Maltose excretion by the symbiotic *Chlorella* of the heliozoan *Acanthocystis turfacea*

Bettina Matzke, Elisabeth Schwarzmeier, and Eckhard Loos*

Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Universitätstrasse 31, D-8400 Regensburg, Federal Republic of Germany

Abstract. *Chlorella* sp. strain 3.83, a symbiotic *Chlorella* isolated from the heliozoan *Acanthocystis turfacea*, excreted between 8% and 16% of assimilated 14CO$_2$ as maltose in the light (15000 lx), with a pH optimum around 4.8. This percentage increased when the illuminance was lowered (36% at 1700 lx). Release of [*14C*]maltose continued in darkness and could be inhibited by the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone and by diethylstilbestrol. Net efflux of maltose was observed even at a concentration ratio of extracellular/intracellular maltose of 7.8. Exogenous [*14C*]maltose (5 mM) was taken up by the cells with a rate <2% of that of simultaneous maltose release, indicating a practically unidirectional transport. It is concluded that maltose excretion is an active-transport process.

Key words: *Chlorella* (symbiosis) – Maltose excretion (*Chlorella*, symbiosis) – Symbiosis (*Chlorella*-*Acanthocystis*) – Transport, active

Introduction

Maltose excretion has been shown to occur in the symbiotic *Chlorellae* from green *Hydra* and from the ciliates *Paramecium* and *Stentor* (see Reisser and Wiessner 1984). The influence of some physicochemical factors on this process has been investigated (Muscatine 1965; Cernichiari et al. 1969) and the origin of excreted maltose has been studied (Cernichiari et al. 1969; Zieseniss et al. 1981). Scanty data, however, exist on the possible active nature of the excretion process (Zieseniss 1982). It is the purpose of this work to present briefly the growth characteristics of a *Chlorella* isolated from the Heliozoan *Acanthocystis* and to characterize the maltose excretion by this alga, also with respect to an active transport of this sugar.

Material and methods

Plant material. *Chlorella* sp. strain 3.83, the endosymbiont from *Acanthocystis turfacea*, was obtained from Sammlung für Algenkulturen Göttingen, FRG. The alga was grown under axenic conditions in liquid medium containing the following salts in mol l$^{-1}$: (NH$_4$)$_2$SO$_4$, 5-10$^{-3}$; K$_2$HPO$_4$, 5-10$^{-3}$; MgSO$_4$, 10$^{-3}$; CaCl$_2$, 10$^{-2}$; FeSO$_4$ and trace elements were as given by Kuhl (1962). For liquid starter cultures the growth medium was enriched with 0.5% meat extract (Merck, Darmstadt, FRG). Other conditions of growth have been described previously (Fischer et al. 1989). Maintenance cultures were kept in petri dishes on culture medium with 0.5% meat extract and 1% agar; they were stored close to a window and shaded from direct sunlight. The cells were harvested after 3–6 d at cell densities between 1.0 and 2.0 ul packed cells (p.c.) ml$^{-1}$ and were resuspended in 50 mM citric acid trisodium citrate buffer pH 4.8 at a density of 2 ul p.c. ml$^{-1}$ unless indicated otherwise.

*Incubation of Chlorella with 14CO$_2$: estimation of 14C incorporation and excretion of [*14C*]maltose; analysis of labeled excretion products.* The procedure has been described in detail elsewhere (Fischer et al. 1989). Briefly, 1 ul of packed cells suspended in 0.5 ml 50 mM citric acid trisodium citrate buffer (pH 4.8) were shaken (260 rpm) at 28° C in an atmosphere containing 0.9% O$_2$ (v v) with a specific radioactivity of 7.4 kBq umol$^{-1}$. The illuminance was 15000 lx and the incubation time was 1 h, unless indicated otherwise. Radioactivity of cells was determined by scintillation counting of a cell hydrolysate and [*14C*]maltose excretion by TLC of the desalted medium, making use of a TLC-scanning device (LB 284; Berthold, Wildbad, FRG).

