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Abstract

Recent conductance measurements on multi-wall carbon nanotubes (CNTs) reveal an effective

behavior similar to disordered single-wall CNTs. This is due to the fact that electric current flows

essentially through the outermost shell and is strongly influenced by inhomogeneous electrostatic

potential coming from the inner tubes. Here, we present theoretical studies of spin-dependent

transport through disorder-free double-wall CNTs as well as single-wall CNTs with Anderson-type

disorder. The CNTs are end-contacted to ferromagnetic electrodes modelled as fcc (111) surfaces.

Our results shed additional light on the giant magnetoresistance effect in CNTs. Some reported

results concern realistically long CNTs, up to several hundred nanometers.

PACS numbers: 85.35.Kt, 85.75.-d, 81.07.De, 73.63.-b, 79.60.Ht
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INTRODUCTION

Over the last two decades, the magneto-electronics, based on all-metal multilayers, has

proven to be very successful indeed [1]. The most important effect which should be invoked

in this context is giant magnetoresistance (GMR) discovered in 1988 [2]. This effect makes

it possible to control electric current flowing through magnetic materials by means of a

magnetic field. In other words, the essence of the GMR effect lies in taking advantage of not

just the electronic charge alone but also of its spin counterpart. Quite naturally researchers

involved so far in physics of semiconductors, as well as those studying molecular systems

have intensified their efforts in search for possible analogous effects in all-semiconducting [3]

and/or hybrid systems (combinations among metals, semiconductors and molecules) [4, 5].

Consequently, a new field of science and technology has been triggered, under the name of

spintronics [6, 7]. Here we report our results on the GMR effect in perfect and disordered

carbon nanotubes sandwiched between ferromagnetic electrodes. There is no doubt nowa-

days that miniaturization requirements imposed on the emerging spintronics will be met by

applying the so-called bottom-up approach as far as designing of new electronic devices is

concerned. From this point of view carbon nanotubes are surely excellent candidates.

DOUBLE-WALL CNTS

We start our studies with carbon nanotubes (CNTs) end-contacted to metal electrodes.

Our present approach is essentially that described in detail in [8] with an improved simu-

lation method of CNT/metal-electrode interface developed in [9]. Spin-polarization of the

ferromagnetic leads is defined as P = 100(n↑ − n↓)/(n↑ + n↓), where nσ stands for a num-

ber of σ-spin electrons per lattice site. It is noteworthy that the structures in question are

relaxed under the Lennard-Jones potential in order to find energetically favorable relative

positions of CNTs’ and electrodes’ interface atoms. During the relaxation process the ex-

ternal electrodes are allowed to rotate and shift independently of each other, similarly the

inner tube is also free to rotate. As regards the inter-tube hopping integrals, they are taken

in the form as proposed in [10], i.e. set to tint = −(t/8)cos θljexp[(d l j − b)/δ], where θ is

the angle between the π orbitals, d is a relative distance, t stands for the nearest neighbor

hopping integral (chosen as energy unit), δ = 0.45 Å and b = 3.34 Å. The GMR coefficient
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is defined in terms of the conductances, G, as GMR=1 − G↑↓/G↑↑, with ↑↑ (↑↓) denoting

aligned (antialigned) magnetization orientation of the electrodes.

Most of the hitherto existing experiments on electronic transport suggest that current

flowing through MWCNTs goes mostly through the outermost shell (see e.g. [11]). A precise

role of the inner shells is still hardly known. Here we show the results on the GMR effect

in two double-wall (DW) CNTs which have the same outer shell but different - though

non-conductive in each case - inner shells. Specifically the DWCNTs in question are: (i)

the zigzag at armchair (45-(5,0)@39-(8,8)) and (ii) the armchair at armchair (38-(3,3)@ 39-

(8,8)), using a short-hand notation L-(n,m), for the lenghth (in carbon rings) and the chiral

vector, respectively. In the former case the corresponding lengths are roughly the same (ca.

5 nm each) so both the inner tube and the outer one are well contacted to the magnetic

electrodes. In the latter case, in turn, the inner shell is artificially shortened and forced

thereby to be out of contact to the drain electrode. Fig.1 presents giant magnetoresistance

for the two DWCNTs. Despite the fact that both the systems are formally similar (at

least in the presented ”energy window” (|E/t| < 0.2), which falls into the zigzag-tube gap),

the GMR curves are clearly different. We attribute these differences to intertube-quantum

interferences which are present owing to the non-vanishing tint. To mimic a possible effect

of some additional disorder we present also GMR curves (thin lines) calculated from the

energy-averaged conductances, where the averaging has been made over the most obvious

energy scale in this context, namely over an energy bin equal to the inter-level spacing of

the outer shell ∆E = π
√

3/L (in the present units). In the following subsection we present

a more direct approach to the disorder issue.

SINGLE-WALL CNTS WITH ANDERSON DISORDER

The simplest way to include the effect of disorder in a system described in terms of the

tight-binding model is to allow all on-site (atomic) potentials to take random values within

a given energy interval. Such an approach has been already applied to CNTs [12], but to

our knowledge, only for tubes with non-magnetic leads. In the case of disordered systems,

it is necessary to perform statistical (ensemble) averaging of the results corresponding to

particular sets of on-site potential distributions (to be referred to as samples hereafter).

