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Inelastic quantum transport in a ladder model: Measurements of DNA conduction and
comparison to theory
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We investigate quantum transport characteristics of a ladder model, which effectively mimics the topology
of a double-stranded DNA molecule. We consider the interaction of tunneling charges with a selected internal
vibrational degree of freedom and discuss its influence on the structure of the current-voltage characteristics.
Further, molecule-electrode contact effects are shown to dramatically affect the orders of magnitude of the
current. Recent electrical transport measurements on suspended DNA oligomers with a complex base-pair
sequence, revealing strikingly high currents, are also presented and used as a reference point for the theoretical
modeling. A semiquantitative description of the measured I−V curves is achieved, suggesting that the coupling
to vibrational excitations plays an important role in DNA conduction.
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I. INTRODUCTION

The past decade has seen an extraordinary progress in the
field of molecular electronics. The possibility of using single
molecules or molecular groups as the basic building units of
electronic circuits has triggered considerable refinement of
experimental techniques. As a result, transport signatures of
individual molecules have been successfully probed and ex-
citing physical effects like rectification, Coulomb blockade,
and the Kondo effect, among others, have been demon-
strated; see, e.g., Ref. 1 for a recent review of the field.

Within the class of biopolymers, DNA is expected to play
an outstanding role in molecular electronics. This is mainly
due to its unique self-assembling and self-recognition prop-
erties, which are essential for its performance as carrier of
the genetic code, and may be further exploited in the design
of electronic circuits.2,3 A related important issue is to clarify
if DNA in some of its possible conformations can carry an
electric current or not; in other words, if it could also be
applied as a wiring system. In the early 1990s charge trans-
fer experiments in natural DNA in solution showed unex-
pectedly high charge transfer rates,4,5 thus suggesting that
DNA might support charge transport. However, electrical
transport experiments carried out on single DNA molecules
displayed a variety of possible behaviors: insulating,6,7

semiconducting,8,11–13 and Ohmic-like.9,10 This can appar-
ently be traced back to the high sensitivity of charge propa-
gation in this molecule to extrinsic �interaction with hard
substrates, metal-molecule contacts, aqueous environment�
as well as intrinsic �dynamical structure fluctuations, base-
pair sequence� factors. Recently, experiments on single
poly�GC� oligomers in aqueous solution10 as well as on
single suspended DNA molecules with a complex base
sequence11,12 have shown unexpectedly high currents of the
order of 100–200 nA. These results strongly suggest that
DNA molecules may indeed support rather high electrical
currents if the appropriate conditions are warranted. The the-
oretical interpretation of these experiments and, in a more
general context, the mechanism�s� for charge transport in
DNA have not, however, been revealed so far.

Both ab initio calculations14–23 as well as model-based
Hamiltonian approaches24–38 have been recently discussed.
Though the former can give in principle a detailed account of
the electronic and structural properties of DNA, the huge
complexity of the molecule and the diversity of interactions
present in it �internal as well as with the counterions and
hydration shells� precludes a full systematic first-principles
treatment of electron transport for realistic molecule lengths,
this becoming even harder if the dynamic interaction with
vibrational degrees of freedom is considered. Thus, Hamil-
tonian approaches can play a complementary role by ad-
dressing single factors that influence charge transport in
DNA.

In this paper, we will address the influence of vibrational
excitations �vibrons� on the quantum transport signatures of
a ladder model, which we use to mimic the double-strand
structure of DNA oligomers. As a reference for our calcula-
tions we will take the previously mentioned experiments on
single suspended DNA molecules with a complex base-pair
sequence.11,12 Our main goal is to disclose within a generic
Hamiltonian model the influence of different parameters on
the charge transport properties: the system-electrode cou-
pling, the strength of the charge-vibron coupling, and the
vibron frequency. Our model suggests that strong coupling to
vibrational degrees of freedom may lead to an enhancement
of the zero-current gap, which is a result of a vibron block-
ade effect.39 Further, asymmetries in the ladder-lead coupling
have a drastic effect on the absolute values of the current.
Finally, we show that a two-vibron model can describe the
shape of the experimental I−V curves of Ref. 11, suggesting
that interaction with vibrational degrees of freedom may give
a non-negligible contribution to the measured currents. Ob-
viously, other factors related, e.g., to the specific metal-
molecule interface atomic structure which govern the effi-
ciency of charge injection, or the potential profile along the
molecule can give important contributions. They can be
taken into account by a more realistic, fully self-consistent
treatment of the problem, which lies outside the scope of the
present study.

In the next section we briefly present the experimental
results. In Sec. III A the model Hamiltonian is introduced
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and the relevant parameters are defined. The theoretical for-
malism is discussed in Sec. III B. Finally, the results are
presented and discussed in Sec. IV.

