constant [1,2]. As a result, two transport channels per
spin are open at the Fermi level EF, leading to a conductance of 4×G0. This value is conserved
even in the presence of disorder as far as the range of the impurity potential is larger than
the nanotube lattice constant [3]. The same is expected to hold in the presence of vibrations
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at low but nonzero temperatures, where only long wavelength modes can be excited [4]. This
is however not transferable to high temperatures, where additional modes may be activated,
or to higher-lying bands, where mixing can lead to additional backscattering.

So far, the interaction of electrons with phonon modes in CNTs has been mainly addressed
in periodic systems [5]. It is rather difficult to clarify the interplay between charge transport
and coupling to vibrational degrees of freedom in its full generality. This requires a reliable
electronic structure method, the calculation of electron-phonon matrix elements and the com-
bination with a transport formalism. Some developments in this direction have recently been
presented [6], though the calculations were limited to small molecular systems. In nanotubes,
however, the large number of vibrational modes make these approaches computationally very
demanding.

Here, we investigate the influence of structural fluctuations on the elastic electron transport
in single-wall CNTs. We apply a recently proposed computational scheme [7] to shed some
light on the influence of vibrational modes on charge propagation in CNTs. The method
combines Green function techniques with a density-functional-based (DF) methodology for
the electronic properties of the system. Electron-phonon matrix elements are not directly
calculated; the effect of the lattice distortions on charge propagation is considered via suitable
configurational averaging procedures.

Anticipating our main results, we find that the global effect of thermal fluctuations turns
out to be stronger for massive bands than for massless bands, i.e. the transmission around
the Fermi energy is not appreciably affected by them on the length scales investigated here.
Further, we show that the effect of the atomic vibrations on the electron transport can be
qualitatively captured by static disorder in the spirit of the Anderson model [8].

System and Methodology. – The system consists of an infinite metallic (4,4) CNT, where
a finite section is allowed to vibrate and thus define the scattering region, see Fig. 1. The
remaining semiinfinite segments of the nanotube constitute the electrodes. This configuration
approximately mimics the experimental situation of clamped CNTs [9]. An advantage of this
geometry is the possibility of comparing the conductance in presence of thermal fluctuations
with the limiting case of a perfect infinite tube, where conductance quantization is obtained.
Calculations for semiconducting tubes were also performed [10] and showed that the gap region
is not appreciably affected by vibrations, while outside the gap a behavior quite similar to
that presented here is obtained. Because of the large number of atoms required to simulate
the electrodes, the interface and the vibrating region (scattering region), only short sections of
the nanotube were included in the latter (three unit cells). Numerical tests with up to six unit
cells have not shown any new qualitative effects when comparing with the present calculations.
With increasing number of cells the phonon spectrum will develop features of the infinite
system, e.g. emergence of precursors of low-frequency acoustic and optical modes. Obviously,
our approach can not well describe these long-wave length modes; the main effects we find here
are however related to vibrations with energies larger than 80− 100 meV (∼ 640− 800 cm−1).

The equilibrium geometry at zero temperature was found by conjugate gradient relax-
ation techniques with a DF-parametrized tight-binding Hamiltonian [11]. For a carbon-based
system, we use a minimal 2s2p3 valence basis set to expand the electronic eigenstates. All
energies are measured henceforth with respect to the Fermi level.

The vibrational degrees of freedom of the scattering region are described within the har-
monic approximation. We expect the vibrational modes of CNTs to be well-represented
by harmonic potentials, in contrast to previously studied organic molecules [7], where low-
frequency anharmonic modes were present (torsional modes).

