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Introduction 1

A. Introduction 

A.1 General introduction to different classes of psychiatric drugs 

Psychiatric medications sensu stricto are drugs used to influence the mental state of 

patients and to eliminate or reduce mental disorders. Various compounds for treatment are 

nowadays available and according to their effects on psychopathological symptoms they are 

classified into six main groups: 

• Stimulants mostly exert excitatory effects on the brain and can improve physical and 

mental abilities such as wakefulness, alertness and locomotion over a short time. Well-

known stimulants are legal ones like caffeine and nicotine, norepinephrine-dopamine 

reuptake inhibitors such as methylphenidate and bupropion available on prescription 

and illicit performance enhancers like amphetamine and cocaine. Therapeutically, they 

are used for the treatment of disorders such as attention deficit hyperactivity disorder, 

narcolepsy and as anorexigenics. 

• Anxiolytics are substances with calming effects onto the psyche and help to manage 

anxiety or sleep disorders. Benzodiazepines and azapirones are frequently applied pro-

totypes. 

• Depressants – also called “downers” – diminish mental or physical functions or activi-

ties and are used as hypnotics, sedatives and anesthetics. Frequently applied depres-

sant substances are ethanol and benzodiazepines, as well as diverse other classes of 

drugs (e.g. antihistamines, anticholinergics, β-adrenoceptor (βAR) antagonists, disso-

ciatives, muscle relaxants or non-benzodiazepines). 

• Mood stabilizers help attenuate sustained and intense mood shifts that emerge with 

bipolar and schizoaffective disorder. Drugs with mood stabilizing effects are e.g. anti-

convulsants like valproic acid, lamotrigine and carbamazepine (CBZ) as well as lithium. 

• Antidepressants are the most important drugs for the therapy of affective disorders 

and help managing clinical depression, anxiety and dysthymia as well as eating 

disorders and borderline personality disorder. Often applied prototypes are amitripty-

line (AMI), doxepin (DXP) and opipramol (OPI) and mirtazapine (MIR) (Schwabe and 

Paffrath, 2009). 

• Antipsychotics or neuroleptics are used for the treatment of psychosis such as schizo-

phrenia and mania and help to diminish symptoms like hallucination or delusion. Most 
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commonly used antipsychotic drugs are for example promethazine (PTZ), haloperidol 

(HAL), risperidone (RIS) and olanzapine (OLA) (Schwabe and Paffrath, 2009). 

 

Prescriptions of psychiatric drugs have increased dramatically in the last decade, espe-

cially for antipsychotics and antidepressants. While in 2008 279 Million “defined daily doses” 

(DDD) of antipsychotics (1999: 224 Million DDD) were prescribed, the prescriptions of anti-

depressants even increased to 974 Million DDD (1999: 385 Million DDD) (Schwabe and 

Paffrath, 2009). Not only the striking number of applications of these two psychiatric drug 

classes, but also their quantity of interaction sites in the organism (receptors, reuptake 

transporter and other targets), resulting in a wide variety of desired and unwanted effects, 

make investigations on these substances so interesting and important. 

 

A.1.1 Distinction between depression and schizophrenia 

About 10-20% of the human population is affected by depression at least once in 

their life and 1% of all adults suffer from schizophrenia which, therefore, makes them the 

most prevalent mental disorders. They are classified by a standard diagnostic classification 

system, the International Statistical Classification of Diseases and Related Health Problems 

(ICD) by the World Health Organization (WHO), currently in its 10th revision. 

The term depression is derived from the Latin word deprimere (“to press down”) and 

is affiliated to mood disorders. These affective disorders are categorized in Chapter V of ICD 

into groups F30-F39 and subclassified inter alia in unipolar disorders, such as depressive epi-

sodes (ICD-10 F32) and recurrent depressive disorders (ICD-10 F33), and bipolar affective 

disorders (ICD-10 F31). Typical symptoms of depression are very low mood, anhedonia, 

anxiety, worthlessness, hopelessness up to thoughts of death or suicide. Sometimes also 

physical complaints, such as insomnia as well as fatigue, headaches or weight gain as well as 

loss, or other psychopathological conditions like delusions and hallucinations occur. The bi-

polar disorder or manic-depressive disorder, besides the depressive episodes, also displays 

manic episodes, in which people experience an elevation of mood and increased activity, 

inadequate to the circumstances. Abnormal behavior like aggression and intolerance as well 

as impaired judgment are the consequence. 
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Often used expressions related to depression are: 

• Dysthymia: a form of chronic, long-lasting and less severe major depressive 

disorder 

• Atypical depression: characterized by mood reactivity, i.e. improved mood in 

response to positive events, excessive sleep and increased appetite 

• Seasonal affective disorder: occurs in the less light-intense seasons autumn or 

winter and resolves with the beginning of spring 

• Postpartum depression: an intense depression experienced by women after 

giving birth and can last up to three months 

Although many efforts were made to elucidate the nature and causes of depression 

the understanding is still incomplete. Triggered by life events, also a hereditary component 

plays a prominent role. Some drugs for long-term use are known to cause and impair de-

pressive symptoms. The treatment with antidepressants addresses the monoamine hypo-

thesis and adjusts an imbalance of the neurotransmitters serotonin (5-HT), norepinephrine 

(NE) and dopamine (DA) (Chapter A.1.3.). Due to the diversity of effects of some therapeuti-

cally used antidepressants on the neurotransmitter systems, the sole cause of an imbalance 

seems unlikely and calls for other models. The common time of depression onset is between 

the age of 20 and 30 years. Its diagnosis is accomplished by reports of the patient or rela-

tives and friends and a mental status exam. Possible treatment options are antidepressant 

medication and psychotherapy or counseling, less commonly deep brain stimulation, sleep 

deprivation and electroconvulsive therapy. Phototherapy and physical exercise can positively 

influence mood disorders, too. 

The term schizophrenia, coined by the Swiss psychiatrist Eugen Bleuler in 1908 

(Fusar-Poli and Politi, 2008), originates etymologically from the ancient Greek σχίζειν and 

φρήν and means “split mind” describing the distinct disorders of thinking, affect, perception, 

lethargy and personality. ICD defines schizophrenia in groups F20-29 together with several 

subtypes which distinguish in the specificity of symptoms. This disorder is often classified by 

positive symptoms referring to symptoms that are not experienced in normal life 

circumstances and include delusions, hallucinations and thought disorder. Negative symp-

toms are more unspecific and are normally also found in non-schizophrenic individuals 

affected by other diseases and requires differential diagnosis: poverty of speech (alogia), 
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blunted affect, lack of motivation (avolition), inability to experience pleasure (anhedonia) 

and lack of desire to form relationships (asociality). These symptoms mainly contribute to a 

poor quality of life. 

Alike depression many efforts were made to clarify the nature and causes of 

schizophrenia, but the understanding is nevertheless still incomplete. Several investigations 

suggest a hereditary component, but also neurobiology, early environment, psychological 

and social processes may contribute. Further, some therapeutically used drugs may cause or 

worsen schizophrenic symptoms. The common time of onset is between the age of 20 and 

30 years. It is affecting both sexes equally but in males often earlier in age. Like for depres-

sion, no laboratory test exists and the diagnosis is made by the patient's self-reported expe-

riences and behavior observed by relatives and friends and a mental status exam. However, 

Carlsson coined the DA hypothesis in 1978 when he postulated a dopaminergic hyperactivity 

in schizophrenic subjects (Carlsson, 1978). Therefore, the main constituent of treatment is 

antipsychotic medication with the various types of available drugs primarily suppressing do-

pamine activity at DA receptors D2R and D4R (Chapter A.1.2.3). Additional psychotherapy 

and social intervention are also important instruments while electroconvulsive therapy may 

be indicated for treatment-resistant individuals. In more severe cases and episodes involun-

tary hospitalization is needed to reduce the risk for themselves and others. Due to the num-

ber of diversified symptoms and various affected drug targets, depression as well as 

schizophrenia may not only be the consequence of a single disorder but rather a 

combination of syndromes. 

 

A.1.2 Examined antidepressant and antipsychotic drugs 

In our investigations we examined 34 different drugs and metabolites employed in 

the treatment of depression and schizophrenia and listed them below by drug groups. We 

focused on an examination of previous developments. The more selective advancements 

such as selective serotonin-norepinephrine reuptake inhibitors (SSNRIs), selective 

norepinephrine reuptake inhibitors (SNRIs), selective norepinephrine-dopamine reuptake 

inhibitors (SNDRIs) and serotonin antagonist and reuptake inhibitors (SARIs) display fewer 

side effects. 
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A.1.2.1 Antidepressants 

For the treatment of mood disorders commonly drugs including tricyclic antidepres-

sants (TCAs), tetracyclic antidepressants, monoamine oxidase (MAO) inhibitors, selective 

serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors are 

used. The first antidepressant was imipramine (IMI), which was one of several iminodibenzyl 

compounds developed as antihistamine by Geigy Pharmaceuticals in the 1940s and structu-

rally similar to the first true antipsychotic chlorpromazine (CPZ) synthesized in 1950. The 

antidepressant properties of IMI were discovered in 1957 by Roland Kuhn more or less by 

chance (Kuhn, 1957). Already in 1951, the antituberculosis medication isoniazide was found 

to enhance the well-being of moribund patients then dancing in the hallway (Robitzek et al., 

1952). Numerous variants of TCAs with small variations in the structure were introduced in 

the following years. In the early 1970s the SSRI fluoxetine was developed, becoming one of 

the first blockbusters (Wong et al., 1975). 

 

A.1.2.1.1 Non-selective antidepressants 

A.1.2.1.1.1 Tricyclic antidepressants 

Tricyclic antidepressants block the reuptake of the neurotransmitters norepinephrine 

(NE) and serotonin (5-HT) and, thus, increase their concentrations in the synaptic cleft  

(Fig. A.1). They are named after their chemical structure (three aromatic rings) and are used 

for the treatment of major depressive disorder, dysthymia, bipolar disorder and a number of 

other medical disorders. Despite their consistent structural appearance the pharmacological 

effects of TCAs are widely varying and were, therefore, in the past categorized by Kielholz 

(1971) in groups of psychomotoric inhibiting, psychomotoric neutral and psychomotoric 

stimulatory antidepressants. This categorization is, however, strongly simplified and is not 

used anymore. 
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Fig. A.1. Structures of tricyclic antidepressants. 

 

Besides the blockade of the monoamine reuptake, TCAs also modulate other 

receptors and produce many side effects like antimuscarinic effects such as dry mouth, con-

stipation, blurry vision and cognitive disorders. Also, sedation as well as the modulation of 

food intake and weight gain may occur by histamine H1R blockade, while reflex tachycardia 

and hypotension are α1-adrenergic receptors (α1AR) related, the latter increasing the risk of 

tumbling of older patients. 

