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1 General Introduction 

1.1 G protein coupled receptors 

1.1.1 Preliminary remarks 

G protein coupled receptors (GPCRs) are the largest known gene family of the 

human genome and the most versatile class of cell surface proteins. A wide range of 

extracellular messengers such as biogenic amides, lipids, peptides and proteins, 

odorants and tastants, hormones, neurotransmitters, ions and even photons exert 

their signals through GPCRs. With specific manipulation of GPCR signaling a diverse 

array of physiological and pathophysiological processes can be modified and 

therefore GPCRs are of high therapeutic value for existing and emerging drug 

therapies. All GPCRs share a common structural architecture consisting of seven 

transmembrane (7-TM) segments that are connected by extracellular and 

intracellular loops (Fredriksson et al., 2003). The 7-TM domain is framed by an 

extracellular N-terminus and an intracellular C-terminus. Classically, the GPCRs 

mediate signals by coupling to heterotrimeric G proteins, but it became increasingly 

apparent that they can also transduce signals through other proteins (Rajagopal et 

al., 2005). As a consequence of these G protein independent mechanisms, it is 

actually recommended to replace the term GPCR by “7-TM receptor” or “serpentine 

receptor”, but the GPCR terminology is more established. Nevertheless, GPCRs can 

generally be grouped into six main families which are Class A Rhodopsin-like 

receptors, Class B Secretin-like receptors, Class C Metabotropic glutamate 

receptors, Class D Pheromone receptors, Class E cAMP receptors and Class F 

Frizzled/smoothening family (Horn et al., 2003).   

1.1.2 GPCR activation 

Binding of an agonist to a GPCR induces a conformational change of the 

receptor. This conformation leads to an interaction with heterotrimeric G proteins 

accompanied by the release of bound GDP which is immediately replaced by GTP 

(see Figure 1.1). Bound GTP reduces affinity of the Gα subunit to Gβγ and provokes 

dissociation of the Gα-GTP-Gβγ complex into the subunits Gα-GTP and Gβγ. Both 

subunits can regulate specific effector systems depending on the associated Gα 

subunit (see below). Deactivation of the G protein is accomplished by the intrinsic 

GTPase activity of the Gα subunit, cleaving GTP to GDP and Pi. This step of the G 

protein cycle can be catalyzed by GTPase accelerating proteins (GAPs), also called 



 

 

regulators of G protein signaling (RGS) proteins. Subsequently, reassociation of G

GDP and Gβγ completes the G protein cycle and the initial state is restored.

 

 

 
Figure 1.1: G protein activation of GPCRs 
Activation cycle of heterotrimeric G protein after stimulation by an agonist (adapted from Seifert and 
Wieland, 2005) 

 

The intracellular effects of GPCR activation is mediated by four classes of 

heterotrimeric G proteins. Thi

Gα subunit. Gαs subunits stimulate and G

which leads to altered cyclic 3´,5´

Gαq/11 subunits activate phospholipase C

of phosphatidyl-inositol-4,5

inositol-1,4,5-triphosphat (IP

nucleotide exchange factors resulting in the regulat

al., 2008). All second messengers

modulation of intracellular ion concentration or altered enzyme activity or, as long 

term effect, induce regulation of gene expression by modulating transcription factors. 

Moreover, activated Gβγ subunits have also the ability

(Birnbaumer, 2007). 
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regulators of G protein signaling (RGS) proteins. Subsequently, reassociation of G

completes the G protein cycle and the initial state is restored.

G protein activation of GPCRs - demonstrated by the example of CBR
Activation cycle of heterotrimeric G protein after stimulation by an agonist (adapted from Seifert and 

The intracellular effects of GPCR activation is mediated by four classes of 

heterotrimeric G proteins. This classification is based on sequence homology of the 

subunits stimulate and Gαi/o subunits inhibit adenyly cyclase activity 

which leads to altered cyclic 3´,5´-adenosine monophosphate (cAMP) production. 

subunits activate phospholipase C (PLC) β and thereby catalyze the hydrolysis 

4,5-diphosphat (PIP2) to 1,2-diacylglycerol (DAG) and 

triphosphat (IP3). Gα12/13 subunits are shown to interact with guanine 

nucleotide exchange factors resulting in the regulation of RhoA activity 

. All second messengers are able to cause fast responses such as 

modulation of intracellular ion concentration or altered enzyme activity or, as long 

term effect, induce regulation of gene expression by modulating transcription factors. 

subunits have also the ability to affect effector systems 

regulators of G protein signaling (RGS) proteins. Subsequently, reassociation of Gα, 

completes the G protein cycle and the initial state is restored. 

 

the example of CBR  
Activation cycle of heterotrimeric G protein after stimulation by an agonist (adapted from Seifert and 

The intracellular effects of GPCR activation is mediated by four classes of 

sequence homology of the 

inhibit adenyly cyclase activity 

adenosine monophosphate (cAMP) production. 

and thereby catalyze the hydrolysis 

diacylglycerol (DAG) and 

shown to interact with guanine 

ion of RhoA activity (Worzfeld et 

cause fast responses such as 

modulation of intracellular ion concentration or altered enzyme activity or, as long 

term effect, induce regulation of gene expression by modulating transcription factors. 

to affect effector systems 



 

Summarized, the G protein signal cascade is influ

interaction of a ligand with the receptor, transduction of the signal to the 

heterotrimeric G proteins, interaction of the activated G proteins with effector systems 

and, finally, inactivation of G proteins.

1.1.3 The two-state activation model of GPCRs

For illustration of pharmacological properties 

two-state model is often referred (see Figure

active and in an inactive state, which are equilibrated 

2003). A receptor in the active state (R*) is able to bind a G Protein and to initiate the 

intracellular signaling machinery. The inactive state of the receptor (R) marginally 

interacts with G proteins and thus hardly causes the exchange of GDP to GTP. An 

agonist stabilizes the active form of the receptor, whereas a compound that st

the inactive state is called inverse agonist. A neutral antagonist does not change the 

equilibrium, but occupies the binding site at the GPCR and blocks thereby agonist 

and inverse agonist effects. Partial agonists or inverse agonists have, relative to a full 

agonist or inverse agonist, lower capabilities to activate or inhibit 

Interestingly, some receptors occur in the active state without a

attribute is called constitutive activity and is often observed among GPCRs 

and Wenzel-Seifert, 2003). 

 

inverse 
agonist 

partial
 inverse 
agonist

Figure 1.2: Two-state model of GPCR activation 
Receptors can adopt an active (R*) and an inactive conformation (R). Ligands are characterized 
according to their ability to shift the equilibrium to either side of both states 
Seifert, 2003). 
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Summarized, the G protein signal cascade is influenced by following key issues: 

interaction of a ligand with the receptor, transduction of the signal to the 

heterotrimeric G proteins, interaction of the activated G proteins with effector systems 

and, finally, inactivation of G proteins. 

ivation model of GPCRs 

For illustration of pharmacological properties attributed to a GPCR ligand the 

odel is often referred (see Figure 1.2). In this model a GPCR exists in an 

active and in an inactive state, which are equilibrated (Seifert and Wenzel

. A receptor in the active state (R*) is able to bind a G Protein and to initiate the 

intracellular signaling machinery. The inactive state of the receptor (R) marginally 

interacts with G proteins and thus hardly causes the exchange of GDP to GTP. An 

agonist stabilizes the active form of the receptor, whereas a compound that st

called inverse agonist. A neutral antagonist does not change the 

equilibrium, but occupies the binding site at the GPCR and blocks thereby agonist 

and inverse agonist effects. Partial agonists or inverse agonists have, relative to a full 

agonist or inverse agonist, lower capabilities to activate or inhibit 

Interestingly, some receptors occur in the active state without a bound

is called constitutive activity and is often observed among GPCRs 
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partial 
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state model of GPCR activation  
Receptors can adopt an active (R*) and an inactive conformation (R). Ligands are characterized 
according to their ability to shift the equilibrium to either side of both states (Seifert and Wenzel

 

enced by following key issues: 

interaction of a ligand with the receptor, transduction of the signal to the 

heterotrimeric G proteins, interaction of the activated G proteins with effector systems 

a GPCR ligand the 

2). In this model a GPCR exists in an 

(Seifert and Wenzel-Seifert, 

. A receptor in the active state (R*) is able to bind a G Protein and to initiate the 

intracellular signaling machinery. The inactive state of the receptor (R) marginally 

interacts with G proteins and thus hardly causes the exchange of GDP to GTP. An 

agonist stabilizes the active form of the receptor, whereas a compound that stabilizes 

called inverse agonist. A neutral antagonist does not change the 

equilibrium, but occupies the binding site at the GPCR and blocks thereby agonist 

and inverse agonist effects. Partial agonists or inverse agonists have, relative to a full 

agonist or inverse agonist, lower capabilities to activate or inhibit the receptor. 

bound agonist. This 

is called constitutive activity and is often observed among GPCRs (Seifert 

agonist 

 

Receptors can adopt an active (R*) and an inactive conformation (R). Ligands are characterized 
(Seifert and Wenzel-
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Observations of agonist-specific trafficking of a receptor stimulus refined the 

two-state model. In accordance with this model, each agonist is capable of stabilizing 

or selecting a unique receptor conformation. This phenomenon results in an unlimited 

number of active receptor states (Kenakin, 1995; Urban et al., 2007). Each of these 

conformations can interact highly selective with specific intracellular signaling 

complexes. Receptors with this functional selectivity likely form the basis for a new 

strategy of drug development. Screening for novel ligands would not only include 

binding affinity studies or evaluation of agonist/inverse agonist properties, but also 

studies on activation of the receptor connected to specific and appropriate 

intracellular response. 

1.1.4  Fusion proteins 

The first GPCR-Gα fusion protein was described in 1994, when Bertin et al. 

reported the successful fusion of the β adrenergic receptor with Gαs (Bertin et al., 

1994). This construct, expressed in S49 lymphoma cells, induced a greater 

stimulation of cAMP with an increase in potency compared to wild-type cells. These 

effects were suggested to be caused by a more efficient coupling between receptor 

and G protein. As the efficiency of receptor–G protein interaction is influenced by the 

protein expression levels, a clear advantage of the fusion approach is the defined 1:1 

stoichiometry together with a close proximity of the signaling partners, both firmly 

anchored in the plasma membrane (Seifert et al., 1999). Initially, it was hypothesized 

that fusion of a GPCR to a Gα leads to a functional interaction no matter whether the 

subunit is appropriate or not. This proximity-induced loss of G protein selectivity 

would have been a great opportunity to study orphan receptors or GPCRs coupled to 

Gαs or Gαq for which the agonist-regulated guanine nucleotide exchange is more 

difficult to measure. Unfortunately several studies revealed that this is not the case. 

Co-expression of Gαi with the IP prostanoid receptor, a Gαs coupled GPCR, did not 

result in activation of G protein and the use of the IP-Gαi fusion protein did not 

revealed any effect (Fong and Milligan, 1999). However, the fusion approach is an 

elegant way to study receptor-G protein interaction with a guaranteed lack of receptor 

reserve and thus an useful tool to explore the basis of ligand efficacy and to measure 

effects of point mutations in GPCR and G proteins (Colquhoun, 1998; Milligan, 2000).  

Another area of application concerning fusion proteins is the examination of 

homo- and heterodimerisation of GPCRs. As it is known many GPCRs can form 

dimers or oligomers with co-expressed receptors in a homologous or heterologous 
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manner (Milligan, 2007). For these studies two fusion proteins are constructed that 

are both inactive when expressed individually because of specific mutations. 

Mutations in the highly conserved hydrophobic residue in the second intracellular 

loop of a GPCR to acidic residues generate receptors that do not transmit the signal 

to the G protein or are simply unable to bind an agonist. This receptor is fused to a 

wild-type Gα subunit. Another or the same wild-type receptor is fused to a G protein 

unable to promote GCP/GTP exchange and hence activation. To induce inactivity of 

G proteins, Gly202 is mutated to Ala. These constructs are co-transfected and by 

measuring reconstitution of function, conclusions can be drawn on their interactions 

concerning homo- and heterodimerisation (Milligan et al., 2005). 

Despite some reported exceptions (Dupuis et al., 1999), the use of fusion 

proteins can increase signal-to-background ratio. The higher sensitivity compared to 

the Gα co-transfection systems makes the fusion protein approach to an interesting 

tool for ligand screening assays. Also, for the characterization of orphan receptors 

fusion proteins are applied (Guo et al., 2001; Takeda et al., 2003). As mentioned 

above, a set of GPCR-G protein fusions must be constructed to evaluate the effect of 

a ligand or to ensure the lack of effect through a specific receptor.  

GPCR-G fusion proteins may not exactly reflect the physiological situation as 

we still do not know to how many G proteins one single receptor has access to. But 

as the efficacy of receptor-G protein interaction depends on their expression levels, 

the fixed stoichiometry and the forced proximity in the cell membrane make the 

fusion approach to an attractive and precious tool for the above mentioned fields of 

research. 

1.1.5 RGS proteins 

G protein signaling is determined by the intrinsic GTPase activity, hydrolyzing 

bound GTP in GDP and Pi, which then induces reassociation of the α and βγ subunits 

and the return to the basal receptor state. The activity of GTPase can be influenced 

by specific proteins that are consequently called regulators of G protein signaling 

(RGS). These RGS proteins are able to act as GTPase accelerating proteins (GAPs) 

and terminate signaling of Gα subunits through reducing maximal or steady-state 

levels of active G proteins. Among the more than 20 known RGS with GAP activity 

only for Gαs no RGS interaction partner has been confirmed yet, whereas all other 

interact with Gαi and/or Gαq class of G proteins. The ability of RGS protein to act as 
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GAPs is due to a highly conserved region of approximately 120 amino acids termed 

as the RGS domain, that can interact with Gα subunits (Popov et al., 1997).  

Increasing evidence showed that RGS proteins are involved in more cellular 

functions beyond shortening the time in which the Gα subunit stay in its active 

conformation. RGS proteins can interact with additional cellular molecules such as 

receptors, effectors and scaffolds. These interactions are on the one hand important 

for GAP effects and show on the other hand that RGS proteins are involved in many 

cellular mechanisms playing diverse functional roles in living cells (Abramow-Newerly 

et al., 2006). The interactions are not exclusively served by the RGS domain but by 

additional domains being part of many RGS proteins (Sethakorn et al., 2010). Due to 

their link to other proteins and signaling pathways as well as for their ability to 

shorten G protein signaling, RGS proteins are interesting new pharmacological 

targets (Sjogren et al., 2010). In the following, two RGS proteins will be presented in 

more detail. 

1.1.5.1  RGS4 

RGS4 belongs to the B/R4 subfamily of RGS proteins and is a relatively small 

molecule which is selectively enriched in CNS and heart (Bowden et al., 2007; Cifelli 

et al., 2008). As described by Zeng et al. (1998) the N-terminal domain of the RGS4 

protein is implicated in GPCR binding as deletion of this region reduces the ability of 

RGS4 to modulate GPCR signaling. This provided indication that the modulation of a 

G protein signal depends on the activating receptor and that the receptors regulate 

affinity of RGS4 proteins to the G protein.  

Several studies showed that RGS4 is involved into the generation of several 

diseases. As an example it is thought that RGS4 is an important factor in breast 

cancer metastasis (Xie et al., 2009) and a genetic biological marker of schizophrenia 

(Bowden et al., 2007). Furthermore, RGS4 is essential for cardiac adaption (Cifelli et 

al., 2008) and has been shown to control critical signal events that are contributed to 

addictive processes such as opiate dependence (Hooks et al., 2008). 

1.1.5.2 RGS19 

Members of the A/RZ subfamily of RGS proteins are quiet similar in size to the 

members of the B/R4 subfamily but differ in the N-terminal regions, containing a 

cysteine string motif for palmitoylation and thereby anchoring RGS protein to the 

membrane. RGS19, or also called Gα interacting protein (GAIP), is a prominent 
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member of this subfamily and contains an additional C-terminal PDZ binding motif. 

This for RGS protein unique C-terminus seems to be crucial for the recruitment of 

RGS19 activity. De Vries et al. (1998), reported the isolation and characterization of a 

protein, named GIPC (GAIP interaction protein C-terminus), that interacts with its 

PDZ domain with RGS19. As it was demonstrated that GIPC can also specifically 

bind to GPCR, it is assumed that GIPC can act as an adapter protein between 

receptor and RGS19. This was recently confirmed for the dopamine D2 receptor 

(Jeanneteau et al., 2004b). 

Up to now, physiological functions of RGS19 are related to signal determination 

(Hepler et al., 1997; Jeanneteau et al., 2004a) and cell proliferation (Tso et al., 2010) 

but further investigations have to be done to clarify its mechanism of action. 
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1.2 The endocannabinoid system 

1.2.1 Cannabinoid receptors, endogenous ligands and involved enzymes 

The endocannabinoid system (ECS) comprises cannabinoid receptors (CBRs), 

various endocannabinoids and enzymes for endogenous ligand biosynthesis and 

inactivation. So far, two human CBRs have been identified. The CB1R was cloned in 

1990 (Matsuda et al., 1990) and is the most abundant GPCR in the central nervous 

system (CNS), but is also present in several peripheral tissues, such as the 

gastrointestinal tract, the cardiovascular and reproductive systems (Svizenska et al., 

2008), as well as in liver, pancreas, adipocytes, lung and skeletal muscle (Pacher et 

al., 2006). The CB2R, cloned in 1993 (Munro et al., 1993), is mostly restricted to 

immune tissues (Berdyshev, 2000; Cabral et al., 2008), osteoclasts and osteoblasts 

(Bab and Zimmer, 2008). In contrast to the CB1R, the N-terminal domain of CB2R is 

much shorter. The overall homology of the CB1R and the CB2R is about 44%, which 

increases up to about 68% in the TM domains (Lutz, 2002). 

The discovery of the specific receptors initiated research on the identification of 

endogenous ligands, so called endocannabinoids. The first and major 

endocannabinoids discovered were anandamide (Devane et al., 1992), the amide of 

arachidonic acid and ethanolamine, and 2-arachidonoyl glycerol (2-AG) (Mechoulam 

et al., 1995; Sugiura et al., 1995). Further less investigated endocannabinoids are 2-

arachidonyl glycerol ether (noladin ether) (Hanus et al., 2001) and N-arachidonoyl 

dopamine (Bisogno et al., 2000), both agonists at the CB1R, and O-arachidonoyl 

ethanolamine (virodhamin) with CB1R antagonistic properties (Porter et al., 2002). 

More recently, the first endogenous compound interacting with CBRs that is not 

derived from membrane lipids was discovered. Hemopressin was identified as a 

peptide ligand with inverse agonist effects at  CB1R (Heimann et al., 2007). Whether 

this nonapepide is an endogenous ligand has to be verified. 

The metabolism pathways of anandamide and 2-AG have been largely 

investigated but are not yet fully understood (Di Marzo, 2009). The main biosynthetic 

route is through on-demand hydrolysis of precursors present in the cytoplasm 

membrane. The synthesis of anandamide is catalyzed by N-acylphosphatidyl 

ethanolamine specific phospholipase D (Okamoto et al., 2004). For 2-AG two sn-1-

selective diacylglycerol lipases are confessed (Bisogno et al., 2003). The inactivation 

of anandamide is mostly actuated by intracellular cleavage of the amide structure by 

the fatty acid amide hydrolase (FAAH) (Cravatt et al., 1996). This enzyme can also 
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catalyze 2-AG hydrolysis, but additional hydrolases for 2-AG degradation are known 

such as monoaclyglycerol lipase (MAGL) (Dinh et al., 2002). Furthermore, beside the 

hydrolytic metabolism of endocannabinoids, an oxidative degradation via oxygenases 

including COX and LOX is assumed (Kozak and Marnett, 2002).  

The enzymes for endocannabinoid biosynthesis and inactivation as well as 

cellular transporters for the release and uptakes of ligands and of course the CBRs 

are important pharmacological tools for the modulation of ECS activity. 

1.2.2 Cannabinoid signaling  

Both human CBRs are belonging to family A of GPCRs (Howlett et al., 2002) 

and are mostly coupled to Gαi/o. This interaction consequently leads to inhibition of 

adenylyl cyclase with reduction in cAMP accumulation. Both receptors regulate the 

activation of mitogen-activated protein (MAP) kinase and stimulation of the receptors 

is coupled to PLC activation resulting in a subsequent release of Ca2+ from internal 

stores.  

In contrast to the CB2R, the CB1R is able to interact with ion channels. For 

CB1Rs, inhibition of voltage gated Ca2+ channels as well as activation of A type and 

inwardly rectifying K+ channels are reported (Bosier et al., 2010; Demuth and 

Molleman, 2006).  

Evidence suggests that agonists at both CBRs can activate one single signaling 

pathway over another (Shoemaker et al., 2005; Bosier et al., 2007) – a phenomenon 

that is already described for other GPCRs (Urban et al., 2007). This functional 

selectivity offers the great possibility to identify new CBR ligands that regulate a 

specific signaling pathway. Particularly in the case of CBRs that modulate multiple 

physiological functions (see Chapter 1.2.4), novel therapeutic applications without 

psychoactive side effects might be conceivably.  

The ability of cannabinoids to modulate the activity of other receptor types or 

their signal transduction pathways has been demonstrated. For example, 

experiments revealed that the release of opioids is elevated by administration of ∆9-

THC (Parolaro et al., 2010). Also, the encephalin and dynorphin biosynthesis can be 

modulated by cannabinoids (Corchero et al., 1997). The synergistic effect of 

cannabis and the endomorphic system with respect to antinociception is an 

interesting target for pain therapy. 

For anandamide and other CBR ligands, interactions with the orphan receptor 

GPR55 (Ryberg et al., 2007), the transient receptor potential vanilloid 1 receptor 
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TRPV1 (Smart et al., 2000), as well as with serotonin 5-HT3 (Barann et al., 2002) and 

N-methyl-D-aspartate receptor NMDA (Hampson et al., 1998) were reported, 

showing that the behavioral effects of the (endo-)cannabinoids do not occur 

exclusively through the CBRs but also through interactions with other signaling 

systems. 

1.2.3 In-vitro bioassay systems for CBRs 

In-vitro test are often designed for screening procedures, to investigate receptor 

pharmacology and/or to explore the molecular mechanisms of action of a compound. 

Most common assays are cell based and measure downstream effects of the signal 

cascade. For the CBRs the most widely used in-vitro assays are competition binding 

assays, [35S]GTPγS binding experiments or – at more distal points -  measurement of 

cAMP production and inhibition of electrically evoked contractions of isolated smooth 

muscle preparations. 

For binding assays, radiolabeled CBR ligands as [3H]CP 55,940, [3H]HU-243 or 

[3H]WIN 55,212-2 are commonly used (Howlett et al., 2002). In this type of assay the 

radiolabeled probe competes with the test compound for binding to the CBRs and the 

amount of bound radioligand can be measured. This allows a conclusion on the 

affinity of the tested compound. However, no statements on the pharmacological 

properties of the tested ligand can be deducted. 

The [35S]GTPγS binding measures the coupling of G protein to CBRs at a very 

early step of the signal cascade following receptor occupation by a ligand. In case of 

occupation by an agonist the affinity of the G protein to GTP is increased. [35S]GTPγS 

replaces endogenous GTP and binds to the Gα subunit. [35S]GTPγS is resistant 

against hydrolysis by the intrinsic GTPase activity of Gα. Therefore bound 

[35S]GTPγS to Gα can be measured. Conclusions concerning the pharmacological 

behavior of the tested ligand and calculation of its potency and efficacy can be drawn 

by quantifying the change of bound [35S]GTPγS in relation to basal. Measurements of 

receptor-mediated G protein activation via [35S]GTPγS binding assays are sensitive 

test systems and offer the possibility to evaluate pharmacological parameters of a 

ligand at a very proximal point of the signal cascade, which minimizes interfering 

factors (Seifert and Wieland, 2005).  

Due to the ability of CBRs to modulate cAMP production, adenylyl cyclase 

assays are often exploited to screen potential CBR ligands. Furthermore, Rhee et al. 
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(1998) could show, that regulation of adenylyl cyclase isoforms 1, 3, 5, 6 or 8 by 

CB1R activation resulted in an inhibition of cAMP accumulation, whereas for isoforms 

2, 4, or 7 a stimulation of cAMP accumulation was computed (Rhee et al., 1998). 