II. EXPERIMENTAL ASPECTS

Detailed description of the sample preparation is reported
elsewhere.11–13 Briefly, a thiolated 26-base-long single-
stranded DNA �ssDNA� with a complex sequence was ad-
sorbed on a clean flat annealed gold surface to create a dense
monolayer. The ssDNA molecules had a thiol-modified
linker end group �CH2�3-SH at the 3� end. The sequence of
the ssDNA that was adsorbed on the gold surface in 0.4M
phosphate buffer with 0.4M NaCl is 5�-CAT TAA TGC TAT
GCA GAA AAT CTT AG-3�-�CH2�3-SH. The surface den-
sity of the monolayer on the gold was appropriate for hybrid-
ization with complementary thiolated ssDNA that were sepa-
rately adsorbed on 10 nm gold nanoparticles �GNPs� through
another thiol group at their 3� end by a �CH2�3-SH group.
The monolayer serves also as an insulating support to the
GNPs.11–13 Direct measurements by conductive atomic force
microscope �CAFM� with tip-sample bias of up to 3 V con-
firmed that the monolayer was insulating.11,12 The double-
strand DNA �dsDNA� hybridization was done at ambient
conditions in the presence of 25 mM Tris buffer with 0.4M
NaCl. Before AFM characterization and electrical measure-
ments the samples were thoroughly rinsed to remove excess
salts.

The measurements were done with a commercial AFM
�Nanotec Electronica S.L. Madrid� in dynamic mode40 to
avoid damage to the sample and the metal-coated tip. Rect-
angular cantilevers with pyramidal tips �Olympus, OMCL-
RC800PSA, Atomic Force F&E GmbH, spring constant of
3 to 0.7 N/m and resonance frequency of 75–80 kHz� were
used in order to obtain combined force-distance �F-Z� and
current-voltage �I-V� curves with a minimal load on the
sample. For the electrical measurements the tips were sputter
coated by Au/Pd which increased their spring constant to
about 1 N/m and lowered their resonance frequency to
50–70 kHz. Throughout the measurements the cantilever
was oscillated close to its resonance frequency and feedback
was performed on the amplitude of its vibrations. Figure 1�a�
shows a schematic view of the sample and setup. Figure 1�b�
is an AFM image showing several GNPs, indicating the po-
sition of the hybridized dsDNA on the background of the
ssDNA monolayer. A line profile along one of the 10 nm
GNPs implies that the 26-base-pair �bp� dsDNA, which is
�9 nm long, is not protruding vertically out of the ��3–4�
-nm-thick ssDNA monolayer and is probably tilted and lying
on the surface of the ssDNA monolayer. The electrical I-V
curves �Fig. 1�c�� were recorded while the GNP was con-
tacted during a F-Z curve by the metal-covered tip without
pressing the tip onto the GNP. This was done by applying a
feedback on the tip oscillation amplitudes, while approach-
ing the GNP, which enabled us to stop the tip movement
toward the GNP just before the jump to contact, as demon-
strated in the F-Z curve shown in Fig. 1�d�.

The current-voltage curves, shown in Fig 1�c�, demon-
strate in a clear and reproducible way the ability of

�9-nm-long dsDNA to conduct relatively high currents
��200 nA�, when the molecule is not attached to a hard
surface along its backbone and when charge can be injected
efficiently through a chemical bond. Such behavior was mea-
sured for many dsDNA molecules on tens of samples and
with various tips and humidity conditions, with similar
results.11 This behavior was also measured in the absence of
GNPs using a different technique.12

III. THEORETICAL ASPECTS

A. Model Hamiltonian

Our aim is to formulate a minimal model taking into ac-
count the double-strand structure of DNA. Hence, we do not
consider the full complexity of the DNA electronic structure.
We neglect environmental effects and assume that charge
transport will mainly take place along the base-pair stack.
We further adopt the perspective that to describe low-energy
quantum transport within a single-particle picture, only the
frontier � orbitals of the base pairs are relevant. We will then
consider a planar ladder model with a single orbital per lat-
tice site within a nearest-neighbor tight-binding picture. In
this sense, we are neglecting helical effects arising from the
real structure of the DNA. We assume that these and similar
effects may have already renormalized the electronic param-
eters. We will focus in this paper on the experimentally

FIG. 1. �Color online� �a� Scheme �not drawn to scale� of the
experimental setup showing dithiolated dsDNA �thicker lines for
clarity� chemically bonded to two metal electrodes �upper, GNP;
lower, gold surface�, supported by a monolayer of thiolated ssDNA.
�b� AFM topography image showing top view of the sample. Sev-
eral GNPs are clearly seen on the background of the ssDNA mono-
layer. The GNPs mark the position of the hybridized dsDNA. The
inset is a height profile of the GNP lying on the ssDNA surface. �c�
Collection of I-V curves from different samples. In some other
cases we measured smaller or no voltage gap. Note that several
curves show saturation of the current amplifier at 220 nA. �d� A F
-Z curve of one of the curves in �c�, �green, forward; red, backward�
demonstrating the tip-GNP adhesion �red line� without pressing the
GNP through the monolayer. The I-V curve is recorded at the clos-
est point of the tip to the GNP without pressing it through the
ssDNA monolayer.
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relevant11 base-pair sequence X=5�-CAT TAA TGC TAT
GCA GAA AAT CTT AG-3� �see Fig. 2� and the foregoing
section. It is worth mentioning that ladder models have been
previously used to study quantum transport in DNA
duplexes.37,41–45