In contrast, trimipramine (TMP) is only a weak reuptake inhibitor of monoamines and 

is, therefore, often considered as atypically. Its main effects are exerted by a potent 

antagonism at serotonin 5-HT2 receptors (5-HT2Rs), α1AR, muscarinic acetylcholine receptors 

(mAChRs) and histamine H1 receptor (H1R), less potent at 5-HT1R, D2R and α2AR. The thera-

peutic effects like potent antidepressant activity, sedation and anxiolysis are accompanied 

by potent anticholinergic and antiadrenergic side effects. Due to its antagonism at D2R, also 
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antipsychotic activity was observed with low incidence of extrapyramidal-motoric  

symptoms (EPS) (Eikmeier et al., 1991). OPI shows a high affinity to σ1 receptor (Müller et al., 

2004), but also acts as antagonist at 5-HT2R, D2R, mAChR and H1R with a low to moderate 

affinity. In contrast to other TCAs, OPI does not inhibit the reuptake of 5-HT and NE. 

Bioavailability ranges between 50–80% and elimination half-life is varying substan-

tially. The TCAs are effectively metabolized by cytochrome P450 2D6 hepatic enzymes, which 

implicates possible interactions with cytochrome P450-inhibiting substances leading to in-

creased or even toxic plasma concentrations of TCAs. Due to a low lethal dose, the risk of 

abusive application of an overdose for the realization of suicidal thoughts is relatively high. 

However, TCAs are still used because of their effectiveness, especially in treatment-resistant 

variants. Despite the development of more selective drugs like selective serotonin reuptake 

inhibitors (SSRIs) with less frequent and intense side effects TCAs are – although prescribed 

less commonly – an important and effective medication, specifically in severe cases of major 

depression. 

 

A.1.2.1.1.2 Tetracyclic antidepressants 

Like the TCAs also tetracyclic antidepressants are non-selective monoamine reuptake 

inhibitors (Fig. A.2). They contain four heterocyclic rings of atoms, but apart from that share 

most of the properties with TCAs. Chemically, also mianserin (MSN) and MIR belong to this 

group but display also antagonistic α2-adrenoceptor (α2AR) properties which increase 

noradrenergic and serotonergic tonus. (Chapter A.1.2.1.2.2). 

N

X

N

 
NH

 
mianserin, MSN, X = CH 
mirtazapine, MIR, X = N 

maprotiline, MPT 

 

Fig. A.2. Structures of tetracyclic antidepressants. 
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A.1.2.1.2 Selective antidepressants 

A.1.2.1.2.1 Selective serotonin reuptake inhibitors 

Current standard in treatment of depressive disorders are SSRIs like fluoxetine, 

citalopram or paroxetine (PRX) (Fig. A.3). Their selective inhibition of 5-HT reuptake compen-

sates the imbalance of serotonergic neurotransmission. Postsynaptic 5-HT1AR and 5-HT2AR 

and presynaptic autoreceptors may also be modulated by the increased neurotransmitter 

concentration in the synaptic cleft. Adverse effects such as nausea, diarrhea and changes in 

appetite are observed less frequently than with the more unselective TCAs or MAO 

inhibitors as affinity to αAR, muscarinic and histamine receptors (HxR) are much lower, 

although effects as drowsiness, anxiety, insomnia, dry mouth, nervousness, decreased 

appetite, weight gain and several types of sexual dysfunction may still occur. Due to the 

serotonergic modulation a prevalent side effect is nausea or rather vomiting. A low affinity 

to H1R prevents sedative effects. Thus, an intermittent benzodiazepine medication is indi-

cated until onset of the antidepressive effects. The serotonin syndrome is an idiosyncratic 

adverse drug reaction occurring during therapeutic drug use of antidepressants. It is a 

potentially life-threatening consequence of exceeding serotonergic activity in central 

nervous system (CNS) and periphery and causes cognitive, autonomic and somatic effects. In 

children and adolescents administration of most SSRIs is contraindicated because of juvenile 

suicide (attempts). 
H
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paroxetine, PRX 

 

Fig. A.3. Structure of the selective serotonin reuptake inhibitor PRX. 
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A.1.2.1.2.2 Noradrenergic and specific serotonergic antidepressants 

Although they chemically belong to tetracyclic antidepressants, MSN does not inhibit 

the reuptake of neurotransmitters and MIR does only marginally. Both substances rather act 

by antagonizing various receptors such as 5-HT2AR, 5-HT2CR and 5-HT3R and H1R. By blockade 

of presynaptic α2AR at serotonergic and noradrenergic synapses the concentration of both 

neurotransmitters is increased so that they are designated as noradrenergic and specific 

serotonergic antidepressants (NaSSAs). 

 

A.1.2.2 Mood stabilizers 

Mood stabilizers are often also anticonvulsant substances like CBZ (Fig. A.4), lithium 

or valproic acid, which are administered for bipolar disorders alone or in combination with 

other medication. They are indicated for acute treatment and long-term relapse prophylaxis, 

while they are ineffective for a depressive period. CBZ decreases excitability of the brain cells 

by stabilizing the inactivated state of voltage-gated sodium channels. Due to an induction of 

CYP450 enzymes in the liver CBZ displays a very high potential for drug interactions, like 

decreasing the blood concentrations of valproic acid, warfarin, phenytoin and theophylline. 

 

N

NH2O  
carbamazepine, CBZ 

 

Fig. A.4. Structure of the anticonvulsant and mood stabilizing drug CBZ. 

 

A.1.2.3 Antipsychotics 

Rational psychopharmacology was developed in the early 1950s, when Paul 

Charpentier developed CPZ, a phenothiazine derivative which improved thinking and 

emotional behavior in psychotic patients and (Healy, 2004). CPZ was chosen as reference 

substance and its neuroleptic potency, i.e. the antipsychotic effect of a drug in comparison 

to its dose, was set to a value of 1. The earlier developed promethazine (PMZ) exhibits only a 

fraction of CPZ`s potency and is, therefore, mainly used as H1R antihistamine. In the course 
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of time several advancements were made, differing in structure, neuroleptic potency, as well 

as efficacy and mechanism of action, respectively. Thus, a differentiation into typical and 

atypical antipsychotics – also known as first and second generation antipsychotics – was 

made. 

 

A.1.2.3.1 Typical antipsychotics 

A.1.2.3.1.1 Phenothiazines 

Based on the phenothiazine structure of CPZ (Fig. A.5) various analogues were 

developed with considerable differences in their neuroleptic potencies, i.e. their relative 

effectiveness at a certain given dose. The low-potency antetype CPZ exhibits only few EPS 

like akathisia, akinesia or pseudoparkinsonism but shows more effects by blocking H1R  

(e.g. sedation), α1AR (e.g. orthostasis) and muscarinic targets (e.g. dry mouth). By contrast, 

the highly potent fluphenazine (FPZ) shows also effects with low doses and produces less 

antihistaminic, α-adrenergic and anticholinergic effects but has a high incidence for EPS. Per-

phenazine (PPZ) is an antipsychotic with a medium potency, i.e. a CPZ-equivalency of fifteen. 

Although rare, reported side effects are the potentially lethal neuroleptic malignant 

syndrome and agranulocytosis manifested in a reduction of white blood cells. 
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sulforidazine, SRZ, X = SO2CH3 

 

Fig. A.5. Structures of first generation antipsychotics of the phenothiazine type. 
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A.1.2.3.1.2 Thioxanthenes 

The chemically closely related thioxanthenes differ from the phenothiazines mainly 

by a carbon atom with a double bond to the side chain at position 10. The prototype chlor-

prothixene (CPX) (Fig. A.6), therefore, exhibits similar properties to the phenothiazines, the 

blockade of D2R, 5-HT2R, α1AR, mAChR and H1R contributing to the side effects. In contrast 

to other antipsychotics, EPS are observed rarely. 

N

S

Cl

 
chlorprothixene, CPX 

 

Fig. A.6. Structure of a first generation antipsychotic of the thioxanthene type. 

 

A.1.2.3.1.3 Butyrophenones 

The most widely used classical antipsychotic drug of the butyrophenone derivatives is 

haloperidol (HAL) (Fig. A.7), specifically acting against delusions and hallucinations. Due to its 

strong blockade of central antidopaminergic receptors in the mesocortex and the limbic sys-

tem, it is classified as a highly potent neuroleptic. D2R antagonism in the nigrostriatal path-

ways is liable for the high frequency of EPS and for the release of prolactin in anterior 

pituitary, the latter resulting in galactorrhea. The blockade of D2R in the periphery accounts 

for its strong antiemetic activity, while the antihistaminic and anticholinergic properties 

often cause hypotension, dry mouth and constipation. 
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haloperidol, HAL 

 

Fig. A.7. Structure of a first generation antipsychotic of the butyrophenone type. 
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A.1.2.3.2 Atypical antipsychotics 

Atypical or second generation antipsychotics affect the brain's dopamine pathways 

preferentially via D3R and D4R, interact more with the limbic- than with the striatal system, 

and combine D2R and 5-HT2R antagonism, whereby they cause less EPS than typical antipsy-

chotics. However, their mechanism of action is not fully understood and rather differs from 

drug to drug. A higher rate of responders, efficiency also in subjects with treatment-resistant 

schizophrenia, lower risk of suicides and an improved quality of life are distinguishing 

properties, especially for clozapine (CLO) (Fig. A.8). This dibenzodiazepine shows high affinity 

for the D4R and interferes with other dopaminergic receptors only to a low extent. Its (side) 

effect profile is predominantly influenced by a strong antagonism at H1R (causing sedation 

and weight gain), 5-HT2AR (antipsychotic action) and 5-HT2CR (weight gain), α1AR (orthostatic 

hypotension) and mAChR (reduced EPS). A similar binding profile is exhibited by  

N-desmethylclozapine (CLD), which most likely contributes to CLO`s atypical effects. By con-

trast, clozapine N-oxide (CLN) shows little or no affinity to most targets. However, the bene-

ficial therapeutic effects of CLO are contrasted by undesirable side effects. Besides a distinct 

weight-gain and cardiac toxicity CLO fell in disgrace because 1% of patients develop drug-

induced agranulocytosis, an acute and severe suppression of the immune system with 

absolute neutrophil counts of less than 100 cells/µl blood. Closely related to CLO is loxapine 

(LOX) which is sometimes also classified as typical antipsychotic. Like its structure analogue it 

may cause hypersalivation by agonistic activity at M4 in the salivary glands. Metabolization 

by N-demethylation generates amoxapine (AMO) which is classified as antidepressant but 

exhibits also antipsychotic properties (Apiquian et al., 2003). With olanzapine (OLA) and its 

higher affinity for 5-HT2R compared to D2R, as well as risperidone (RIS) and its high affinity 

for D2R and several serotonin receptor subtypes, atypical antipsychotics with a more favor-

able side effect profile and less requirement for monitoring were developed, but the efficacy 

of CLO is still unrivaled. 
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Fig. A.8. Structures of second generation antipsychotics. 

 

A.1.3 Mechanisms of drug action 

As already pointed out  in  the Chapters A.1.2.1 and A.1.2.3, psychiatric medications 

show very complex receptor profiles. The priority targets used  in the treatment of depres‐

sion and schizophrenia are presented in the following. 