This supported the assumption that CB1R can also couple to Gαs proteins (Glass and 

Felder, 1997). 

CB1Rs are located on presynaptic terminals and mediate inhibition of electrically 

evoked transmitter release. These transmitters cause muscle contraction, which can 

be measured in in-vitro assays using isolated vas afferens from mice or small 

intestine muscle preparation of guinea pig. Of course, several other signal pathways 

can alter the contraction of these muscles and thus it is necessary to proof selective 

CBR dependency with a selective CB1R antagonism. 

1.2.4 The ECS as therapeutic target 

The ECS is involved in many physiological functions. Investigations for targeting 

this system in pathophysiological conditions are up-coming since it has been realized 

that Marijuana and its active secondary metabolites has - beneath its risk of abuse 

and addiction - a huge clinical potential. The involvement of the ECS in energy 

metabolism and appetite regulation is proven and modulation of CBR activity can be 

effectively used for the treatment of metabolic diseases like obesity and anorexia. 

Targeting increased activity of the EC system in obese animals led to the 

development of the CB1R inverse agonist rimonabant, which caused significant 

weight loss with beneficial effects on different metabolic parameters (Patel and 

Pathak, 2007). While in obese or overweight patients weight loss is a main goal, 

diminished appetite is an immense problem for HIV, Alzheimer or cancer patients. It 

was demonstrated that cannabis not only increased appetite, but was also effective 

in improving the mood and decreasing (chemotherapy-related) nausea and emesis 

(Nauck and Klaschik, 2004). 

Also, the ECS figures prominently in the CNS and is associated to disorders 

and diseases. This is not surprising since the CB1R is the most abundant GPCR in 

the brain with particularly high densities in the cerebral cortex, cerebellum, 

hippocampus and basal ganglia (Herkenham et al., 1991). These areas are related to 

motor, mood and anxiety disorders, as well as to the brain rewarding system and 

processes of learning and memory. Therefore, targeting the CB1R for therapeutically 

purposes in pathophysiological conditions as Parkinson´s disease, Huntington´s 

disease, amyotrophic lateral sclerosis, epilepsy and Gilles de la Tourette´s syndrome 
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is under investigation. Other mental CNS disorders as depression, anxiety and 

insomnia seem to be sensitively modulated by the ECS and pharmacological 

interventions are studied. Also for the treatment of Alzheimer´s disease, beneficial 

effects of cannabinoids are discussed. For example, it was demonstrated that ∆9-

THC inhibits acetyl cholinesterase and prevents amyloid β-peptide aggregation 

(Eubanks et al., 2006).  

Sativex®, a ∆9-THC/Cannabidinol standardized Cannabis sativa extract, is 

approved as adjunctive medication for patients with multiple sclerosis (MS) in 

Canada since 2005 (Barnes, 2006). MS is a complex, auto-immune, inflammatory 

disease which leads into demyelination and axonal damage. The add-on therapy with 

Sativex® relieved neuropathic pain, lowered spasm frequency and increased mobility 

in MS patients, not responding to other drugs. In July 2010, approval has given to 

Sativex® in Spain and the drug manufacturer GW pharmaceuticals already submitted 

the application for approval in other European countries. 

Another topic of investigation is the involvement of the ECS in inflammatory and 

neuropathic pain conditions. The precise mechanisms underlying nociception are not 

jet fully understood. Beside (endo-)cannabinoid induced modulation of inflammatory 

regulation (Pandey et al., 2009) and suppression of cellular nociceptive responses 

(Walker and Huang, 2002), an interplay of the ECS and the opioid system is 

discussed (Parolaro et al., 2010). Animal pain models offer promising results of 

cannabinoids blocking pain responses (Walker and Huang, 2002). Studies with 

knock-out mice showed that both CBRs are involved in the modulation of 

antinociception (Fox and Bevan, 2005) and that the peripheral CB1Rs play a greater 

role than those localized in the CNS (Agarwal et al., 2007). In humans, beneficial 

effects of cannabis or synthetic cannabinoids in pain associated with MS, cancer, 

neuropathies and HIV infections are reported, but because of central side effects the 

widespread application is limited. Nevertheless, the antinociceptive effects, the 

interaction with the opioid system and the action mediated via peripheral CBRs 

provide a complex, but solid base for the development for cannabinoids that do not 

cross the brain-blood barrier. This would result in a novel class of analgetics 

peripherally acting against inflammatory or neuropathic pain. 

As mentioned above, cannabinoids exhibited palliative effects in cancer 

patients. This includes appetite stimulation, inhibition of nausea and emesis during 

chemotherapy, pain relief and mood elevation. Furthermore, studies showed that 
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they might direct inhibit cancer growth through complex mechanisms that may 

involve apoptosis induction and anti-proliferative, anti-angiogenic and anti-metastatic 

effects in various cancer types (Bifulco et al., 2007). For example, CB2R selective 

agonist JHW-133 inhibited tumor angiogenesis through reduction of vascular 

endothelial cell migration and inhibition of tumor expressed pro-angiogenic factors, 

such as vascular endothelial growth factor (VEGF), matrix-metalloproteinase-2 and 

angiopoietin (Blazquez et al., 2003). Blocking pro-angiogenic factors with a remedy 

that has “side benefits” may provide an interesting therapeutic approach for cancer 

therapy. 

Other promising clinical approaches are targeting the ECS for Asthma therapy - 

because of the well known anti-inflammatory effects of cannabinoids and reports that 

endogenous cannabinoids can modulate bronchodilatation (Calignano et al., 2000) -, 

for the treatment of glaucoma - where some cannabinoids could effectively lower 

intraocular pressure, which was mainly CB1R dependent (Porcella et al., 1998) - and 

for prevention of osteoporosis (Bab and Zimmer, 2008). 

The ECS is a very complex and fine-tuned system and further studies and 

investigations are required to fully understand the physiological and 

pathophysiological role and possibilities of intervention. Of course, the negative side 

effects of cannabis such as the enhanced incidence of amotivational syndrome 

(Tunving, 1987) and increased risk of schizophrenia-like psychoses (Murray et al., 

2007) must be monitored carefully or can, in a best-case scenario, be avoided by 

highly selective compounds or more selective distribution patterns. However, the 

above mentioned diseases, that are by no means complete, are being treated or 

have the potential to be treated by modulating ECS activity. 
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1.3 Objectives 

Since the discovery of the ECS its involvement in many physiological functions 

and therapeutic interventions in pathophysiological conditions are investigated. As 

well as targeting biosynthesis and degradation of endocannabinoids for modulation of 

ECS signaling, the two so far known CBRs provide promising drug targets. Hence, 

new and preferable selective CBRs agonists, inverse agonists and antagonists are 

desired and test systems for ligand screening procedures are needed. 

The aim of this thesis was to establish a functional and efficient assay system 

for the search and characterization of new CBR ligands. Therefore, different cell or 

tissue membranes heterogeneously or endogenously expressing CBR should be 

investigated on their ability to serve as an appropriate expression system. Finally, the 

steady-state GTPase assay should be developed and validated with known standard 

ligands in the most suitable expression system to characterize the pharmacological 

property of CBR ligands at a very proximal point of the signal transduction cascade. 

To examine whether the sensitivity of the test system can be enhanced, the influence 

of different co-expressed RGS proteins should be explored. 

The second part of the thesis focused on the investigation and characterization 

of CBR-Gα fusion proteins. Fusion of the receptor to Gαi2 subunit should be 

constructed and studies on their impact on receptor pharmacology was to be 

conducted. In addition, our interest was again to explore how RGS proteins would 

influence G protein signaling in the fusion approach and how this interaction is 

altered compared to the system where the CBRs are co-expressed with Gαi2. 

Finally, the assay with the highest sensitivity should be applied to examine 

potential ligands concerning their CBR activity. These ligands include natural 

compounds isolated from different Echinacea species as well as synthetic 2,3-

disubstituted indole derivatives. 

In summary, this thesis comprises the establishment of a highly sensitive assay 

system that is suitable for analyzing CBR pharmacology and for ligand screening 

procedures.  
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2 Establishment of recombinant cannabinoid receptor assays and 

characterization of several natural and synthetic ligands* 

2.1 Abstract 

Cannabinoid receptors (CBR) are important drug targets for the treatment of 

various inflammatory, metabolic and neurological diseases. Therefore, sensitive test 

systems for the assessment of ligands are needed. In this study, a steady-state 

GTPase assay for human CBR subtypes 1 and 2 was developed to characterize the 

pharmacological property of ligands at a very proximal point of the signal 

transduction cascade. Establishing these in-vitro test systems, we studied cell or 

tissue membranes heterogeneously or endogenously expressing CBR, such as CBR 

infected Human Embryonic Kidney (HEK) 293 cells, rat cerebellum and spleen cells. 

The lack of effects in the GTPase assay and in [35S]GTPγS binding experiments in 

these expression system, directed us to use Spodoptera frugiperda (Sf9) cells. Co-

expressing CBR, different Gα subunits, Gβγ heterodimer and RGS (Regulator of G 

protein signaling) proteins in Sf9 cell membranes greatly improved the sensitivity of 

the assay, with highest GTPase activation in the CBR + Gαi2 + Gβ1γ2 + RGS4 

system. We examined exogenous and endogenous standard ligands as well as 

secondary metabolites as ∆9-tetrahydrocannabinol (∆9-THC), dodeca-2E,4E-dienoic 

acid isobutylamide, an alkamide from Echinacea purpurea, and an Echinacea 

purpurea hexane extract according their agonistic and antagonistic properties. The 

suitability of the assay for screening procedures was also proven by detecting the 

activity of ∆9-THC in a matrix of other less active compounds (∆9-THC free Cannabis 

sativa extract). In conclusion, we have developed highly sensitive test systems for 

the analysis of CBR ligands. 

                                            

* This chapter is adapted from: Geiger S, Nickl K, Schneider EH, Seifert R and Heilmann J (2010) 
Establishment of recombinant cannabinoid receptor assays and characterization of several natural 

and synthetic ligands. Naunyn Schmiedebergs Arch Pharmacol 382:177-91 
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2.2 Introduction  

Cannabinoid receptors (CBRs) and their ligands have been of interest since 

their discovery in the early 1990’s. The first CBR mainly expressed in the CNS was 

cloned in 1990 and named CB1R (Howlett et al., 2002). A second cannabinoid 

receptor (CB2R), mainly found in the periphery on immune cells and tissues, was 

discovered in 1993 (Howlett et al., 2002).  

Ligands of cannabinoid receptors are of high therapeutic interest since the 

endocannabinoid system (ECS) is involved in the regulation of several biological 

functions such as immune regulation, memory, movement, appetite and pain (De 

Petrocellis et al., 2004; Di Marzo et al., 2004). Targeting increased activity of the 

ECS in obese animals led to the development of the first CB1R antagonist/inverse 

agonist named rimonabant. Currently, the interrelationship between 

neuroinflammatory disorders such as Alzheimer’s disease, amyotrophic lateral 

sclerosis, multiple sclerosis and Parkinson`s disease with malfunctions of the CBR 

system is under investigation (Centonze et al., 2007). Activation of CB1R by agonists 

results in anticonvulsive and neuroprotective effects during ischemia and after 

traumatic brain injury (Panikashvili et al., 2001; Marsicano et al., 2003). Furthermore, 

the connection of the ECS and pain is still a topic of intensive investigation (Lever 

and Rice, 2007). 

A major problem in the search for new CBR ligands is the limited number of 

available in-vitro test systems for their functional characterization and mechanistic 

studies, whereas several well established models for the in-vivo effects of CBR 

ligands exist (Cheng and Hitchcock, 2007). Often, competition binding assays with 

radioligands are applied (McPartland et al., 2007). However, these assays do not 

allow the differentiation of full or partial agonists, inverse agonists and antagonists. 

Available functional test systems measure the effects at a rather distal point of the 

signal cascade via second messengers, e. g. the increase of intracellular Ca2+ levels 

or the measurement of cAMP concentrations (Navarro et al., 2009; Silvestri et al., 

2008). These second messengers are sometimes influenced by receptor-

independent effects or cross-talk from other targets addressed by the test compound. 

Further information can be obtained by GTPγS binding assays kinetically determining 

the GDP/GTP exchange at the Gα subunit using [35S]GTPγS, an assay that was 

recently successfully established in Sf9 cell membranes (Nickl et al., 2008). 
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The aim of our present study was to establish a highly sensitive functional CBR 

assay to study CBRs and their ligands at a proximal point of the signal cascade. A 

guide for the establishment of such systems is provided by the corresponding models 

established for the β2 adrenergic receptor (Seifert et al., 1999a) and the formyl 

peptide receptor (Wenzel-Seifert et al., 1999). Activation of a receptor initiates its 

binding to the Gα subunit accompanied with the exchange of bound GDP to GTP 

resulting in the dissociation of the ternary Gα-GTP-Gβγ complex into the subunits 

Gα-GTP and Gβγ. Deactivation of the G protein is accomplished by the intrinsic 

GTPase activity of the Gα subunit hydrolyzing GTP to GDP and Pi (Seifert and 

Wenzel-Seifert, 2002). Using [γ-32P]GTP, the amount of 32Pi released by the intrinsic 

GTPase activity of Gα under state conditions can be measured. 

We adopted this concept and established CB1R and CB2R steady-state GTPase 

assays. As expression systems, we used membranes of rat cerebellum and spleen, 

endogenously expressing CBRs, as well as membranes of CBR transfected HEK 293 

cells and Sf9 cells, co-expressing CBR, different Gα subunits, Gβγ heterodimer and 

various RGS proteins. For validation several exogenous and endogenous ligands of 

CBRs, i.e. anandamide, 2-AG (2-arachidonoyl glycerol), CP 55,940 ((-)-cis-3-[2-

hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol), WIN 

55,212-2 ((R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-

benzoxazin-6-yl]-1 naphthalenylmethanone mesylate) as well as AM 251 (N-

(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-

carboxamide), AM 281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-

morpholinyl-1H-pyrazole-3-carboxamide) and AM 630 (6-iodo-2-methyl-1-[2-

4(morpholinyl)-ethyl]-[1H-indol-3-yl]-(4-methoxyphenyl)methanone) (Figure 2.1) were 

characterized. 

Since the discovery of ∆9-THC (Figure 2.1), isolated from Cannabis sativa L. 

var. indica (Cannabaceae) as an agonist on CBRs, secondary natural products have 

also been addressed as promising leads for the discovery of cannabinoid ligands. 

Recently, other natural products like the alkamides from Echinacea species (Raduner 

et al., 2006) and β-caryophyllene (Gertsch et al., 2008) have been addressed as 

ligands of the CB2R and thus, one of the main alkamides from Echinacea purpurea, 

dodeca-2E,4E-dienoic acid isobutylamide, was tested in our assay (Figure 2.1).  

Due to the fact that secondary natural metabolites almost exclusively occur as 

mixtures, a screening test system applicable for bioactivity guided isolation of natural 
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compounds must be sensitive enough to detect single active compounds in a matrix 

of other inactive compounds. Therefore, we evaluated the potential of our assay to 

detect ∆9-THC artificially added to a ∆9-THC free cannabis extract and tested an 

alkamide containing Echinacea purpurea root extract.  
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Figure 2.1: Structures of the investigated compounds  
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2.3 Materials and Methods 

2.3.1 Materials 

The cDNA for hCB1R and hCB2R in pcDNA 3.1 was obtained from the cDNA 

bank of the University of Missouri (Rolla, MO, USA). All restriction enzymes and T4 

ligase were from New England Biolabs (Beverley, MA, USA). Cloned Pfu DNA 

polymerase was from Stratagene (La Jolla, CA, USA). PCR primers were 

synthesized by MWG Biotech (Ebersberg, Germany), dNTP mix was obtained from 

Promega (Madison, WI, USA). pcDNA3.1(+) plasmid was purchased by Invitrogen 

(Carlsbad, CA, USA). Baculovirus encoding for Gα0 was a kind gift of Dr. J. Garrison 

(University of North Carolina, Chapell Hill, NC, USA). Baculovirus encoding Gαi2 was 

generously provided by Dr. A. G. Gilman (Department of Pharmacology, University of 

Texas, Southwestern Medical Center, Dallas, TX, USA). Baculovirus encoding Gβ1γ2 

was a kind gift from Dr. P. Gierschik (Department of Pharmacology, University of 

Ulm, Germany). Baculoviruses encoding for RGS4 and RGS19 were a kind gift from 

Dr. E. Ross (University of Texas, Southwestern Medical Center, Dallas, TX, USA). 

Phenylmethylsulfonylfluoride and leupeptine hemisulfate were from Calbiochem (La 

Jolla, CA, USA). Benzamidine was from Sigma (99%, St. Louis, MO, USA). Adenylyl 

imidodiphosphate was obtained from Roche (Mannheim, Germany). [35S]GTPγS 

(1,100 Ci/mmol) was purchased from PerkinElmer (Boston, MA, USA), [γ-32P]GTP 

was synthesized through enzymatic phosphorylation of GDP and 

[32P]orthophosphoric acid (8,000 Ci/mmol, PerkinElmer Life Sciences, Boston, MA, 

USA) as described previously (Walseth and Johnson, 1979).  

All nucleotides, unlabeled GTPγS, creatine kinase, creatine phosphate and salts 

(highest purity available) were purchased either from Roche (Mannheim, Germany) 

or Sigma (St. Louis, MO, USA). Dimethyl sulfoxide was from Merck (Darmstadt, 

Germany). Tris base was purchased from USB (Cleveland, OH, USA).  

GF/C filters were from Brandel (Gaithersburg, MD, USA) and Rotiszint® eco 

plus cocktail was from Roth Chemie (Karlsruhe, Germany). Radioactive samples 

were counted in a PerkinElmer Tricarb-TR liquid scintillation analyzer.  

The CBR ligands CP 55,940, anandamide, 2-AG, WIN 55,212-2, AM 251 and 

AM 630 were purchased from Tocris Cookson (Ballwin, MO, USA).  

∆9-THC was obtained by THC Pharm (Frankfurt/Main, Germany). Dodeca-

2E,4E-dienoic acid isobutylamide (2 mM (w/v) in DMSO) was a kind gift of Dr. J. 

Gertsch (ETH Zurich, Switzerland). An ethanolic ∆9-THC free Cannabis sativa extract 
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was obtained from the Bundesinstitut für Arzneimittel und Medizinprodukte (Bonn, 

Germany). The Echinacea hexane extract was prepared from the roots of Echinacea 

purpurea (kind gift of Martin Bauer GmbH, Alveslohe, Germany) through Accelerated 

Solvent Extraction (ASE 100, Dionex, Germering, Germany). 

 

2.3.2 Methods 

2.3.2.1 Construction of FLAG epitope- and hexahistidine-tagged hCBR and 

pcDNA3.1-hCBR plasmids 

hCBR constructs were generated according to a previously described strategy 

using sequential overlap-extension polymerase chain reaction (PCR) (Nickl et al., 

2008; Wenzel-Seifert et al., 1999; Wenzel-Seifert and Seifert., 2000). Briefly, a DNA 

sequence encoding the cleavable signal peptide from influenza hemagglutinin to 

direct the receptor protein to the cell membrane, followed by the FLAG epitope, 

which is recognized by the respective monoclonal antibody, was placed 5’ of the start 

codon of the cDNA of the CBRs; 3’ of the cDNA a hexahistidine (His6) was placed to 

allow further purification. These DNA constructs were used for generation of 

recombinant baculoviruses and were also inserted between the KpnI and XbaI sites 

(CB1R) and the KpnI and XhoI sites (CB2R), respectively, of the pcDNA3.1(+) 

plasmid. Constructs were confirmed by extensive restriction enzyme analysis and 

enzymatic sequencing. 

2.3.2.2 Cell culture, transfection, membrane preparation and cell microscopy of 

HEK 293 cells 

HEK 293 cells were cultivated in Dulbecco´s modified eagle medium 

supplemented with 10% (v/v) bovine serum albumin BSA (Invitrogen, Carlsbad, CA, 

USA). Cells were transfected in 24 well plates with 0.5 µg of pcDNA-CBR plasmid 

DNA using Fugene HD transfection reagent (Roche, Mannheim, Germany).  

For membrane preparation, cells were seeded in culture flasks and incubated 

until a density of approximately 95%. Cells were scraped off the plates and 

membranes were prepared by analogy to the procedure described for Sf9 membrane 

preparation. 

For imaging, cells were seeded in BD Biosciences 8 well chamber slides (San 

Jose, CA, USA) at a density of 70-80% and incubated overnight. Cells were fixed for 

30 min with 4% (w/v) paraformaldehyde (Sigma, St. Louis, MO, USA), permeabilized 

with 0.2% (w/v) Triton X-100 (Serva, Heidelberg, Germany), washed and incubated 
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for 1 hour with anti-FLAG polyclonal (rabbit) antibody (Sigma, St. Louis, MO, USA), 

1:400 (v/v) diluted in PBS buffer containing 0.5% BSA. After washing, cells were 

incubated with Cy2-conjugated AffiniPure Goat Anti-Rabbit IgG (Dianova, Hamburg, 

Germany) 1:400 (v/v) diluted in PBS buffer containing 0.5% BSA, for 1 hour. 

Thereafter, preparation was mounted with Confocal Matrix (Micro Tech Lab, Graz, 

Austria) and hardened overnight. A Carl Zeiss Axio Observer Z1 microscope was 

employed for acquisition of fluorescence images. 

2.3.2.3 Animals and rat cerebellum membrane preparation 

The study was conducted in accordance with the European Communities 

Council Directive (86/609/EEC) and of the Local Government of the Oberpfalz 

(Bavaria, Germany). All efforts were made to minimize the number of rats used and 

their suffering. Male rats (12 weeks of age, 430 - 560 g body weight; Charles River, 

Sulzfeld, Germany) was kept in the animal facilities under standard laboratory 

conditions (12:12 light-dark cycle, lights on at 6 a.m., 22°C, 55% relative humidity) 

with free access to water and standard rat chow. The rat was killed with an 

increasing concentration of CO2. The cerebellum and the spleen were removed, 

quickly frozen in prechilled n-methyl butane on dry ice, and stored at -20°C unti l 

further processing. For membrane preparation, tissues was homogenized in 10 mM 

Tris/HCl buffer, pH 7.4, containing 1 mM EDTA, 0.2 mM phenylmethyl-

sulfonylfluoride, 10 µg/ml benzamidine, 10 µg/ml leupeptin with an Ultra-Turrax 18-10 

(IKA, Staufen, Germany). After centrifugation at 500 x g for 15 min, the supernatant 

fluid was decanted and the membrane pellet was obtained by spinning the 

supernatant at 20,000 x g for 30 min. The pellet was washed and homogenized in 

buffer containing 75 mM Tris/HCl, pH 7.4, 1 mM EDTA and 12.5 mM MgCl2. Aliquots 

were stored at -80°C. Protein concentration was det ermined using the DC protein 

assay kit (Bio-Rad, Hercules, CA) according to the instructions of the manufacturer. 

2.3.2.4 Generation of recombinant baculoviruses and membrane preparation of 

transfected Sf9 cells 

Sf9 cells, derived from Spodoptera frugiperda pupal ovarian tissue, were used 

for the baculovirus expression. Sf9 cells were cultured in Erlenmeyer flasks at 28°C 

under rotation at 125 rpm in SF 900 II medium (Invitrogen, Carlsbad, CA, USA), 

supplemented with fetal calf serum (Pan-Biotech, Aidenbach, Germany) to 5% (v/v) 

and gentamicin sulfate (BioWhittaker, Walkersville, MD, USA) to 0.1 mg/ml. 
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Recombinant baculoviruses encoding FLAG- and hexahistidine-tagged CB1R and 

CB2R, Gβ1γ2 as well as varying Gα subunits (Gα0, Gαi2) and RGS proteins (RGS4 

and RGS19) were generated in Sf9 insect cells using the BaculoGOLD transfection 

kit (BD PharMingen, San Diego, CA) (Seifert and Wenzel-Seifert 2001; Wenzel-

Seifert et al., 1999; Wenzel-Seifert and Seifert, 2000) according to the 

manufacturer´s instructions. After initial transfection, high-titer virus stocks were 

generated by two sequential virus amplifications. 