The Hamilton operator describing the ladder and its cou-
pling to left �L� and right �R� electronic reservoirs is given
by

Hel = �
r=X,X̄

�
�

�r,�br,�
† br,� − �

r=X,X̄

�
�

tr,�,�+1�br,�
† br,�+1 + H.c.�

− �
�

t�,��bX,�
† bX̄,� + H.c.� + �

k�L

�tk,Xck
†bX,1 + H.c.�

+ �
k�L

�tk,X̄ck
†bX̄,1 + H.c.� + �

k�R

�tk,Xck
†bX,N + H.c.�

+ �
k�R

�tk,X̄ck
†bX̄,N + H.c.� .

In the previous expression, X , X̄ refer to the two legs of the
ladder, �r,� are energies at site � on leg r, tr,�,�+1 are the
corresponding nearest-neighbor electronic hopping integrals
along the two strands, while t�,� describes the interstrand
hopping. In order to obtain estimates of on-site energies and
hopping integrals, ab initio calculations are obviously the
most reliable reference point. Recently, Mehrez and
Anantram23 carried out a careful analysis of a hierarchy of
tight-binding models that gave effective onsite energies and
hopping parameters for poly�GC� and poly�AT� molecules.
We will use these values as a reference point in part of our
discussion and take the on-site energies as the lowest unoc-
cupied molecular orbital �LUMO� energies given in Ref. 23:
�G=1.14 eV, �C=−1.06 eV, �A=0.26 eV, �T=−0.93 eV. We
are thus considering electron transport, although hole trans-
port can be dealt with in a similar way by choosing the
highest occupied molecular orbital instead of the LUMO en-
ergies. Other choices, e.g., the ionization potentials of the

base pairs, are also possible;28 they are expected to change
our results only quantitatively. More difficult is the choice of
the intra- and interstrand electronic transfer integrals. They
will be more sensitive to the specific base sequence consid-
ered. For the sake of simplicity and in order to reduce the
number of model parameters we have adopted a simple pa-
rametrization taking a homogeneous hopping along both
legs, i.e., tr,�,�+1= tX= tX̄= t�0.25–0.27 eV and t�,�= tXX̄
�0.2–0.3 eV. Though calculations23,46 show that the inter-
strand hopping is usually very small, � few meV, we do not
consider the hopping integrals as bare tight-binding param-
eters but as effective ones, thus keeping some freedom in the
choice of their specific values. Electronic correlations41 or
structural fluctuations mediated by the coupling to other vi-
brational degrees of freedom47 can lead to a strong renormal-
ization of the bare electronic coupling.

The interaction with the electronic reservoirs will be de-
scribed in the most simple way by invoking the wideband
approximation, i.e., neglecting the energy dependence of the
leads’ self-energies �see below�. To model the coupling to
vibrational degrees of freedom we consider the case of long-
wavelength optical modes with constant frequencies ��, e.g.,
small-q torsional modes, and assume they couple to the total
charge density operator N=�r,�nr,� of the ladder. This ap-
proximation can be justified for long-wavelength distortions.
In other words, the strength of the electron-vibron interaction
� is assumed to be site independent. Moreover, we will not
consider in this study nonlocal coupling to vibrational exci-
tations. Though this interaction can give an important contri-
bution to the modulation of the inter-site electronic hopping,
its inclusion would increase the complexity of the model and
the number of free parameters. Such effects deserve a sepa-
rate investigation; research along these lines has been re-
cently presented by other authors.48–52 The total Hamiltonian
thus reads

H = Hel + �
�

��B�
†B� + �

r,�,�
��br,�

† br,��B� + B�
†� . �1�

B. Green’s function techniques

In this section we present the theoretical approach to deal
with electrical transport properties in the presence of
electron-vibron coupling. Taking as a starting point the
Hamiltonian of Eq. �1�, we perform a Lang-Firsov �LF� uni-
tary transformation53 in order to eliminate the electron-
vibron interaction. The LF generator is given by U=exp
�−��,r,�g�br,�

† br,��B�−B�
†��, which is basically a shift opera-

tor for the harmonic oscillator position. The parameter g�

=�� /�� gives an effective measure of the electron-vibron
coupling strength. In the resulting Hamiltonian, the onsite
energies �r,� are shifted to �r,�−� with �=����

2 /�� being
the polaron shift. There is an additional renormalization of
the tunneling Hamiltonian, but we will not consider it explic-
itly, since we will assume a regime �within the wideband
approximation in the leads’ spectral densities� where the ef-
fective broadening �	 arising from the coupling to the leads
is bigger than the polaron formation energy ��2 /�. As
shown in Ref. 54 in this special case the tunneling renormal-
ization can be approximately neglected.