Determination of extracellular maltose and of intracellular maltose, sucrose and glucose/glucose-6-phosphate. Maltose in the medium was determined after cleavage with α-glucosidase using the hexokinase/glucose-6-phosphate dehydrogenase system (Gutmann 1974). For assays of intracellular sugars, aqueous cell extracts were obtained according to the method of Biolski (1982) as modified by Fischer et al. (1989). The yield of extraction was checked by adding a known amount of carrier-free [*14C*]maltose to the initial extraction mixture and by counting an aliquot at the end of the procedure: 83% of the radioactivity was recovered. The content of glucose + glucose-6-phosphate of the aqueous extracts was determined...
enzymatically with hexokinase/glucose-6-phosphate dehydrogenase (Bergmeyer et al. 1974). The sucrose content was obtained after incubation with invertase on the basis of the same method (Bergmeyer and Bernt 1974) and the maltose content after an additional incubation with α-glucosidase (Gutmann 1974). The cell volume was determined as the volume inaccessible to soluble starch (Fischer et al. 1989); this polymer showed no measurable degradation or uptake by the cells within the time span of its application.

Silicone-oil centrifugation and filtration for cell sampling. For silicone-oil centrifugation, 3 ml of 15% (w/v) trichloroacetic acid, 3 ml silicone oil (type AR 200; Fluka, Buchs, Switzerland) and 1 ml of 50 mM citric acid-trisodium citrate buffer pH 4.8 were pipetted in the given order into a siliconized centrifuge tube and precentrifuged for a short time to obtain sharp phase boundaries. The algal suspension (250 μl p.c.), in 5 ml of 50 mM citric acid-trisodium citrate buffer pH 4.8, was added to the top of the tube. After 5 min centrifugation at 1200·g the upper and middle phases were removed, the sedimented cells were resuspended in the lower phase and were kept at 4° C for 30 min. After another centrifugation the supernatant (= cell extract) was taken and repeatedly extracted with diethyl ether to remove trichloroacetic acid. After concentration to an appropriate volume and adjustment of pH, maltose was determined as described above. In a parallel experiment, the same amount of cells was vacuum-filtered on a cellulose-nitrate membrane filter (0.45 μm) and washed three times with ice-cold 50 mM citric acid-trisodium citrate buffer pH 4.8. The filter with the cells was extracted for 30 min at 4° C in 3 ml of 15% (w/v) trichloroacetic acid; the following procedures were as above.

Results

Morphology and growth characteristics of Chlorella sp. 3.83. The cells contained a cup-like chloroplast and were egg-shaped or almost spherical in young and mature stages, respectively; the diameter of mature cells was approx. 7.5 μm. Normally, four autospores were released from mother cells. Growth was exponential up to a cell density of approx. 7.7·10⁷ cells·ml⁻¹ with a doubling time of 14 h. The addition of the combined vitamins B₁ (1 mg·ml⁻¹) and B₁₂ (0.1 mg·l⁻¹), which is essential for other symbiotic Chlorellae (Reißer 1975; Zieseniss et al. 1981; Mücke 1985), did not influence the growth rate of Chlorella sp. 3.83.

Fixation of ¹⁴CO₂: excretion and analysis of labeled products. Assimilation of ¹⁴CO₂ was linear for at least
1 h and was accompanied by excretion of radioactive material (Fig. 1). This amounted to between 10 and 20% of total fixed 14C in several experiments. Upon darkening, excretion continued with little change in rate and, after 2 h in darkness, had reached a value of $>30\%$. After treatment with mixed-bed ion exchangers, most of the labeled excretion products (typically 80% of them) were still in solution and, therefore, are considered to represent uncharged compounds. Thin-layer chromatography of these showed a conspicuous peak at the position of maltose (Fig. 2a). After elution, treatment with amylglucosidase and rechromatography the position of radioactivity had changed to that of glucose (Fig. 2b). Thus, maltose is obviously the main excretion product of the *Acanthocystis* endosymbiont.