For transfection, cells were seeded (cell density 3.0 x 106 cells/ml) and infected 

with a 1:100 dilution of high-titer baculovirus stocks. Cells were cultured for 48 h and 

Sf9 membranes were prepared as described previously (Wenzel-Seifert and Seifert, 

2000). Briefly, cells were washed once by centrifugating for 10 min at 170 x g, 

discarding the supernatant and resuspending the cell pellet in PBS buffer. After 

repeating the centrifugation step, the supernatant fluid was discarded and the pellet 

was suspended in lysis buffer (containing 10 mM Tris/HCl pH 7.4, 1 mM EDTA, 

0.2 mM phenylmethylsulfonylfluoride, 10 µg/ml benzamidine, 10 µg/ml leupeptin) and 

homogenized in a Dounce homogenizer with 25 strokes. After centrifugation at 40 x g 

for 5 min the pellet contained the nuclei and unbroken cells and the supernatant 

contained the membranes. Therefore, the supernatant fluid was carefully transferred 

to a plastic tube and spun down by 38,500 x g for 20 min. The pellet containing the 

membranes was resuspended in lysis buffer and again centrifuged as described 

above. The resultant membrane pellet was suspended in buffer containing 75 mM 

Tris/HCl, pH 7.4, 1 mM EDTA and 12.5 mM MgCl2, homogenized by a syringe with 

20 strokes and stored in aliquots at -80°C. Protein  concentrations were determined 

using the DC protein assay kit (Bio-Rad, Hercules, CA) according to the instructions 

of the manufacturer. Membranes used in the assays were analyzed by SDS page 

and immunoblotting with specific antibodies against FLAG-tagged cannabinoid 

receptors, G protein subunits and RGS proteins to ensure correct transfection (Nickl 

et al., 2008). 

2.3.2.5 Solubility of CBR ligands 

All compounds were dissolved in DMSO 100% (v/v) or in BSA (1 mg/ml) and 

stored at -20° C. The final DMSO concentration in a ssays in all cases was 3% (v/v) 

and did not influence the functionality of the assay (Table 2.3). 
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2.3.2.6 [35S]GTPγS binding experiments 

 To determine the agonist-stimulated guanine nucleotide binding to G proteins, 

[35S]GTPγS binding experiments were performed in the presence of GDP at 

increasing concentrations according to a previously described protocol (Seifert et al., 

1998). Briefly, membranes were thawed, sedimented by centrifugation at 18,000 x g 

for 10 min at 4°C, and carefully homogenized in bin ding buffer containing 75 mM 

Tris/HCl, pH 7.4, 1 mM EDTA and 12.5 mM MgCl2. Assay tubes contained 0.25% 

(w/v) BSA, membranes of rat cerebellum (2.5 µg of protein) or rat spleen (5 µg of 

protein), 0.4 nM [35S]GTPγS and varying concentrations of GDP ranging from 1 nM to 

10 µM for rat cerebellum and 10 nM to 100 µM for rat spleen in 250 µl binding buffer. 

Binding of [35S]GTPγS was examined in the absence and presence of 10 µM 

CP 55,940 with or without 100 mM NaCl. Non-specific binding was determined in the 

presence of 100 µM unlabeled GTPγS and was less than 0.4% of total binding. 

Incubation was conducted for 90 min at room temperature and shaking at 250 rpm on 

a platform shaker (InnovaTM 2000, New Brunswick Scientific, Edison, NJ, USA). 

Assays were stopped by filtration through GF/C filters equilibrated with binding buffer. 

After filtration, filters were washed 3 times with cold binding buffer (4°C) and filter-

bound radioactivity was determined by liquid scintillation counting in Rotiszint® eco 

plus cocktail after 4 hours of equilibration. 
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2.3.2.7 Steady-state GTPase assay 

The GTPase assay was performed as described previously (Wenzel-Seifert et 

al., 1999). Briefly, membranes were thawed, sedimented by centrifugation at 

18,000 x g for 10 min at 4°C, and carefully resuspe nded in 10 mM Tris/HCl, pH 7.4. 

Assay tubes contained membranes (HEK 15 µg, rat cerebellum 2.5 µg, rat spleen 5 

µg, Sf9 15 µg of protein/tube), 1.0 mM MgCl2, 0.1 mM EDTA, 0.1 mM ATP, 100 nM 

GTP, 0.1 mM adenylyl imidodiphosphate, 5 mM creatine phosphate, 40 µg of 

creatine kinase, 0.2% (w/v) BSA in 50 mM Tris/HCl, pH 7.4, to prevent binding of 

protein or ligand to the polystyrol tubes, and CB1R and CB2R ligands at various 

concentrations. To suppress constitutive activity of CB1Rs in rat cerebellum, 150 mM 

NaCl was added to assay tubes (Wenzel-Seifert et al., 1998). This addition enabled 

us to increase the effect of an agonist on GTPase activity. Reaction mixtures (80 µl) 

were incubated for 2 min at 25°C before the additio n of 20 µl of [γ-32P]GTP 

(0.1 µCi/tube). All stock and work dilutions of [γ-32P]GTP were prepared in 20 mM 

Tris/HCl, pH 7.4. Reactions were conducted for 20 min and 10 min for rat tissues, 

respectively, at 25°C. Reactions were terminated by  the addition of 900 µl of slurry 

consisting of 5% (w/v) activated charcoal and 50 mM NaH2PO4, pH 2.0. Charcoal 

absorbs nucleotides but not 32Pi. Charcoal-quenched reaction mixtures were 

centrifuged for 7 min at room temperature at 15,000 x g. Six hundred µl supernatant 

fluid of reaction mixtures was removed and 32Pi was determined by Čerenkov 

radiation in 3 ml water. Enzyme activities were corrected for spontaneous 

degradation of [γ-32P]GTP. Spontaneous [γ-32P]GTP degradation was determined in 

tubes containing all of the above described components plus a high concentration of 

unlabeled GTP (1 mM) that, by competition with [γ-32P]GTP, prevents [γ-32P]GTP 

hydrolysis by enzymatic activities present in Sf9 membranes. Spontaneous  

[γ-32P]GTP degradation amounted to <1% of the total amount of radioactivity added. 

The experimental conditions chosen ensured that not more than 20% of the total 

amount of [γ-32P]GTP added was converted to 32Pi. Neutral antagonism was 

determined in the presence of 30 nM (Table 2.4) or 10 nM CP 55,940 (Figure 2.6).  
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2.3.2.8 Calculations and statistics 

Data are expressed as means ± SD and represent a minimum of 3 independent 

experiments, each performed in triplicate. Statistical evaluations and curve fittings 

were calculated using the GraphPad Prism 4 software (La Jolla, CA) and the 

Microsoft Excel 2007 software. Kb values were derived from the equation by Cheng 

and Prusoff (Cheng and Prusoff, 1973). 

 To compare more than two values, statistical significance was determined by 

the one-way ANOVA (Table 2.2), followed by the Dunnett post test. The statistical 

evaluation of two values was performed with the Student´s t-test. P values are given 

in the text (section results) and in the respective tables. 
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2.4 Results 

2.4.1 CBR transfected HEK 293 cells 

 To obtain a mammalian test system, CBRs were expressed in HEK 293 cells. 

Expression of receptor proteins was confirmed with immunostaining (Figure 2.2). 

Both receptors were present at the plasma membrane, and in CB1R transfected HEK 

293 cells a fraction of the receptor was additionally localized in intracellular vesicles.  

Although the CBR were clearly expressed, the use of HEK 293 cell membranes 

did not allow us to successfully establish the steady-state GTPase assay in 

mammalian cells. Despite intense efforts, with different CBR ligands no change of 

GTPase activity was observed (data not shown). 

 

    
 

Figure 2.2: Immunostaining of CBR transfected HEK 293 cells 
Cell staining was performed as described in Material and Methods. CB1R transfected HEK 293 cells 
show localization of receptor at the plasma membrane and in intracellular vesicles (A), whereas in 
CB2R-transfected HEK 293 cells the receptor is predominantly localized at the plasma membrane (B).  
 

2.4.2 GTPγγγγS binding experiments in rat cerebellum and rat spleen membrane 

To determine the effect of agonists on guanine nucleotide exchange, 

[35S]GTPγS bindings were conducted, in the presence of GDP at increasing 

concentrations (Figure 2.3). In rat cerebellum membranes, GDP inhibited [35S]GTPγS 

binding with a logIC50 value of -7.16 ± 0.10. In the presence of an agonist the affinity 

of Gα for GDP should be decreased (Seifert et al., 1998) resulting in a right-shift of 

the concentration-response curve. However, the addition of 10 µM CP 55,940 did not 

significantly change the affinity of the G proteins for GDP (logIC50 value of -7.20 ± 

0.09). Even the addition of 100 mM NaCl did not unmask a measurable right-shift 

(logIC50 value of -7.18 ± 0.06 and -7.21 ± 0.07 in the presence of agonist CP 55,940). 
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In contrast, in myeloid differentiated HL-60 membranes, NaCl was very effective at 

enhancing agonist effects on [35S]GTPγS binding (Gierschik et al., 1991). 

Analysis of rat spleen membranes revealed a similar pattern. In this system, a 

logIC50 value of -6.90 ± 0.08 for the GDP competition under basal conditions was 

determined. In the presence of CP 55,940, a logIC50 value of -6.86 ± 0.09 for GDP 

was measured. Again, NaCl did not influence the sensitivity of the system (logIC50 

value of -7.16 ± 0.07 for GDP and -7.14 ± 0.08 in the presence of agonist CP 

55,940).  

 
Figure 2.3: Effect of CP 55,940 on GTPγγγγS binding in rat cerebellum and spleen membrane 
GDP affinity binding was determined as described in Materials and Methods. Data show the merged 
results of 3 independent [35S]GTPγS binding assays. Reaction mixtures contained 0.4 nM [35S]GTPγS 
and GDP at the concentrations indicated on the abscissa in the absence (A and B) or presence 
(C and D) of 100 mM NaCl. Data were obtained for rat cerebellum membrane (A and C) and rat 
spleen membrane (B and D) with (○) and without (●) 10 µM CP 55,940. 
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2.4.3 Analysis of GTPase activity in rat tissue membrane 

 Rat cerebellum membranes exhibited a substantial basal GTPase activity 

(Table 2.1). The addition of 150 mM NaCl to the reaction mixture resulted in a 

decreased constitutive activity of the CB1R in rat cerebellum membrane, resulting in 

an increased agonist effect (Table 2.1). In this system we could reach 15 ± 2% 

stimulation above basal by CP 55,940. A reduction of 19 ± 2% from basal GTPase 

activity was achieved with AM 251 in absence of NaCl. However, for detailed 

pharmacological studies, these signals were far too small. 

 In rat spleen membrane no change of GTPase activity was measurable with 

agonist CP 55,940 in concentrations from 1 nM to 10 µM. Also, the CB2R antagonist 

AM 630 did not show any effect in the concentrations from 1 nM to 100 µM, whether 

in the normal or in the antagonist mode (data not shown). 

 

 

Table 2.1: Analysis of GTPase activity of CB1R in rat cerebellum membrane 

 Basal activity Activity with 10 uM ligand 

[pmol x mg-1 

 x min-1] 

[pmol x mg-1  

x min-1] 

[% change of 

basal activity] 

CP 55,940 25.05 ± 2.41 27.18 ± 2.24 9 ± 4 

CP 55,940 with 150 mM NaCl 15.57 ± 0.77 17.88 ± 1.08 15 ± 2 

AM 251 25.00 ± 2.60 20.22 ± 1.96 -19 ± 2 

 

GTPase activity was determined as described in Materials and Methods. Reaction mixture contained 
CP 55,940 and AM 251 at concentrations from 1 nM to 10 µM to generate sigmoidal concentration-
response curves. Data were analyzed by nonlinear regression and best fit to sigmoidal concentration-
response curves. Data shown are the mean values ± SD and represent 4 independent experiments 
performed in triplicates. 
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2.4.4 Analysis of six different co-expression systems of CBRs in Sf9 cells 

To obtain a highly sensitive test system for the CBRs we compared the co-

expression of Gα0 and Gαi2 subunits in Sf9 insect cells. Gα0 is expressed in neuronal 

and neuroendocrine cells, whereas Gαi2 is ubiquitously expressed (Offermanns, 

2003). Furthermore, we evaluated the potential effects of GTPase activating proteins 

(GAPs) (Ross and Wilkie, 2000) on the GTPase activity and started our 

investigations with RGS4 and RGS19, using in all constructs the additional 

heterodimer Gβ1γ2. In previous studies on the human histamine H4 receptor and 

chemokine receptor CXCR4, RGS proteins enhanced agonist-stimulated GTP 

hydrolysis (Schneider and Seifert, 2009; Kleemann et al., 2008). 

Expression of the Gα0 subunit resulted in a low GTPase activation by 10 µM 

CP 55,940 (19 ± 9% for CB1R and 27 ± 6% for CB2R, Table 2.2). In contrast, the 

expression of Gαi2 increased the GTPase stimulation to 53 ± 19% for CB1R and 70 ± 

13% for CB2R, Table 2.2). The co-expressed RGS protein significantly influenced the 

GTPase activation. Co-expression with RGS4 was beneficial for all used constructs, 

with the highest increase in membranes with Gαi2 and RGS4 (CB1R: 158 ± 8% 

stimulation and CB2R: 156 ± 15%, Table 2.2), whereas RGS19 co-expression was 

only beneficial for the CB1R + Gα0 construct. LogEC50 values were not statistically 

different for the CB1R in all constructs (p = 0.9181), but the increase of GTPase 

stimulation of CB1R + Gαi2 + Gβ1γ2 + RGS4 was significantly higher with a p value of 

< 0.001 compared to all other CB1R constructs. Also, the p value for the comparison 

of GTPase stimulation of CB2R + Gαi2 + Gβ1γ2 + RGS4 construct to the other CB2R 

constructs is ≤ 0.001, showing a very high significant difference. Interestingly, the 

logEC50 of CP 55,940 on the CB2R + Gα0 construct is significantly different from all 

other constructs with a p value of 0.0136. Regarding the baseline values of the 

different constructs, the CB1R + Gαi2 system with RGS4 and RGS19 showed a 

significant increase of basal activity (p = 0.0034), whereas in the CB2R + Gαi2 system 

only RGS4 influenced basal activity positively (p < 0.001). 

Based on these results we went on working with the CBR + Gαi2 + Gβ1γ2 + 

RGS4 construct for further experiments. This system showed the highest sensitivity 

recognizable at the highest GTPase stimulation by CP 55,940 with no significant 

influence on the log EC50 value. 
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Table 2.2: Analysis of six different co-expression systems of CBRs in Sf9 cells  
 

 
Steady-state GTPase assay was performed as described in Materials and Methods. Each membrane preparation additionally contained Gβ1γ2 protein. Reaction 
mixture contained CP 55,940 concentrations from 1 nM to 10 µM to generate sigmoidal concentration-response curves. Data were analyzed by nonlinear 
regression and best fit to sigmoidal concentration-response curves. Data shown are the mean values ± SD of 3 - 9 independent experiments performed in 
triplicates with three different membrane preparations. Statistical significance was determined by the one-way ANOVA, followed by the Dunnett´s multiple 
comparison test. Stimulation of GTPase activity was significantly higher in the Gαi2 + RGS4 system with p values ≤ 0.001 for CB1R and CB2R. Regarding basal 
values of GTPase activity, the CB1R + Gαi2 system with RGS4 and RGS19 shows a significant increase of basal activity (p = 0.0034), whereas in the CB2R + 
Gαi2 system only RGS4 influences basal activity significantly (p < 0.001). The logEC50 of the CB2R + Gαo differed to the logEC50 values of the other CB2R co-
transfection systems (p = 0.0136).  
(no symbol: not significant; *p ≤ 0.05, **p ≤0.01, ***p ≤0.001) 

 hCB1R  hCB2R 

 Basal CP 55,940 10 µM logEC50  Basal CP 55,940 10 µM logEC50 

 

membrane 

[pmol x mg-1  

x min-1] 

[pmol x mg-1 

x min-1] 

[% change of 

basal activity] 
 

 
[pmol x mg-1  

x min-1] 

[pmol x mg-1  

x min-1] 

[% change of 

basal activity] 
 

Gαo 2.08 ± 0.76 2.44 ± 0.81 19 ± 9 -7.45 ± 0.90  0.59 ±  0.12 0.75 ± 0.17 27 ± 6 -8.73 ± 0.41* 

Gαo + RGS4 3.38 ± 1.27 5.33 ± 2.04 67 ± 21 -7.81 ± 0.43  0.73 ± 0.40 1.13 ± 0.63 57 ± 17 -8.38 ± 0.49 

Gαo + RGS19 2.91 ± 0.86 4.34 ± 1.34 49 ± 4 -7.74 ± 0.27  0.95 ±  0.25 1.26 ± 0.40 31 ± 11 -7.86 ± 0.43 

Gαi2 3.77 ± 0.48 5.69 ± 0.50 53 ± 19 -8.07 ± 0.07  1.07 ± 0.45 1.81 ± 0.78 70 ± 13 -8.29 ± 0.30 

Gαi2 + RGS4 5.40 ± 0.02** 13.95 ± 0.38 158 ± 8*** -7.86 ± 0.08  3.20 ± 0.46*** 8.14 ± 0.77 156 ± 15*** -7.94 ± 0.14 

Gαi2 + RGS19 5.60 ± 0.92** 8.53 ± 0.86 55 ± 8 -8.02 ± 0.28  1.48  ± 0.56 2.50 ± 0.80 69 ± 11 -7.92 ± 0.65 
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2.4.5 Evaluation of solvent effects in the steady-state GTPase assays 

As ligands of CBRs are usually lipophilic, the use of BSA (Breivogel, 2006) or 

organic solvents like DMSO is often necessary to avoid solubility problems. 

Therefore, we evaluated the effect of either 0.1 mg/ml BSA or 3% DMSO (v/v) (final 

concentrations) on the outcome of the steady-state GTPase assays using the ligands 

anandamide, CP 55,940 and WIN 55,212-2 (Table 2.3). For these evaluations, we 

used the CBR + Gαi2 + Gβ1γ2 + RGS4 co-expression system. The use of BSA 

solution resulted in an increase of GTPase stimulation except for CP 55,940 at the 

CB1R, a finding, we do not have a plausible explanation for. A better solubilisation 

under modified physiochemical conditions can be discussed. The logEC50 values 

were mostly not affected (no statistical significance). An exception is WIN 55,212-2 in 

the CB1R system. Its BSA logEC50 value differs significantly with a p value of 0.0482 

from the DMSO logEC50 value.  
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Table 2.3: Comparison of two solvents on GTPase activity of CB1R and CB2R co-expressed with Gαi2 + Gβ1γγγγ2 + RGS4 in Sf9 cells 

 

  hCB1R  hCB2R 

ligand 
solvent 

Basal 

[pmol x mg-1 x min-1] 

GTPase 

stimulation [%] 
log EC50 

 Basal 

[pmol x mg-1x min-1] 

GTPase 

Stimulation [%] 
log EC50 

anandamide 

 

DMSO 

BSA 

6.01 ± 1.40 82 ± 26 

139 ± 13 

-6.66 ± 0.20 

-6.49 ± 0.42 

 
2.64 ± 0.63 73 ± 13 

190 ± 32 

-6.22 ± 0.33 

-5.42 ± 0.23 4.88 ± 0.80  2.52 ± 0.98 

CP 55,940 

 

DMSO 

BSA 

5.40 ± 0.02 158 ± 8 

152 ± 4 

-7.86 ± 0.08 

-7.94 ± 0.10 

 
3.20 ± 0.46 156 ± 15 

190 ± 8 

-7.94 ± 0.14 

-7.90 ± 0.12 5.15 ± 0.21  2.74 ± 0.39 

WIN 55,212-2 

 

DMSO 

BSA 

6.60 ± 1.13 94 ± 18 

153 ± 26 

-7.34 ± 0.12* 

-7.14 ± 0.06* 

 
2.28 ± 0.40 161 ± 33 

218 ± 32 

-8.54 ± 0.24 

-8.10 ± 0.27 4.88 ± 0.87  2.67 ± 1.13 

 
Steady-state GTPase assay was performed as described in Materials and Methods. Reaction mixtures contained CP 55,940 concentrations from 1 nM to 
10 µM to generate sigmoidal concentration-response curves. Data were analyzed by nonlinear regression and best fit to sigmoidal concentration-response 
curves. Results shown are mean values ± SD and represent 3 independent experiments performed in triplicates with different membrane preparations. 
Statistical evaluation was performed with the Student´s t-test. No significant difference of the logEC50 values could be determined between DMSO and BSA. 
Only the logEC50 value of WIN 55,212-2 showed a significant difference in the tested solvents in the CB1R system (p = 0.0482). (unpaired Student´s t test, *p ≤ 
0.05) 
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2.4.6 Analysis of potencies and efficacies of CBR ligands in the functional 

steady-state GTPase assay 

The most efficient activation of GTPase by the Gαi2 + Gβ1γ2 + RGS4 construct 

directed us to choose this model for further validation of the test system with several 

ligands (Table 2.4) using the plant-derived agonist ∆9-THC, the endogenous agonists 

anandamide and 2-AG, the synthetic agonists CP 55,940 and WIN 55,212-2 as well 

as the synthetic inverse agonists AM 251 and AM 281 (at CB1R) and antagonist 

AM 630 (at CB2R). According to the two-state model of GPCR activation (Seifert and 

Wenzel-Seifert, 2002), agonists stabilize the active R* state and increase basal 

G protein activity, whereas inverse agonists stabilize the inactive R state and 

decrease basal G protein activity. Antagonists do not change this equilibrium. 2-AG, 

the most abundant endogenous agonist, acted as a full agonist with similar potency 

at both CBRs. Emax values of all other agonist at a concentration of 10 µM were 

related to the GTPase activation by 2-AG (Emax set 100%). ∆9-THC acted as partial 

agonist at CBRs showing a higher efficacy at CB1R than CB2R (47 ± 3% versus 29 ± 

4%, respectively) which finding is in accordance with literature data (McPartland and 

Glass, 2003; Pertwee 2008a). Anandamide acted as a partial agonist at CB1R (79 ± 

25%) and at CB2R (55 ± 10%). WIN 55,212-2 behaved as a nearly full agonist at the 

CB1R (90 ± 17%) and as a “superagonist”, with stimulation of GTPase higher than 2-

AG, at the CB2R (122 ± 25%). CP 55,940 showed very similar increase of GTPase 

activity at both receptors (158 ± 8% versus 156 ± 15%). Compared to 2-AG, 

CP 55,940 acted as “superagonist” at both receptors (152 ± 8% at the CB1R and 

118 ± 11% at the CB2R).  

Decrease of GTPase activity was observed by the inverse agonists AM 251 

and AM 281 at the CB1R. Emax values of these ligands were related to the GTPase 

inhibition by AM 251 that showed the strongest reduction of GTPase activity (Emax set 

-100%). In relation to AM 251, AM 281 caused a decrease of GTPase activity to -84 ± 

5%. An influence of GTPase activity with AM 630 was only observed when tested in 

the presence of 30 nM CP 55,940. Under these conditions AM 630 reduced GTPase 

activity to basal GTPase activity assessed with 3% (v/v) DMSO. With this 

experimental design, the reversibility of agonist CP 55,940 effect by an antagonist 

can be demonstrated. AM 630 inhibited GTPase stimulation by CP 55,940 with a Kb 

value of 632 ± 93 nM. The same procedure was performed for the CB1R, where 

AM 251 competed with CP 55,940 and consequently reduced the enhanced GTPase 
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activity. The Kb value for AM 251 at the CB1R was 52 ± 6 nM. Figure 2.4 shows 

typical concentration-response curves for selected CBR ligands. 