Our approach accounts for the influence of structural fluctuations on the charge transport
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Fig. 1 – Top: snapshot of the vibrating part (scattering region (green)) of an infinite metallic (4x4)
CNT. The semiinfinite left (L) and right (R) segments act as electrodes. Bottom: temperature
dependence of the conductance spectrum for a (4,4) CNT (a) and corresponding DOS (b), in the
frozen-phonon approach. Panels (c) and (d) display the results from molecular dynamics simulations
for the same geometry. “Ground state” refers to the zero temperature configuration.

by averaging over sets of atomic configurations {δrℓ}, ℓ = 1, · · ·N , where N is the number
of atoms in the scattering region. We can thus define a configurational averaged elastic

linear conductance g(E) = 2G0 〈T (E, δrℓ)〉 [7]. Given an atomic configuration {δrℓ}, the
transmission can be calculated as T (E, δrℓ) = Tr {G†(δrℓ) ΓR G(δrℓ) ΓL} [12]. The Green
function of the scattering region is given by G−1(E, δrℓ) = ES(δrℓ)−H(δrℓ)−ΣL−ΣR. H and
S are the Hamiltonian and overlap matrices of the vibrating region with configuration {δrℓ}.
The overlap matrix takes into account the non-orthogonality of the used basis set. Notice that
the influence of the leads has been transferred now into complex self-energy functions ΣL,R.

Finally, ΓL,R = i(ΣL,R − Σ†
L,R) are the corresponding spectral densities of the leads [12].

The linear conductance is calculated within two complementary schemes based on a quan-
tum mechanical resp. classical treatment of the vibrational modes [7]: (i) a frozen-phonon
approach (FPA) and (ii) and DF-based molecular dynamics (MD) simulations. Especifi-
cally, in the FPA the scattering region is statically distorted according to the eigenvectors of
the phonon modes obtained by diagonalizing the dynamical matrix, i. e. via the expansion
δrℓ =

∑3N

α=1 xαe
α
ℓ with e

α
ℓ being the mode eigenvectors. The xα chracterize the amplitude

of the atomic displacements, distributed according to P ({xα}) =
∏

α(σ/
√

π) exp(−σ2 x2
α),

with σ2 = mαω2
α/2Eα(T ) and Eα(T ) = ~ωα(Nα(T ) + 1/2) being the energy of a normal

mode [7]. Note that the temperature dependence enters via the Bose factors Nα(T ). Us-
ing a Monte-Carlo sampling technique, an average conductance gFP(E) is calculated. In the
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Fig. 2 – Left panel: average conductance obtained from the Anderson Hamiltonian with bond
disorder for a short (4 nm) (4x4) CNT. The inset shows similar results for a much longer CNT (100
nm). Right panel: temperature dependence of the average mean-square fluctuation

√

〈V 2〉 (T ) of
the π − π hoppping integral. The inset shows the corresponding distance dependence of this matrix
element.

MD approach, averages are taken over the simulation time leading to a gMD(E). Both ap-
proaches assume the adiabatic approximation to hold. An estimation of time scale ratios
yields τphon/τel(EF) ∼ 30 − 60 for phonon energies ≥ 60 meV. Very low-frequency modes
may become problematic, but they are not well described when using short CNT sections, as
previously mentioned.

Results. – Fig. 1 shows the average conductance as a function of the energy of the
incoming electron, calculated for the FP and MD schemes. Both methods yield qualitative
similar results. For a CNT at zero temperature and without inclusion of atomic fluctuations,
perfect conductance quantization is found, as evident from Figs. 1(a) and 1(c) (solid lines).
The corresponding DOS displays the typical van-Hove singularities, see Figs. 1(b) and 1(d)
(solid lines).

When taking into account atomic motion, the perfect conductance quantization is washed
out, however. Several features can be seen in Fig. 1. The temperature dependence of gFP(E)
is almost negligible on the lowest conductance plateau around the Fermi energy, indicating
that backward scattering is considerably weakened in the low-energy sector of the spectrum.
Higher-lying bands are however more affected, the conductance being drastically reduced
already at 1 K, see Fig. 1(a). Note, however, that upon this initial suppression these bands are
not very sensitive to further temperature variations. The reason is that the main contribution
to the conductance arises from modes with energies larger than 100 meV (∼ 1000K), whose
thermal occupation factors are much less than one for the temperature range discussed here
(see below). At the crossover points, where new bands start contributing to transport, e.g. at
energies −2.48 eV, −1.18 eV, and 1.15 eV, conductance dips are found. The corresponding
DOS, Fig. 1(b), shows strong broadening of the van-Hove singularities, implying a shift of
the spectral weight to their neighboring region. The increased number of states around the
crossover points enlarges the phase space for backscattering resulting into the previously
mentioned conductance dips.