The majority of the TCAs act primarily as monoamine reuptake inhibitors by blocking 

the  norepinephrine  transporter  (NET)  and  the  serotonin  transporter  (SERT).  Thereby,  the 

extracellular  concentrations  of  these  neurotransmitters  are  elevated  and  further  neuro‐

transmission  is  enhanced.  The  affinity  of  TCAs  for  the  dopamine  transporter  (DAT)  is 

negligible  and  dopamine  levels  are,  therefore,  not  influenced.  The more  selective  SNRIs, 

SSRIs and SSNRIs act similarly on  the specific  transporters. MAO  inhibitors block  the enzy‐

matical degradation of neurotransmitters by the monoamino oxidase and lead to increased 

neurotransmitters concentrations, too. 

The  source of  the neurotransmitter 5‐HT  in brain are mainly neurons of  the  raphe 

nuclei, with a projection  into the entire brain (Fig. A.9).  Its prevalently  inhibitory effects on 

the post‐synaptic membrane influence emotion (particularly mood), appetite, sleep, sensoric 

perception, including pain, and higher cognitive functions like memory and learning. 5‐HT is 

generated  from  tryptophan  (Trp)  via  5‐hydroxytryptophan,  which  is  catalyzed  by  the 
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enzymes tryptophan hydroxylase and 5-hydroxytryptophan decarboxylase. It is transported 

and stored in vesicles which are released by exocytosis. Postsynaptically, 5-HT binds to 5-

HT1R coupled to Gi proteins or to 5-HT2 receptors. Binding of 5-HT to presynaptic 5-HT1R 

inhibits its own release. The action of the neurotransmitter is terminated by reuptake of 5-

HT which can be blocked by tricyclic antidepressant drugs. Finally, 5-HT is degraded to  

5-hydroxyindoleacetic acid by MAO and aldehyde dehydrogenase.  

Additionally to their reuptake inhibition, many TCAs act as high-affinity antagonists at 

the 5-HT2AR, 5-HT2CR, 5-HT6R, 5-HT7R, α1AR and H1R as well as mAChR contributing to their 

therapeutic efficacy as well as their unwanted side effects. 

 

 
Fig. A.9. Serotonergic neurotransmission in the CNS and the priority targets used in the treatment of 

depression. 

 

NE is synthesized largely in the locus coeruleus with projections to almost every other 

region of the nervous system and also in the lateral tegmental area with projections 

targeting the hypothalamus (Fig. A.10). It is involved in many general functions like emotion, 

sleep and wakefulness, neuroendocrine function, temperature regulation. Tyrosine (Tyr) is 

metabolized to DOPA, dopamine (DA) and finally NE, catalyzed by the enzymes tyrosine 

hydroxylase, DOPA decarboxylase and finally dopamine-β-hydroxylase. Vesicles transport 

and store NE, which is released by exocytosis. NE binds postsynaptically to α1AR, which leads 

to the modulation of Ca2+ channels, as well as to mostly presynaptic α2AR, which is linked to 
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adenylyl cyclase and modulates K+ channels. Direct actions of the βγ-subunits of G proteins 

on K+ channels are mediated by NE-activated α2AR which leads to phosphorylation of ion 

channels. Binding of the neurotransmitter or MIR and MSN to presynaptic α2AR inhibits 

further NE and 5-HT release by a negative feedback mechanism. Inhibition of presynaptic 

reuptake by antidepressants leads to a neurotransmitter surplus in the cleft and the follow-

ing down-regulation of βAR and presynaptic α2AR as well as up-regulation of α1AR. Both anti-

depressants and antipsychotics display affinities to αAR mediating unwanted side effects like 

orthostatic hypotension and reflex tachycardia. NE action is terminated by its reuptake, 

blocked by antidepressant drugs. The degradation of NE is carried out by MAO or catechol  

O-methyl transferase (COMT). 

 

 
Fig. A.10. Noradrenergic neurotransmission in the CNS and the priority targets used in the treatment of 

depression. 

 

Supplementary, the surplus of neurotransmitters through antidepressant therapy is 

also suggested to increase brain derived neutrophic factor, associated with neurogenesis 

and improvement of neuronal plasticity (Shirayama et al., 2002; Eisch et al., 2003). The 

adaptive changes by up- and down-regulation of receptors and neuronal plasticity may 

explain the delayed onset of two to six weeks of clinical effects of antidepressants. 
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DA is involved in both intellectual and motoric functions. It is synthesized enzymati-

cally from Tyr via DOPA, primarily in the substantia nigra and ventral tegmental area  

(Fig. A.11). Projections reach to the basal ganglia (forming the nigrostriatal pathway) and the 

prefrontal cortex and amygdala (forming the mesolimbic pathway). Vesicles transport, store 

and release DA by exocytosis (inhibited by reserpine). Levels of the second messenger cyclic 

3´,5´-adenosine monophosphate (cAMP) increase by the binding of DA to receptors of the 

D1R family, coupled to the stimulatory G protein (Gs), or decrease by activation of inhibitory 

G proteins (Gi) by members of the D2R family, prevalent in nigrostriatal and mesolimbic 

areas. Binding of the neurotransmitter to presynaptic D2R inhibits its own release via an 

inhibitory feedback. Typical antipsychotic drugs such as butyrophenones inhibit D2R-trans-

mission, whereas agonists such as apomorphine stimulate D2R and can produce 

schizophrenic-like behavior. DA action is terminated by reuptake into the synapse and inac-

tivation by MAO and COMT. 

 
 

Fig. A.11. Neurotransmission in the CNS and the priority targets used in the treatment of schizophrenia. 

 

The stimulation of the mesolimbic projection in prefrontal cortex and amygdala 

causes pleasure and, therefore, DA antagonists applied to the nucleus accumbens suppress 

reward systems. Parkinson's disease is caused by degeneration of nigrostriatal neurons and 

characterized by tremor, muscle rigidity, poor balance and difficulty in initiating movement 
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or even loss of the same (akinesia). Therapeutic occupancy at D2R ranges hereby between  

60 to 80%. EPS are mainly caused by exceeding this threshold. Atypical antipsychotics show a 

reduced occupancy here, including a fast dissociation rate of CLO and a higher affinity for 

serotonin 5-HT2AR over dopamine D2R (Meltzer, 1999) or even partial D2R agonism in the 

case of aripiprazole (Miyamoto et al., 2005). Furthermore, atypical antipsychotics differ in 

their ability to modulate dopaminergic D1R, D3R and D4R and serotonergic 5-HT1AR, 5-HT2CR, 

5-HT3R, 5-HT6R, 5-HT7R (Lieberman et al., 2008; Miyamoto et al., 2005). 

 

A.1.4 Methods for therapeutic drug monitoring 

The term therapeutic drug monitoring (TDM) describes a field of clinical pharma-

cology focused on the determination of blood plasma or serum concentrations of diverse 

drugs for an optimized therapeutic dosage. Prerequisite herefore is a correlation of the 

measured plasma or serum drug concentration and the yielded pharmacological effect, in 

case of antipsychotics for example the improvement of schizophrenic symptoms as well as 

minimal side effects, like extrapyramidal reactions (Hiemke et al., 2004). Due to this given 

relationship TDM is deployed in many indication fields: antidepressants (TCAs, SSNRIs, 

SSRIs), antipsychotics (such as CLO, OLA, RIS), antiepileptics and mood stabilizers like CBZ 

and lithium, sedatives such as midazolam, the anesthetic thiopental and the anticonvulsant 

pentobarbital, aminoglycoside antibiotics like gentamicin, antimycotics such as imidazoles or 

echinocandins, or antiarrhythmic agents like amiodarone. Commonly, these drugs display a 

narrow “therapeutic index” so that insufficient levels result in undertreatment and extreme 

concentrations easily lead to tissue damage or toxicity, specifically for therapy of children or 

elderly. Particularly in the treatment with psychiatric drugs the problem of patient com-

pliance is substantial and TDM helps to control a reliable intake. Also with regard to the 

pharmacoeconomical aspects monitoring the blood concentration can be valuable. The 

primary methods utilized for TDM are immunoassays like the heterogeneous 

radioimmunoassay or the homogeneous fluorescence immunoassay and enzyme 

immunoassay, and gas liquid chromatography (GLC) or the widely used high-performance 

liquid chromatography (HPLC) with various detection systems. Combined with mass spectro-

metry (MS or MS/MS) the limit of detection is reduced. With the help of chromatographic 

assays parent drugs and metabolites may be measured simultaneously, whereas 

immunoassay response is limited by antibody specificity or antibody cross-reactivity with a 
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view to the often applied polypharmacology, but their simple performance with automated 

instruments distributed them widely (Greiner, 2008). For optimization, the measured plasma 

concentrations are evaluated in comparison to literature-reported therapeutic reference 

ranges. As investigations for some drugs are incomplete, lacking target ranges may be com-

pensated by plasma concentrations observed at therapeutic drug doses (Baumann et al., 

2004). 

Unfortunately, the brain as main target of antidepressant and antipsychotic thera-

peutics is not accessible for direct drug monitoring. The blood-brain barrier causes a variable 

penetration of the mostly lipophilic therapeutic agents to the brain. This may lead to imba-

lanced concentrations of drug in circulating blood and cerebrospinal fluid. Nevertheless, in-

vestigations in animals have shown that brain concentrations of atypical antipsychotics cor-

relate with blood levels (Aravagiri et al., 1999). An investigation of the DA receptor occu-

pancy in patients is achieved by positron emission tomography (PET) (Farde et al., 1988). 

Radioactive PET ligands like [11C]raclopride and [18F]fallypride are hereby displaced from D2R 

binding by antipsychotics, amongst others e.g. by HAL (Fitzgerald et al., 2000), OLA (Kapur et 

al., 1998; De Haan et al., 2003) and RIS (Nyberg et al., 1995). The measured plasma 

concentrations of the drugs correlate well with the receptor occupancy. Therefore, plasma 

concentrations may be used as a valid measure of brain concentrations at its primary target 

structure (Hiemke et al., 2004). 

 

A.2 General introduction to the family of histamine receptors 

G protein-coupled receptors (GPCRs) are the largest and most multifaceted family of 

cell-surface receptors. Nearly 2% of the human genome is made up by this superfamily. 

Seven transmembrane (TM) characteristics are shown by about eight hundred genes 

assessed by hydrophobicity plots of amino acid sequences (Vassilatis et al., 2003). From a 

therapeutic point of view GPCRs have a very high impact, as drugs binding to them are 

beneficial for a variety of human diseases, including psychiatric disorders, pain, 

inflammation, asthma, obesity, cancer as well as cardiovascular, metabolic and 

gastrointestinal diseases. Approximately 50% of all modern drugs act on GPCR targets. 

However, only 40 GPCRs are affected by these drugs (Wise et al., 2004; Jacoby et al., 2006; 

Lagerström and Schiöth, 2008) which leaves an enormous potential for further research. 
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Upon binding a ligand on the extracellular side or in the transmembrane binding pocket the 

signal is transduced via a G protein into the cell (Fredriksson et al., 2003). The seven 

transmembrane receptors are built up by an extracellular amino terminus, seven α-helical 

TM domains connected by three extracellular (ECL1, ECL2 and ECL3) and three intracellular 

(ICL1, ICL2 and ICL3) loops and an intracellular carboxyl terminus (Fig. A.12). 