 

 

Table 2.4: Analysis of potencies and efficacies of CBR ligands in the functional steady-state 
[γγγγ-32P]GTPase assay 

  
 
Regulation of GTPase activity by different CBR ligands compared to basal GTPase activity assessed 
with 3% (v/v) DMSO. Steady-state GTPase assay was performed as described in Materials and 
Methods. Emax values represent the stimulation of ligands [10 µM] relative to the endogenous agonist 
2-AG (defined as 100% response) respectively the inhibition relative to AM 251 (defined as -100% 
inhibition). Reaction mixtures contained CBR ligands at various concentrations (1 nM - 10 µM). Data 
were analyzed by nonlinear regression and best fit to sigmoidal concentration-response curves. Basal 
activities ranged between 5.11 and 7.71 pmol x mg-1 x min-1 for CB1R and between 1.57 and 3.33 pmol 
x mg-1 x min-1 for CB2R. The maximal stimulatory effect of 2-AG constituted 65 to 137% for CB1R and 
116 to 148 % for CB2R over basal. The results are expressed as mean values ± SD and represent 3 
independent experiments performed in triplicates with different membrane preparations.  
* Data determined in the presence of 30 nM CP 55,940, ** not determined,  
1 Pertwee, 1999, 2 Mechoulam et al., 1995, 3 Lan et al., 1999a, 4 Lan et al., 1999b, 5 Ross et al., 1999 

  

  

ligand 

Gαi2 + 

Gβ1γγγγ2 

+ RGS4 

GTPase 

stimulation / 

inhibition [%] 

Emax 

[%] 

logEC50 / 

logIC50 

logIC50 

(literature) 

∆
9-THC CB1R 49 ± 3 47 ± 3 -7.13 ± 0.14 -7.271 

 CB2R 38 ± 5 29 ± 4 -6.77 ± 0.08 -7.121 

anandamide CB1R 82 ± 26 79 ± 25 -6.66 ± 0.20 -7.051 

 CB2R 73 ± 13 55 ± 10 -6.22 ± 0.33 -6.431 

2-AG CB1R 104 ± 14 100 -6.02 ± 0.35 -6.332 

 CB2R 132 ± 13 100 -5.73 ± 0.25 -5.852 

CP 55,940 CB1R 158 ± 8 152 ± 8 -7.86 ± 0.08 -8.301 

 CB2R 156 ± 15 118 ± 11 -7.94 ± 0.14 -8.741 

WIN 55,212-2 CB1R 94 ± 18 90 ± 17 -7.34 ± 0.12 -6.911 

 CB2R 161 ± 33 122 ± 25 -8.55 ± 0.24 -8.391 

AM 251 CB1R -73 ± 3 -100 -7.44 ± 0.06 -8.133 

AM 281 CB1R -61 ± 4 -84 ± 5 -7.64 ± 0.09 -7.924 

AM 630* CB2R -48 ± 8 n.d.** -5.94 ± 0.33 -7.515 
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Figure 2.4: Representative concentration-response curves obtained in the steady-state GTPase 
assay with CBRs co-expressed with Gαi2 + Gβ1γγγγ2 + RGS4 in Sf9 cells  
GTPase activity was determined as described in Materials and Methods. Data show merged results of 
3 independent GTPase assays obtained from different ligands in concentrations indicated on the 
abscissa. A Effects of CP 55,940 (●), ∆9-THC (□) and AM 251 (▲) on GTPase activity in Sf9 cells co-
expressing CB1R + Gαi2 + Gβ1γ2 + RGS4. B Effects of AM 251 (▲) on GTPase activity in the 
antagonist mode in the presence of 30 nM CP 55,940. C Effects of CP 55,940 (●), ∆9-THC (□) and AM 
630 (♦) on GTPase activity in Sf9 cells co-expressing CB2R + Gαi2 + Gβ1γ2 + RGS4. D Effect of AM 
630 (♦) on GTPase activity in the antagonist mode in the presence of 30 nM CP 55,940. 
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2.4.7 Analysis of C. sativa extract in the functional steady-state GTPase assay 

As natural compounds always occur in a matrix of other secondary metabolites 

we evaluated whether this system is sensitive enough to detect an agonist at CBRs 

in a mixture of other compounds. Therefore we added 10% (m/m) ∆9-THC artificially 

to a ∆9-THC free cannabis extract and obtained the expected increase of GTPase 

activity (Figure 2.5).  

 

 

 
Figure 2.5: Effect of C. sativa extract in the steady-state GTPase assay 
GTPase activity was determined as described in Materials and Methods. Data show the merged 
results of 3 independent GTPase assays obtained for a ∆9-THC free C. sativa extract (■) and C. sativa 
supplemented with 10% ∆9-THC (▲) in Sf9 cell membranes co-expressing CB1R + Gαi2 + Gβ1γ2 + 
RGS4 (A) and CB2R + Gαi2 + Gβ1γ2 + RGS4 (B). 
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2.4.8 Analysis of dodeca-2E,4E-dienoic acid isobutylamide and Echinacea 

purpurea extract 

The analysis of the CB2R ligand dodeca-2E,4E-dienoic acid isobutylamide 

(Raduner et al., 2006) revealed lacking effects in the GTPase assay. Even in the 

presence of 10 nM CP 55,940, a test mode in which a neutral antagonist can be 

characterized, no effect was detectable (Figure 2.6A). Furthermore, the lipophilic 

hexane extract of Echinacea purpurea roots containing several alkamides (Perry et 

al., 1997) showed no activity in the GTPase assay, also tested in both modes 

(Figure 2.6B).  

 

 
Figure 2.6: Effect of dodeca-2E,4E-dienoic acid isobutylamide and Echinacea purpurea root 

hexane extract on GTPase activity of the CB2R 
GTPase activity was determined as described in Materials and Methods. Data show a representative 
result performed in triplicates in Sf9 cells expressing CB2R + Gαi2 + Gβ1γ2 + RGS4. The experiment 
was replicated 3 independent times with different membrane preparations. 10 µM CP 55,940 was 
used as a positive control (▼). A, effect of dodeca-2E,4E-dienoic acid isobutylamide on GTPase 
activity (●) and in the antagonist mode in the presence of 10 nM CP 55,940 (○). B, effect of Echinacea 
purpurea root hexane extract on GTPase activity (■) and in the antagonist mode in the presence of 
10 nM CP 55,940 (□). 
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2.5 Discussion 

In this study a functional steady-state GTPase test system for the 

pharmacological characterization of known CB1R and CB2R ligands, as well as for 

functional studies and the search of new agonists and antagonists in complex natural 

matrices was established and validated. The assay was developed by using different 

cell lines or tissues endogenously or heterogeneously expressing CBR. Efforts were 

made to establish this highly sensitive assay efficient at mammalian test systems, but 

the superior expression of CBRs in Sf9 cells and the use of the baculovirus 

expression system offered a unique chance to analyze ligands, even partial agonists 

and inverse agonists. 

Using membranes of CBR transfected HEK 293 cells did not lead to a 

successful outcome. Imaging of the transfected HEK 293 cells illustrates the 

difference of CB1R and CB2R concerning their basal localization. Like in our present 

study, the localization of CB1R in intracellular vesicles was already reported earlier 

(Leterrier et al., 2004). Possibly, the high constitutive CB1R activity results in 

constitutive internalization and constitutive desensitization with subsequent G protein 

uncoupling and lack of GTPase activation as was previously shown for a 

constitutively active β2 adrenergic receptor mutant (Pei et al., 1994). However, in Sf9 

cells, desensitization and internalization of GPCRs is much less pronounced. In fact, 

even in the presence of agonists, usually resulting in desensitization, enhanced 

GPCR expression is observed (Schneider et al., 2009; Gether et al., 1997). 

Establishing the steady-state GTPase assay in rat tissue membranes, only 

cerebellum membranes led to the expected effect of the tested ligands. Suppression 

of ligand-independent GTPase activity with NaCl increased the effect of a full agonist 

such as CP 55,940 in a manner that a measurement of GTPase stimulation was 

quite possible. However, for qualitative analysis of a partial agonist or a partial 

inverse agonist the sensitivity of the rat cerebellum membrane system was 

insufficient and the use of rat spleen membranes did not lead to a successful 

outcome. Therefore, we established the [35S]GTPγS binding assay with mammalian 

membranes endogenously expressing CBRs that is described as a highly sensitive 

assay with a better signal-to-noise ratio than the GTPase assay (Seifert et al., 1998; 

Gierschik et al., 1989). In agreement with other systems, GDP reduced basal GTPγS 

binding in rat cerebellum and rat spleen membranes. In contrast to previously 

published experiments – such as in CHO cell membranes (Ross et al., 1999) - GDP 
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did not unmask an agonist effect on GTPγS binding. Possibly, the density of CBRs 

and/or the cognate coupling G proteins in rat cerebellum is too low. The lack of 

agonist response in these test systems indicates that the use of mammalian tissues 

expressing CBRs is not suitable for detailed functional and pharmacological studies.  

Furthermore, the use of rat tissue for pharmacological screening studies is less 

satisfactory than transfected cell membranes. Although rat brain is highly populated 

with CB1Rs, CB2Rs are expressed in brain as well (Skaper et al. 1999). Along the 

same line in spleen, although most of the CBRs present in this system are CB2Rs, 

some CB1Rs are expressed, too (Howlett et al., 2002). 

 The use of Sf9 cells and the baculovirus expression system offers several 

advantages. These insect cells do not possess mammalian G proteins or GPCRs, 

especially the absence of CBRs is described in literature (McPartland et al., 2001), 

and - in contrast to a mammalian cell line - the production of endogenous ligands can 

be excluded. The experimental design ensures that data are not influenced by 

fluctuating conditions of a living cell. Hence, by co-infection of baculoviruses 

encoding for a certain GPCR and G proteins, functional studies can be performed 

(Nickl et al., 2008; Wenzel-Seifert and Seifert, 2003) without the background noise of 

endogenously existing, potentially constitutively active receptors. Furthermore, it is 

relatively insensitive in terms of solvents, affords easy reconstitution of GPCRs and 

G proteins and enables high GPCR expression (6.6 ± 0.9 pmol/mg CB1R and 3.4 ± 

1.7 CB1R) and Gαi2 protein expression (480 ± 34 pmol/mg in CB1R membranes and 

167 ± 68 pmol/mg in CB2R membranes) expression. Also, the Gβγ subunit protein 

expression (5.8 ± 1.2 pmol/mg in CB1R membranes and 4.3 ± 1.5 pmol/mg in CB2R 

membranes) is in a similar expression level as the receptor proteins (Nickl et al., 

2008).  

However, the use of insect cells renders the assay somewhat artificial due to 

the fact that in native mammalian cells different Gα subunits as well as several 

proteins with RGS domains are expressed in parallel (Burchett 2000). A highly 

specific interaction of a compound via a certain Gα subunit and/or a certain RGS 

protein (Seifert and Dove 2009) cannot be excluded so that a lacking activity in a 

defined G protein co-expression system and the respective assay is not a general 

proof of lacking activity at the receptor. Furthermore, misfolding or proteolysis of 

expressed proteins had to be considered. Another matter of fact that should be kept 

in mind is, that the efficiency of coupling between the receptors and the Gα subunit 
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depends on the density of the subunit in the membrane and its proximity to the 

receptors. This proximity of the signaling partners is necessary for forming the 

ternary complex which is a crucial step in the G protein cycle and therewith allowing 

the measurement of GTPase activity. As already published (Nickl et al., 2008), the 

Gα subunit in the established assay is expressed at a high level with a GPCR-Gα 

subunit ratio of 1:73 (CB1R) and 1: 48 (CB2R). This ensures statistical room for 

coupling of the Gα subunit to the receptor. Anyway, a defined 1:1 stoichiometry and a 

close proximity of the receptor and the Gα subunit would be guaranteed by GPCR-

Gα fusion proteins and is an interesting further development for the characterization 

of ligands to CBR in the steady-state GTPase (Seifert et al., 1999b). 

As CBRs are Gi/0 protein coupled GPCRs, in a first step, Gα0 and Gαi2 subunits 

as well as two RGS proteins, RGS4 and RGS19, were co-expressed to develop an 

assay with high GTPase activity and thus a high sensitivity required for a screening 

procedure usually applied for a bioactivity-guided isolation of natural products. The 

construct of CBR + Gαi2 + Gβ1γ2 + RGS4 was the most efficient system. This is in 

accordance with literature data (Kleemann et al., 2008) where the RGS4 protein 

enhanced the absolute and relative values of GTPase stimulation with an increase of 

the basal GTPase activity values. This increase of GTPase stimulation could be 

observed in our CBR assay system, resulting in a higher sensitivity. These data also 

imply that under our assay conditions, GTP hydrolysis can become the rate-limiting 

step of the G protein cycle (Schneider and Seifert 2009; Kleemann et al., 2008). The 

optimized assays allow the characterization of ligands as partial, full or inverse 

agonists and antagonists at a very proximal point of the signal cascade of GPCRs. 

Various agonists, inverse agonists and antagonists like anandamide, 2-AG, ∆9-THC, 

CP 55,940, WIN 55,212-2, AM 251, AM 281 and AM 630 were characterized to 

ensure the validity of the test systems. In agreement with the literature, ∆9-THC was 

characterized as partial agonist with higher affinity to CB1R than to CB2R (McPartland 

and Glass, 2003; Pertwee, 2008b). CP 55,940 and WIN 55,212-2 are full agonists at 

CB1R with EC50 values in the low nM range, also matching the literature data (Felder 

et al., 1995, Griffin et al 1998). AM 251 and AM 281 were described as selective 

CB1R antagonists with strong inverse agonist properties (Cosenza et al., 2000). This 

finding was also demonstrated in our assay as both reduced CB1R GTPase activity 

by 73 ± 3 % and 61 ± 4%, respectively with AM 251 being the more efficacious 

inverse agonist. In our assay AM 630 behaved as a neutral CB2R antagonist with 
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reduction of GTPase activity of -48 ± 8% in the presence of 30 nM CP 55,940. This is 

in contrast to literature data, where AM 630 is described as a antagonist of CB2R with 

the properties of an inverse agonist (Howlett et al., 2002; Ross et al., 1999). For a 

final conclusion of its pharmacological behavior further experiments are required. The 

Kb values of 52 ± 6 nM for AM 251 and 632 ± 93 nM for AM 630 determined in our 

hands differ considerably compared to published data, where the pharmacological 

parameters of these ligands were evaluated in CBR competition binding experiments 

(Lan et al., 1999a; Ross et al., 1999). For AM 251 a Ki value of 7.49 nM (Lan et al., 

1999) and for AM 630 a Ki value of 31 nM (Ross et al., 1999) can be found in 

literature. In addition to the fact, that these literature values were not determined in a 

functional assay but in CBR competition binding assays with different assay 

conditions, this discrepancy can be explained by the concept of ligand specific 

receptor conformation. As it is described for example for the β2 adrenergic receptor 

(Seifert et al. 2001) and the histamine H4 receptor (Schneider et al., 2009), ligands 

can stabilize unique receptor confirmations. It is possible that in our assay the 

agonist CP 55,940, stabilizes a specific GDP/GTP exchange-promoting conformation 

of the GPCR for which the affinity of the inverse agonist/antagonist is lower as 

compared to the CP 55,940 conformation detected in the radioligand binding assay 

(Lan et al., 1999; Ross et al., 1999). In accordance with these dissociations between 

functional Kb values and Ki values in ligand binding experiments at CBRs, we 

observed dissociations between receptor conformations with respect to high-affinity 

agonist binding and GDP/GTP exchange at a constitutively active mutant of the 

β2 adrenergic receptor (Seifert et al., 2001) 

In accordance with the literature data, anandamide acted as a partial agonist at 

both receptors (Howlett et al., 2002). Furthermore, Song et al. (1999) showed that 

WIN 55,212-2 was more efficacious at CB2R, explaining this finding by an amino acid 

residue change from valine in CB1R to phenylalanine in CB2R at position 46 in 

transmembrane helix 5. This finding could also be replicated in our established 

functional assay, where WIN 55,212-2 showed the characteristics of a full agonist at 

the CB1R and a “superagonist” at the CB2R. In our assay CP 55,940 acted on both 

CBR with very similar affinity, a finding that was expected since an equal binding 

affinity on both receptors was published in several papers (Thomas et al., 1998; 

Pertwee, 2008a). Compared to the endogenous ligand 2-AG, in our test system 



 Chapter 2: Establishment of recombinant CBR assays  
 

- 56 - 
 

CP 55,940 behaved like a “superagonist” at both receptors with an increase of 

GTPase activity with 51% at the CB1R and 18% at the CB2R more than 2-AG. 

The validation also included the influence of the solvent enhancer DMSO and 

BSA due to the fact that the ligands of CBRs are often lipophilic and thus not 

quantitatively water-soluble. DMSO did not affect the outcome up to a concentration 

of 3% (v/v) and BSA was usable in a concentration of 1 mg/ml as recommended by 

Breivogel (Breivogel, 2006). We recommend the use of DMSO due to the fact that 

lipophilic, unsaturated compounds undergo the risk of binding and autoxidation 

processes in highly concentrated protein solvents like BSA and FCS containing for 

example Fe2+/Fe3+ ions. Furthermore, the handling of DMSO solutions is easier 

because BSA causes foamy solutions after mixing which makes it more difficult to 

pipette accurately and tends to absorb to plastic which might influence the final BSA 

concentration. 

The assay was sensitive enough to detect the partial agonist ∆9-THC in a matrix 

of a ∆9-THC free Cannabis extract and thus it is usable for a bioactivity-guided 

fractionation protocol for natural products (Heilmann, 2007). A more complex 

problem and a limitation for such a screening procedure could be the possible 

simultaneous presence of antagonists and agonists in the matrix which can abolish 

or mask the GTPase activity.  

The recently identified CB2R ligand dodeca-2E,4E-dienoic acid isobutylamide 

isolated from Echinacea purpurea (Raduner et al., 2006) as well as a Echinacea 

purpurea root extract containing several other alkamides (Perry et al., 1997) was 

tested for agonism, neutral antagonism and inverse agonism in our GTPase assay 

and showed no activity in all modes with the used membrane construct. This is in 

contrast to literature data where not only binding, but also CB2R-dependent effects 

have been reported in mammalian cellular systems for dodeca-2E,4E-dienoic acid 

isobutylamide. Raduner et al. (2006) measured elevated intracellular Ca2+ 

concentration in CB2-positive cells, an effect that was inhibited by the CB2R 

antagonist SR144528. It can be discussed that a highly cell-specific coupling to a  

G protein heterotrimer subunit is necessary for the effect of the alkamides.  

For further prospective GPCR-Gα fusion proteins for characterization of CBRs 

are in progress. 

In conclusion, we established and validated a steady-state GTPase assay for 

hCBRs as a highly sensitive test system that allows the characterization of ligands at 
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a very proximal point of the signal cascade of this type of GPCRs. Efforts were made 

to establish a functional assay in mammalian tissue membranes, but the resulting 

signal were far too small. Showing very sensitive and practical properties, the test 

system with CBR expressing Sf9 cell membranes is also suitable for screening 

procedures and bioactivity-guided isolation of natural compounds. 

 

. 
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3 Impact of fusion to Gαi2 and co-expression with RGS proteins on 

pharmacological properties of human cannabinoid receptors 

CB1R and CB2R
* 

3.1 Abstract 

G protein coupled receptor (GPCR)-Gα fusion proteins are often employed to 

investigate in detail receptor-G protein interaction. In the current study, the impact of 

Gα fusion proteins on the pharmacology of CBRs, both mediating signals through Gαi 

proteins, were investigated. The Gαi2 protein was fused to the C-terminus of the 

CBRs or co-expressed with non-fused Gαi2 in Sf9 cells, always together with Gβ1γ2. 

As it is known that RGS proteins can regulate the sensitivity of G protein pathways, 

the impact of these proteins on CBR signaling in combination with the fusion 

approach was examined as well, using RGS4 and RGS19 as paradigms. Known 

CBR ligands were characterized in the steady-state GTPase assay and 

pharmacological properties of ligands in the different test systems were correlated. 

These studies showed the following: Fusion of CBRs to Gαi2 enhanced the maximal 

stimulatory effects of ligands compared to the co-expression system, especially for 

the CB2R. RGS4, but not RGS19 behaved as a GTPase activating protein at CBRs in 

the Gαi2 co-expression and fusion system. Fusion of GPCR, most prominently CB2R, 

to Gαi2 and co-expression with RGS4 altered the pharmacological properties of 

ligands. Our data suggest that fusion of CB2R to Gαi2 and co-expression with RGS4 

impedes with conformational changes. Moreover, our results support the concept of 

ligand-specific receptor conformation because not all ligands are altered similarly. 

 

 

                                            

* This chapter is adapted from: Sutor S, Heilmann J, Seifert R (2010) Impact of fusion to Gαi2 and co-
expression with RGS proteins on pharmacological properties of human cannabinoid receptors 

CB1R and CB2R (submitted to Naunyn Schmiedebergs Arch Pharmacol) 
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3.2 Introduction 

Many hormones and neurotransmitters exert their physiological effects through 

GPCRs. G proteins play an important role as mediators of signals between GPCRs 

and intracellular effector molecules. The binding of an agonist to a GPCR induces a 

conformational change accompanied by the exchange of bound GDP to GTP and 

dissociation of the Gα-GTP-Gβγ complex into the subunits Gα-GTP and Gβγ (Gille 

and Seifert, 2003). Both subunits can regulate effector systems, for example adenyly 

cyclase- and mitogen-activated protein (MAP) kinase activity in the case of Gαi. 

Deactivation of the G protein is accomplished by the intrinsic GTPase activity of the 

Gα subunit, hydrolyzing GTP to GDP and Pi. Subsequently, reassociation of Gα, 

GDP and Gβγ completes the G protein cycle. According to the two-state model of 

GPCR activation (Seifert and Wenzel-Seifert, 2002), agonists stabilize the active R* 

state and increase basal G protein activity, whereas inverse agonists stabilize the 

inactive R state and decrease basal G protein activity. Antagonists do not change this 

equilibrium. Refinements of this two-state model were derived from observations of 

agonist-specific trafficking of a receptor stimulus. In accordance with this model, each 

agonist is capable of stabilizing or selecting a unique receptor conformation, which 

results in an unlimited number of active receptor states (Kenakin, 1995).  

The efficacy of receptor-G protein coupling is highly influenced by protein 

expression levels and stoichiometry of signaling partners (Seifert et al., 1999). One 

limitation concerning the use of GPCR co-expression systems in assay development 

or functional studies is the lacking guarantee that every receptor molecule is spatially 

associated with its signaling partner. The use of receptor-Gα fusion proteins offers 

the advantage of a defined stoichiometry combined with a close proximity of GPCR 

and G protein (Seifert et al., 1999; Milligan, 2000). As the binding of ligands is 

accompanied by a conformational change in receptors, it is of substantial interest 

whether the pharmacological properties of ligands and receptors are influenced by 

the fusion to the Gα subunit. Some authors reported on alterations in 

pharmacological properties of ligands of the α2A adrenoceptor as a result of the 

fusion (Burt et al., 1998), whereas for others like the 5-HT1A receptor, similar 

potencies and efficacies were observed (Kellett et al., 1999). 

To address this question for the two human cannabinoid receptors (CBRs), 

which belong to family A GPCRs and couple to pertussis-toxin (PTX) sensitive Gαi/o 

(Howlett et al., 2002), receptors were fused C-terminally to the N-terminus of the Gαi2 
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subunit. Afterwards the pharmacological properties of the endogenous agonists 

anandamide and 2-arachidonoyl glycerol (2-AG), the synthetic agonists CP 55,940 

((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) 

cyclohexanol) and WIN 55,212-2 ((R)-(+)-[2,3-dihydro-5-methyl-3-(4-

morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1 naphthalenylmethanone 

mesylate), as well as the synthetic inverse agonists AM 251 (N-(piperidin-1-yl)-5-(4-

iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) and AM 

281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-

3-carboxamide) (at CB1R) and antagonist AM 630 (6-iodo-2-methyl-1-[2-

4(morpholinyl)-ethyl]-[1H-indol-3-yl]-(4-methoxyphenyl)methanone) (at CB2R), were 

determined. To examine the potencies and efficacies of these ligands, the steady-

state GTPase assay, a reliable and sensitive assay system, was employed (Geiger et 

al., 2010; Seifert and Wenzel-Seifert, 2002). Data obtained in the fusion protein 

system were compared with those obtained in a system where the CBRs were co-

transfected with the Gαi2 subunit.  