This is a purely technical problem easy to overcome at the expense of the computation
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time. Another more serious problem is to develop a recursive procedure, which would

make it possible to deal with big systems approaching macroscopic sizes of the order of

several hundred nanometers. Recursive algorithms based on Dyson-type equations for the

Green’s function are well-known [13, 14]. Here however we modify those methods in order

to make them work in the case of highly non-homogenous systems composed of disordered

carbon nanotubes and two adjacent atomic layers from each electrode (to be referred to

as the extended molecule). While conductance computations are usually rather fast, the

computations of electronic charge at all atoms of a big system are extremely computer

time consuming and expensive. In order to surmount this difficulty we impose a global

charge neutrality condition only on a disorder-free ”parent” system and self-consistently

determine detailed values of all its on-site potentials (ca. 4000 and 40000 atoms for the

SWCNT(8,8), 30 and 300 nm long). On introducing disorder, these on-site potentials are

modified by random corrections fluctuating around zero within an interval [-W/2, W/2]. So,

on the average the global charge of the Anderson-disordered extended molecule might be

regarded as roughly close to that of the neutral parent system. Our computations proceed

according to the following protocol: First the surface Green functions are found (see [9]

for details). Second, the set of on-site potentials which ensure the charge neutrality of

the parent system is found. Third, conductance calculations along with the corresponding

GMR coefficients are performed for 100 different samples with random on-site corrections.

Finally the results are ensemble-averaged. The main results of this study is presented in

Fig.2, for the SWCNT (8,8) consisting of 240 carbon rings (120 unit cells ∼ 30 nm). It is

seen that although disorder suppresses the GMR, it happens to be of about the right value

as compared to recent experiments on MWCNTs with transparent ferromagnetic contacts

made from Pd0.3Ni0.7 (device resistances are then as low as 5.6 kΩ at 300K) [15]. Other

noteworthy points are: (i) on the average the GMR remains positive, and (ii) there exist

some extra features in the GMR spectrum at energies close to ±0.4 and ±0.7 corresponding

to higher sub-band onsets in the pristine (ideal) SWCNT.

For smaller W , GMR increases and eventually oscillates with the amplitude of roughly

±0.2 in the disorder-free (parent) case, as shown in Fig.3 (l.h.s). Additionally the right-hand

side of this figure highlights the length-effect on the period of oscillations. For the sake of

simplicity this is shown for the paramagnetic leads. It is clearly seen that in the absence

of disorder the observed periodicity reflects length-dependent interferences, as expected for
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a (quasi) ballistic transport. In the magnetic case the peaks are split due to the lifting of

spin-degeneracy. The quasi-periodic behavior does always occur when there is no disorder,

regardless of whether the electrodes are ferromagnetic or not (c.f. the inset in Fig.3 with

the thick solid curve on the r.h.s). From the present results one sees that the process of

averaging of conductance and GMR spectra leads to a subtle interplay between the length

and the amount of disorder in the CNTs.

SUMMARY

In this work it has been shown theoretically that the GMR effect in ferromagnetically

contacted carbon nanotubes is quite considerable and may reach a few tens percent. Ideally,

the GMR coefficient oscillates as a function of energy (gate-voltage) with a quasi-period

close to the inter-level spacing of the CNT, which scales inversely proportional to the nan-

otube length. Yet, such a picture is to some extent too detailed if the system at hand is

imperfect, e.g. due to some impurities, dopants or a presence of incommensurate inner shells

in a MWCNT. The disorder-averaged GMR rages from 6% down to 2% in the vicinity of

the charge neutrality point, in conformity with recent experiments on MWCNTs with trans-

parent ferromagnetic contacts. Furthermore, the aforementioned periodicity gets nearly

completely suppressed, and there is no more tendency for the GMR to become negative.
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FIG. 1: GMR for the double-wall carbon nanotubes 45-(5,0)@39-(8,8) (solid thick line) and 38-

(3,3)39-(8,8) (thick dashed line) attached to ferromagnetic leads with 50% spin-polarization. To

mimic a possible effect of disorder, there are also shown the GMR curves computed from ∆E-

averaged conductances (thin curves of the same style), where ∆E is the inter-level spacing of the

outer shell.
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FIG. 2: Left hand side: GMR for individual SWCNTs (8,8), ca. 30 nm in length (points), along

with the GMR (white curve) averaged over 100 samples with disorder-induced corrections to the

on-site potentials (within [-W/2, W/2] for W=0.2). On the right hand site the GMR computed

from the disorder-averaged conductances together with the standard-deviation error bars are shown

in the vicinity of the charge neutrality point.
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FIG. 3: Left hand side: GMR for disorder-free SWCNT (8,8), P=50%, W=0, L=240 carbon rings

(∼ 30nm). Right hand side: visualization of the length-dependent periodicity of the conductance

for the case of paramagnetic leads, P=0, and L=5, 30 and 300 nm. Compare the inset with the

thick solid curve to see that the quasi-period of oscillations is roughly maintained, but in the

magnetic case the peaks are spin-split.
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