 
Fig. A.12. Snake representation of the human H2R. N4 and N162 (green) are N-glycosylated and C305 (yellow) 

is palmitoylated. A disulfide bond between C91 and C174 is represented by an orange line. D98, Y182, D186 

and T190 that probably interact with HA are colored in blue. Sixteen amino acids of ICL3 and 51 amino acids of 

the C-terminus are omitted for reasons of clarity. Adapted from Preuss et al., 2007b. 

 
Six families of GPCRs are to be distinguished phylogenetically. The HA receptors be-

long to family A (also family I or the rhodopsin-like family). This class contains receptors for 

odorants, small molecules such as biogenic amines, peptides and glycoprotein hormones. 

For their function, 20 highly conserved amino acids and a disulfide bridge between the first 

and second extracellular loop (ECL1 and ECL2) are crucial structural features. Most of the 

conserved amino acids are located in the cytoplasmic half of the protein. The seven α-helices 

are collocated counter-clockwise in the cell membrane when viewed from the extracellular 

side. 

The generation of a high-resolution crystal structure of bovine rhodopsin was a 

breakthrough in GPCR research giving insight into the three-dimensional architecture of a 
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mammalian family A receptor (Palczewski et al., 2000). Recently, the first crystal structure of 

a human GPCR, the β2-adrenoceptor (hβ2AR), was presented by Kobilka and co-workers 

(Rasmussen et al., 2007). By construction of a receptor/T4-lysozyme fusion protein an 

alternative high-resolution structure of hβ2AR was yielded (Rosenbaum et al., 2007). How-

ever, all these GPCR structures display the receptors in their inactive state. Therefore, the 

determination of high-resolution receptor structures in the active-state will be the next 

challenge in crystallography of GPCRs. Nevertheless, GPCRs are dynamic in nature and 

crystal structures represent only snapshots of specific states. To learn more about the 

activation process of GPCRs on an atomic level, biophysical studies like nuclear magnetic 

resonance will have to supplement X-ray crystallography, (Ratnala, 2006; Kofuku et al., 

2009). In the meantime, several different classic experimental approaches and molecular 

modelling techniques need to be combined to investigate the field of ligand binding, re-

ceptor activation and G protein/effector coupling for GPCRs. 

 

A.3 The endogenous neurotransmitter and local mediator histamine 

The first report of histamine (HA, 2-(1H-imidazol-4-yl)ethanamine) was its synthesis by 

Windaus and Vogt (1908). Two years later, Sir Henry Dale and colleagues isolated this amine 

from ergot (Barger and Dale, 1910). The pharmacological characterization was conducted in 

the following years (Dale and Laidlaw, 1910; Dale and Laidlaw, 1911; Dale and Laidlaw, 

1919). These early investigations characterized the fundamental effects of HA, like the 

stimulation of cardiac contractility, stimulation of smooth muscles from the gut and 

respiratory tract and induction of shock-like syndrome when injected into animals. Isolated 

from liver and lung HA was first verified as an endogenous substance (Best et al., 1927). 

However, certain HA-effects such as the stimulation of gastric acid secretion were not 

inhibited by the prototypical “antihistamines”. Therefore, the existence of two distinct HA 

receptor subtypes was postulated (Ash and Schild, 1966). This was confirmed by synthesis of 

burimamide, a compound that competitively antagonized HA-induced gastric acid secretion 

(Black et al., 1972). In the early 1980s, a third histamine receptor subtype was predicted 

when studies on rat cerebral cortex showed that HA inhibited its own release not 

antagonizable by known antihistamines (Arrang et al., 1983). In the 1990s, advancements of 

molecular biology enabled cloning of the H1R (Yamashita et al., 1991), the H2R (Gantz et al., 

1991b) and later on also of the H3R (Lovenberg et al., 1999). At the turn of the millennium, 
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Oda and co-workers identified and cloned the sequence of an additional HA receptor and 

termed it H4R (Oda et al., 2000) which was confirmed independently by other groups almost 

simultaneously (Nakamura et al., 2000; Liu et al., 2001; Morse et al., 2001; Nguyen et al., 

2001; Zhu et al., 2001; O'Reilly et al., 2002). 

HA receptors belong to family A of GPCRs and are classified in four subtypes:  

H1R, H2R, H3R and H4R. The average sequence homology between the subtypes is around 

20%. H3R and H4R share the highest overall sequence homology of about 40%. An overview 

of the most important properties of histamine receptors is given in Table A.1. 

As a ubiquitous messenger molecule HA is one of the most important local mediators 

and neurotransmitters. High concentrations of HA are found in the skin, the gastrointestinal 

tract and the lung. Mast cells and basophils store HA in specific granules. In response to 

various immunological or non-immunological stimuli these can release the neurotransmitter 

rapidly in large amounts by degranulation. For the regulation of gastric acid secretion HA is 

also produced in enterochromaffin-like cells. Within the CNS, HA is stored in vesicles of 

histaminergic neurons, located exclusively in the tuberomamillary nucleus of the posterior 

hypothalamus (Haas and Panula, 2003). These neurons are involved in the regulation of 

fundamental brain functions such as sleep/wakefulness, energy homeostasis and cognition 

(Haas and Panula, 2003). The “neo-synthesized HA” is released without prior storage. The 

production modulated by cytokines was found in hematopoietic cells, dendritic cells, macro-

phages, platelets and T cells. 
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H1R  
Gene localization 3p25 
Amino acids 487 
Agonists 2-methylhistamine, 2-(3-trifluoromethylphenyl)histamine, 

histaprodifen(s) 
Antagonists/inv. agonists chlorpromazine, chlorpheniramine, mepyramine, cetirizine, 

astemizole, clemastine, terfenadine, loratadine, triprolidine 
Expression pattern airway and vascular smooth muscles, nerve cells, hepatocytes, 

endothelial and epithelial cells, neutrophils, hematopoietic cells 
Signal transduction coupling to Gαq/11, PLC↑, production of IP3 and DAG, [Ca2+]i↑, 

PKC↑ 
(Patho)physiological functions rhinitis, conjunctivitis, urticaria, asthma, anaphylaxis, 

bronchoconstriction and vascular permeability in the lung, immune 
response 

H2R  
Gene localization 5q35.2 
Amino acids 359 
Agonists dimaprit, amthamine, impromidine, arpromidine 
Antagonists/inv. agonists cimetidine, raniditine, tiotidine, famotidine, aminopotentidine 
Expression pattern gastric parietal cells, right atrial and ventricular muscle, airway and 

vascular smooth muscles, nerve cells, promyelocytic leukemic cells, 
hematopoietic cells 

Signal transduction coupling to Gαs, AC↑, [cAMP]↑, protein kinases↑, [Ca2+]i↑; 
alternative coupling to Gαq/11 in some systems 

(Patho)physiological functions gastric acid secretion, chronotropic and inotropic activity, vascular 
permeability, bronchodilation, hypotension, cell proliferation, 
differentiation, immune response 

H3R  
Gene localization 20q13.33 
Amino acids 445 
Agonists (R)-α-methylhistamine, imetit, immepip 
Antagonists/inv. agonists thioperamide, ciproxyfan, clobenpropit, iodoproxyfan, JNJ-5207852 
Expression pattern histaminergic neurons 
Signal transduction coupling to Gαi/o, AC↓, [cAMP]↓ 
(Patho)physiological functions pre-synaptic autoreceptor (controlling HA release) and 

heteroreceptor (controlling release of dopamine, serotonin, 
norepinephrine, GABA, acetylcholine), obesity, attention deficit 
hyperactivity disorder, epileptic seizures 

H4R  
Gene localization 18q11.2 
Amino acids 390 
Agonists OUP-16, iodophenpropit, imetit 
Antagonists/inv. agonists JNJ-7777120, thioperamide 
Expression pattern hematopoietic and immunocompetent cells, low expression in 

brain, liver and lung 
Signal transduction coupling to Gαi/o, AC↓, [cAMP]↓, [Ca2+]i↑, MAPK↑ 
(Patho)physiological functions chemotaxis in mast cells and eosinophils, control of IL-16 

production by CD8+ lymphocytes, bronchial asthma, conjunctivitis, 
atopic dermatitis 

  
 

Table A.1. Overview on human histamine receptors. 
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HA is synthesized by the enzyme L-histidine decarboxylase (HDC) by decarboxylation 

of the amino acid L-histidine in the cytosol. The vesicular monoamine transporter VMAT2 

transports HA from the cytosol into the secretory granules (Kazumori et al., 2004). Inactiva-

tion occurs by an oxidative deamination or methylation to imidazole-4-acetaldehyde and  

Nτ-methylhistamine. The histaminergic neurotransmission is illustrated in Fig. A.13. 

 
Fig. A.13. Histaminergic neurotransmission of HxR in the nervous system. Modified from Schnell, 2010. 

 

A.4 G protein-cycle and examination methods 

When a ligand binds to a GPCR embedded in the cell membrane, the conformation of 

the GPCR changes and a G protein (inactive state) couples to the receptor. The thereby 

attained active state of the receptor protein then specifically interacts with a precoupled or 

free heterotrimeric G protein, consisting of a Gα-subunit and a Gβγ-heterodimer, located at 

the cytosolic side of the membrane. Guanosine 5’-diphosphate (GDP) is then released from 

the Gα-protein and a ternary complex between the agonist-bound active receptor and 

nucleotide-free G protein is formed. This complex is characterized by a high affinity for 

agonists. Subsequently, the binding of GTP to Gα activates the G protein complex, which 
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leads  to a  further conformational change and  then dissociates  into GTP‐bound Gα‐subunit 

and Gβγ‐dimer, which can  influence effector proteins and continue the signal cascade. Due 

to the intrinsic GTPase activity of Gα, the induced effector modulation is terminated after a 

certain period of time and GTP is hydrolyzed to GDP and Pi. After the cleavage of phosphate, 

the Gα‐ and Gβγ‐subunit reassociate and the heterotrimer is ready to interact with another 

activated receptor. The G protein‐cycle is illustrated in Fig. A.14. 

The approach of  radioligand binding assays  takes advantage of  low dissociation  rate 

constants of high‐affinity  ligands, specifically for agonists at the ternary complex. This com‐

plex between the membrane‐associated active receptor bound to an agonist and nucleotide‐

free G protein can be separated from free ligand by filtration through glass‐fiber filters and 

determined by liquid scintillation counting. In the steady‐state GTPase assay, a radioactively 

labeled GTP derivative  is used. After binding to the Gα‐subunit, [γ‐32P]GTP  is hydrolyzed to 

GDP and radioactive 32Pi by the  intrinsic GTPase activity of Gα. The released amount of 32Pi 

under  steady‐state  conditions  can  be  determined  by  liquid  scintillation  counting.  In  the 

GTPγS binding assay the GDP/GTP exchange at the Gα‐subunit  is determined kinetically.  In 

contrast  to  [γ‐32P]GTP,  [35S]GTPγS  cannot  be  hydrolyzed  by  the  Gα‐subunit  and  subse‐

quently,  the  [35S]GTPγS‐labeled  Gα  subunit  accumulates.  The  complex  of  Gα‐sub‐

unit/[35S]GTPγS  remains membrane‐associated  and  cannot  be  filtrated  through  glass‐fiber 

filters.  The  [35S]GTPγS  remaining  on  the  filters  can  be  determined  by  liquid  scintillation 

counting (Harrison and Traynor, 2003). 