Regulators of G protein signaling (RGS) proteins are a protein family 

regulating the sensitivity of G protein signaling pathways. RGS proteins can serve as 

GTPase activating protein (GAPs) for Gα subunits (Wettschureck and Offermanns, 

2005) and shorten the period of time in which the Gα subunit is in its active 

conformation. Thereby, RGS proteins facilitate GPCR signal termination. Studies with 

RGS proteins revealed that GTP hydrolysis can become the rate-limiting step of the 

G protein cycle and that the G protein GTPase kinetics are altered by RGS proteins 

(Kleemann et al., 2008; Schneider and Seifert, 2009). GAP activity of RGS proteins, 

as key modulators in amplitude and duration of G protein mediated signaling, were 

described for Gαi and Gαq subunits (Hollinger and Hepler, 2002).  

As it has been reported that RGS4 and RGS19 are GAPs for the Gαi subfamily 

(Berman et al., 1996) and that RGS proteins can participate in the formation of a 

quaternary complex consisting of agonist, receptor, G protein and RGS protein 

(Benians et al., 2005), another aim of this study was to investigate the influences of 

these RGS proteins on the pharmacological properties of CBR ligands in fusion and 

co-expression systems. Therefore, Spodoptera frugiperda (Sf9) cells were infected 

with baculoviruses encoding for CBRs-Gαi2 or CBRs co-transfected with Gαi2 always 

together with Gβ1γ2 and in the absence or presence of RGS4 or RGS19. 
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3.3 Materials and Methods 

3.3.1 Materials 

The DNA primers for PCR were synthesized by MWG Biotech (Ebersberg, 

Germany). PfuUltra II fusion HS polymerase was from Stratagene (La Jolla, CA, 

USA). Restriction enzymes were purchased from New England Biolabs (Ipswich, MA, 

USA). Recombinant baculovirus encoding Gαi2 was generously provided by Dr. A. G. 

Gilman (Department of Pharmacology, University of Texas Southwestern Medical 

Center, Dallas, TX, USA). Recombinant baculovirus encoding Gβ1γ2 was a kind gift 

from Dr. P. Gierschik (Department of Pharmacology, University of Ulm, Germany). 

Baculoviruses encoding for mammalian RGS4 and RGS19 were a kind gift from Dr. 

E. Ross (Department of Pharmacology, University of Texas Southwestern Medical 

Center, Dallas, TX, USA).  

The M1 anti-FLAG antibody was obtained from Sigma (St. Louis, MO, USA); 

the anti-Gαi2 antibody was purchased from Calbiochem (San Diego, CA, USA).  

Antibodies selective for RGS4 and RGS19 were from Santa Cruz (Santa Cruz, CA, 

USA) and antibody for Gβ subunit (Gβcommon; AS398/9) was kindly provided by Dr. B. 

Nürnberg (Institute of Pharmacology, University of Tübingen, Germany).  

The CBR ligands anandamide, 2-AG, CP 55,940, WIN 55,212-2, AM 251, 

AM 281 and AM 630 were purchased from Tocris Cookson (Ballwin, MO, USA). The 

10 mM stock solutions of these compounds were prepared with 100% (v/v) DMSO 

and dilutions of all ligands were prepared with 30% (v/v) DMSO.  

[γ-32P]GTP was synthesized by enzymatic phosphorylation of GDP and [32P]Pi 

(150 mCi/ml orthophosphoric acid) (PerkinElmer Life Sciences, Boston, MA, USA) as 

described previously (Walseth and Johnson, 1979). Radioactive samples were 

counted in a PerkinElmer Tricarb-TR liquid scintillation analyzer. Unlabeled 

nucleotides were from Roche Diagnostics (Indianapolis, IN, USA), and all other 

reagents were of the highest purity available and from standard suppliers. 
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3.3.2 Methods 

3.3.2.1 Construction of pVL-1392 plasmids encoding SF-hCBR-His6 and SF-hCBR-

His6-Gαi2  

The generation of pVL-SF–hCBR-His6 constructs was previously described 

(Nickl et al., 2008). For preparation of the SF-hCBR-His6-Gαi2 fusion proteins, the 

hexahistidine-tagged C-terminus of hCB1R and hCB2R was fused to the N-terminus 

of Gαi2 according to a previously described strategy using overlap-extension 

polymerase chain reaction (Wenzel-Seifert and Seifert, 2000).  

In PCR 1a, DNA fragments encoding for the cleavable signal peptide from 

influenza hemagglutinin (S), the FLAG epitope (F), the cDNA of CBRs and the 

hexahistidine tag were amplified without stop codons. Therefore, the primers SacI-SF 

(5´-ATC AGA TCA GCT TGA TTC GAG CTC G-3´) and aHis6 (5´-GTG ATG GTG 

ATG ATG GTG-3´), were synthesized, annealing at pVL-1392 plasmids encoding for 

SF–hCB1R-His6 and SF–hCB2R-His6, used as templates in PCR 1a. In PCR 1b, the 

Gαi2 sequence was amplified using a pVL-1392-FPR-His6-Gαi2 template. The sense 

primer for this PCR contained 18 bp encoding for hexahistidine tag (underlined) 

followed by the first 18 bp of the Gαi2 sequence (5´-CAC CAT CAT CAC CAT CAC 

ATG GGC TGC ACC GTG AGC-3´). The antisense primer for SF-hCB1R-His6-Gαi2 

fusion protein aGαi2-XbaI (5´-GGT CGA CTC TAG AGG TCA GAA GAG GCC ACA 

GTC) contained a XbaI site 3´ of the stop codon of Gαi2; the antisense primer for SF-

hCB2R-His6-Gαi2 fusion protein aGαi2-XmaI (5´-ATC CTA CCC GGG TCA GAA GAG 

GCC ACA GTC-3´) contained an extra XmaI site 3´ of the stop codon. In PCR 2, the 

product of PCR 1a and 1b were used as templates together with SacI-SF and aGαi2-

XbaI (for CB1R) respectively aGαi2-XmaI (for CB2R) as primers. PCR 2 resulted in 

fragments, consisting of a signal flag and a FLAG tag, the cDNA for hCBRs, followed 

by a hexahistidine tag and the Gαi2 sequence with a XbaI restriction site for CB1R and 

a XmaI restriction site for CB2R. PCR 2 product containing SF-hCB1R-His6-Gαi2 were 

double-digested with SacI and XbaI and cloned into baculovirus transfer vector pVL-

1392-SF-hCB1R-His6 via SacI and XbaI restriction site; PCR products encoding for 

SF-hCB2R-His6-Gαi2 were double-digested with SacI and XmaI and cloned into 

baculovirus expression vector pVL-1392-SF-hCB2R-His6 via SacI and XmaI 

restriction site. Correct assembly of the constructs was confirmed by extensive 

restriction enzyme analysis and sequencing service of Entelechon (Regensburg, 

Germany). 
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3.3.2.2 Generation of recombinant baculoviruses, cell culture and membrane 

preparation 

Sf9 cells, derived from Spodoptera frugiperda pupal ovarian tissue, were used 

for the baculovirus expression. Sf9 cells were cultured in Erlenmeyer flasks at 28°C 

under rotation at 125 rpm in SF 900 II medium (Life Technology, Carlsbad, CA), 

supplemented with 5% (v/v) fetal calf serum (Pan-Biotech, Aidenbach, Germany) and 

0.1 mg/ml gentamicin sulfate (BioWhittaker, Walkersville, MD). Cells were maintained 

at a density of 0.5-6.0 x 106 cells/ml. Recombinant baculoviruses were generated in 

Sf9 insect cells using the BaculoGOLD transfection kit (BD PharMingen, San Diego, 

CA) according to the manufacturer´s instructions. After initial transfection, high-titer 

virus stocks were generated by two sequential virus amplifications. The supernatant 

fluid of the second amplification was stored under light protection and used as virus 

stock for membrane preparations. 

For membrane preparation, cells were seeded at a density of 3.0 x 106 cells/ml 

and infected with 1:100 dilutions of baculovirus stock solutions of desired proteins. 

Cells were cultured for 48 h and Sf9 membranes were prepared as described 

previously (Geiger et al. 2010) using 1 mM EDTA (Merck, Darmstadt, Germany), 

0.2 mM phenylmethylsulfonyl fluoride (Sigma), 10 µg/ml benzamidine (Sigma) and 

10 µg/ml leupeptin (Calbiochem, San Diego, CA, USA) as protease inhibitors. 

Membranes were homogenized in binding buffer containing 75 mM Tris/HCl, pH 7.4, 

1 mM EDTA and 12.5 mM MgCl2 and stored in aliquots at -80°C. Protein 

concentrations were determined using the DC protein assay kit (Bio-Rad, Hercules, 

CA, USA) according to the instructions of the manufacturer.  

3.3.2.3 SDS-PAGE and immunoblot analysis 

 Membranes were diluted in Laemmli buffer (8 M urea, 2.5% (w/v) SDS, 

200 mM dithiothreitol, 25 mM Tris, 5% glycerol (v/v), 0.01% (w/v) bromophenolblue) 

and separated on SDS polyacrylamide gels containing 12% (w/v) acrylamide 

(Sigma). Proteins were transferred onto 0.45 µm nitrocellulose membranes (Bio-Rad 

Laboratories, Hercules, CA, USA) and then incubated with antibody solution: M1 anti-

FLAG (1:1000), anti-Gαi2 (1:1000), anti-RGS4 (1:500), anti-RGS19 (1:500) and anti-

Gβcommon (1:1200). Protein bands were visualized with Luminol Enhancer Solution 

(Pierce Chemical, Rockford, IL, USA) using anti-mouse IgG (Sigma), anti-goat IgG 

(Santa Cruz, CA, USA) and anti-rabbit IgG (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK), all coupled to horseradish peroxidase. Chemoluminescently 
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stained blots were exposed to Hyperfilms ECL (GE Healthcare) and developed with a 

Cawomat 2000 IR (Böhm Medical, Heiligeneich, Germany). 

3.3.2.4 Steady-state GTPase assay 

The GTPase assay was performed as described (Geiger et al., 2010). Briefly, 

membranes were thawed, sedimented by centrifugation at 18,000 x g for 10 min at 

4°C, and carefully resuspended in 10 mM Tris/HCl, p H 7.4. Assay tubes contained 

membranes (Gαi2 co-transfected membranes 10 µg of protein/tube; Gαi2 fusion 

protein membranes 5 µg of protein/tube), 1.0 mM MgCl2, 0.1 mM EDTA, 0.1 mM 

ATP, 100 nM GTP, 0.1 mM adenylyl imidodiphosphate, 5 mM creatine phosphate, 

40 µg of creatine kinase and 0.2% (w/v) BSA in 50 mM Tris/HCl, pH 7.4, to prevent 

binding of protein or ligand to the polystyrol tubes, and CB1R and CB2R ligands at 

various concentrations. Reaction mixtures (80 µl) were incubated for 2 min at 25°C 

before the addition of 20 µl of [γ-32P]GTP (0.1 µCi/tube). Reactions were conducted 

for 20 min at 25°C for co-transfected membranes and  10 min for fusion protein 

membranes. Reactions were terminated by the addition of 900 µl of slurry consisting 

of 5% (w/v) activated charcoal and 50 mM NaH2PO4, pH 2.0. Charcoal absorbs 

nucleotides but not 32Pi. Charcoal-quenched reaction mixtures were centrifuged for 7 

min at room temperature at 15,000 x g. Six hundred µl supernatant fluid of reaction 

mixtures was removed and 32Pi was determined by Čerenkov radiation in 3 ml water. 

Enzyme activities were corrected for spontaneous degradation of [γ-32P]GTP. 

Spontaneous [γ-32P]GTP degradation was determined in tubes containing all of the 

above described components plus a high concentration of unlabeled GTP (1 mM) 

that, by competition with [γ-32P]GTP, prevents [γ-32P]GTP hydrolysis by enzymatic 

activities present in Sf9 membranes. Spontaneous [γ-32P]GTP degradation amounted 

to <1% of the total amount of radioactivity added. The experimental conditions 

chosen ensured that not more than 20% of the total amount of [γ-32P]GTP added was 

converted to 32Pi. Neutral antagonism property of AM 630 was determined in the 

presence of 30 nM CP 55,940. 
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3.3.2.5 Calculations and statistics 

Data are expressed as means ± SD and represent a minimum of 3 

independent experiments, each performed in triplicate. Statistical evaluations and 

curve fittings were performed using the Prism 4 software (GraphPad Prism, La Jolla, 

CA, USA) and the Microsoft Excel 2007 software. Statistical significance was 

determined by the one-way ANOVA, followed by the Dunnett post test.  
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3.4 Results 

3.4.1 Generation of baculoviruses and detection of protein expression by 

immunoblotting 

 For expression of the human CBRs in insect cells, recombinant baculovirus 

transfer vectors bearing different constructs were designed. To direct the receptor 

protein to the cell membrane and in order to allow immunological detection of the 

recombinant proteins all constructs contained in-frame fusions to a cleavable signal 

peptide from influenza hemagglutinin, followed by the FLAG tag. In plasmids 

encoding for CBRs a hexahistidine tag allowing further purification was fused  

C-terminally to the receptor-coding region. In plasmids encoding for the CBRs-Gαi2 

fusion proteins the hexahistidine tag was used as overlap for the Gαi2 subunit. 

 We transfected Sf9 cells with baculovirus stock solutions encoding for CBRs 

and Gαi2 or the CBR-Gαi2 fusion protein, together with Gβ1γ2 and RGS4 or RGS19 to 

design test systems as described in Table 3.1. Expression of proteins was confirmed 

with immunoblotting. As shown in Figure 3.1A and Figure 3.2A, the M1 anti-FLAG 

antibody recognized the CBRs as well as the CBR-Gαi2 fusion proteins. CB1R 

showed the expected band at ~57 kDa (Xu et al., 2005). Additional bands were 

detected by the M1 antibody, which may reflect oligomeric forms of the CB1R. The 

~41 kDa bands corresponded to CB2R, which is in accordance with literature data on 

the molecular mass of CB2R (Filppula et al., 2004). Regarding fusion proteins, bands 

for CB1R-Gαi2 (~97 kDa) and CB2R-Gαi2 (~80 kDa) appeared as expected. Beneath 

the intense additional bands in CB1R-Gαi2 membranes reflecting oligomeric forms of 

the receptor, a weak band at the level of non-fused CB1R was detected by the M1 

antibody, probably representing a degradation product. Also noticeable is a second 

band for CB2R-Gαi2 which may be due to different glycosylation states of the 

receptor. 

To visualize the Gαi2 subunit, we used an antibody for Gαi1/2 proteins and 

detected intense bands at ~40 kDa in the co-transfection systems and bands 

matching the molecular mass estimation for CB1R-Gαi2 and CB2R-Gαi2 in the fusion 

systems (Figure 3.1B and Figure 3.2B).  

Figure 3.1C shows the detection of Gβ1 with a Gβcommon antibody in the CB1R 

systems. In the CB1R-Gαi2 systems an additional band with relatively high molecular 

mass is particularly evident, whereas for the CB2R protein expression systems 
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(Figure 3.2C) a second weak band near by the band for Gβ1 (~36 kDa) was 

visualized. The identity of these bands is unknown. 

 The detection of co-expressed RGS4 and RGS19 proteins was performed with 

specific anti-RGS4 and anti-RGS19 antibodies (Figures 3.1D and E and Figures 3.2D 

and E). As expected, the bands for RGS4 were about ~1 kDa lower compared to 

RGS19. Additional bands were particularly evident for the anti-RGS19 antibody, 

probably representing oligomeric forms. 

 In conclusion, these data indicate that the desired CBR constructs were 

correctly produced in Sf9 cells after transfection with recombinant baculoviruses and 

that the desired proteins are expressed in the Sf9 membranes. 
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Figure 3.1: Immunoblot analysis of recombinant proteins in Sf9 cell membranes for CB1R test 

systems 
Immunological detection of CB1R, Gαi2, Gβ1γ2 and RGS proteins expressed in Sf9 cell membranes 
was performed as described under Materials and Methods. Each lane was loaded with 10 µg of 
protein. Numbers on the left indicate masses of marker protein in kilodaltons.  A Detection of CB1R 
and CB1R-Gαi2 with the M1 anti-FLAG antibody. B Visualization of Gαi2 with anti-Gαi1/2. C Membranes 
were reacted with Gβcommon antibody. D Detection of RGS4. E Detection of RGS19. 
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Figure 3.2: Immunoblot analysis of recombinant proteins in Sf9 cell membranes for CB2R test 

systems 
Immunological detection of CB2R, Gαi2, Gβ1γ2 and RGS proteins expressed in Sf9 cell membranes 
was performed as described under Materials and Methods. Each lane was loaded with 10 µg of 
protein. Numbers on the left indicate masses of marker protein in kilodaltons. A Detection of CB2R and 
CB2R-Gαi2 with the M1 anti-FLAG antibody. B Visualization of Gαi2 with anti-Gαi1/2. C Membranes were 
reacted with Gβcommon antibody. D Detection of RGS4. E Detection of RGS19. 
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3.4.2 Basal GTPase activity and stimulation of GTPase by CP 55,940 in the 

GTPase assay 

 We performed steady-state GTPase assays with Sf9 membranes co-

expressing the proteins shown in Table 3.1 and determined the maximum stimulatory 

effects of the full agonist CP 55,940. The absolute values of basal GTPase activity 

differed substantially within the different protein combinations and among various 

membranes, reflecting different protein expression levels and/or protein integrities. 

However, in all cases CP 55,940 increased GTPase activity, and addition of RGS4 

markedly enhanced the stimulatory effect of CP 55,940. RGS4, but not RGS19, 

behaved like a GTPase activation protein (Ross and Wilkie, 2000), which is 

statistically verified in Table 3.2 and Table 3.3. Regarding the CB1R system, the 

largest GTPase stimulation was obtained with the fusion system in the presence of 

RGS4. Here, a mean stimulation of 304 ± 9% above basal was calculated. Also for 

the CB2R, the CB2R-Gαi2 fusion protein co-transfected with RGS4 showed the 

highest GTPase stimulation, amounting to 393 ± 30%. 

 Figure 3.3 shows representative concentration-response curves obtained for 

CP 55,940 in systems co-expressing CBR and Gαi2 or expressing CBR-Gαi2 in the 

absence or presence of RGS proteins. Particularly remarkable is the enhanced 

stimulatory effect of the ligand in the CB2R-Gαi2 fusion system. The fusion of CB2R to 

Gαi2 revealed 2.5 – 3-fold higher GTPase activities than in systems where CB2R is 

co-expressed with Gαi2. 
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Figure 3.3: Representative concentration-response curves obtained for CP 55,940 in the Gαi2 

co-expression and Gαi2 fusion system 
Steady-state GTPase activity in Sf9 membranes was determined as described under Materials and 
Methods. Data show representative results performed in triplicates in Sf9 cells expressing CBR + Gαi2 
+ Gβ1γ2 without ●, + RGS4 ■, + RGS19 ▲ or CBR-Gαi2 + Gβ1γ2 without ○, + RGS4 □, + RGS19 ∆. 
Experiments were replicated 3 independent times with different membrane preparations. Reaction 
mixtures contained CP 55,940 at concentrations from 1 nM to 10 µM. Data were analysed by 
nonlinear regression and best fit to sigmoidal concentration-response curves. Pharmacological 
parameters extracted from resulting graphs are shown in Table 3.2 and Table 3.3. 
 



Chapter 3: Impact on fusion and RGS proteins on CBR pharmacology 

 

- 76 - 
 

 
Table 3.1: Impact of RGS proteins and of fusion to Gαi2 on the basal GTPase activity and effects 

of full agonist CP 55,940 in the GTPase assay  
  

 

Membrane 

preparation 

number 

Basal 

[pmol x min-1 x mg-1] 

 

Mean value 

basal 

10 µM CP 55,940 

[pmol x min-1 x mg-1] 

% stim 

over 

basal 

CB1R + Gαi2 

1578 5.17 ± 0.12  7.56 ± 0.15 46 

988 2.47 ± 0.07 3.92 ± 1.11 3.95 ± 0.05 60 

1797 4.14 ± 0.08  6.83 ± 0.08 65 

 

CB1R + Gαi2 + RGS4 

 

1794 5.42 ±0.15  13.97 ± 0.12 158 

1579 5.42 ± 0.13 5.40 ± 0.02 13.48 ± 0.11 149 

1798 5.37 ± 0.14  14.40 ± 0.13 168 

CB1R + Gαi2 + RGS19 

1078 4.13 ± 0.12  6.22 ± 0.13 51 

1244 9.68 ± 0.43 6.94 ± 2.29 18.46 ± 0.36 90 

1233 6.95 ± 0.23  11.70 ± 0.20 68 

CB1R-Gαi2 

1722 5.04 ± 0.29  8.39 ± 0.31 67 

1799 5.11 ± 0.33 5.41 ± 0.10 9.56 ± 0.48 87 

1853 5.40 ± 0.19  9.43 ± 0.19 75 

CB1R-Gαi2 + RGS4 

1800 2.42 ± 0.46  10.07 ± 0.38 317 

1841 5.96 ± 0.43 3.49 ± 1.75 23.60 ± 0.45 296 

1848 2.10 ± 0.23  8.41 ± 0.20 299 

CB1R-Gαi2 + RGS19 

1873 7.32 ± 0.32  14.64 ± 0.29 100 

1875 5.12 ± 0.30 5.32 ± 1.56 9.51 ± 0.25 86 

1879 3.52 ± 0.16  7.85 ± 0.14 123 

CB2R + Gαi2 

1580 2.39 ± 0.13  4.61 ± 0.10 93 

1080 1.71 ± 0.11 2.21 ± 0.30 3.16 ± 0.09 86 

1360 2.27 ± 0.07  3.90 ± 0.05 72 

CB2R + Gαi2 + RGS4 

1581 2.92 ± 0.09  7.42 ± 0.06 154 

1624 2.83 ± 0.13 3.20 ± 0.46 7.79 ± 0.11 175 

1857 3.86 ± 0.14  9.20 ± 0.12 139 

CB2R + Gαi2 + RGS19 

1354 1.30 ± 0.06  2.92 ± 0.05 125 

1058 1.63 ± 0.08 1.33 ± 0.24 3.41 ± 0.08 109 

1003 1.04 ± 0.07  1.94 ± 0.05 86 

CB2R-Gαi2 

1849 4.40 ± 0.40  17.14 ± 0.72 290 

1854 6.18 ± 0.64 5.61 ± 0.86 22.04 ± 0.83 257 

1856 6.25 ± 0.49  23.89 ± 0.62 283 

CB2R-Gαi2 + RGS4 

1842 6.93 ± 0.45  33.38 ± 0.53 382 

1817 8.42 ± 0.76 5.83 ± 2.68 39.04 ± 0.94 364 

1850 2.14 ±0.27  11.42 ± 0.44 435 

CB2R-Gαi2 + RGS19 

1874 3.65 ± 0.27  12.97 ± 0.41 256 

1876 4.26 ± 0.47 3.58 ± 0.58 18.28 ± 0.72 330 

1880 2.83 ± 0.38  13.88 ± 0.91 390 

 
Basal and CP 55,940-stimulated GTPase activities in various CBR expressing Sf9 membranes were 
determined as described in Materials and Methods. All membranes expressed proteins given in the 
Table and were additionally co-transfected with Gβ1γ2. Numbers designate the specific membrane 
studied in the GTPase assay. Data shown are the mean ± SD of one assay in triplicates. 
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3.4.3 Potencies and efficacies of standard ligands of the CBRs in the GTPase 

assay in the absence and presence of RGS proteins  

We evaluated the potential effects of GAPs (Ross and Wilkie, 2000) on 

GTPase activity and used RGS4 and RGS19 as paradigms, Gβ1γ2 always being 

present. In previous studies on the chemokine receptor CXCR4 and human histamine 

H4 receptor, both RGS proteins enhanced agonist-stimulated GTP hydrolysis 

(Kleemann et al., 2008; Schneider and Seifert, 2009).  