Let us now consider the results from MD simulations, see Fig. 1(c) and (d). Though the
basic features found in the FPA are also seen here, there is however a less abrupt suppression
of the conductance of the massive bands with increasing temperature. Thus, at T = 1 K
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Fig. 3 – The influence of zero-point fluctuations on the conductance of the metallic (4,4) nanotube at
a fixed temperature (500 K). Note the strong broadening of the Van-Hove singularities which causes
strong conductance dips.

basically no differences to the zero-temperature case can be seen. Even at 500 K, gMD is much
closer to the zero temperature case, in contrast to the FPA. This is related to the zero-point
fluctuations (ZPF), which are included in the quantum mechanical FP calculation, but are
absent in the classical MD approach. The zero-point energy (∼ ~ω/2) is inversely proportional
to the square root of the atomic mass, so that we may expect that the impact of ZPF on the
conductance for a light atom like carbon will be rather strong. Nonetheless, the similarity
of the results for the FP and MD approaches indicates that the harmonic approximation is
reliable when dealing with the vibrational spectrum of CNTs.

In our calculations, an electron propagating along the vibrating part of the tube will
basically feel a quasi-random field. We might expect that some relation to well-known models
for disorder may exist. To test this, we have performed calculations based on the Anderson
model within a simple π-orbital approximation [8]. The Anderson Hamiltonian reads : H =
∑

j ǫjc
†
jcj −

∑

j,l tlj [c
†
jcl + H. c. ], where the operators c†j(cj) destroy (create) an electron on

the π-orbital at site j. Considering only the π-orbital subspace yields reliable results for CNTs
with not too small radii, where σ−π hybridization can be neglected. Though both, onsite and
bond disorder may be considered, we only present results for the latter case. Bond disorder is
expected to better mimics the physical situation we are considering here, i.e. atomic vibrations,
which should mainly influence the C-C bond lengths. Onsite disorder gives qualitative similar
results; we thus set ǫj = 0 in what follows. The hopping integrals were randomly drawn from
the interval [−Wt + thop, Wt + thop], where thop ∼ 2.66 eV is a typical hopping integral for
carbon.

We have performed calculations for short (4 nm) and long (100 nm) nanotubes, see Fig. 2,
left panel. One clearly sees that the two basic signatures of structural fluctuations previ-
ously found, namely (i) conductance dips at the band crossover points and (ii) conductance
suppression on the massive bands, are qualitatively reproduced within the Anderson model.
The influence of disorder on the conductance is, as expected, dependent on the CNT lenght.
This is clearly seen at the charge neutrality point, where g(EF) is much stronger suppressed
for longer tubes. From these results, we may expect a relation between Wt and the strength
of thermal fluctuations, gauged by kBT . This will lead to a T -dependent disorder param-
eter Wt(T ). However, the differences in the basis sets used in the FPA/MD approaches
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Fig. 4 – Single mode analysis of the conductance at two selected electronic energies, indicated by
arrows in Fig. 3, at T = 500 K. The horizontal axis labels the mode number n as well as its energy.
Each point in the plot corresponds to the linear conductance gFP(E) at a given energy E of the
incoming electron when just the mode number n is included in the calculation and all other modes
excluded. We additionally compare cases with and without inclusion of zero-point fluctuations.