Activity of G proteins is also receptor independently modulated by a family of proteins 

named  regulators  of  G  protein‐signalling  (RGS).  These  proteins may  accelerate  the  rate‐

determining hydrolysis of Gα‐bound GTP  to GDP and Pi and  the  following  reassociation of 

Gα/GDP‐ and Gβγ‐subunits (Neitzel and Hepler, 2006; Willars, 2006; Wieland et al., 2007). 



Fig. A.14.
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A.5 Two-state model and constitutive activity 

To describe the interaction between a GPCR, the G protein and a ligand mathemati-

cally, different models have been developed based on the law of mass action. In the ternary 

complex model, the activation of the G protein requires the binding of an agonist to the 

receptor. However, it was found that GPCRs can be spontaneously active, a phenomenon 

referred to as constitutive activity (Seifert and Wenzel-Seifert, 2002). Constitutive activity is 

observed in many wild-type GPCRs, e.g. β2AR, 5-HT2A/CR, H4R and the formyl peptide recep-

tor (Gether et al., 1995; Seifert and Wenzel-Seifert, 2003; Berg et al., 2008; Schneider et al., 

2009). GPCR mutations with increased constitutive activity might be a source of some 

diseases (Seifert and Wenzel-Seifert, 2002). The existence of constitutive receptor activity 

was integrated in the extended ternary complex model (ETC model) (Lefkowitz et al., 1993; 

Samama et al., 1993) which is also referred to as the two-state model of receptor activation 

(Leff, 1995). This model claims that GPCRs can isomerize from an inactive state (R) to an 

active state (R*) independently of agonist binding (Fig. A.15 A). A receptor in the R* state 

binds and activates G proteins, resulting in a cellular response. According to the two-state 

model, ligands can be classified as agonists, neutral antagonists and inverse agonists  

(Fig. A.15 B). Agonists stabilize the active R* state, inverse agonists the inactive R state of a 

GPCR. Partial agonists or inverse agonists possess a lower efficacy towards G protein 

activation or inhibition, relative to the endogenous (full) agonist which produces a maximum 

biological response (efficacy). Neutral antagonists do not possess any intrinsic activity but 

antagonize the effects of agonists and inverse agonists competitively. 
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Fig. A.15. The two-state model of GPCR activation. A, GPCRs are able to isomerize from an inactive state (R) 

to an active state (R*). Ligands are classified according to their capability of shifting the equilibrium to either 

side of both states. Adapted from Seifert, 2005. B, Differential responses in an effector system upon binding of 

full agonists (■), partial agonists (▲), antagonists (▼), partial inverse agonists (♦) and full inverse agonists (●). 

Adapted from Seifert, 2005. 

 

A.6 Sf9 cells and various other histamine receptor model systems 

Numerous methods are available to investigate ligand binding, receptor activation and 

G protein/effector coupling. Specific applications, advantages and disadvantages, are 

referred to each method. Various basic steps in signal transduction of a GPCR can be 

investigated with a baculovirus/Sf9 cell expression system (Fig. A.16) (Seifert, 2005). Derived 

from Spodoptera frugiperda pupal ovarian tissue, Sf9 cells are very suitable for protein 

expression, especially GPCRs (Aloia et al., 2009). 

 

 

 

Recombinant baculoviruses, double-strained DNA-viruses which infect only non-

vertebrate hosts, are used as expression vectors (Preuss et al., 2007a; Schneider et al., 

2009). The preferred system for large-scale recombinant protein expression is Autographa 

A B 

A B 

Fig. A.16. Uninfected Sf9 cells (A) 

and Sf9 cells after transfection with 

recombinant baculoviruses (B). 

Adapted from J. von der Ohe, 

Institute of Pharmacology, Medical 

School of Hannover. 
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lines. The BD BaculoGold™ linearized baculovirus DNA from BD Biosciences contains the DNA 

for a non-viable virus. A viable virus is reconstituted only by co-transfection of insect cells 

with the viral DNA and the construct included in the complementing transfer vector. The 

foreign cDNA to be expressed has to be cloned into the transfer vector (Fig. A.17). High 

expression levels can be achieved for a GPCR or G protein (Seifert et al., 1998; Ratnala et al., 

2004; Schneider et al., 2009). A correct folding of the recombinant protein as well as 

disulfide bond formation are provided by this expression system. Endogenous constitutively 

active GPCRs or relevant amounts of other receptors are not expressed by Sf9 cells. Advan-

tageous is also the excellent signal to noise ratio, which is caused by limited endogenous  

G protein signalling (Quehenberger et al., 1992; Wenzel-Seifert et al., 1998; Brys et al., 2000; 

Seifert and Wenzel-Seifert, 2003). 

 

 
Fig. A.17. Generation of recombinant HxR baculoviruses, protein expression and membrane preparation. 

 

In this work, studies were exclusively performed with broken-cell preparations 

(membranes) and not whole cells. Thus, contaminations with agonists can be eliminated 

through centrifugation and resuspension of the membrane. The elimination of endogenous 

HA in whole cells or native brain tissue can be very difficult if not impossible. Otherwise, tis-

sues derived from sterile–kept HDC-/- mice fed with HA-free food would be required. 

The Chinese hamster ovary cell line (CHO) is a commonly used system for long-term, 

stable gene expression. The cells grow rapidly and yield high amounts of protein. For 
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investigating the H2R, CHO cells deficient in dihydrofolate reductase were transfected with 

pSVH2 as vector (Traiffort et al., 1992b). Upon exposure to the H2R antagonists cimetidine 

and ranitidine the receptor was up-regulated time- and dose-dependently (Smit et al., 1996). 

In contrary, the human HL-60 promyelocytes constitutively express H2R. Hence, 

investigations for this AC activating receptor are feasible at a non-artifical human model 

system. Furthermore, by differentiation with dibutyryl-cAMP, HL-60 leukemia cells 

additionally express H1R (Seifert et al., 1992). 

The COS cell line was generated by immortalizing kidney CV-1 cells of the African 

green monkey cell line with monkey virus SV40 (Jensen et al., 1964). Transiently transfected 

COS-7 cells produce recombinant proteins, for example tagged H2R (Shayo et al., 2001). Also, 

a stable transfection of human H3R or H4R cDNA in human SK-N-MC neuroblastoma cells is 

possible (Lovenberg et al., 1999; Liu et al., 2001). For functional analysis of human H4R 

(hH4R) the cell line was additionally containing a cAMP-responsive element (CRE)-driven  

β-galactosidase reporter gene and cAMP accumulation was measured indirectly by 

absorbance readout of β-galactosidase activity (Liu et al., 2001). However, measurements in 

reporter gene assays may be susceptible for interference of other processes in signal 

transduction due to its distance to the actual receptor activation event. Human embryonic 

kidney cells (HEK 293) are cultured easily, transfected very readily and, therefore, widely 

used. Although derived of human origin, the transformation with DNA of adenovirus 5 made 

the HEK cells to a rather artificial model (Graham et al., 1977). Nevertheless, for observing 

single transfected genes and their expressed proteins, HEK cells are a feasible model system 

for various GPCRs, e.g. HxRs or cannabinoid receptors (Morse et al., 2001; Hann et al., 2004; 

Geiger et al., 2010). 
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A.7 The histamine H2 receptor in the brain 

Histaminergic neurons arise from the tuberomamillary nucleus in the posterior hypo-

thalamus and spread their axons all over the mammalian brain (Fig. A.18). All of the four 

known HxRs are expressed in the CNS. They mostly control excitability and plasticity and 

serve for several functions like maintaining wakefulness and attention. By forming a network 

with other transmitter systems, also higher brain functions are controlled such as emotion, 

aggression, learning and memory, arousal, sleep/wake cycle, appetite and immunity 

(Watanabe and Yanai, 2001; Haas et al., 2008). 

The expression of H4R in distinct deep laminae and cortex in humans, mouse thalamus, 

hippocampal stratum lucidum and cerebral cortex was reported only recently and its 

function is still unclear (Connelly et al., 2009). The H1R-mediated actions in brain were 

revealed early by the use of the classical antihistamines and characterization of the H1R-/- 

mouse. But H3R was associated with the brain from the very beginning and soon correlated 

with the release of other monoamines. The impact of H2R on neurotransmission is still 

poorly understood. A reason for this may be that the only available selective H2R antagonist 

zolantidine, which sufficiently penetrates the blood-brain barrier, was never introduced for a 

therapeutic use (Ganellin, 1992). Autoradiographic localization in guinea pig found the H2R 

to be distributed heterogeneously in brain with high densities in basal ganglia, amygdala, 

hippocampus and cortex (Haas et al., 2008). The large association of H2R with neurons 

(Pollard and Bouthenet, 1992) suggests that many postsynaptic actions of HA are mediated 

by this receptor (Ruat et al., 1990; Vizuete et al., 1997). Colocalizations of H1R and H2R in 

some regions indicate synergistic interactions of these two receptor subtypes. This was 

supported by the suppression of locomotor hyperreactivity induced by methamphetamine in 

H1/2R-deficient mice (Ogawa et al., 2009). The H2R antagonist cimetidine was also accounted 

for an anti-tumor activity against glioblastomas (Lefranc et al., 2006). Further, H2R-deficient 

mice show selective cognitive disorders along with an interference of long-term potentiation 

in hippocampus (Dai et al., 2007; Haas et al., 2008) and an inhibition of the enhanced 

thalamic firing of nociceptive neurons (Mobarakeh et al., 2005; 2006). 
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Fig. A.18. The histaminergic system in the human brain. The histaminergic fibers emanating from the 

tuberomamillary nucleus project to and arborize in the whole central nervous system. Adapted from Haas and 

Panula, 2003. 

 

A.8 Scope and objectives 

The local mediator and neurotransmitter histamine plays an important 

(patho)physiological role in a number of processes by activating four specific histamine 

receptors, i.e. H1, H2, H3 and H4 receptors (HxRs) which all belong to the large family of GPCRs 

and are very important drug targets. H1-3Rs are already well examined with potent and 

selective agonists and antagonists being available. While the H1R is located in CNS as well as 

endothelium and regulates physiological functions like alertness and vasodilatation, H2R can 

be found in parietal cells (H+ secretion), cardiomyocytes (positive inotropy) and also in 

different brain regions like basal ganglia and the limbic system (Traiffort et al., 1992a). 

Zolantidine is the only existing H2R antagonist sufficiently penetrating the blood-brain 

barrier, but was never introduced for therapeutical use. Therefore, the precise function of 

the cerebral H2R is still poorly defined (Ganellin, 1992). The H3R is localized presynaptically at 

neurons regulating neurotransmitter release. In contrast, the function and pharmacological 

properties of the H4R are still incompletely understood. It is primarily expressed in 

hematopoietic cells, specifically T-lymphocytes, mast cells and eosinophils (Oda et al., 2000), 

but also in brain (Connelly et al., 2009) suggesting an involvement of the H4R mainly in 

immune reactions and inflammatory processes. 
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Antipsychotic and antidepressant drugs show affinity to HxRs, mostly to the H1R, 

which is known to cause the sedative (side) effects of these compounds (Richelson, 1979). 