Parameters influencing maltose excretion. The dependence of maltose excretion and 14CO$_2$ fixation on the pH of the medium is shown in Fig. 3. Maximum rates of maltose excretion occurred in the acidic range between pH 4.5 and pH 4.8. Quite low rates were observed at pH values >5.4; 14CO$_2$ fixation, however, extended at reasonable rates up to pH 7.6. At the higher pH values, maltose was still the dominating compound in the small amount of excreted material.

Maltose excretion was proportional to illuminance, up to about 3000 lx, whereas 14CO$_2$ fixation in the cells continued in a linear fashion up to 6000 lx (Fig. 4). The percentage of 14C excreted as maltose, therefore, was higher at the lower illuminances; at 1700 lx it amounted to 36% of the total fixed 14C. The temperature optimum for $[^{14}C]$maltose excretion in the light and for 14CO$_2$ assimilation was broad, extending between 28° C and 36° C (data not shown).

![Fig. 4. Fixation of 14CO$_2$ and excretion of $[^{14}C]$maltose by cells of *Chlorella* sp. 3.83 in the light as a function of illuminance. ▲-▲, 14C in cells; •-•, excreted $[^{14}C]$maltose. Different illuminances were achieved by calibrated wire screens mounted in front of the vessels, other conditions as given in Material and methods.](image)

![Fig. 3. Dependence on pH of 14CO$_2$ fixation by cells of *Chlorella* sp. 3.83 and of $[^{14}C]$maltose excretion. ---, maltose excretion; ▲-▲, 14CO$_2$ fixation. The following buffers were used at a concentration of 50 mM throughout: citric acid-trisodium citrate (pH 3.9–5.4), 2-(N-morpholino)ethanesulfonic acid-NaOH (pH 5.8–7.0), 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid-NaOH (pH 7.0–8.2). The rate of maltose excretion at pH 4.8 was 7.8 μmol·h$^{-1}$ (ml p.c.)$^{-1}$.](image)

Table 1. The effect of FCCP and of DES on $[^{14}C]$maltose excretion by cells of *Chlorella* sp. 3.83 in the dark. After 1 h of 14CO$_2$ assimilation (see Material and methods) the cells were centrifuged, resuspended in fresh buffer and poison was added in ethanolic solution, to the control on! only ethanol. After shaking for 1 h in the dark in air $[^{14}C]$maltose in the medium was determined. The rates of maltose excretion are based on the specific radioactivity of the 14CO$_2$.

<table>
<thead>
<tr>
<th>Poison</th>
<th>Concentration (M)</th>
<th>$[^{14}C]$maltose excretion (μmol·h$^{-1}$·(ml p.c.)$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCCP</td>
<td>0</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>10$^{-5}$</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>10$^{-4}$</td>
<td>0.84</td>
</tr>
<tr>
<td>DES</td>
<td>0</td>
<td>4.63</td>
</tr>
<tr>
<td></td>
<td>10$^{-5}$</td>
<td>2.92</td>
</tr>
<tr>
<td></td>
<td>5·10$^{-5}$</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>10$^{-4}$</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Evidence for active transport of maltose. Sensitivity of maltose excretion against the uncoupler carbonyl cyanide p-trifluoromethoxy phenyl hydrazone (FCCP) and the inhibitor diethylstilbestrol (DES) would be expected for an active export step. Diethylstilbestrol has been reported to inhibit oxidative phosphorylation and to act on plant plasmalemma ATPase (Balke and Hodges 1977). After assimilation of 14CO$_2$ in the light, the export of $[^{14}C]$maltose was found to be inhibited by FCCP and by DES (Table 1). These results are consistent with a mechanism depending on intact pH gradients and/or the presence of ATP. The data could be explained, however, also if energy-requiring steps were involved in the formation of maltose.