FIG. 2. �Color online�Upper panel: Schematic representation of
the double-strand DNA with the experimentally relevant base-pair
sequence �Ref. 11�. The �CH2�3-SH linker groups are omitted for
simplicity �see the text for details�. Lower panel: Two-leg ladder
used to mimic the double-strand structure of a DNA molecule. L
and R refer to left and right electrodes, respectively. The coupling

terms to the electrodes 	�,� ,�=X , X̄, �=L ,R, are assumed to be
energy-independent constants �wideband limit; see the text for
details�.
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Concerning the transport problem, we can use the stan-
dard current expression for lead p=L ,R as derived, e.g., by
Meir and Wingreen55

Ip =
2ie

h
� dE Tr�	p�fp�G� − G
� + G
	� , �2�

and then perform the LF unitary transformation under the
trace, going over to the transformed Green’s functions. In the
previous equation, 	p�E�= i��p�E�−�p

†�E�� are the leads’
spectral functions, fp�E�= f�E−�p� is the Fermi function of
the p lead, and �p=L=EF+eV /2��p=R=EF−eV /2� are the
corresponding electrochemical potentials. We assume hereby
a symmetrically applied bias. Within the wideband limit in
the electrodes’ spectral densities, we introduce the following
2N
2N ladder-lead energy-independent coupling matrices:

�	L�nm = 
	L,X�n,1�m,1 if n,m � X ,

	L,X̄�n,1�m,1 if n,m � X̄ ,

0 if �1
�

�	R�nm = 
	R,X�n,N�m,N if n,m � X ,

	R,X̄�n,N�m,N if n,m � X̄ ,

0 if n,m � N .
�

We remark at this point that these coupling terms also in-
clude effectively the �CH2�3−SH linkers used in the experi-
ments to attach the DNA molecule to the metallic electrodes.

Let us define the fermionic vector operator �see Fig. 2 for
reference�:

�† = �bX,1bX,2 ¯ bX,NbX̄,1 ¯ bX̄,N� . �3�

The lesser- and greater-matrix Green’s functions �GFs� are
then defined as

G��t� = −
i

�
���t��†�0�
 ,

G
�t� =
i

�
��†�0���t�
 . �4�

Since Eq. �2� does not explicitly contain information on the
specific structure of the “molecular” Hamiltonian, we can
now transform the lesser and greater GFs as well as the lead
spectral functions to the polaron representation. The operator

� transforms according to �̄=U�U†=�X, where X
=exp������ /����B�−B�

†��. Thus, we obtain Ḡ��t�=−�i /��

���t�X�t��†�0�X†�0�
, and similarly for Ḡ
�t�. Strictly
speaking, a further direct decoupling of the foregoing expres-
sion into purely fermionic and vibronic components, as is
usual in the independent vibron model,53 is not possible,
since the transformed tunneling Hamiltonian contains both
types of operators and hence the transformed canonical den-
sity operator does not factorize into separate fermion and
vibron density operators. However, for the case considered
here, where vibron-induced renormalization effects of the
tunneling amplitudes are not taken into account, the decou-

pling is still approximately possible. We thus obtain

Ḡ��t� = −
i

�
���t�X�t��†�0�X†�0�


� −
i

�
���t��†�0�
el�X�t�X†�0�
B

= G��t��X�t�X†�0�
B = G��t�e−��t�.

A similar expression holds for the lesser GF by changing the
time argument t to −t in ��t�. We note that ��t� satisfies the
symmetry relations ��−t�=�†�t�.

C. Single-vibron case

In the case of dispersionless modes, the vibron correlation
function ��t� can be evaluated exactly and reads 53

e−��t� = e−g2�2N+1� �
n=−�

�

In���e��n/2e−in�t, �5�

where �=2g2�N�N+1� and g=� /�. Using this expression,
one easily finds for the Fourier-transformed lesser and
greater GFs:

Ḡ
����E� = �
n=−�

�

�n���G
����E + �− �n�� , �6�

�n��� = e−g2�2N+1� 
 In���e��n/2, �7�

where � ��� corresponds to 
 ���. The bare lesser and
greater GFs can now be obtained from the kinetic equation
G
���=Gr��L


���+�R

����Ga, since the full electron-vibron

coupling is already contained in the prefactor function �n���.
The lead self-energy matrices �p


 ,�p
� are given in the wide-

band limit by ifp�E�	p and −i�1− fp�E��	p, respectively. Us-
ing these expressions, the total symmetrized current in the
stationary state JT= �JL−JR� /2 is given by �see Appendix A�

JT =
e

2h
�

n=−�

�

�n��� � dE„�fL�E��1 − fR�E − n���

− fR�E��1 − fL�E − n���	t�E − n��

+ �fL�E + n���1 − fR�E��

− fR�E + n���1 − fL�E��	t�E + n��… , �8�

where t�z�=Tr�	RGr�z�	LGa�z�� is the conventional expres-
sion for the transmission coefficient in terms of the molecu-
lar Green’s function G�E�, which satisfies the Dyson equa-
tion: G−1=G0