(non-orthogonal 2s2p3 basis) and in the Anderson model (π orbitals), respectively, makes
a straightforward mapping very difficult. We may get some insight by estimating the tem-
perature dependence of the Vppπ matrix elements in our DF-based method [11]. The Vppπ

integrals basically describe the interaction of the pz orbitals and can be thus related to the
empirical π-orbital models. We expand them to linear order in the atomic displacements
around the equilibrium C−C bond, r0

CNT ∼ 1.43 Å, for each atom ℓ in the scattering re-
gion: δ Vℓ = Vppπ(rℓ)− Vppπ(r0) ≈ (dVppπ/dr)0 δrℓ. From the Monte-Carlo sampling outlined
above [7], it is possible to compute an average mean-square fluctuation of the atomic distor-

tions
〈

δr2
〉

(T ) =
∑N

ℓ=1

〈

δr2
ℓ

〉

(T ), where 〈· · ·〉 is an average over the P ({xα}) distribution (see
above) and a further average over all atoms in the scattering region has been carried out. The
related T-dependent fluctuations

√

〈δ V 2〉 (T ), give a measure of the degree of bond disorder
introduced by the thermal motion and are thus related to the Anderson parameter Wt, see
the right panel of Fig.2 .

Next, we address in more detail the influence of ZPF on the conductance. In Fig. 3 we
show the averaged conductance for a fixed temperature with and without ZPF. We clearly
see that ZPF do not have a sensitive influence on the behavior around the Fermi energy,
i. e. on the lowest conductance plateau. However, the neglect of ZPF appreciably weakens the
conductance suppression on the massive bands.

An important advantage of the FPA is the possibility to isolate the influence of individual

vibrational modes on the electronic transport at a given temperature. In Fig. 4, we show the

conductance g
(n)
FP when only one eigenmode at the time is included in the transport calculation.

In the figure, the x-axis labels both, the mode number n and its energy. Results are shown
for two different electronic energies, indicated by arrows in Fig. 3. A general feature we can
clearly see, is that electrons at the Fermi energy do not “see” the vibrational field, i.e. only
few modes give a contribution to the conductance; moreover, the induced conductance change
is much smaller than one percent. This illuminates farther our previous observation that
near EF the structure of the electronic spectrum is not appreciably changed when compared
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with the zero temperature case. The other energy showed corresponds to a high-conductance
plateau around 2.0 eV. On the latter, almost all vibrational modes are contributing. The
reason is that enhanced backscattering related to channel mixing is more effective for massive
bands and so the phase space available for scattering becomes larger. As shown in Fig. 4
(right panel), the neglection of ZPF reduces the contribution of the higher-lying modes, which
are mainly C-C stretching bonds with different spatial patterns. The reason is that at the
temperatures considered here (up to 500 K) the thermal occupation of these modes is basically
negligible. As a result, the main contribution to the mode energy arises from the ZPF terms
∼ ~ω/2. Why the global conductance suppression without ZPF becomes much weaker, can be
easely understood by looking at the typical length scales of the problem. The wave length of
a tunneling electron is of the order of 0.5 nm, which is approximately of the same order as the
length of the scattering region lsc ∼ 0.7 nm. Low-frequency modes have wave lengths larger
than lsc, the opposite holding for high-energy modes. Hence, if the latter are inactive (no
ZPF and negligible thermal factors), a propagating charge will mainly “see” long-wavelength
distortions, which are less effective in scattering electrons.

Conclusions. – We have investigated signatures of structural distortions in the conduc-
tance spectrum of a metallic CNT. We found that the average effect of the lattice fluctuations
may be qualitatively described by Anderson disorder. Our results point out that the linear
bands crossing the degenerate Fermi points are not appreciably affected by structural fluc-
tuations within the temperature range and length scales considered here. As a result, the
theoretically expected conductance of 4×G0 is obtained. Massive electronic bands are how-
ever much more perturbed, their conductance being strongly reduced when comparing with
the values of perfect CNTs.

The authors thanks P. Pavone for fruitful discussions. M. G. thanks the University of Re-
gensburg for financial support. This work has been supported by the Volkswagen foundation.
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