The potencies and efficacies of several ligands (Table 3.2 and Table 3.3), 

specifically the endogenous agonists anandamide and 2-AG, the synthetic agonists 

CP 55,940 and WIN 55,212-2 as well as the synthetic inverse agonists AM 251 and 

AM 281 (at CB1R) and antagonist AM 630 (at CB2R) were examined. The results 

obtained in the presence of RGS proteins were compared to data evaluated in 

systems where the RGS proteins were absent (CBR + Gαi2 + Gβ1γ2 and CBR-Gαi2 + 

Gβ1γ2, respectively). Regarding CB1R (Table 3.2), no significant changes in 

logEC50/logIC50 values were detected for all analyzed systems. Exceptions are the 

logEC50 of anandamide in the CB1R + Gαi2 + Gβ1γ2 + RGS4- and in the CB1R-Gαi2 + 

Gβ1γ2 + RGS4 system, and the logIC50 of AM 281 in CB1R + Gαi2 + Gβ1γ2 + RGS4 

system.  

All agonists induced relatively small GTPase activations in the standard co-

expression (CB1R + Gαi2 + Gβ1γ2) and standard fusion system (CB1R-Gαi2 + Gβ1γ2) 

and the inverse agonists AM 251 and AM 281 reduced GTPase signals to a similar 

extent. In both systems, addition of RGS4 significantly influenced ligand-regulated 

GTPase activity, resulting in higher stimulation over basal levels for agonists and a 

more effective inhibition of GTPase activity for inverse agonists. A divergent result 

was obtained for anandamide in the co-expression system, where RGS4 did not 

significantly influence GTPase activity (stimulations of 84 ± 25% with RGS4 and 62 ± 

14% in the standard co-expression system), and for the inverse agonist AM 251 in 

the fusion systems (-73 ± 3% with RGS4 and -62 ± 7% in the standard fusion 

system). Interestingly, AM 251, tested in the co-expression system, was the only 

ligand sensitive to RGS19, resulting in a significantly stronger inhibition of GTPase 

activity with a value -80 ± 2% compared to the standard co-expression system with a 

value of -64 ± 4%. For calculation of efficacies, the maximal stimulatory effects of the 

ligands were related to the GTPase activation of 2-AG (Emax set 1.00). Interestingly, 
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only the efficacies of CB1R inverse agonists AM 251 and AM 281 were significantly 

altered by RGS protein addition. 

As was the case for CB1R, RGS4, but not RGS19 enhanced GTPase 

responses of CB2R (Table 3.3). The co-expression of RGS4 enhanced the 

stimulatory effects of all ligands except for anandamide in the co-expression system 

(54 ± 11% stimulation in the standard co-expression system CB2R + Gαi2 + Gβ1γ2 

versus 73 ± 13% in the presence of RGS4) and WIN 55,212-2 in the fusion system 

(192 ± 12% simulation in the standard fusion system versus 255 ± 29% in the 

presence of RGS4). Although for those two compounds the results were not 

statistically significant, a tendency of increasing GTPase activity in the presence of 

RGS4 became apparent. RGS4 altered logEC50 values for anandamide and WIN 

55,212-2 in the co-expression system and RGS19 influenced the logEC50 value for 

CP 55,940 in the fusion system. For anandamide, a logEC50 value of -5.55 ± 0.10 in 

the CB2R + Gαi2 + Gβ1γ2 system was shifted to a logEC50 value of -6.22 ± 0.33 

obtained in the CB2R + Gαi2 + Gβ1γ2 + RGS4 system. Moreover, the potency of WIN 

55,212-2 changed from -8.12 ± 0.07 in the CB2R + Gαi2 + Gβ1γ2 system to -8.55 ± 

0.24 in the system where RGS4 was co-transfected. For CP 55,940 the logEC50 

value of -6.98 ± 0.05 evaluated in the CB2R-Gαi2 + Gβ1γ2 system differs significantly 

from the logEC50 value of -6.60 ± 0.11 obtained in the presence of RGS19. 
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Table 3.2: GTPase activities of standard ligands and impact of RGS proteins in Sf9 cell membranes expressing CB1R co-transfected with Gαi2 or CB1R-Gαi2 

  

CB1R + Gαi2 CB1R + Gαi2 + RGS4 CB1R + Gαi2 + RGS19 CB1R-Gαi2 CB1R-Gαi2 + RGS4 CB1R-Gαi2 + RGS19 

2-AG Stim [%] 50 ± 16 104 ± 14** 59 ± 15 53 ± 8 178 ± 52** 76 ± 8  

 

Emax 1.00 1.00 1.00 1.00 1.00 1.00 

 

logEC50 -6.05 ± 0.13 -6.02 ± 0.35 -6.18 ± 0.42 -6.11 ± 0.20  -5.85 ± 0.12 -5.81 ± 0.09 

anandamide Stim [%] 62 ± 14 84 ± 25 78 ± 8 75 ± 8 286 ± 39*** 93 ± 1 

 

Emax 1.24 ± 0.28 0.81 ± 0.24 1.32 ± 0.14 1.42 ± 0.15 1.61 ± 0.22 1.22 ± 0.01 

 

logEC50 -5.88 ± 0.19 -6.66 ± 0.20** -5.81 ± 0.18 -5.76 ± 0. 02 -6.17 ± 0.16* -5.71 ± 0.12 

CP 55,940 Stim [%] 57 ± 8 158 ± 8*** 70 ± 16 76 ± 8 304 ± 9*** 103 ± 1 5 

 

Emax 1.14 ± 0.16 1.52 ± 0.08 1.19 ± 0.27 1.43 ± 0.15 1.71 ± 0.05 1.36 ± 0.20 

 

logEC50 -7.76 ± 0.12 -7.86 ± 0.08 -7.80 ± 0.04 -7.86 ± 0.13  -7.49 ± 0.05 -7.59 ± 0.26 

WIN 55,212-2 Stim [%] 55 ± 7 94 ± 18* 68 ± 8 78 ± 8 271 ± 16*** 95 ± 5 

 

Emax 1.10 ± 0.14 0.90 ± 0.17 1.15 ± 0.14 1.47 ± 0.15 1.52 ± 0.09 1.25 ± 0.07 

 

logEC50 -7.44 ± 0.18 -7.34 ± 0.12 -7.39 ± 0.29 -7.07 ± 0.08  -6.96 ± 0.09 -7.19 ± 0.06 

AM 251 Stim [%] -64 ± 4 -73 ± 3* -80 ± 2** -62 ± 7 -73 ± 3 -60 ± 3 

 

Emax -1.28 ± 0.08 -0.70 ± 0.03*** -1.36 ± 0.03 -1.17 ± 0 .13 -0.41 ± 0.02*** -0.79 ± 0.04** 

 

logIC50 -7.41 ± 0.04 -7.44 ± 0.06 -7.26 ± 0.10 -7.54 ± 0.04  -7.41 ± 0.01 -7.64 ± 0.15 

AM 281 Stim [%] -41 ± 1 -61 ± 4*** -45 ± 2 -38 ± 6 -56 ± 6* -40 ± 1  

 

Emax -0.82 ± 0.02 -0.59 ± 0.04*** -0.76 ± 0.03 -0.72 ± 0 .11 -0.31 ± 0.03*** -0.53 ± 0.01* 

logIC50 -7.22 ± 0.18 -7.64 ± 0.09* -7.37 ± 0.07 -7.68 ± 0.16 -7.52 ± 0.14 -7.66 ± 0.26 

 
Steady-state GTPase experiments were performed as described in Materials and Methods. All membranes were additionally transfected with Gβ1γ2. Reaction 
mixtures contained 0.1 µCi [γ-32P]GTP and 100 nM unlabeled GTP in the presence of solvent (basal) and CBR ligands  at various concentrations (1 nM – 10 µM). 
Data shown are the mean values ± SD and represent 3 independent experiments performed in duplicates or triplicates with different membrane preparations. The 
relative agonist-stimulation and inverse agonist-inhibition of GTP hydrolysis (% of basal), were calculated. Emax values represent the stimulation of ligands [10 µM] 
relative to the endogenous agonist 2-AG (defined as 1.00 responses) for each test system. Data were analyzed by nonlinear regression and best fit to sigmoidal 
concentration-response curves. Statistical evaluations were performed to calculate the impact of RGS proteins on GTPase activity in the co-expression and 
fusion system. Results in the presence of RGS proteins were compared to data obtained for CBR + Gαi2 and CBR-Gαi2, respectively, in one-way ANOVA, 
followed by the Dunnett´s multiple comparison test. (significant difference: *p < 0.05, **p < 0.01, ***p < 0.001). 
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Table 3.3: GTPase activities of standard ligands and impact of RGS proteins in Sf9 cell membranes expressing CB2R co-transfected with Gαi2 or CB2R-Gαi2  
 

 

CB2R + Gαi2 CB2R + Gαi2 + RGS4 CB2R + Gαi2 + RGS19 CB2R-Gαi2 CB2R-Gαi2 + RGS4 CB2R-Gαi2 + RGS19 

2-AG Stim [%] 67 ± 15 132 ± 13** 79 ± 16 107 ± 20 197 ± 48* 100 ±  7 

 

Emax 1.00 1.00 1.00 1.00 1.00 1.00 

 

logEC50 -5.29 ± 0.24 -5.73 ± 0.25 -5.72 ± 0.18 -5.72 ± 0.19  -5.55 ± 0.22 -5.33 ± 0.16 

anandamide Stim [%] 54 ± 11 73 ± 13 64 ± 7 146 ± 6 297 ± 67* 163 ± 16 

 

Emax 0.81 ± 0.16 0.55 ± 0.10 0.81 ± 0.09 1.36 ± 0.06 1.51 ± 0.34 1.63 ± 0.16 

 

logEC50 -5.55 ± 0.10 -6.22 ± 0.33* -5.27 ± 0.07 -5.53 ± 0.11 -5.49 ± 0.38 -5.08 ± 0.18 

CP 55,940 Stim [%] 84 ± 9 156 ± 15** 107 ± 16 276 ± 14 393 ± 30* 325 ±  55 

 

Emax 1.25 ± 0.13 1.18 ± 0.11 1.35 ± 0.20 2.58 ± 0.13 1.99 ± 0.15 3.25 ± 0.55 

 

logEC50 -8.05 ± 0.07 -7.94 ± 0.14 -7.96 ± 0.06 -6.98 ± 0.05  -7.04 ± 0.14 -6.60 ± 0.11* 

WIN 55,212-2 Stim [%] 63 ± 13 161 ± 33** 74 ± 10 192 ± 12 255 ± 29 226 ± 36 

 

Emax 0.94 ± 0.19 1.22 ± 0.25 0.94 ± 0.13 1.79 ± 0.11 1.29 ± 0.15 2.26 ± 0.36 

 

logEC50 -8.12 ± 0.07 -8.55 ± 0.24* - 8.09 ± 0.03 -7.28 ± 0. 38 -7.34 ± 0.45 -6.69 ± 0.27 

AM 630 Stim [%] -17 ± 8 -48 ± 8** -15 ± 3 -10 ± 2 -24 ± 1*** -10 ± 2 

Emax -0.25 ± 0.12 -0.36 ± 0.06 -0.19 ± 0.04 -0.09 ± 0.02  -0.12 ± 0.01 -0.10 ± 0.02 

logIC50 -6.48 ± 0.65 -5.94 ± 0.33 -7.01 ± 0.46 -6.33 ± 0.11 -6.63 ± 0.32 -6.88 ± 0.31 

 
Steady-state GTPase experiments were performed as described in Materials and Methods. All membranes were additionally transfected with Gβ1γ2. Reaction 
mixtures contained 0.1 µCi [γ-32P]GTP and 100 nM unlabeled GTP in the presence of solvent (basal) and CBR ligands  at various concentrations (1 nM – 10 µM). 
Data shown are the mean values ± SD and represent 3 independent experiments performed in duplicates or triplicates with different membrane preparations. The 
relative agonist-stimulation and inverse agonist-inhibition of GTP hydrolysis (% of basal), were calculated. Emax values represent the stimulation of ligands [10 µM] 
relative to the endogenous agonist 2-AG (defined as 1.00 responses) for each test system. Data were analyzed by nonlinear regression and best fit to sigmoidal 
concentration-response curves. Statistical evaluations were performed to calculate the impact of RGS proteins on GTPase activity in the co-expression and 
fusion system. Results in the presence of RGS proteins were compared to data obtained for CBR + Gαi2 and CBR-Gαi2, respectively, in one-way ANOVA, 
followed by the Dunnett´s multiple comparison test (significant difference: *p < 0.05, **p < 0.01, ***p < 0.001). 
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3.4.4 Influence of fusion on ligands potency and efficacy in the absence and 

presence of RGS proteins 

 The use of Gα co-expression systems is always associated with the problem 

that the expression levels and thus a defined stoichiometry of the signaling partners 

are difficult to control (Gille and Seifert, 2003). This is important since the efficiency of 

GPCR–G protein interaction is dependent on the relative and absolute density of 

these proteins in the plasma membrane (Kenakin, 1997). To compare the CBR co-

expression systems with systems where the Gα subunit is fused to the CBR, we used 

the ubiquitously expressed Gαi2 subunit (Offermanns, 2003). Figure 3.4 shows 

correlations of potency and efficacy (calculated as stimulation relative to the 

endogenous agonist 2-AG) of ligands at CB1R between the co-expression and fusion 

system in the absence or presence of RGS proteins. As is evident from the slope of 

the linear regression line and the 95% confidence intervals, linear correlations 

between the co-expression and the fusion systems concerning potency and efficacy 

were obtained for CB1R (Figure 3.4).  

 In contrast, the goodness of fit and slope values obtained from the 

comparisons of the CB2R systems (Figure 3.5) indicate that the fusion of the CB2R to 

Gαi2 substantially altered the pharmacological parameters of the ligands. The 

efficacies (Figures 3.5A, C and E) and potencies (Figures. 3.5B, D and F) of ligands 

studied in the absence and presence of RGS proteins clearly differed from each 

other, depending on whether the receptor was fused or co-expressed with Gαi2. The 

most impressive differences were obtained for potency correlations when RGS 

proteins were co-expressed. A r2 value of 0.687 and slope of 0.551 ± 0.215 for RGS4 

(Figure 3.5D) and a r2 value 0.815 and slope of 0.594 ± 0.163 for RGS19 

(Figure 3.5F) indicate a poor correlation between the co-expression and fusion 

protein test system. 
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Figure 3.4: Correlation of potency and efficacy of ligands at the CB1R between the co-

expression and fusion system  
Data of Table 3.2 were analyzed by linear regression. A, C and E, efficacy of ligands at membranes 
co-expressing CB1R, Gαi2 and Gβ1γ2 in the presence or absence of RGS proteins were correlated with 
values obtained from membranes expressing CB1R-Gαi2 and Gβ1γ2 and the respective RGS proteins. 
A, r2 = 0.997; slope = 1.075 ± 0.035. C, r2 = 0.946; slope = 1.073 ± 0.148. E, r2 = 0.986; slope = 0.835 
± 0.057. B, D and F, potency of ligands at membranes co-expressing CB1R, Gαi2 and Gβ1γ2 in the 
presence or absence of RGS proteins were correlated with values evaluated at membranes 
expressing CB1R-Gαi2 and Gβ1γ2 and the respective RGS proteins. B, r2 = 0.902; slope 1.050 ± 0.173. 
D, r2 = 0.940; slope = 1.019 ± 0.129. F, r2 =0.905; slope = 1.122 ± 0.182. Depicted are the linear 
regression lines and the 95% confidence intervals (dotted lines). The diagonal line has a slope of 1 
and represents a theoretical line for identical values in both systems. 1 2-AG, 2 anandamide,  
3 CP 55,940, 4 WIN 55,212-2, 5 AM 251, 6 AM 281  
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Figure 3.5: Correlation of potency and efficacy of ligands at the CB2R between the co-

expression and fusion system  
Data of Table 3.3 were analyzed by linear regression. A, C and E, efficacy of ligands at membranes 
co-expressing CB2R, Gαi2 and Gβ1γ2 in the presence or absence of RGS proteins were correlated with 
values obtained from membranes expressing CB2R-Gαi2 and Gβ1γ2 and the respective RGS proteins. 
A, r2 = 0.967; slope = 1.691 ± 0.220. C, r2 = 0.778; slope = 1.083 ± 0.409. E, r2 = 0.978; slope = 2.130 
± 0.227. B, D and F, potency of ligands at membranes co-expressing CB2R, Gαi2 and Gβ1γ2 in the 
presence or absence of RGS proteins were correlated with values evaluated at membranes 
expressing CB2R-Gαi2 and Gβ1γ2 and the respective RGS proteins. B, r2 = 0.957; slope 0.5567 ± 
0.068. D, r2 = 0.687; slope = 0.551 ± 0.215. F, r2 =0.815; slope = 0.594 ± 0.163. Depicted are the 
linear regression lines and the 95% confidence intervals (dotted lines). The diagonal line has a slope 
of 1 and represents a theoretical line for identical values in both systems. 1 2-AG, 2 anandamide,  
3 CP 55,940, 4 WIN 55,212-2, 5 AM 630 



 Chapter 3: Impact on fusion and RGS proteins on CBR pharmacology 

 

- 84 - 
 

3.4.5 Influence of RGS4 on ligands efficacy and potency in the CB2R co-

expression and CB2R fusion system 

 The poor correlations between co-expression and fusion system of CB2R in 

the presence of RGS4 directed us to specifically examine the influence of RGS4 on 

ligand potency and efficacy in the respective systems. As depicted in Figure 3.6, 

r2 values of 0.909 (Figure 3.6A), 0.865 (Figure 3.6B), 0.920 (Figure 3.6C) and 0.966 

(Figure 3.6D) indicated a good correlation of the examined parameters obtained in 

the test systems in the absence and presence of RGS4. However, the 95% 

confidence intervals and standard error values were widely scattered in all cases. 

This pointed to a substantial deviation of the individual ligands from the ideal linear 

regression.  

 

 
Figure 3.6: Influence of RGS4 protein on potency and efficacy of ligands in the co-expression 

and fusion system  
Correlation of efficacy (A and C) and potency (B and D) of ligands evaluated in the absence or 
presence of RGS4 in membranes expression CB2R + Gαi2 (A and B) or CB2R-Gαi2 (C and D). A, r2 = 
0.909; slope = 1.081 ± 0.241. B, r2 = 0.865; slope = 0.888 ± 0.202. C, r2 = 0.920; slope = 0.776 ± 
0.162. D, r2 = 0.966; slope = 1.096 ± 0.118. Depicted are the linear regression lines and the 95% 
confidence intervals (dotted lines). The diagonal line has a slope of 1 and represents a theoretical 
curve for identical values in both systems. 1 2-AG, 2 anandamide, 3 CP 55,940, 4 WIN 55,212-2,  
5 AM 630  
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3.5 Discussion 

In this study the steady-state GTPase assay was used to examine the effects of 

CBR-Gα fusion proteins in comparison to the co-expression system as well as the 

impact of different RGS proteins on the pharmacological properties of standard CBR 

ligands. The GTPase assay and the Sf9 cell membrane expression systems were 

successfully applied to characterize ligands of other Gαi coupled GPCRs such as the 

formyl peptide receptor FPR-26 (Wenzel-Seifert et al., 1998), chemokine receptor 

CXCR4 (Kleemann et al., 2008), histamine H3 receptor (Schnell et al., 2010) and 

histamine H4 receptor (Schneider and Seifert, 2009). As insect cells do not 

endogenously express CBRs (McPartland et al., 2001), infection of Sf9 cells with 

baculoviruses encoding for CBRs offers the advantages to conduct functional studies 

of these GPCRs without interference of endogenous CBRs. Furthermore, 

mammalian-type Gαi proteins are not expressed in Sf9 cells (Quehenberger et al., 

1992; Wenzel-Seifert et al., 1998), so that coupling studies of GPCRs to this 

particular Gα protein can easily be conducted by simultaneous co-transfection with 

the desired Gαi subunit.  

 Previous studies showed that RGS proteins can enhance GPCR-stimulated 

steady-state GTP hydrolysis, facilitating the analysis of partial agonists and inverse 

agonist (Ward and Milligan, 2004). The fact that in our systems only RGS4 but not 

RGS19 exhibits an influence on the pharmacological properties of CBR ligands is 

surprising, since for many GPCRs a similar influence of these GAPs has been 

described. Studies with GPCRs for instance the histamine H1 receptor (Houston et 

al., 2002), histamine H4 receptor (Schneider and Seifert, 2009) and chemokine 

receptor CXCR4 (Kleemann et al., 2008), also expressed in Sf9 insect cells, showed 

that RGS19 strongly enhances agonist-stimulated GTP hydrolysis. The data of our 

present study indicate that the capacity of RGS proteins to regulate GTP hydrolysis 

depends on the specific GPCR and that the GPCR may govern RGS-G protein 

interactions (Abramow-Newerly et al., 2006). It can be argued that the lack of RGS19 

effects is attributable to the fact that RGS19 is a member of the RZ family of RGS 

proteins and does not belong to the R4 family as RGS4 (Ross and Wilkie, 2000). 

Although the polypeptide size of RGS19 is quite similar to RGS4, its N-terminal 

region contains a cysteine string region and a C-terminal PDZ binding motif. The 

scaffold protein GIPC (GAIP-interacting protein) is required for the binding of RGS19 

to the dopamine D2 receptor (Jeanneteau et al., 2004b). As a result, the deficiency of 
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this specific PDZ domain may be responsible for the lack of effect of RGS19 on the 

CBRs.  

In co-expression systems, expression levels and subcellular distribution of the 

signaling partners cannot be exactly controlled, and a fixed stoichiometric ratio of 

GPCR and Gα subunit is difficult to achieve (Gille and Seifert, 2003). Therefore, the 

use of GPCR-Gα fusion proteins, which ensure close proximity of the signaling 

partners and anchor of the Gα subunit in the plasma membrane, offers an elegant 

system to study receptor-G protein interaction under defined conditions (Seifert et al., 

1999; Milligan, 2000). One aim of this study was to examine whether the efficacies 

and potencies of CBR ligands may be altered by the fusion of CBRs to Gα compared 

to their pharmacological behavior in the co-expression system. Three outcomes are 

documented in literature; i. e. decreased, enhanced and equal response of Gαi fusion 

proteins compared to the corresponding co-expression systems. The GTPase assay 

revealed similar concentration-response curves for the 5-HT1A receptor in HEK 293 

cells expressing either the receptor or its fusion protein. In this study, the  

5-HT1A receptor was fused to the PTX-resistant mutant Gαi1Cys351Gly protein (Kellett 

et al., 1999). Data obtained in this system were compared to results obtained for the 

5-HT1A receptor interacting with endogenous Gαi proteins. Interestingly, fusion of the 

5-HT1A receptor to the rat Gαo subunit – also resistant against PTX because of 

mutation of Cys351 to Gly – and expression in COS 7 cells resulted in an 73 ± 2% 

stimulation by the agonist 8-hydroxy-2-(di-n-propylamino)tetralin in the rGαoCys351Gly 

co-expression system versus 55 ± 7% in the fusion system (Dupuis et al., 1999). The 

Edg2 receptor shows an enhanced response for the fusion with rGαi1Cys351Gly 

compared to signals of co-expressed receptor with wild-type rGαi1 and mutant rGαi1, 

respectively (McAllister et al., 2000). In this study, co-expression of receptor with 

wild-type rGαi1 subunit showed the smallest response, indicating that the altered 

responses are, at least in part, due to the mutation of the Cys351 to Gly (McAllister et 

al., 2000). 

CBRs couple to PTX-sensitive Gi/o proteins (Howlett et al., 2002). Thus, a 

fusion of wild-type Gαi2 to the CBRs was performed. The use of Sf9 cells allowed us 

to avoid cloning of PTX-resistant Gαi2 mutants because of the absence of 

endogenous Gαi (Quehenberger et al., 1992; Wenzel-Seifert et al., 1998). After 

successful expression of the desired proteins in Sf9 cells (Figure 3.1 and Figure 3.2), 

we examined several known ligands of the CBRs in the co-expression and fusion 
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systems and assessed their potency and efficacy to stimulate or inhibit GTPase 

activity. Fusion of Gαi2 to CB1R in the absence of RGS proteins did not significantly 

alter the stimulatory effects of ligands. Only by adding RGS4 to the CB1R expression 

systems higher GTPase activities in the fusion system were elicited compared to the 

co-expression system (Table 3.2). The forced proximity of the Gα subunit to the 

CB2R enhanced the GTPase activation by all ligands. The stimulatory effects of 

ligands in all CB2R-Gαi2 systems were significantly higher than those observed in the 

corresponding receptor-G protein co-expression systems (Table 3.3).  