−1−�L−�R. The above result for the current has
a clear physical interpretation. So, e.g., a term like fL�E��1
− fR�E−n���t�E−n�� describes an electron in the left lead
which tunnels into the molecular region, emits n vibrons of
frequency �, and tunnels out into the right lead. However, it
can only go into empty states; hence the Pauli blocking fac-
tor �1− fR�E−n���. Other terms can be interpreted along the
same lines, when one additionally substitutes electrons by
holes.
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Finally, the spectral density A�E ,V� is defined as

A�E,V� = i�Ḡ��E� − Ḡ
�E��

= i�
n

�n����G��E − n�� − G
�E + n��� . �9�

IV. RESULT

In Fig. 3�a� we first show the electronic band structure of
an infinite periodic array of the 26-base-pair DNA molecule

without considering charge-vibron interactions. The unit cell
thus contains 2
26 sites. Due to the large unit cell and since
the electronic hopping integrals are roughly a factor of 4
smaller than the on-site energies, one gets a strongly frag-
mented electronic spectrum with very flat bands. We may
thus rather speak of valence and conduction manifolds as of
true dense electronic bands.56,57 The band gap � of about
0.3 eV is considerably smaller than that obtained in the pe-
riodic poly�GC� ladder when using the same parametrization,
�GC�2.0 eV. In Fig. 3�a� we also show schematically the
positions of the conduction and valence manifolds of the
periodic poly�GC� system �open rectangles�. We note in
passing that similar small gaps have been estimated in ex-
periments on �-DNA �Ref. 27� and in bundles.58 A direct
comparison to our results is, however, not possible due to the
different experimental conditions and length scales probed in
these investigations. Figures 3�b�–3�d� show the spectral
density at zero voltage of the finite DNA ladder contacted by
electrodes in three different ways: �b� only the 3� ends, �c�
only the 5� ends, and �d� all four ends of the double strand
are contacted. Though the general effect consists in broaden-
ing of the electronic manifolds, we also see that depending
on the way the molecule contacts the leads the electronic
states will be affected in different ways. Thus, e.g., states
around 1.7 eV above the Fermi level are considerably more
broadened than states closer to EF. Figures 3�e�–3�g� show
the current, transmission, and differential conductance for
one of the typical contact situations �case �b��. The irregular
steplike structure in the current-voltage characteristics is re-
flecting the fragmented electronic structure of the system.
Notice that despite the small gap found in the band structure
�density of states� a large ��2 V� zero-current gap is seen in
the I-V characteristics. The reason is that many of the states
close to the band gap have a very low transmission probabil-
ity �are highly localized� as a result of the random base se-
quence �see t�E� in Fig. 3�f��, so that they do not contribute
to transport. The effect of the temperature is only to smooth
the current and the differential conductance, as expected. We
remark at this point that the absolute values of the current
can be dramatically modified by the way the molecule is
contacted by the electrodes �see below�.

We now consider the coupling to vibrational degrees of
freedom in the ladder. The probability of opening inelastic
transport channels by emission or absorption of n vibrons
becomes higher with increasing thermal energy kBT and/or
electron-vibron coupling g. As a result, the spectral density
A�E� will consist of a series of elastic peaks �corresponding
to n=0� plus vibron satellites �n�0�. If the separation be-
tween contiguous molecular eigenstates is of the order of the
vibron frequency �, then the satellites corresponding to a
given molecular state will not be clearly separated from the
elastic peaks but will overlap with those of nearby molecular
states leading to an effective broadening of the spectrum and
possibly to complex interference effects.

The influence of the transverse electronic hopping and the
lead-ladder coupling on the current is shown in Fig 4. The
interstrand hopping turns out to be crucial in determining the
absolute values of the current. In the general case of sym-
metric coupling �	L,X=	R,X=	L,X̄=	R,X̄�, a charge propagat-
ing along one of the strands will experience a rather disor-

FIG. 3. �Color online� �a� Tight-binding electronic band struc-
ture of an infinite DNA system, obtained by a periodic repetition of
the 26-base sequence of Ref. 11. Notice the strongly fragmented
band structure with very flat bands. The open �yellow� rectangles
indicate for reference the approximate position of the bands for a
periodic poly�GC� oligomer. �b�–�d� Spectral density A�E ,V=0�,
which at zero voltage coincides with the projected density of states
onto the molecular region, for the finite-size DNA chain contacted
in different ways by left and right electrodes �see Fig. 2�: �b� 	L,X