Evidence for active transport was derived from measurements of maltose excretion against a concentration gradient. For this purpose an algal suspension was made 2 mM with respect to maltose at the beginning of an
Table 2. Time course of changes in intra- and extracellular sugar concentrations in a cell suspension of Chlorella sp. 3.83. Cells were suspended at a cell density of 100 µl p.c.:ml⁻¹ in 50 ml 50 mM citric acid-trisodium citrate buffer (pH 4.8) containing 2 mM maltose, and were shaken in a 500-ml Erlenmeyer flask which was continuously gassed with 2% (v/v) CO₂ in air. Illumination was with 15000 lx and the temperature 28°C. After different times, 6.5-ml aliquots of the suspension were withdrawn, vacuum-filtered on 0.45-µm cellulose-nitrate membrane filters (5 cm diameter) and washed three times with ice-cold citrate buffer. Extracellular maltose was assayed enzymatically in aliquots from the filtrate and intracellular maltose, sucrose and glucose + glucose-6-phosphate in algal extracts obtained according to Bielecki (1982; see Material and methods). Intracellular concentrations are corrected for intercellular water content of packed cells.

<table>
<thead>
<tr>
<th>Concentration (mM)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Intraacellular sugar</td>
<td>Glucose + glucose-6-phosphate</td>
</tr>
<tr>
<td></td>
<td>Maltose</td>
</tr>
<tr>
<td>Extracellular maltose</td>
<td>2.17</td>
</tr>
<tr>
<td>Maltose concentration ratio outside/inside</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Fig. 5a, b. Kinetics of [¹⁴C]maltose uptake (a) and of maltose excretion (b) by Chlorella sp. 3.83. a For uptake measurements, 4.5 ml of algal suspension (50 µl p.c.:ml⁻¹ in 50 mM citric acid-trisodium citrate buffer, pH 4.8) were shaken in the dark in a 25-ml Erlenmeyer flask in the presence of [¹⁴C]maltose (5 mM) with a specific radioactivity of 658 Bq·µmol⁻¹ equivalent to 34640 cpm·µmol⁻¹. At different times, 0.5 ml-samples were subjected to vacuum filtrations, washed three times with 2 ml ice-cold suspension buffer and the cells' radioactivity was determined (Fischer et al. 1989). At 15 min and 180 min, an aliquot of unfiltered suspension was taken for determination of total radioactivity. For calculation of isotopic equilibration the values of packed cells were corrected for 34% intercellular water. b Excreted maltose was determined enzymatically (see Material and methods) after the cells had been removed by centrifugation; incubation conditions were as in a except that unlabeled maltose was used.

If maltose leaves the cell by catalyzed diffusion, one should expect an uptake of external [¹⁴C]maltose. When Chlorella was incubated in the presence of labeled maltose, less than 20% of isotopic equilibrium was reached in the cells after 3 h and the rate of uptake was only 0.11 µmol·h⁻¹·(ml p.c.)⁻¹ as calculated from the specific radioactivity of the [¹⁴C]maltose (Fig. 5a). At the same time, maltose was excreted at a more than 80-fold rate (9.2 µmol·h⁻¹·(ml p.c.)⁻¹, Fig. 5b). Thus, the alga seems to drive a unidirectional maltose transport and is almost inaccessible to this sugar from the outside. These flux characteristics are generally associated with active transport (Komor 1982).