The higher GTPase stimulations by agonists in the fusion systems, especially 

for CB2R, also affected the efficacies of ligands. A prominent example is anandamide 

in the CB2R systems that behaves like a partial agonist in the co-expression systems 

and switches to the status of a “superagonist” with higher efficacy compared to the 

most abundant endogenous agonist 2-AG in the fusion systems. This may be due to 

a more efficient coupling between receptor and G protein than in a system, where the 

signaling partners were expressed as separate entities.  

The potencies of some ligands were influenced by the fusion of the CB2R to 

the Gαi2 subunit (Figures 3.5B, D and F) and of CB1R in the presence of RGS4 

(Figure 3.4D). The phenomenon of reduced potencies of ligands in fusion protein 

expression systems was observed for the α2A adrenoceptor (Sautel and Milligan, 

1998; McAllister et al., 2000) and the Edg2 receptor (McAllister et al., 2000) and it is 

probably due to physical restrictions inhibiting protein-conformational changes 

(Sautel and Milligan, 1998) and/or compartmentalization of signaling elements within 

specific domains of the plasma membrane (Huang et al., 1997). Also, for the CB2R 

an altered schema of phosphorylation can be discussed as a reason for modulated 

pharmacological parameters of ligands in the comparison fusion – co-expression 

approach. As it is known that agonist treatment of Chinese hamster ovary (CHO) 

cells stably expressing CB2R increases basal phosphorylation of Ser352 (Bouaboula et 

al., 1999), it is conceivable that the ability of a G protein coupled receptor kinase 

(GRK) to phosphorylate the CB2R is altered due to the tethered Gα subunit. The 

relevance of GRKs in Sf9 cells concerning the regulation of GPCR signaling it is still 

unclear (Schneider and Seifert, 2010), but it is likely that a modulated 

phosphorylation can in turn affect efficacy and potency of tested ligands.  

The potential discrepancy of pharmacological parameters between fusion and 

co-expression systems raises the question whether the (CB2)R-Gαi2 system is a 
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usable tool to examine pharmacological parameters of new drugs. The tight tethering 

of the Gα subunits to the membrane and to the receptor itself dictated by the fusion is 

an inherently artificial system. But also, the co-expression system with its accidental 

stoichiometry of receptor-G protein may not mirror a physiological surrounding as it is 

still unclear to how many G proteins a single receptor has access to. Hence, it is 

difficult to evaluate which system is closer to reality and which of the measured 

potencies reflects the drug behavior under physiological condition. Therefore, a 

comparable in-vivo assay in mammalian cells ideally expressing CBR endogenously 

would be required to clarify this issue – a difficult undertaking as recently reported 

(Geiger et al., 2010). However, the use of CBR-Gαi2 fusion proteins offer a highly 

sensitive model system and allow the screening for new CBR ligands with 

characterization of pharmacological parameters at a very proximal point of the 

signaling cascade. With these conditions excellent clues can be provided how the 

compound behaves in-vivo. 

Moreover, it cannot be excluded that RGS proteins may alter ligand potencies 

as well, as it has been described for µ-opioid signaling (Cavalli et al., 2000; Clark et 

al., 2003) and the α2A adrenoceptor (Cavalli et al., 2000) where under the influence of 

RGS proteins the potency of agonists were changed profoundly. Interaction between 

GPCR, RGS and G protein supports the assumption that GPCR function may, 

indeed, be modulated by RGS proteins (Benians et al., 2005; Abramow-Newerly et 

al., 2006). In fact, influences of RGS4 on ligand potency and efficacy were observed 

in the co-expression and fusion system (Figure 3.6) with alterations of slope values 

and widely scattered standard errors and confidence intervals, reflecting a high 

variability in ligand properties. Combination of RGS4 protein with the Gαi2 fusion 

approach augmented the modifications in pharmacological properties of ligands, 

supporting the assumption that the conformational flexibility of the receptors is 

restricted by the spatial proximity of the Gα subunit and the impact of RGS proteins. 

Our data demonstrate that CB2R is affected by these restrictions to a greater extent 

than CB1R. 

The fact that the potency and efficacies of the ligands are not altered similarly 

by the fusion and RGS proteins is indicative for ligand-specific receptor 

conformations. Similarly, at the β2 adrenoceptor (Gether et al., 1995; Seifert et al., 

2001) and the histamine H4 receptor (Schneider et al., 2009), ligands can stabilize 

unique receptor confirmations (Kenakin, 1995) differing in their ability to interact with 
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and activate G proteins. Likely, under the chosen assay conditions some ligands 

stabilize specific GDP/GTP exchange-promoting CBR conformations that are 

influenced by the forced contact to the Gαi2 subunit and the addition of RGS protein. 

Continuing this concept, functional selectivity of CBRs can in turn activate specific 

signaling cascades as it was shown for the CB2R (Shoemaker et al., 2005) which 

offers a great opportunity to develop ligands that selectively manipulate physiological 

functions (Bosier et at., 2010). 

In conclusion, we have shown that RGS4 but not RGS19 behaves as a GAP 

at CBRs in the Gαi2 co-expression and fusion system. We demonstrated that the 

fusion of CBRs to Gαi2 increases the sensitivity of the GTPase assay compared to the 

co-expression system, especially for the CB2R. The fusion system with its extremely 

sensitive readout is therewith excellently suited to study for example structure-

activity-relation of new CBR ligands. The examined alterations of pharmacological 

properties of the CBRs ligands in the different systems seem to be the result of 

complex effects of the fusion approach and RGS protein on ligand-specific receptor 

conformations. In further studies, the impact of other Gi/Go protein subtypes, different 

Gβxγy complexes as well as other RGS proteins on pharmacological properties will 

have to be studied. Ultimately, these studies may result in the development of ligands 

that modulate only a single or few of the multiple functions regulated by CBRs. As a 

result, novel therapeutic uses of CBR ligands with fewer side effects may be 

identified. 
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4 Cannabinoid receptor activity of synthetic 

2,3-disubstituted indole derivatives and several polyacetylenes, 

polyenes and alkamides isolated from Echinacea species  

4.1 Abstract 

Cannabis sativa is among the earliest plants used for medicinal purposes. It 

reached the western medicine in the beginning of the 19th century but its widespread 

use was soon replaced by other analgesic and narcotic medications. The 

identification of the main psychoactive compound of Cannabis sativa, the 

cannabinoid receptors (CBRs) and the endocannabinoids system (ECS) renewed the 

scientific interest. Since the 1990s investigations on the pharmacological potential 

and on modulations of the physiological functions of the ECS are ongoing and effects 

on nausea and emesis caused by cancer chemotherapy, appetite regulation, painful 

conditions and symptoms of multiple sclerosis are demonstrated. For targeting the 

CBRs and to modulate the physiological action of the ECS, new CBRs ligands are 

needed. In this study, a screening of natural compounds isolated from Echinacea 

species and synthetic 2,3-disubstituted indole derivatives was conducted to examine 

their CBR activity. To evaluate the pharmacological properties the steady-state 

GTPase assay was employed. As protein expression system Sf9 cell membranes 

were used and CBR-Gαi2 fusion proteins were co-expressed with Gβ1γ2 and RGS4 

(regulator of G protein signaling 4). The screening of the natural compounds showed 

that the alkamides dodeca-2E,4Z-diene-8,10-diynoic acid isobutylamide, dodeca-

2E,4Z-diene-8,10-diynoic acid 2-methylbutylamide and dodeca-2E,4E,8Z,10E/Z-

tetraenoic acid isobutylamides acted as partial agonists at the CB2R. Polyacetylenes 

and polyenes did not exert functionality at the CBRs. Concerning the synthesized 

indole compounds, derivatives with an ester function at position 3 showed the 

strongest GTPase stimulation and moderate potency at the CB2R. Thereby, 3-(2-

butylindole-3-yl)prop-2-en acid ethyl ester provides a promising base for further 

structure-activity-relation studies and the development of selective CB2R ligands. 
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4.2 Introduction 

 The use of Cannabis sativa for medicinal applications has been reported long 

before the Christian era in China, India, Tibet and Egypt (Touw, 1981; Zuardi, 2006; 

Russo, 2007). Written documents, for example the Shén nóng běn cǎo jīng, the 

world’s oldest pharmacopoeia that was compiled in the first or second century A.D. 

but based on oral traditions from the time of Shén Nóng, already described “great 

hemp” and its psychoactive properties (Aldrich, 1997). Therapeutic indications for the 

use of cannabis included, among others, rheumatic pain, intestinal constipation, 

disorders of the female reproduction system and malaria (Touw, 1981). Also, the 

application to anesthetize patients during surgical operations is reported (Li and Lin, 

1974; Aldrich, 1997). In Western medicine, the use of cannabis was introduced and 

studied in the beginning of the 19th century. In publications of various trials with 

human, administration of Cannabis extract against rheumatism, convulsions and 

mainly for muscular spasms of tetanus and rabies was described (O´Shaughnessy, 

1852). These studies resulted in a widespread use of cannabis throughout the 

Western medicine. With the appearance of various drugs (such as chloral hydrate, 

paraldehyde, barbiturates, opioids and acetylsalicylic acid) with known efficacy for the 

treatment of the main indications of cannabis (Mikuriya, 1969; Zuardi, 2006), the 

release of the Marihuana tax act law 1937 and probably because of difficulties to 

obtain reproducable effects with Cannabis tinctures or extracts, the medicinal 

application of cannabis formulations faded into the background. Only the cannabis 

consumption for hedonistic or recreational purpose increased rapidly since the 

1960s.  

 With the identification of the main psychoactive compound and the publication 

of the partial synthesis of ∆9-THC (Gaoni and Mechoulam, 1964) the scientific 

interest increased and led to the description and cloning of two specific receptors in 

the early 1990´s (Matsuda et al., 1990; Munro et al., 1993) and the discovery of the 

ECS (De Petrocellis et al., 2004). The growing scientific interest led consequently to 

investigations on the therapeutical impact of the ECS and possibilities to influence its 

physiological and pharmacological role. Beneficial clinical results of ∆9-THC on 

nausea/vomiting, appetite, pain as well as on symptoms of multiple sclerosis are 

studied very well (Carlini, 2004). Furthermore, regulation of the ECS in 

cardiovascular, gastrointestinal, and respiratory functions as well as modulation of 

inflammation, cell metabolism and reproduction are main areas of research. 
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Moreover, involvements of the ECS on disorders of the CNS, eyes and 

musculoskeletal apparatus are topics of intense investigations (Pacher et al., 2006).  

To target the CBRs for therapeutic applications, new CBR ligands are needed 

and the search of selective compounds with activity at the CB1R or CB2R are in the 

focus of interest. In this study, a screening of natural and synthetic compounds for 

their CBR activity was conducted using the steady-state GTPase assay. As both 

CBRs couple to pertussis-toxin sensitive Gαi/o proteins (Howlett et al., 2002), 

receptors were fused C-terminally to the N-terminus of the Gαi2 subunit for this 

screening procedure. Sf9 cell membranes were employed to express CBR-Gαi2 

fusion proteins together with Gβ1γ2 and RGS4 proteins. Previous studies revealed 

that the use of fusion proteins in combination with RGS4 resulted in a highly sensitive 

assay that enabled the detection of partial agonists and antagonists (Chapter 3).  

Indole derivates disubstituted at carbons 2 and 3 were screened on their CBR 

activity. In order to mimic the structure of the endocannabinoids 2-arachidonoyl 

glycerol (2-AG) (Sugiura et al., 1995) and anandamide (Devane et al., 1992), the 

unsaturated part of the arachidonic acid was replaced by an indole scaffold. Known 

CBRs ligands with an indole partial structure are comprised in the class of 

aminoalkylindoles, for example the most highly studied, commercially available 

compound of the series, CB1R/CB2R full agonist WIN 55,212-2 (structure see Figure 

4.3; Howlett et al., 2002). 

Previous studies have shown that preparations of Echinacea species 

modulate immune responses (Zhai et al., 2007). Echinacea preparations are among 

the best selling over-the-counter herbal medicines, mainly used for the treatment and 

prevention of the common cold and infections of the upper respiratory tract. It was 

reported that alkamides, the main compounds of the roots of Echinacea purpurea, 

bind to CB2Rs with high affinity (Raduner et al., 2006). Based on these results a 

molecular mode via the CBRs signaling system is discussed for the 

immunomodulatory effects of Echinacea extracts. Therefore, we tested various 

alkamides isolated from Echinacea purpurea, as well as polyacetylenes and polyenes 

isolated from Echinacea pallida concerning their CBR activity.  
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4.3 Materials and methods 

4.3.1 Materials 

CBR fusion proteins were generated as described in Chapter 3. Baculovirus 

encoding Gαi2 was generously provided by Dr. A. G. Gilman (Department of 

Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA). 

Baculovirus encoding Gβ1γ2 was a kind gift from Dr. P. Gierschik (Department of 

Pharmacology, University of Ulm, Germany). Baculovirus encoding for RGS4 was a 

kind gift from Dr. E. Ross (University of Texas, Southwestern Medical Center, Dallas, 

TX, USA). Phenylmethylsulfonylfluoride and leupeptine hemisulfate were purchased 

from Calbiochem (La Jolla, CA, USA). Benzamidine was from Sigma (99%, St. Louis, 

MO, USA). Adenylyl imidodiphosphate was obtained from Roche (Mannheim, 

Germany). [γ-32P]GTP was synthesized through enzymatic phosphorylation of GDP 

and [32P]orthophosphoric acid (8,000 Ci/mmol, PerkinElmer Life Sciences, Boston, 

MA, USA) as described previously (Walseth and Johnson, 1979).  

All nucleotides, creatine kinase, creatine phosphate and salts (highest purity 

available) were purchased either from Roche (Mannheim, Germany) or Sigma 

(St. Louis, MO, USA). Dimethyl sulfoxide (DMSO) was from Merck (Darmstadt, 

Germany). Tris base was purchased from USB (Cleveland, OH, USA).  

Synthesized indole derivatives (for structures and names see Table 4.1) were 

kindly provided by Mehrnaz Pirasteh (Department of Pharmaceutical and Medicinal 

Chemistry, Group of Prof. Bernhard Wünsch, Westfälische Wilhelms University 

Münster, Germany). Polyacetylenes, polyenes (Table 4.2) and alkamides (Table 4.3) 

were a kind gift from Elisabeth Feizlmayr (Institute of Pharmaceutical Sciences, 

Group of Prof. Rudolf Bauer, Karl Franzens-University Graz, Austria).  

The 10 mM stock solutions of these compounds were prepared with 

100% DMSO and dilutions of all ligands were prepared with 30% DMSO. Final assay 

concentration of DMSO was always lower than 3%. 
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Table 4.1: Structures of investigated indole derivatives 

N
H

R1

R2

 

 

compound R1 R2 name 

1 CH3  CH3O

O

 

3-(2-butylindole-3-yl) 
prop-2-en acid  

ethyl ester 

2 

 

CH3

 
CH3O

O

 

3-(2-pentylindole-3-yl) 
prop-2-en acid 

 ethyl ester 

3 CH3  
OH

N
H

O

 

3-(2-butylindole-3-yl)- 
N-(2-hydroxy ethyl) 
propanamide 

4 CH3  
OH

N
H

O

 

3-(2-pentylindole-3-yl)- 
N-(2-hydroxy ethyl) 
propanamide 

5 CH3  
OH

N
H

O

 

3-(2-butylindole-3-yl)- 
N-(2-hydroxy ethyl)  

prop-2-enamide 

6 CH3  
OH

N
H

O

 

3-(2-pentylindole-3-yl)- 
N-(2-hydroxy ethyl)  

prop-2-enamide 

7 CH3  
OH

N
H

O CH3

 

3-(2-butylindole-3-yl)- 
N-(1R-methyl 2- 
hydroxy ethyl)  

prop-2-enamide 

8 CH3  
OH

N
H

O CH3

 

3-(2-pentylindole-3-yl)- 
N-(1R-methyl 2- 
hydroxy ethyl)  

prop-2-enamide 
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Table 4.2: Structures of tested ketoalkenes isolated from Echinacea pallida 

compound structure name 

9 

OHO

 

8-hydroxy-
tetradeca-9E-ene-11,13-

diyn-2-one 

10 

OHO

 

8-hydroxy-
pentadeca-9E-ene-11,13-

diyn-2-one 

11 

O

 

tetradeca-8Z-ene-
11,13-diyn-2-one 

12 

O

 

pentadeca-8Z-ene-
11,13-diyn-2-one 

13 

O

 

pentadeca-8Z,13Z-
diene-11-yn-2-one 

 

14 

O

 

pentadeca-8Z,11Z-
diene-2-one 

 

15 

O

 

pentadeca-8Z-ene-
2-one 
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Table 4.3: Structures of tested alkamides isolated from Echinacea purpurea 

compound structure name 

16 

N
H

O

 
 

N
H

O

 

undeca-2E/Z,4Z/E-diene-
8,10-diynoic acid 
isobutylamides 

17 N
H

O

 

dodeca-2E,4Z-diene-
8,10-diynoic acid  

isobutylamide 

18 N
H

O

 

dodeca-2E,4Z-diene-
8,10-diynoic acid 2-
methylbutylamide 

19 

N
H

O

 

N
H

O

 

dodeca-2E,4E,8Z,10E/Z-
tetraenoic acid  

isobutylamides 

20 N
H

O

 

dodeca-2E,4E-dienoic 
acid isobutylamide 
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4.3.2 Methods 

4.3.2.1 Generation of recombinant baculoviruses and membrane preparation of 

transfected Sf9 cells 

Sf9 cells, derived from Spodoptera frugiperda pupal ovarian tissue, were used 

for baculovirus expression. Sf9 cells were cultured in Erlenmeyer flasks at 28°C 

under rotation at 125 rpm in SF 900 II medium (Invitrogen, Carlsbad, CA, USA), 

supplemented with fetal calf serum (Pan-Biotech, Aidenbach, Germany) to 5% (v/v) 

and gentamicin sulfate (BioWhittaker, Walkersville, MD, USA) to 0.1 mg/ml. 

Recombinant baculoviruses encoding FLAG- and hexahistidine-tagged CB1R-Gαi2 

and CB2R-Gαi2, Gβ1γ2 and RGS4 protein were generated in Sf9 insect cells using the 

BaculoGOLD transfection kit (BD PharMingen, San Diego, CA) according to the 

manufacturer´s instructions. After initial transfection, high-titer virus stocks were 

generated by two sequential virus amplifications. 

For transfection, cells were seeded in Erlenmeyer flasks (cell density 3.0 x 106 

cells/ml) and infected with a 1:100 dilution of high-titer baculovirus stocks. Cells were 

cultured for 48 h and Sf9 membranes were prepared as described previously (Seifert 

et al., 1998). Briefly, cells were washed once by centrifugating for 10 min at 170 x g, 

discarding the supernatant and resuspending the cell pellet in PBS buffer. After 

repeating the centrifugation step, the supernatant fluid was discarded and the pellet 

was suspended in lysis buffer (containing 10 mM Tris/HCl pH 7.4, 1 mM EDTA, 

0.2 mM phenylmethylsulfonylfluoride, 10 µg/ml benzamidine and 10 µg/ml leupeptin) 

and homogenized in a Dounce homogenizer with 25 strokes. After centrifugation at 

40 x g for 5 min the pellet contained the nuclei and unbroken cells and the 

supernatant contained the membranes. Therefore, the supernatant fluid was carefully 

transferred to a plastic tube and spun down by 38,500 x g for 20 min. The pellet 

containing the membranes was resuspended in lysis buffer and again centrifuged as 

described above. The resultant membrane pellet was resuspended in buffer 

containing 75 mM Tris/HCl, pH 7.4, 1 mM EDTA, and 12.5 mM MgCl2, homogenized 

by a syringe with 20 strokes and stored in aliquots at -80°C. Protein concentrations 

were determined using the DC protein assay kit (Bio-Rad, Hercules, CA) according to 

the instructions of the manufacturer. Membranes used in the assays were analyzed 

by SDS page and immunoblotting with specific antibodies against FLAG-tagged 

CBRs, G protein subunits and RGS protein to ensure correct transfection (see 

Chapter 3). 
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4.3.2.2 Steady-state GTPase assay 

The GTPase assay was performed as described previously (Preuss et al., 

2007). Briefly, membranes were thawed, sedimented by centrifugation at 18,000 x g 

for 10 min at 4°C, and carefully resuspended in 10 mM Tris/HCl, pH 7.4. Assay tubes 

contained membranes (5 µg of protein/tube), 1.0 mM MgCl2, 0.1 mM EDTA, 0.1 mM 

ATP, 100 nM GTP, 0.1 mM adenylyl imidodiphosphate, 5 mM creatine phosphate, 

40 µg of creatine kinase, 0.2% (w/v) BSA (to prevent binding of protein or ligand to 

the polystyrol tubes) in 50 mM Tris/HCl, pH 7.4, and test compounds at various 

concentrations. Reaction mixtures (80 µl) were incubated for 2 min at 25°C prior to 

addition of 20 µl of [γ-32P]GTP (0.1 µCi/tube). All stock and work dilutions of  

[γ-32P]GTP were prepared in 20 mM Tris/HCl, pH 7.4. Reactions were conducted for 

10 min at 25°C and terminated by the addition of 90 0 µl of slurry consisting of 5% 

(w/v) activated charcoal and 50 mM NaH2PO4, pH 2.0. Charcoal absorbs nucleotides 

but not 32Pi. Charcoal-quenched reaction mixtures were centrifuged for 7 min at room 

temperature at 15,000 x g. 600 µl supernatant fluid of reaction mixtures was removed 

and 32Pi was determined by Čerenkov radiation in 3 ml water. Enzyme activities were 

corrected for spontaneous degradation of [γ-32P]GTP. Spontaneous [γ-32P]GTP 

degradation was determined in tubes containing all of the above described 

components plus a high concentration of unlabeled GTP (1 mM) that, by competition 

with [γ-32P]GTP, prevents [γ-32P]GTP hydrolysis by enzymatic activities present in Sf9 

membranes. Spontaneous [γ-32P]GTP degradation amounted to <1% of the total 

amount of radioactivity added. The experimental conditions chosen ensured that not 

more than 20% of the total amount of [γ-32P]GTP added was converted to 32Pi. 

Neutral antagonism was determined in the presence of 30 nM CP 55,940. 

4.3.2.3 Calculations and statistics 

Data are expressed as means ± SD and represent a minimum of 2 

independent experiments, each performed in triplicates. Compounds that modulated 

GTPase activity with more than +15% or -15% above basal activity were examined in 

concentration-response experiments. Statistical evaluations and curve fittings were 

calculated using the GraphPad Prism 4 software (La Jolla, CA) and the Microsoft 

Excel 2007 software.  
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4.4 Results 

4.4.1 GTPase activity of synthesized indole derivatives 

 The potencies and efficacies of indole derivatives (Table 4.1) were examined 

in the GTPase assay with Sf9 membranes expressing CB1R-Gαi2 or CB2R-Gαi2, 

always together with Gβ1γ2 and RGS4. As shown in Figure 4.1, compounds 1, 2 and 

4 altered basal GTPase activity of the CB2R whereas the basal GTPase activity of 

the CB1R is not markedly enhanced or reduced. All compounds without activity in the 

normal mode were additionally tested in the antagonist mode in the presence of 

CP 55,940. Again, no effect was detected (data not shown). 

 Compound 1 showed the highest GTPase stimulation with 126 ± 16% 

stimulation above basal GTPase activity at the CB2R. Evaluation of concentration-

response curves revealed a logEC50 value in a low micromolar range (-5.28 ± 0.15) 

for this substance showing the strongest pharmacological properties of the tested 

indole derivatives (Table 4.4). Also compounds 2 and 4 showed effects at the CB2R 

with modulation of GTPase activity of 87 ± 18% and 42 ± 6%, respectively. For 2 a 

logEC50 value of -4.79 ± 0.10 and for 4 a logEC50 value of -4.67 ± 0.25 was evaluated 

(Table 4.4). 