=	R,X̄=0,	L,X̄=	R,X=250 meV, �c� 	L,X=	R,X̄=250 meV, 	L,X̄

=	R,X=0 meV, �d� 	L,X=	R,X̄=	L,X̄=	R,X=250 meV. The onsite
energies were set at the LUMO values reported in Ref. 23 and the
hopping parameters were set to tX= tX̄= t=0.27 eV, tXX̄=0.25 eV.
�e� I-V characteristics for two different temperatures and the contact
situation �b�. �f� Corresponding transmission function t�E�. �g� Dif-
ferential conductance g�V�.
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dered system, so that a nonzero interstrand hopping may
increase the delocalization of the electronic states. The effect
should be more obvious in the case of asymmetric coupling
�a� 	L,X̄=	R,X�0, 	L,X=	R,X̄=0, and �b� 	L,X̄=	R,X=0,
	L,X=	R,X̄�0, since now there is a single pathway for an
electron tunneling from the electrodes into the ladder, e.g.,

L→X→ X̄→R. We thus see in Fig. 4 that relatively small
variations of tXX̄ considerably modify the current. We note in
passing that recent transport measurements on DNA oligo-
nucleotides have displayed considerable differences in the
conductance of single- vs double-stranded DNA, thus sug-
gesting that, apart from other factors, interstrand interactions
may play a role in controlling charge transport.59

Our above results are, moreover, very sensitive to the way
the ladder is coupled to the electrodes, as seen from the
upper and lower panels of Fig. 4. These cases are related,
respectively, to the situation where only the 5� end �a� or
only the 3� end sites �b� of the ladder have nonzero coupling
to the electrodes �see Fig. 2 for reference�. Notice that �b�
would correspond to the experimental contact geometry in
Ref. 11 where only the 3� end of each strand in the double
helix is connected—via the linker groups—to one of the
electrodes �Au substrate and GNP�. Configuration �b� also
leads to considerably higher currents than case �a�.

More generic assertions require, however, a detailed ato-
mistic investigation of the DNA-metal contact topology and
base-pair energetics, which goes beyond the scope of this
study. Figure 5 shows the influence of the coupling to the
vibron mode on the magnitude of the current and of the
zero-current gap. The slope of the I-V curves is considerably
reduced with increasing g. The corresponding spectral den-
sities at V�1.5 V �see Fig. 5, lower panel� show broadening
due to the emergence of an increasing number of vibron
satellites �inelastic channels� with larger coupling, but at the
same time a redistribution of spectral weights takes place.
This is simply the result of the sum rule �dE A�E�=2�. The
reason for the current reduction can be qualitatively under-

stood by looking at the spectral density. The reduction in the
intensity of A�E� will clearly lead to a reduction in the cur-
rent at a fixed voltage, since it is basically the area under
A�E ,V=const� within the energy window �EF−eV /2 ,EF

+eV /2� which really matters. Notice also the increase of the
zero-current gap with increasing electron-vibron coupling
�vibron blockade�, which is related to the exponential sup-
pression of transitions between low-energy vibronic states.39

Alternatively, this can be interpreted as an increase of the
effective mass of the polaron which thus leads to its local-
ization and to a blocking of transport at low energies.

Figure 6 shows in a more systematic way the influence of
� and � on the elastic and inelastic components of the total
current. The dependence on � is easier to understand since

FIG. 4. �Color online� I-V characteristics for different values of
the reduced interstrand hopping tXX̄ / t in DNA26 for a fixed electron-
vibron coupling strength g=1. Upper and lower panels correspond
to two different �asymmetric� ways of coupling the ladder to the
electrodes: �a� 	L,X=	R,X̄=0,	L,X̄=	R,X=250 meV and �b� 	L,X̄

=	R,X=0,	L,X=	R,X̄=250 meV. Notice the strong variation in the
current when going from case �a� to case �b�.

FIG. 5. �Color online� Dependence of the current on the effec-
tive electron-vibron coupling strength g=� /� at T=300 K and for
tXX̄=0.71t. The vibron frequency was fixed at 20 meV. With in-
creasing coupling the total current is reduced and the zero-current
gap is enhanced. The lower panels show the spectral density at V
�1.5 V for the three values of g. Despite the increased number of
vibron satellites with increasing coupling, the total intensity is
reduced.

FIG. 6. �Color online� Dependence of the elastic �n=0� and
inelastic �n�0� components of the current at a fixed voltage on the
electron-vibron coupling strength � and the mode frequency �. A
more detailed analysis of the behavior is presented in the text. The
dashed lines correspond to the total current �sum of elastic and
inelastic components�.
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only the prefactors �n��� do depend on it. One can show that
�n=0��� is a monotonically decreasing function of g �or ��,
while �n�0��� grows up first, reaches a maximum, and then
exponentially decays for larger g. As a result, the elastic
current starts at its bare value for zero coupling to the vibron
mode and then it rapidly decreases when increasing the cou-
pling, because the probability for emission or absorption of
vibrons accordingly increases. The inelastic component, on
the other hand, will first increase for moderate coupling and
thus gives the dominant contribution to the total current over
some intermediate range of g’s �which will also depend on
the temperature and the vibron frequency�. For even larger
g’s the inelastic current also goes to zero and the current will
be finally suppressed, since there is an increasing trend to
charge localization with increasing coupling to the vibron.
The behavior at large frequencies is also plausible �see lower
panel of Fig. 6�, since the average distance between the elas-
tic peak and the inelastic channels is of the order n�; if � is
large enough an electron injected with a given energy �fixed
voltage� will not be able to excite vibrons in the molecular
region and thus only the elastic channel will be available.
Alternatively, a very stiff mode ��→�� will clearly have no

influence on the transport. For very low � the inelastic cur-
rent will obviously vanish, but the elastic component should
simply go over into its bare value without charge-vibron cou-
pling. The fact that also the elastic part goes to zero in Fig. 6,
lower panel, is simply an artifact related to the fact that at
�=0 the LF transformation is ill defined. Since we consider
only finite frequencies, this limiting case is not relevant for
our discussion. Technical details are presented in Appendix
B.