Glucose was taken up by Chlorella sp. 3.83 at reasonable rates (7.3 µmol·h⁻¹·(ml p.c.)⁻¹ at pH 4.8, 29 µmol·h⁻¹·(ml p.c.)⁻¹ at pH 6.5; data not shown), whereas sucrose uptake was almost nil.
Discussion

The symbiont from the protozoan _Acanthocystis_ is able to excrete substantial amounts of maltose, a property which is also exhibited by Chlorellae endosymbiotic with _Hydra_ (Muscatine 1965; Cernichiari 1969), _Paramaecium_ (Muscatine et al. 1967; Zieseniss et al. 1982; Mücke 1985) and _Stentor_ (Reisser 1981). The observed rates of maltose excretion (4.0–9.2 μmol·h⁻¹·(ml p.c.)⁻¹) are of the same order as the value given by Cernichiari et al. (1.8 μmol·h⁻¹·(ml p.c.)⁻¹; 1969). The pH dependence of maltose release with an optimum in the acidic range (Fig. 3) has also been reported for the symbionts of _Hydra_ (Muscatine 1965; Cernichiari et al. 1969) and _Paramaecium_ (Zieseniss 1982; Mücke 1985). Glucose excretion from _Chlorella_ sp. 211-40c, a freshwater sponge symbiont, displays a similar pH profile (Fischer et al. 1989), which is also indicated for maltose and trehalose release from _Chlorella_ strains isolated from _Stentor_ (Reisser 1981) and _Paramaecium_ (Pardy et al. 1989), respectively. This widely distributed characteristic strongly indicates a common mechanism of sugar export in these symbiotic Chlorellae.

Cytological features of _Chlorella_ sp. 3.83 (cell size, number of autospores; shape of chloroplast) are well comparable to those of other maltose-excreting algae (Cernichiari et al. 1969; Reisser 1984). Besides all the physiological and cytological similarities there are differences in this group of Chlorellae, e.g. in _Chlorella_ sp. 3.83 photosynthesis and maltose excretion were different in their light-saturation characteristics (Fig. 4) whereas they agreed in the symbiont from _Hydra_ (Cernichiari et al. 1969). A nutritional difference is indicated by the ability of strain 3.83 to grow without added vitamins, whereas isolates from _Paramaecium_ require addition of vitamins B₁ and B₁₂ (Reisser 1975; Zieseniss et al. 1981; Mücke 1985).

The sensitivity of maltose excretion to FCCP and DES points to an energy-requiring step in the transport and-or in the biosynthesis of maltose. The former possibility seems to be realized in a _Paramaecium_ symbiont whose maltose excretion was inhibited by vanadate and by DES with little effect on cellular ATP content and respiration; therefore, these compounds were assumed to act on an energy-transforming plasmalemma ATPase involved in maltose export (Zieseniss 1982). Net excretion of maltose occurred even when this sugar was seven-to eightfold more concentrated in the medium than within the cell (Table 2). This finding indicates an active-transport process (see Komor 1982). If, however, the cytoplasm from which maltose has to be excreted, comprises less than 1/7.5 ± 13% of the cell volume (and if all intracellular maltose is located there), a passive efflux depending on, e.g. catalyzed diffusion would be conceivable. The volume of the cytoplasm is not known for _Chlorella_ sp. 3.83; a value of 40% can be derived for _Chlorella vacuolata_ from a study employing quantitative stereology and three-dimensional reconstruction (Atkinson et al. 1974).

The practically unidirectional movement of maltose into a medium containing 5 mM maltose (ratio of influx > 80; see Fig. 5) would require cytosolic concentrations of maltose much higher than 5 mM if a passive transport were involved; a value of at least 5·80 = 400 mM has to be postulated for the case of unmediated diffusion. A more favored explanation for the predominant maltose efflux is the action of a vectorial active-transport system (see Komor 1982).

For _Escherichia coli_, active uptake of maltose is known in reasonable detail (Wiesmeyer and Cohn 1960; Szemelczan and Schwartz 1976; Shuman and Treptow 1985). To obtain a closer insight into the mechanism of maltose transport in the symbiotic Chlorellae further experimentation is needed, eventually employing isolated plasmalemma vesicles.

This work was supported by the Deutsche Forschungsgemeinschaft. Thanks are due to Doris Meindl for skillful experimental help.

References

Received 15 December 1989; accepted 23 February 1990