Hence, we asked the question whether antipsychotic drugs also interact with other HxRs, 

thereby contributing to potentially desired or unwanted effects. In order to better under-

stand the interactions between these compounds and HxRs, we expressed the different 

histamine receptor subtypes in Sf9 insect cells. We determined the affinities (Ki-values) of  

34 antipsychotics and antidepressants (Fig. A.19 to A.23) by performing radioligand binding 

studies using [³H]mepyramine (H1R), [³H]tiotidine (H2R), [³H]Nα-methylhistamine (H3R) and 

[³H]histamine (H4R) as radioligands. The functional data (potencies (EC50 and Kb, respectively) 

and efficacies (Emax)) were assessed in steady-state GTPase assays. Hence, examination of all 

tested substances could be performed in a single expression system. The obtained data was 

then compared with the corresponding therapeutic reference ranges to reveal the possible 

interactions and specify those by molecular modelling. Clinicians may use these receptor 

binding data to reduce or avoid drug interactions and adverse effects (Richelson and Souder, 

2000). 

The lipophilicity of antipsychotics and antidepressants facilitates penetration of the 

blood-brain barrier. Accordingly, the affinity of the psychiatric medication to HxRs, especially 

H2Rs, in the CNS may contribute to their antidepressant and antipsychotic effects as well as 

to unwanted side effects, as the role of the H2R in the regulation of brain function is still not 

understood. 
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Fig. A.19. Structures of tricyclic antidepressants. 
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Fig. A.20. Structures of tetracyclic antidepressants (MSN, MIR and MPT) and a mood stabilizer (CBZ). 
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Fig. A.21. Structures of a selective serotonin reuptake inhibitor (PRX) and serotonin-norepinephrine reuptake 

inhibitors (VFX and SBT). 
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Fig. A.22. Structures of first generation antipsychotics. 
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B. Materials and Methods 

B.1 Materials 

B.1.1 Equipment 

Analytical balance BP 211D 

Extend 

Sartorius, Göttingen 

Sartorius, Göttingen 

Autoclave (steam 

sterilizer) 

Varioklav 135S Thermo Electron, 

Oberschleißheim 

Cell incubator 

 

C24KC Refrigerated Incubator 

Shaker 

New Brunswick Scientific, 

Edison, NJ, USA 

Centrifuge Sorvall Super T21 

 

Eppendorf 5417R 

Multifuge 3L-R 

GR4i Jouan 

Thermo Scientific, 

Langenselbold 

Eppendorf, Hamburg 

Heraeus, Hanau 

Thermo Electron, 

Waltham, MA, USA 

Freezer Arctis AEG, Frankfurt am Main 

Glass ware diverse shapes and sizes Schott, Mainz 

Harvester M-48 Brandel, Gaithersburgh, 

MD, USA 

Heat block Digital Heatblock VWR, West Chester, PA, 

USA 

Heating plate and 

stirrer 

MR3001 Heidolph Instruments, 

Schwabach 

Hemocytometer  Marienfeld, Lauda-

Königshofen 

Homogenizer Dounce homogenizer B. Braun, Melsungen 

Microscope Olympus CK2 Olympus, Tokyo, Japan 

Millipore water 

Purification system 

Milli-Q Water Millipore, Schwalbach 

pH-Meter pH526 WTW, Weilheim 

Photometer Bio-Photometer Eppendorf, Hamburg 

Pipette diverse volumes Abimed, Langenfeld 

Pipette controller Accujet Brand Tech, Wertheim 

Platform shaker Innova 2000 New Brunswick Scientific, 

Edison, NJ, USA 
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Power supply for SDS-

Page/Western blot 

Power Pac 200 Basic Power Supply Bio-Rad, München 

Scintillation-counter Liquid Scintillation Analyzer Tri-Carb 

2800 TR 

PerkinElmer, Waltham, 

USA 

Tissue culture hood S@feflow 1.2 Nunc, Wiesbaden-Biebrich 

Ultra low temperature 

freezer 

U 570 Premium New Brunswick Scientific, 

Edison, NJ, USA  

Vertical 

elelctrophoresis 

system 

Mini-PROTEAN TetraCell Bio-Rad, München 

Vortex shaker Reax top Heidolph, Schwalbach 

Water bath 28L VWR, Darmstadt 

Western blot Mini Trans-Blot Cell Bio-Rad, München 

X-ray film processor Cawomat 2000 IR CAWO, Schrobenhausen 

 

B.1.2 Chemicals, enzymes and antibodies 

[3H]histamine histamine dihydrochloride,  

[Ring, Methylenes-3H(N)]-, 

specific activity: 10-40 Ci/mmol 

Perkin Elmer, Boston, MA, 

USA 

[3H]mepyramine [pyridinyl 5-3H]-, 

specific activity: 20-30 Ci/mmol 

Perkin Elmer, Boston, MA, 

USA 

[3H]Nα-

methylhistamine 

methylhistamine dihydrochloride, 

Nα-[methyl-3H]-, 

specific activity: 74-85 Ci/mmol 

Perkin Elmer, Boston, MA, 

USA 

[3H]tiotidine tiotidine (ICI 125, 211), [Methyl-3H]-, 

specific activity: 70-90 Ci/mmol 

Perkin Elmer, Boston, MA, 

USA 

[3H]trimipramine trimipramine hydrochloride, [N-

methyl-3H], 

specific activity: 80 Ci/mmol 

American Radiolabeled 

Chemicals, Saint Louis, MO, 

USA 

[32P]H3PO4 and  

[33P]H3PO4 

phosphorus32/33 radionuclide 

orthophosphoric acid, 

specific activity:  

8,500-9,120 Ci/mmol  

Perkin Elmer, Boston, MA, 

USA 

Acrylamide 30% (m/V) acrylamide/bis-acrylamide Sigma-Aldrich, Taufkirchen 

Activated charchoal   Sigma-Aldrich, Taufkirchen 
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Amitriptyline HCl 3-(10,11-dihydro-5H-dibenzo[a,d] 

cycloheptene-5-ylidene)-N,N-

dimethyl-1-propanamine 

hydrochloride 

Sigma-Aldrich, Taufkirchen 

(NH4)2S2O8 ammonium persulfate Sigma-Aldrich, Taufkirchen 

Amoxapine 2-chloro-11-(piperazin-1-yl) 

dibenzo[b,f] [1,4]oxazepine 

Sigma-Aldrich, Taufkirchen 

Antibiotic gentamicin sulfate Cambrex Bio Science, 

Walkersville, MD, USA 

Antibodies primary: anti-FLAG M1 antibody, 

anti-Gαi1/2 antibody,  

anti-RGS4 antibody  

secondary: anti-mouse (goat), 

anti-rabbit, anti-goat (donkey) 

Sigma-Aldrich, Taufkirchen 

Calbiochem, La Jolla,CA, 

USA 

Santa Cruz, Santa Cruz, CA, 

USA 

AppNHp  adenosine 5′-[β,γ-imido] 

triphosphate 

Roche, Mannheim 

ATP adenosine 5′-triphosphate Roche, Mannheim 

BD BaculoGold Transfection kit BD PharMingen, San Diego, 

CA, USA 

Benzamidine benzenecarboximidamide Acros Organics, Geel, 

Belgium 

H3BO3 boric acid Merck, Darmstadt 

Bromphenol blue 3',3",5',5"-

tetrabromophenolsulfonphthalein 

Sigma-Aldrich, Taufkirchen 

BSA bovine serum albumine Sigma-Aldrich, Taufkirchen 

Carbamazepine 5H-dibenzo[b,f]azepine-5-

carboxamide 

Sigma-Aldrich, Taufkirchen 

CaCl2 calcium chloride Merck, Darmstadt 

cAMP cyclic adenosine monophosphate Sigma-Aldrich, Taufkirchen 

Chlorpromazine HCl 3-(2-chloro-10H-phenothiazin-10-yl)-

N,N-dimethyl-propan-1-amine 

hydrochloride 

Sigma-Aldrich, Taufkirchen 

Chlorprothixene HCl 2-chloro-9-(3-dimethylaminopro-

pylidene)thioxanthene 

hydrochloride 

Sigma-Aldrich, Taufkirchen 

CK creatine kinase Roche, Mannheim 
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Clomipramine HCl 3-(3-chloro-10,11-dihydro-5H-

dibenzo [b,f]azepin-5-yl)-N,N-

dimethylpropan-1-amine 

hydrochloride 

Biotrend, Köln 

Clozapine 8-chloro-11-(4-methyl-1-

piperazinyl)-5H-dibenzo[b,e][1,4]-

diazepine 

RBI, Natick, MA, USA 

Clozapine N-oxide 8-chloro-11-(4-methyl-1-

piperazinyl)-5H-

dibenzo[b,e](1,4)diazepine N-oxide 

Sigma-Aldrich, Taufkirchen 

CP phosphocreatine disodiumsalt Sigma-Aldrich, Taufkirchen 

DC Protein Assay 

Reagent A, B and S 

colorimetric assay kit Bio-Rad, München 

Desipramine HCl 3-(10,11-dihydro-5H-dibenzo[b,f] 

azepin-5-yl)-N-methylpropan-1-

amine hydrochloride 

Biotrend, Köln 

Dibenzepin HCl 10-(2-(dimethylamino)ethyl)-5-

methyl-5H-

dibenzo[b,e][1,4]diazepin-11(10H)-

one hydrochloride 

Novartis, Basel, Switzerland 

Diphenhydramine HCl 2-(diphenylmethoxy)-N,N-

dimethylethanamine hydrochloride 

Biotrend, Köln 

DMSO dimethyl sulfoxide Merck, Darmstadt 

Doxepin HCl (E,Z)-3-(dibenzo[b,e]oxepin-11(6H)-

ylidene)-N,N-dimethylpropan-1-

amine hydrochloride 

Biotrend, Köln 

DTT dithiothreitol Sigma-Aldrich, Taufkirchen 

ECL Western Blotting  Detection reagent peroxide and 

Luminol 

Pierce Biotechnology, 

Rockford, IL, USA 

EDTA ethylenediaminetetraacetic acid Merck, Darmstadt 

Ethylenimine oligomer mixture Sigma-Aldrich, Taufkirchen 

Famotidine 3-([2-(diaminomethyleneamino) 

thiazol-4-yl]methylthio)-N'-

sulfamoylpropanimidamide 

Sigma-Aldrich, Taufkirchen 

FCS fetal calf serum Biochrom, Berlin, Germany 
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Fluphenazine · 2HCl 2-[4-[3-[2-(trifluoromethyl)-10H-