We finally show that extending the previous model to in-
clude two vibrational excitations allows for a semiquantita-
tive description of the experimental results of Ref. 11. One
should, however, keep in mind that these calculations are not
giving an explanation of the high currents observed; from the
experimental point of view there are some issues like the
number of molecules contacted or the specific details of the
DNA-metal contacts which are not completely clarified. Our
aim is rather to point out at the possible influence of vibra-
tional degrees of freedom in these recent experiments. Using
the formalism of Sec. II it is straightforward to obtain ex-
pressions for the current in the two-vibron case. One finds
�gs=�s /�s, s=1,2�

jtot�V� =
e

2h
�

n=−�

�

�
m=−�

�

�n,1�m,2� dE 
 ˆ„fL�E��1 − fR�E − �n�1 + m�2��	 − fR�E��1 − fL�E − �n�1 + m�2��	… 
 t�E − �n�1

+ m�2�� + �fL�E + �n�1 + m�2���1 − fR�E�� − fR�E + �n�1 + m�2���1 − fL�E��	 
 t�E + �n�1 + m�2��‰ ,

�n,s��� = e−gs
2�2Ns+1� 
 In��s�e��sn/2.

The interpretation of the individual contributions is similar to
that in the single-mode case. In Fig. 7 two different experi-
mental curves are shown together with the corresponding
theoretical I-V plots. Taking into account the simplicity of
the model presented in this paper, the agreement is rather
good. The values used for the charge-vibron coupling ��1
=15�35� meV, �2=15�20� meV� and vibron frequencies
��1=20 meV, �2=6 meV� for the yellow �gray� and black
theoretical curves have reasonable orders of magnitude for
low-frequency modes; see, e.g., Ref. 21. We stress, however,
that the absolute values of the current are mainly determined
in our model by the size of the electronic hopping integrals;
the influence of the vibrons is to modify the shape and slope
of the curves.

To conclude, we have investigated in this paper signatures
of electron-vibron interaction in the I-V characteristics of a
DNA model. Our main motivation were recent experiments
on short suspended DNA oligomers with a complex base-
pair sequence.11,12 The complexity of the physical system
under investigation does not allow us to draw a definitive
conclusion about the mechanism�s� leading to the observed
high currents. We have shown that vibrons coupled to the
total electronic charge density can considerably influence the
current outside the zero-current gap. The “quality” of the

molecule-electrode coupling was also shown to modify the
orders of magnitude of the current. Another critical param-
eter in this model, the electronic hopping, may be modified
by nonlocal electron-vibron coupling related, e.g., to inter-

FIG. 7. �Color online� Theoretical curves �solid lines� compared
with two different I-V curves as obtained on suspended double-
strand DNA oligomers contacted by a GNP �Ref. 11� In both cases
the temperature and the coupling to the electrodes were kept fixed
at T=300 K and 	L,X=	R,X̄=250 meV, 	R,X=	L,X̄=0, respectively.
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base vibrations49,51 or by electron-electron interactions41 and,
as a result, the current profile is also expected to be modified.

Finally we would like to comment on a recent estimation
of the maximum current that could be attained in a DNA
molecule, which was based on a kinetic model for a molecu-
lar wire.31 This approach assumes thermal hopping, i.e., se-
quential tunneling with complete destruction of the phase
coherence previous to each hopping process between nearest
neighbors. Strikingly, the authors predict a maximum current
of the order of pico amperes, in contrast to recent experimen-
tal results.10–12 As shown in the present paper, the absolute
value of the current can be dramatically changed by varying
the electronic hopping integrals as well as by the way the
two strands are contacted to the electrodes. Moreover, since
the electronic matrix elements used in our investigation are
on the average larger than the polaron localization energy
�g2�, we are not working in the purely incoherent hopping
limit, where the former quantities can be treated as a small
perturbation and golden-rule-like expressions do hold. In this
respect our model differs from the approach in Ref. 31. Ad-
ditional theoretical work is required to bridge kinetic and
microscopic model approaches as well as to obtain reliable
estimates of the electronic parameters in specific DNA wires
including structural fluctuation effects.47,52 From the experi-
mental point of view it would be highly desirable �i� to per-
form a systematic study on the effect of base-pair sequence
and length dependence on the current and the conductance
within the setup of Refs. 11 and 12, since the length scaling
of the linear conductance is an important benchmark for dis-
closing the most effective transport channels in molecular
wires; �ii� to explore different contact geometries.
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APPENDIX A: DERIVATION OF EQ. (8)