 

1 2 3 4 5 6 7 8

0

50

100

150 CB1R-Gαi2

%
 c

ha
ng

e
of

 b
as

al
 G

TP
as

e 
ac

tiv
ity

1 2 3 4 5 6 7 8

0

50

100

150CB2R-Gαi2

%
 c

ha
ng

e
of

 b
as

al
 G

T
P

as
e 

ac
tiv

ity

 

Figure 4.1: Efficacy of indole derivatives analyzed in the GTPase assay with Sf9 membranes 
GTPase assays were conducted as described in Materials and Methods with Sf9 membranes 
expressing CB1R-Gαi2 or CB2R-Gαi2 together with Gβ1γ2 and RGS4. Reaction mixtures contained 
0.1 µCi [γ-32P]GTP and 100 nM unlabeled GTP in the presence of solvent (basal) and test compounds 
(30 µM). Data are given as mean values ± SD and represent at least 2 independent experiments 
performed in duplicates or triplicates with different membrane preparations. 
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4.4.2 GTPase activity of compounds isolated from Echinacea root extracts 

 To examine the CBR activity of natural compounds, we tested several 

polyacetylenes and polyenes isolated from Echinacea pallida (Nutt.) Nutt. (Table 4.2) 

as well as several alkamides isolated from Echinacea purpurea L. (Table 4.3) in the 

GTPase assay. The percental change of basal GTPase activity assessed with 30 µM 

test substance is depicted in Figure 4.2. While the polyacetylenes and polyenes did 

not alter the basal activity, compounds 17, 18 and 19 acted as agonists at the CB2R. 

The strongest GTPase stimulations were evaluated for 18 with 136 ± 14% stimulation 

and 17 with a stimulation of 81 ± 5%. The diastereomers 19, the main alkamides in 

Echinacea purpurea, altered GTPase activity positively with 64 ± 10%. Also, for these 

ligands concentration-response curves were mapped and pharmacological 

parameters calculated (Table 4.4). All compounds without activity in the normal mode 

were additionally tested in the antagonist mode in the presence of CP 55,940. Again, 

no effect was detected (data not shown). 

 

9 10 11 12 13 14 15 16 17 18 19 20
-100

-50

0

50

100
CB1R-Gαi2

%
 c

ha
ng

e
of

 b
as

al
 G

T
P

as
e 

ac
tiv

ity

9 10 11 12 13 14 15 16 17 18 19 20
-200

-100

0

100

200
CB2R-Gαi2

%
 c

ha
ng

e
of

 b
as

al
 G

T
P

as
e 

ac
tiv

ity

 
 

Figure 4.2: Efficacy of polyacetylenes, polyene and alkamides analyzed in the GTPase assay 
with Sf9 membranes 

GTPase assays were conducted as described in Materials and Methods with Sf9 membranes 
expressing CB1R-Gαi2 or CB2R-Gαi2 together with Gβ1γ2 and RGS4. Reaction mixtures contained 
0.1 µCi [γ-32P]GTP and 100 nM unlabeled GTP in the presence of solvent (basal) and test compounds 
(30 µM). Data are given as mean values ± SD and represent at least 2 independent experiments 
performed in duplicates or triplicates with different membrane preparations. 
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Table 4.4: GTPase activities of compounds in Sf9 cell membranes expressing CB2R-Gαi2, Gβ1γγγγ2 

and RGS4 

ligand GTPase stimulation % Emax logEC50 

2-AG 197 ± 48 1.00 -5.55 ± 0.22 

1 126 ± 16 0.64 ± 0.08 -5.28 ± 0.15 

2 87 ± 18 0.44 ± 0.04 -4.79 ± 0.10 

4 42 ± 6 0.21 ± 0.03 -4.67 ± 0.25 

17 81 ± 5 0.41 ± 0.03 -4.86 ± 0.03 

18 136 ± 14 0.69 ± 0.07 -5.51 ± 0.10 

19 64 ± 10 0.32 ± 0.05 -4.86 ± 0.04 

 

Steady-state GTPase experiments were performed as described in Materials and Methods. Reaction 
mixtures contained 0.1 µCi [γ-32P]GTP and 100 nM unlabeled GTP in the presence of solvent (basal) 
and CBR ligands at various concentrations (10 nM – 30 µM). The relative agonist-stimulation of GTP 
hydrolysis was calculated in percent above basal. Data shown are the mean values ± SD and 
represent at least 3 independent experiments performed in triplicates with different membrane 
preparations. Emax values represent the stimulation of ligand relative to the endogenous agonist 2-AG 
(defined as 1.00 response). Data were analyzed by nonlinear regression and fit to sigmoidal 
concentration-response curves.  
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4.5 Discussion 

In the current study, the GTPase assay was used to examine the activity of 

various synthetic and natural compounds at the CBRs. The GTPase assay is a 

reliable functional test system that is – beneath [35S]GTPγS binding assays, 

competition binding assays with a radiolabeled ligand, adenylyl cyclase assays and 

Ca2+ determination – well established for the assessment of the pharmacological 

properties of GPCR ligands (Wieland and Seifert, 2005; Geiger et al., 2010). 

Sf9 cell membranes were used as protein expression system and the 

employment of CBR-Gαi2 fusion proteins in combination with RGS4 guaranteed a 

highly sensitive test system (see Chapter 3). The use of the fusion approach ensures 

a defined 1:1 stoichiometry and a spatial proximity of the signaling partners (Seifert et 

al., 1999), which markedly enhanced the sensitivity of the CBR GTPase assay. 

Furthermore, addition of RGS4 protein was auxiliary for an increased maximal 

stimulatory effect of standard ligands at the CBRs (Geiger et al., 2010; Chapter 3). 

These prerequisites provide the base for the detection of even partial agonists and 

inverse agonists.  

All tested synthetic compounds were indole derivatives. Position 2 was 

substituted with n-butyl or n-pentyl chains and various substituents with ester or 

amide function were placed at position 3 (Table 4.1). These 2,3-disubstituted indole 

derivatives were synthesized to mimic the structure of the endocannabinoids 

anandamide and 2-AG (Mackie, 2006). Moreover, there are well known CBRs ligands 

like WIN 55,212-2, an agonist at both CBRs, and AM 630, a ligand with neutral 

antagonistic properties at the CB2R, that comprise this indole scaffold (Pertwee, 

1999) showing remarkable potency and efficacy in the GTPase assay (Chapter 3). 

Structure-activity-relation (SAR) studies of aminoalkylindoles, a large group of 

synthetic cannabinoids with WIN 55,212-2 (Figure 4.3) as prominent member, were 

conducted previously. Results from these SAR studies showed that shortening of the 

side chain of the indole nitrogen may produce agonists with high affinity to the CB2R 

– like JWH-018 and JWH-015 (Figure 4.3; Showalter et al., 1996). Other SARs with 

different indole series propose the use of naphthoyl or 2,3-dihalogenated benzoyl 

residues at the indole nitrogen. This led to the discovery of L-768,242 (Gallant et al., 

1996), an indole derivative that displayed significant selectivity for the CB2R. As 

depicted in Figure 4.3 all these compounds contain a methyl group 
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Figure 4.3: Structures of four indole derivatives with CBR agonistic properties 

 

at position 2 and an alkyl morpholino or a naphthoyl methanon moiety at position 3. 

Our data showed that displacement of the indole nitrogen substituent in combination 

with longer alkyl chains in position 2 also results in significant selectivity for the CB2R.  

While all synthesized compounds showed no effects at the CB1R, compounds 

1, 2 and 4 exhibited properties of partial agonists at the CB2R compared to the most 

abundant endogenous agonist 2-AG (Emax set as 1.00; Table 4.4). Substituents with 

an ester function at position 3 showed greater efficacies than substituents with amide 

function. For the ester compounds 1 and 2, Emax values of 0.64 ± 0.08 and 0.44 ± 

0.04, respectively were calculated. Compound 4, containing an amide function, 

displays an Emax value of 0.21 ± 0.03. It can be assumed that the 2-hydroxy ethyl 

amides at position 3 are too hydrophilic for the interaction with the CBR binding site. 
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Furthermore n-butyl chains (1) were outmatching n-pentyl (2) substituents at 

position 2. 

To conclude, an ethyl ester function in combination with lipophilic alkyl 

moieties seems to be a solid base to examine SAR for CB2R selective compounds. 

The investigated natural compounds, all isolated from Echinacea species, are 

in the focus of research because the mechanism of action of Echinacea is still 

unclear. However, a modulation of innate and adaptive immune response is reported 

(Zhai et al., 2007). Since it was found that the endocannabinoid system is a target of 

alkamides (Gertsch et al., 2004; Woelkart et al., 2005; Raduner et al., 2006), these 

lipophilic compounds of the roots of Echinacea purpurea and Echinacea pallida var. 

angustifolia are discussed as key substances for the immunomodulatory effects of 

Echinacea preparations. Hence, it is surprising that only three of the tested alkamides 

showed activity at the CB2R. Compared to 2-AG, compounds 17, 18 and 19 belong to 

the field of partial CB2R agonists with efficacies of 0.41 ± 0.03 (17), 0.69 ± 0.07 (18) 

and 0.32 ± 0.05 for (19). For compound 18, the strongest CB2R-activator of the 

tested alkamides, a logEC50 of -5.51 ± 0.10 was assessed, showing similar potency 

compared to 2-AG with a logEC50 value of -5.55 ± 0.22. The lacking activity of 

compound 20 is astonishing since Raduner measured displacement in competition 

binding with radiolabeled ligand and effects on the Ca2+ levels caused by 20 in HL60 

cells (Raduner et al., 2006). Tested in the co-expression system (Chapter 2) and also 

in the higher sensitive fusion protein system no effects at CBRs were measurable. 

Possible explanations, as interactions with specific G protein subunits, are discussed 

in Chapter 2.  

In contrast to the alkamides, the polyacetylenes and polyenes isolated from 

Echinacea pallida root extracts, did not show any activity at the CBRs. This is in 

accordance with Egger et al., (2008) who examined ketoalkenes and non-natural 

conjugated analogues on their activity at CBRs. In this study, only the ketoanalogue 

of anandamide and the dodeca-8Z-10-in-11phenyl-2-one were found to have 

agonistic properties at CBRs. These results lead to the conclusion that Echinacea 

pallida preparations, which almost lack of alkamides (Binns et al., 2002), do not 

conduct their immunomodulatory action via the CBRs.  

All compounds that revealed lacking effects at the CBRs were tested in the 

antagonist mode in the presence of 30 nM CP 55,940 to exclude the unlikely 

occurrence of a neutral antagonist (Kenakin, 2004). Likewise, no alteration of the 
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basal GTPase activity was measurable indicating that these substances do not 

interact with the CBRs (data not shown). 

In conclusion, among the tested alkamides and polyacetylenes, only the 

alkamides dodeca-2E,4Z-diene-8,10-diynoic acid isobutylamide, dodeca-2E,4Z-

diene-8,10-diynoic acid 2-methylbutylamide and dodeca-2E,4E,8Z,10E/Z-tetraenoic 

acid isobutylamides showed measurable activity with selectivity at the CB2R. 

Furthermore, new 2,3-disubstituted indole derivatives with activity at the CB2R were 

found. Thereby, the 3-(2-butylindole-3-yl)prop-2-en acid ethyl ester showed the 

strongest effect and provides a promising basis for the development of potent and 

selective CB2R ligands.  

  



Chapter 4: Screening for new CBR ligands 

 

- 109 - 
 

4.6 References 

Aldrich M (1997) History of therapeutic cannabis. Cannabis in medical practice 
Jefferson, NC, USA. 

Binns SE, Livesey JF, Arnason JT and Baum BR (2002) Phytochemical variation in 
echinacea from roots and flowerheads of wild and cultivated populations. 
J Agric Food Chem 50:3673-3687. 

Carlini EA (2004) The good and the bad effects of (-) trans-∆9-tetrahydrocannabinol 
(∆9-THC) on humans. Toxicon 44:461-467. 

De Petrocellis L, Cascio MG and Di Marzo V (2004) The endocannabinoid system: a 
general view and latest additions. Br J Pharmacol 141:765-774. 

Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, 
Mandelbaum A, Etinger A and Mechoulam R (1992) Isolation and structure of 
a brain constituent that binds to the cannabinoid receptor. Science 258:1946-
1949. 

Egger M, Pellett P, Nickl K, Geiger S, Graetz S, Seifert R, Heilmann J and Konig B 
(2008) Synthesis and cannabinoid receptor activity of ketoalkenes from 
Echinacea pallida and nonnatural analogues. Chemistry 14:10978-10984. 

Gallant M, Dufresne C, Gareau Y, Guay D, Leblanc Y, Prasit P, Rochette C, Sawyer 
N, Slipetz DM, Tremblay N, Metters KM, Labelle M (1996) New class of potent 
ligands for the human peripheral cannabinoid receptor. Bioorg Med Chem Lett 
6: 2263-2268. 

Gaoni Y and Mechoulam R (1964) Isolation, structure and partial synthesis of an 
active constitutent of hashish. J. Am. Chem. Soc. 86: 1646–1647. 

Geiger S, Nickl K, Schneider EH, Seifert R and Heilmann J (2010) Establishment of 
recombinant cannabinoid receptor assays and characterization of several 
natural and synthetic ligands. Naunyn Schmiedebergs Arch Pharmacol 
382:117-191. 

Gertsch J, Schoop R, Kuenzle U and Suter A (2004) Echinacea alkylamides 
modulate TNF-alpha gene expression via cannabinoid receptor CB2 and 
multiple signal transduction pathways. FEBS Lett 577:563-569. 

Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, 
Herkenham M, Mackie K, Martin BR, Mechoulam R and Pertwee RG (2002) 
International Union of Pharmacology. XXVII. Classification of cannabinoid 
receptors. Pharmacol Rev 54:161-202. 

Kenakin T (2004) Efficacy as a vector: the relative prevalence and paucity of inverse 
agonism. Mol Pharmacol 65:2-11. 

Li HL, Lin H. (1974) An archaeological and historical account of cannabis in China. 
Econ Bot. 28:437-447. 

Mackie K (2006) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol 
Toxicol 46:101-122. 

Matsuda LA, Lolait SJ, Brownstein MJ, Young AC and Bonner TI (1990) Structure of 
a cannabinoid receptor and functional expression of the cloned cDNA. Nature 
346:561-564. 



 Chapter 4: Screening for new CBR ligands 

 

- 110 - 
 

Mikuriya TH (1969) Marijuana in medicine: past, present and future. Calif Med 
110:34-40. 

Munro S, Thomas KL and Abu-Shaar M (1993) Molecular characterization of a 
peripheral receptor for cannabinoids. Nature 365:61-65. 

O'Shaughnessy, W.B. (1838-40) On the preparations of the Indian hemp or gunjah. 
Transactions of the Medical & Physical Society of Bengal. 

Pacher P, Batkai S and Kunos G (2006) The endocannabinoid system as an 
emerging target of pharmacotherapy. Pharmacol Rev 58:389-462. 

Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 
6:635-664. 

Preuss H, Ghorai P, Kraus A, Dove S, Buschauer A and Seifert R (2007) Constitutive 
activity and ligand selectivity of human, guinea pig, rat, and canine histamine 
H2 receptors. J Pharmacol Exp Ther 321:983-995. 

Raduner S, Majewska A, Chen JZ, Xie XQ, Hamon J, Faller B, Altmann KH and 
Gertsch J (2006) Alkylamides from Echinacea are a new class of 
cannabinomimetics. Cannabinoid type 2 receptor-dependent and -
independent immunomodulatory effects. J Biol Chem 281:14192-14206. 

Russo EB (2007) History of cannabis and its preparations in saga, science, and 
sobriquet. Chem Biodivers 4:1614-1648. 

Seifert R, Lee TW, Lam VT and Kobilka BK (1998) Reconstitution of β2 adrenoceptor-
GTP-binding protein interaction in Sf9 cells - high coupling efficiency in a β2-
adrenoceptor-Gαs fusion protein. Eur J Biochem 255:369-382. 

Seifert R, Wenzel-Seifert K and Kobilka BK (1999) GPCR-Gα fusion proteins: 
molecular analysis of receptor-G protein coupling. Trends Pharmacol Sci 
20:383-389. 

Seifert R and Wieland T (2005) Methodological approaches. G Protein Coupled 
Receptors as Drug Targets: Analysis of activation and constitutive activity 
Wiley-VCH, Weinheim, Germany. 

Showalter VM, Compton DR, Martin BR and Abood ME (1996) Evaluation of binding 
in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): 
identification of cannabinoid receptor subtype selective ligands. J Pharmacol 
Exp Ther 278:989-999. 

Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A and 
Waku K (1995) 2-arachidonoyl glycerol: a possible endogenous cannabinoid 
receptor ligand in brain. Biochem Biophys Res Commun 215:89-97. 

Touw M (1981) The religious and medicinal uses of Cannabis in China, India and 
Tibet. J Psychoactive Drugs 13:23-34. 

Walseth TF and Johnson RA (1979) The enzymatic preparation of [α-32P]nucleoside 
triphosphates, cyclic [32P]AMP, and cyclic [32P]GMP. Biochim Biophys Acta 
562:11-31. 

Woelkart K, Xu W, Pei Y, Makriyannis A, Picone RP and Bauer R (2005) The 
endocannabinoid system as a target for alkamides from Echinacea 
angustifolia roots. Planta Med 71:701-705. 



Chapter 4: Screening for new CBR ligands 

 

- 111 - 
 

Zhai Z, Liu Y, Wu L, Senchina DS, Wurtele ES, Murphy PA, Kohut ML and 
Cunnick JE (2007) Enhancement of innate and adaptive immune functions by 
multiple Echinacea species. J Med Food 10:423-434. 

Zuardi AW (2006) History of cannabis as a medicine: a review. Rev Bras Psiquiatr 
28:153-157. 

  



Chapter 5: Conclusion 

- 112 - 
 

5 Conclusion 

So far two human cannabinoid receptors (hCBRs) have been identified, both 

belonging to the family of G protein coupled receptors (GPCRs): the hCB1R mainly 

located in the brain and the hCB2R predominantly located in the periphery on 

immune cells. Because of their involvement in many physiological functions, such as 

movement, metabolic regulation, host defense, analgesia and memory, there is still a 

great interest for targeting CBRs for therapeutic applications. 

The aim of this thesis was the establishment of a highly sensitive assay system 

that is suitable to analyze CBR pharmacology and to screen ligands concerning their 

CBR activity and their pharmacological profile. Therefore, we established the steady-

state [γ-32P]-GTPase assay, a functional, sensitive and reliable approach to study 

GPCRs with a read out at a very proximal point of the signal cascade. In native 

systems, this in-vitro assay showed a very low sensitivity. In rat cerebellum 

membrane only a weak stimulation of GTPase activity was measurable. The use of 

membranes of CBR transfected HEK 293 cells did not lead to a successful outcome 

as no change of GTPase activity caused by a ligand was detectable. These results 

directed us to employ Spodoptera frugiperda (Sf9) cell membranes as expression 

system. Here, the co-expression of CBRs, Gα subunit and the Gβγ heterodimer 

greatly improved the sensitivity of the assay.  

As the efficacy of receptor-G protein interaction is highly influenced by the 

expression levels and density of these proteins in the membrane, we examined the 

impact of CBR-Gα fusion proteins on pharmacological properties of known CBR 

ligands. With the defined 1:1 stoichiometry and the forced anchor of the signaling 

partners in the membrane, the sensitivity of the GTPase assay was dramatically 

increased. Influences of regulators of G protein signaling (RGS) proteins RGS4 and 

RGS19 on GTPase activity in the co-expression and fusion system were examined. 

The results revealed that RGS4 in contrast to RGS19 behaves as a GTPase 

activating protein (GAP) for CBRs.  

Comparing pharmacological properties of known CBR ligands evaluated in the 

co-expression and fusion systems in the absence or presence of RGS4 and RGS19, 

altered potencies and efficacies became apparent, especially in the CB2R test 

systems. These data suggests that ligands stabilized specific GDP/GTP exchange-

promoting receptor conformations that are influenced by the forced contact to the 
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Gαi2 subunit and the addition of RGS protein. This phenomenon is indicative for the 

concept of ligand-specific receptor conformation. 

For ligand screening procedures and to evaluate pharmacological parameters 

of new CBRs ligands, we used Sf9 cell membranes expressing CBR-Gα fusion 

proteins, the Gβγ-heterodimer and RGS4 as this constellation offers the highest 

sensitivity among the tested protein combinations. We examined various alkamides, 

polyacetylenes and polyenes isolated from Echinacea species as well as synthesized 

indole derivatives. From the natural compounds several alkamides showed 

measurable activity in a CB2R selective manner. In contrast to the alkamides, 

polyacetylenes and polyenes did not show any effect, suggesting that they do not 

exert their immunomodulatory effect via the CBRs. Furthermore, new  

2,3-disubstituted indole derivatives with activity at the CB2R were found. Thereby, the 

3-(2-butylindole-3-yl)prop-2-en acid ethyl ester showed the strongest effect and 

provides a promising basis for the development of potent and selective CB2R ligands. 
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6 Appendix 

List of abbreviations  

2-AG   2-arachidonoyl glycerol 
AM 251  N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-

methyl-1H-pyrazole-3-carboxamide 
AM 281  1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-mor-

pholinyl-1H-pyrazole-3-carboxamide 
AM 630 (6-iodo-2-methyl-1-[2-4(morpholinyl)-ethyl]-[1H-indol-3-yl]-(4-

methoxyphenyl)methanone) 
ATP adenosine 5`-triphosphate 
bp base pair(s) 
BSA bovine serum albumin 
cAMP 3´,5´-adenosine monophosphate  
cDNA copy DNA 
CNS central nervous system 
CP 55,940 [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-

hydroxypropyl)cyclohexanol] 
CB1R human cannabinoid receptor subtype 1 
CB2R human cannabinoid receptor subtype 2  
C-terminus carboxy-terminus 
DAG 1,2-diacylglycerol 
DMSO dimethyl sulfoxide 
EC50 agonist concentration which induces 50% of the maximum effect 
ECS endocannabinoid system 
EDTA ethylenediaminetetraacetic acid (Ca2+-chelator) 
Emax efficacy (maximal response) 
FLAG octapeptide epitope for the labeling of proteins  
Gαi α subunit of G proteins that inhibits adenylyl cyclase 
Gαq  α subunit of G proteins that activates phospholipase C 

Gαs  α subunit of G proteins that stimulates adenylyl cyclase 

GAP GTPase activating protein 
Gβγ βγ subunit of a heterotrimeric G protein 
GDP guanosine 5´-diphosphate 
GIT gastrointestinal tract 
GPCR   G protein coupled receptor 
GTP   guanosine 5´-triphosphate 
GTPγS  guanosine 5´-[γ-thio]triphosphate 
h   hour(s) 
5-HT 5-hydroxy tryptophan 
His6 hexahistidin tag 
IC50 antagonist concentration which suppresses 50% of an agonist 

induced effect 
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IP3   inositoltrisphosphate 
kDa   kilodalton 
MAPK   mitogen-acitivated protein kinase 
N-terminus  amino-terminus 
PBS   phosphate buffered saline 
PCR   polymerase chain reaction 
Pi   inorganic phosphate 
PIP2   phosphatidylinositolbisphosphate 
PLC   phospholipase C 
r2   correlation coefficient 
rimonabant N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-

methyl-1H-pyrazole-3-carboxamide 
RGS   Regulator of G protein signaling 
rpm   revolutions per minute 
SAR structure-activity-relation 
SD standard deviation 
SDS-PAGE  sodiumdodecylsulfate polyacrylamide gel electrophoresis 
Sf9   insect cell line of Spodoptera frugiperda  
∆9-THC  ∆9-tetrahydrocannabinol 
TM   transmembrane  
Tris   tris(hydroxymethyl)aminomethan 
WIN 55,212-2 (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyr-

rolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmetha-none 
mesylate 
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