phenothiazin-10-yl]propyl]-

piperazin-1-yl]ethanol 

dihydrochloride 

Sigma-Aldrich, Taufkirchen 

GDP guanosine 5'-diphosphate Roche, Mannheim 

Glycerol 87% solution AppliChem, Darmstadt 

GTP guanosine 5'-triphosphate Roche, Mannheim 

Haloperidol 4-[4-(4-chlorophenyl)-4-hydroxy-1-

piperidyl]-1-(4-fluorophenyl)-butan-

1-one 

Sigma-Aldrich, Taufkirchen 

HCl hydrochloric acid Merck, Darmstadt 

HEPES 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid 

Sigma-Aldrich, Taufkirchen 

Histamine 2-(1H-imidazol-4-yl)ethanamine Sigma-Aldrich, Taufkirchen 

Imipramine HCl 3-(10,11-dihydro-5H-

dibenzo[b,f]azepin-5-yl)-N,N-

dimethylpropan-1-amine 

hydrochloride 

Novartis, Basel, Schweiz 

Insect-Xpress culture medium for Sf9 cells Lonza, Walkersville, MD, 

USA 

KCl potassium chloride Merck, Darmstadt 

KH2PO4 potassium dihydrogen phosphate Merck, Darmstadt 

Leupeptin N-acetyl-L-leucyl-L-leucyl-L-argininal Merck, Darmstadt 

Levomepromazine HCl (2R)-3-(2-methoxyphenothiazine-10- 

yl-)-N,N,2-trimethylpropanamine 

hydrochloride 

Bayer Vital, Leverkusen 

Lofepramine N-(4-chlorophenethyl)-3-(10,11-

dihydro-5H-dibenzo[b,f]azepin-5-yl)-

N-methylpropan-1-amine 

Tocris Bioscience, Bristol, 

UK 

Loxapine succinate 2-chloro-11-(4-methylpiperazin-1-

yl)dibenzo[b,f][1,4]oxazepine 

succinate 

Sigma-Aldrich, Taufkirchen 

Maprotiline HCl N-methyl- 9,10-ethanoanthracene- 

9(10H)- propanamine hydrochloride 

Sigma-Aldrich, Taufkirchen 

MeOH methanol Merck, Darmstadt 

Mesoridazine besylate 10-{2-[(RS)1-methylpiperidin-2-

yl]ethyl}-2-methylsulfinyl-10H-

phenothiazine besylate 

Sigma-Aldrich, Taufkirchen 
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MgCl2 · 6H2O magnesium chloride hexahydrate Merck, Darmstadt 

MgSO4 · 7H2O magnesium sulfate heptahydrate Merck, Darmstadt 

Mianserin HCl (±)-2-methyl-1,2,3,4,10,14b-

hexahydrodibenzo[c,f]pyrazino[1,2-

a]azepine hydrochloride 

Sigma-Aldrich, Taufkirchen 

Mirtazapine (±)-1,2,3,4,10,14b-hexahydro-2-

[11C]methylpyrazino(2,1-a)pyrido 

(2,3-c)(2)benzazepine 

Biotrend, Köln 

Na2HPO4 disodium hydrogen phosphate Merck, Darmstadt 

NaCl sodium chloride Merck, Darmstadt 

NaH2PO4 · H2O sodium dihydrogen phosphate Merck, Darmstadt 

NaOH sodium hydroxide Merck, Darmstadt 

N-desmethylclozapine 8-chloro-11-piperazinyl-5H-

dibenzo[b,e][1,4]diazepine 

Tocris Bioscience, Bristol, 

UK 

NH4SO4 ammonium sulfate Merck, Darmstadt 

Nortriptyline HCl 3-(10,11-dihydro-5H-dibenzo[a,d] 

cyclohepten-5-ylidene)-N-methyl-1-

propanamine hydrochloride 

Biotrend, Köln 

Olanzapine 2-methyl-4-(4-methyl-1-piperazinyl)-

10H-thieno[2,3-b][1,5]benzo-

diazepine 

Biotrend, Köln 

Opipramol HCl 4-[3-(5H-dibenz[b,f]azepin-5-

yl)propyl]- 1-piperazinethanol 

hydrochloride 

Novartis, Basel, Switzerland 

Paroxetine maleate (3S,4R)-3-[(2H-1,3-benzodioxol-5-

yloxy)methyl]-4-(4-fluorophenyl) 

piperidine maleate 

Sigma-Aldrich, Taufkirchen 

Perphenazine 2-[4-[3-(2-chloro-10H-phenothiazin-

10-yl) propyl]piperazin-1-yl]ethanol 

Sigma-Aldrich, Taufkirchen 

PMSF phenylmethanesulfonyl fluoride Sigma-Aldrich, Taufkirchen 

Ponceau S Acid Red 112, diazo dye Sigma-Aldrich, Taufkirchen 

Prestained protein 

molecular weight 

marker 

 Fermentas, St. Leon-Rot 

Prochlorperazine 

dimaleate 

2-chloro-10-[3-(4-methyl-1-

piperazinyl)propyl]-10H-

phenothiazine dimaleate 

Sigma-Aldrich, Taufkirchen 
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Promethazine HCl (RS)-N,N-dimethyl-1-(10H-

phenothiazin-10-yl)propan-2-amine 

hydrochloride 

Sigma-Aldrich, Taufkirchen 

Protriptyline HCl 3-(5H-dibenzo[a,d][7]annulen-5-yl)-

N-methylpropan-1-amine 

hydrochloride 

Sigma-Aldrich, Taufkirchen 

Risperidone 4-[2-[4-(6-fluorobenzo[d]isoxazol-3-

yl)-1-piperidyl]ethyl]-3-methyl-2,6-

diazabicyclo[4.4.0]deca-1,3-dien-5-

one 

Biotrend, Köln 

Rotiszint eco plus  scintillation cocktail Carl Roth, Karlsruhe 

SDS sodium dodecyl sulfate Merck, Darmstadt 

Sulforidazine 10-[2-(1-methylpiperidin-2-yl)ethyl]-

2-(methylsulfonyl)-10H-

phenothiazine 

Novartis, Basel, Switzerland 

TEMED tetramethylethylenediamine Sigma-Aldrich, Taufkirchen 

Thioperamide maleate N-cyclohexyl-4-(1H-imidazol-4-

yl)piperidine-1-carbothioamide 

maleate 

Tocris Bioscience, Bristol, 

UK 

Thioridazine HCl 10-{2-[(RS)-1-Methylpiperidin-2-

yl]ethyl}-2-methylsulfanyl-

phenothiazine hydrochloride 

Sigma-Aldrich, Taufkirchen 

Trimipramine maleate (±)-3-(10,11-dihydro-5H-dibenzo[b,f] 

azepin-5-yl)-N,N,2-trimethylpropan-

1-amine maleate 

Sigma-Aldrich, Taufkirchen 

Tris tris(hydroxymethyl)aminomethane USB Corporation, 

Cleveland, OH, USA 

Tween 20 polysorbate 20 Merck, Darmstadt 

Zolantidine dimaleate N-[3-[3-(1-piperidinylmethyl) 

phenoxy]propyl]-2-

benzothiazolamine dimaleate 

Sigma-Aldrich, Taufkirchen 
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B.1.3 Consumables 

Cuvettes diverse sizes Eppendorf, Hamburg 

Glass microfiber filters Whatman GF/C Schleicher+Schuell, 

Maidstone, Kent, UK 

Injection needles 20G, 21G, 27G BD Microlance Becton Dickinson, 

Heidelberg 

Insulin syringe 1 ml, sterile B. Braun, Melsungen 

Mini vials 6 ml Sarstedt, Nümbrecht 

Multipet tips diverse volumes Brand, Wertheim 

Nitrocellulose 

membrane 

0.45 µm Trans-Blot Transfer medium Bio-Rad, München 

Photo film Amersham hyperfilm ECL GE Healthcare, Little 

Chalfont, Buckinghamshire, 

UK 

Pipette tips 10 µl, 100 µl, 1,000 µl, Sarstedt, Nümbrecht 

Serological pipettes 1 ml, 5 ml, 10 ml, 25 ml, sterile Sarstedt, Nümbrecht 

Single–use syringe 2 ml, 5 ml, 10 ml, 20 ml, sterile B. Braun, Melsungen 

Test tubes 1.5 ml micro tubes Sarstedt, Nümbrecht 

 2 ml micro tubes Eppendorf, Hamburg 

 15 ml and 50 ml Falcon tubes Sarstedt, Nümbrecht 

 4 ml KABE, Nümbrecht 

Transfer pipette 2 ml, disposable Sarstedt, Nümbrecht 

 

B.1.4 Buffers 

PBS buffer (pH = 7.4) 

137 mM NaCl 

2.6 mM KCl 

0.5 mM MgCl2 

0.9 mM CaCl2 

1.5 mM KH2PO4 

0.8 mM Na2HPO4 

Lysis buffer (pH = 7.4) 

10 mM Tris/HCl 

1 mM EDTA 

0.2 mM phenylmethane-

sulfonyl fluoride 

10 μg/ml benzamidine 

10 μg/ml leupeptin 

Binding buffer (pH = 7.4) 

75 mM Tris/HCl 

1 mM EDTA 

12.5 mM MgCl2 
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B.2 Methods 

B.2.1 Solution protocols: handling of the antipsychotic and antidepressant ligands 

Most of the commercially available ligands are highly lipophilic. Their solubility in 

water is very low, which implies dissolving them in aqueous solutions such as binding buffer 

is not possible at all. However, solubility in dimethyl sulfoxide (DMSO) or ethanol is sufficient 

to prepare at least 10 mM stock solutions. Ethanol has several disadvantages compared to 

DMSO. Firstly, ethanol evaporates easily, making it difficult to ensure accurate concentra-

tions present in either stored stock solutions or dilutions. Secondly, ethanol is toxic for cell 

proteins, whereas DMSO can be used in concentrations of up to 5% (v/v) in Sf9 cell mem-

branes without affecting receptor protein function, except membrane preparations ex-

pressing H2R. Therefore, stock solutions of the ligands (10 mM each) were prepared in and 

stored at -20°C for up to 3 months without loss of pharmacological activity. Dilutions of 

ligands were prepared in such a way that the DMSO concentration was 50% (v/v) and that 

the final DMSO concentration in all assay tubes was 5% (v/v). A final volume percentage of 

up to 5% DMSO assured accurate and stable solutions without affecting receptor protein, 

except for H2R, where concentrations of 5% (v/v) decreased the measured affinities and 

potencies by up to factor 5. Lowering the DMSO concentration to 1% (v/v) resulted in cloudy 

suspensions when diluting ligands. 

The more hydrophilic ligands (TCAs except lofepramine (LPM)) could be solved in  

10% (v/v) DMSO (10 mM), so that the final concentration of DMSO in the tubes was 1% (v/v). 

While affinities at H3R and H4R are very low and, therefore, high concentrations of the 

ligands were needed, examinations at H1R and H2R require only lower concentrated ligand 

solutions so that the DMSO content could be reduced to 1% or even 0.1% (v/v) final. 

 

B.2.2 Generation of recombinant baculoviruses, cell culture and membrane 

preparation 

Baculoviruses encoding recombinant proteins were generated in Sf9 cells using the 

BaculoGOLD™ transfection kit according to the manufacturer’s instructions. Sf9 cells were 

cultured in 250 or 500 ml disposable Erlenmeyer flasks at 28°C and shaking at 125 rpm in an 

incubation shaker in SF 900 II medium supplemented with fetal calf serum to 5% (v/v) and 
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gentamicin sulfate to 0.1 mg/ml. Supplementation of fetal calf serum is not absolutely 

necessary, but cells grow better and show higher GPCR expression levels if serum is added. 

Sf9 cells were maintained at a density of 0.5 to 6.0 x 106 cells/ml. 