In order to derive Eq. �8�, all we need to show is that
terms proportional to Tr�	L	L¯ 	 and Tr�	R	R¯ 	 identi-
cally vanish. Let us assume, e.g., that 	R=0. Thus, the left-
going current, which is proportional to 	L	L must be zero.
From Eq. �2�, we first obtain:

JL =
2ie

h
�

n=−�

�

�n��� � dE Tr�	L�fL�E�G��E − n��

+ �1 − fL�E��G
�E + n��	� . �A1�

Use now the kinetic equation for the Green’s function
G
����E�=Gr�E��L


����E�Ga�E�, where 	R=0 has been al-
ready set, and insert it in the above equation with the short-
hand notations C±=Tr�	LGr�E±n��	LGa�E±n��	. We get

JL =
2e

h
�

n=−�

�

�n��� � dE�fL�E��1 − fL�E − n���C−

− �1 − fL�E��fL�E + n��C+	 . �A2�

If we now change n→−n in the second term and use the
symmetry �−n=�ne−�n� together with the identity �1
− fL�E��=e��E−�L�fL�E�, we find

JL =
2e

h
�

n=−�

�

�n��� � dE fL�E��1 − fL�E − n���C−


�1 − e��E−�L�e−��E−�L−n��e−�n�	 = 0. �A3�

This means that only mixed terms containing Tr�	L¯	R	
contribute to the current. It is then straightforward to show
along the same lines that Eq. �8� comes out.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE
CURRENT AS A FUNCTION OF � AND �

The asymptotic behavior of the current as a function of
the electron-vibron coupling can be immediately understood
by looking at the prefactors �n���, since only at this place �
does appear. Using the asymptotic behavior of the Bessel
functions, In�z�1��zn /2nn! and In�z�1��ez /�2�z, one
sees that

�n�g � 1� � e−g2�2N+1�e��n/2g2n

n!
�N�N + 1��n/2 � e−g2�2N+1�g2n,

�n�g � 1� �
e−g2A

g
→ 0.

From here it follows that the inelastic current will grow as
some power of g2 and then decay to zero, while the elastic
part �n=0� starts from its bare value �at �=0� and then rap-
idly decays for larger values of the electron-vibron interac-
tion.

In order to analyze the behavior of the current for small
and large frequencies, it is appropriate to write Eq. �8� in a
slightly different form. Doing a change of variables in the �
and � components, we arrive at

jT = �0���2
e

h
� dE t�E��fL�E� − fR�E��

+
e

h
�
n�0

�n��� � dE t�E��n�E,�� = jel + jinel,

GUTIÉRREZ et al. PHYSICAL REVIEW B 74, 1 �2006�

1-8

  PROOF COPY [BR10293] 139643PRB  



  PROOF COPY [BR10293] 139643PRB  

  PRO
O

F CO
PY [BR10293] 139643PRB  

�n�E,�� = fL�E + n���1 − fR�E�� − fR�E + n���1 − fL�E��

+ fL�E��1 − fR�E − n��� − fR�E��1 − fL�E − n��� .

The sum can now be split into terms with n�0 and terms
with n
0. Using the symmetry �−n���=�n���e−��n, the
above expressions can be cast into the following form:

jT = �0���2
e

h
� dE t�E��fL�E� − fR�E��

+
e

h
�
n�1

�n��� � dE t�E���n�E,�� + �−n�E,��e−��n	 .

Let us consider the case of large vibron frequency. We can
use the fact that f�E±n�� goes to 0 ��� or 1 ��� when �
→�. Note that in this case �n�E ,�� vanishes while
�−n�E ,�� goes over into 2�fL�E�− fR�E��. Using this result
together with the asymptotic behavior of the Bessel functions
for small arguments leads to

jinel � 2
e

h
�
n�1

� dE t�E��fL�E� − fR�E��


 e−g2 g2n

n!
e−��n/2e��n/2e−��n ——→

�→�

0.

Hence, the inelastic current vanishes at very large frequen-
cies. The elastic current, however, saturates at the value
�2e /h��dE t�E��fL�E�− fR�E��, since �n=0���
�e−g2

I0�2g2e−���→e−g2→1 when �→�.
In the case �→0, the inelastic part of the current will

adopt the following form �with x=�� /kBT�:

jinel � 4
e

h
�
n�1

� dE t�E��fL�E� − fR�E��


 e−2g2/x e2g2/x

�4�g2
�xe��n � �x ——→

x→0

0,

where the asymptotic expansion of the Bessel functions for
large argument has been used. A similar scaling would fol-
low for the elastic part of the current, so that for �→0 the
total current is suppressed. This is clearly an artifact of the
limiting procedure, since the Lang-Firsov transformation is
obviously ill defined at zero frequency.
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