After initial transfection, high-titer virus stocks were generated by two sequential 

virus amplifications. In the first amplification, cells were seeded at 2.0 x 106 cells/ml and 

infected with a 1:100 dilution of the supernatant from the initial transfection. Cells were 

cultured for 7 days, resulting in the death of virtually the entire cell population. The superna-

tant fluid of this infection was harvested and stored under light protection at 4°C. In a 

second amplification, cells were seeded at 3.0 x 106 cells/ml and infected with a 1:20 dilution 

of the supernatant fluid from the first amplification. Cells were cultured for 48 hr and the 

supernatant fluid was harvested. After the 48 hr culture period, the majority of cells showed 

signs of infections (e.g. altered morphology, viral inclusion bodies), but most of the cells 

were still intact. The supernatant fluid from the second amplification was stored under light 

protection at 4°C and used as routine virus stock for membrane preparations. To ensure the 

purity and identity of the viruses, the total ribonucleic acid of infected Sf9 cells was isolated, 

the cDNA was derived via reverse transcription and fragments representative for the con-

structs were PCR-amplified and analyzed by restriction digestion. 

For transfection, cells were seeded at 3.0 x 106 cells/ml and infected with a  

1:100 dilution of high-titer baculovirus stocks encoding either hH1R, hH2R-GsαS, hH3R or hH4R 

as well as Gαi2- and Gβ1γ2-protein. In some transfections, RGS4 or GAIP were additionally 

coexpressed. Cells were cultured for 48 hr and checked for signs of infection before 

membrane preparation. 

Sf9 membranes were prepared as described previously (Seifert et al., 1998; Wenzel-

Seifert and Seifert, 2000). All membrane preparation steps were conducted at 4°C in 50 ml 

Falcon tubes. Briefly, cells were washed once by centrifuging for 10 min at 1,000 rpm, dis-

carding the supernatant and resuspending the cell pellet in 50 ml of PBS-buffer. After 

repeating the centrifugation step, the supernatant was discarded and the pellet was sus-

pended in 15 ml of lysis buffer using EDTA (1 mM) and phenylmethylsulfonyl fluoride  

(0.2 mM), benzamidine (10 μg/ml) and leupeptine (10 μg/ml) as protease inhibitors and 

homogenized in a 15 ml Dounce homogenizer with 25 strokes. After centrifugation at  

500 rpm for 5 min, the pellet contained the nuclei and unbroken cells and the supernatant 

contained the membranes. Therefore, the supernatant was carefully transferred to a plastic 
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Sorvall tube and spun down at 18,000 rpm for 20 min in a Sorvall centrifuge. The pellet 

containing the membranes was resuspended in 20 ml of lysis buffer and again centrifuged as 

described above. The resulting membrane pellet was suspended in 25 ml of binding buffer 

and homogenized by a syringe with 20 strokes. Protein concentrations were determined 

using the DC protein assay kit according to the instructions of the manufacturer. This assay 

allows the protein determination in the presence of reducing agents or detergents and is 

based on a colorimetric reaction according to the Lowry method. 

The membrane suspension was aliquoted into 25 tubes at 1 ml each for storage at  

-80°C until use. At this temperature, GPCRs and G proteins are functionally and structurally 

stable for up to 4 years. By SDS-PAGE and immunoblotting with specific antibodies the 

expression of FLAG-tagged histamine receptors, G protein subunits and RGS proteins was 

confirmed (see Chapter B.2.3). 

 

B.2.3 SDS-PAGE and immunoblot analysis 

Membrane proteins were diluted in Laemmli-buffer and separated on SDS 

polyacrylamide gels containing 12% (w/v) acrylamide at 110 V for 120 min. Proteins were 

then transferred with 250 mA for 120 min onto 0.45 μm nitrocellulose membranes and then 

reacted with M1 antibody (1:1,000), anti-Gαi1/2 (1:1,000) and RGS4 antibody (1:500) 

immunoglobulins G (IgGs). Immunoreactive bands were visualized by enhanced chemo-

luminescence, using goat anti-mouse IgG (M1 Ig), anti-rabbit IgG (anti-Gαi1/2 Ig) and donkey 

anti-goat IgG (RGS4 Ig) respectively, coupled to peroxidase. Electrochemoluminescence-

stained blots were exposed to X-ray films.  

Membranes of Sf9 cells expressing HxR plus mammalian G proteins were prepared 

and analyzed via immunoblot. As shown in Fig. B.1 A, the M1 anti-FLAG antibody stained the 

hHxR proteins as well as the fusion proteins. Due to a higher degree of N-glycosylation, the 

bands of hH1R appeared at ~85 kDa (kDa) (Straßer et al., 2008a). Some weak bands were 

visible in a range from 25 to 30 kDa. The expected molecular mass of the hH2R is ~33 kDa 

(Gantz et al., 1991a; 1991b; Fukushima et al., 1997). The fusion protein hH2R-GsαS was 

detected as strong band at ~80 kDa. The predicted molecular mass of the hH3R is ~47 kDa 

and was detected as a strong band. The hH4R signal consisted of more bands in the range 

between 37 and 44 kDa which are due to receptor glycosylation in the receptor N-terminus 

(Asn-5 and Asn-9) (van Rijn et al., 2006; Schneider et al., 2009). As shown in  
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Fig. B.1 B, we coexpressed hH3R and hH4R with Gαi2, Gβ1γ2 and non-fused RGS4. In these 

membranes, RGS4 was detected with specific anti-RGS4 Igs. Likely due to differently glyco-

sylated species, H4R-GAIP shows very broad and diffuse bands. To visualize the coexpressed 

Gα-subunits, a Gαi1/2 antibody was used. The proteins were detected at the expected mole-

cular mass (~40 kDa) (Schnell et al., 2010). 
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Fig. B.1. Immunological detection of the expression of recombinant proteins in Sf9 cells. In each lane, 10 μg of 

membrane protein was loaded onto the gel. Numbers in the middle of both gels designate masses of marker 

proteins in kDa. In A, the FLAG-tags of the four different types of histamine receptors were detected by the M1 

monoclonal antibody (anti-FLAG Ig). In B, on the right side, membranes expressing a Gαi2 subunit were de-

tected by the anti-Gαi2 IgG. On the left hand side of B, RGS4 proteins are displayed. 

 

B.2.4 Radioligand binding assay 

Radioligand binding assays were performed as previously described for the H1R 

(Seifert et al., 2003), H2R (Kelley et al., 2001), H3R (Schnell et al., 2010) and H4R (Schneider et 

al., 2009). H1R assays: Sf9 insect cell membranes coexpressing the hH1R and RGS4 were em-

ployed, H2R assays: Sf9 insect cell membranes expressing the hH2R-GsαS fusion protein were 

employed, H3R assays: Sf9 insect cell membranes coexpressing the hH3R, mammalian Gαi2 

and Gβ1γ2 were employed, H4R assays: Sf9 insect cell membranes coexpressing the hH4R, 

mammalian Gαi2 and Gβ1γ2 were employed. 
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The membranes were thawed and sedimented by a 10‐min centrifugation at 4°C and 

15,000g  and  resuspended  in  binding  buffer  (12.5 mM MgCl2,  1 mM  EDTA  and  75 mM 

Tris/HCl, pH 7.4).  Each  tube  (total  volume 250  μL)  contained 25  μg  (hH1R), 45  μg  (hH3R), 

75 μg (hH4R) or 100 μg (hH2R) of membrane protein. Competition binding experiments were 

performed in the presence of 5 nM of [3H]mepyramine (hH1R), 20 nM of [3H]tiotidine (hH2R), 

3  nM  of  [3H]Nα‐methylhistamine  (hH3R)  or  10  nM  of  [3H]histamine  (hH4R)  and  increasing 

concentrations of unlabeled ligands. Non‐specific binding was determined in the presence of 

tritiated radioligand plus 10 μM antagonist (diphenhydramine for H1R, famotidine for H2R or 

thioperamide for H3R and H4R). Incubations were conducted for 60 min at 25°C and shaking 

at  250  rpm.  Bound  radioligand was  separated  from  free  radioligand  by  filtration  through 

GF/C  filters pretreated with 0.3%  (m/v) polyethyleneimine,  followed by  three washes with  

2 ml of  ice‐cold binding buffer using a Brandel Harvester. After an equilibration phase of at 

least  12 hr,  filter‐bound  radioactivity was determined by  liquid  scintillation  counting.  The 

experimental  conditions  chosen  ensured  that  not more  than  10%  of  the  total  amount  of 

radioactivity added to binding tubes was bound to filters. 

 

Absolute binding  (pmoles of  radioligand bound per mg of membrane protein) was 

calculated as follows: 

݈݋݉݌
݉݃  ൌ  

ሺ݈ܿܽݐ݋ݐ ݉݌ െ –݊݋݊ ݉݌ܿ  ሻ݂ܿ݅݅ܿ݁݌ݏ ൈ ݈݀݊ܽ݃݅݋݅݀ܽݎ ݈݋݉݌
݀݁݀݀ܽ ݈ܽݐ݋ݐ ݉݌ܿ ൈ ݊݅݁ݐ݋ݎ݌ ݃݉  

Equation 1 

Explanations:   

cpm total:  filter‐bound radioactivity of radioligand from assay tubes, except from 

those tubes containing an antagonist for determination of non‐specific 

binding 

cpm non‐specific:  filter‐bound  radioactivity  of  radioligand  from  assay  tubes  containing 

the  antagonists  diphenhydramine  (H1R),  famotidine  (H2R)  or 

thioperamide (H3R and H4R) 

pmol radioligand:  absolute amount of radioligand present in the assay tubes 

cpm total added:  the radioactivity of the radioligand added to each tube (no filtration) 

mg protein:  absolute  amount  of  membrane  protein  added  per  tube 

(0.025–0.100 mg) 
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B.2.5 Steady‐state GTPase assay 

GTPase activity assays were performed as previously described for the H1R (Seifert et 

al., 2003), H2R (Kelley et al., 2001), H3R (Schnell et al., 2010) and H4R (Schneider et al., 2009). 

H1R assays: Sf9 insect cell membranes coexpressing the hH1R and RGS4 were employed, H2R 

assays: Sf9  insect cell membranes expressing the hH2R‐GsαS fusion protein were employed, 

H3R assays: Sf9  insect cell membranes coexpressing  the hH3R, mammalian Gαi2, Gβ1γ2 and 

RGS4 were employed, H4R  assays:  Sf9  insect  cell membranes  coexpressing  the hH4R‐GAIP 

fusion protein, mammalian Gαi2 and Gβ1γ2 were employed. 

The membranes were thawed, sedimented by centrifugation at 4°C and 13,000 rpm 

for 10 min. Membranes were resuspended in 10 mM Tris/HCl, pH 7.4. Each assay tube con‐

tained Sf9 membranes expressing  the  respective HxR  subtype  (10  μg protein/tube), MgCl2 

(H1/2R  assays:  1.0  mM,  H3/4R  assays:  5.0  mM),  100  μM  EDTA,  100  μM  adenosine  

5`‐triphosphate  (ATP),  100  nM  guanosine  5`‐triphosphate  (GTP),  100  μM  adenosine  

5`‐[β,γ‐imido]triphosphate,  1.2  mM  creatine  phosphate,  20  μg  creatine  kinase  and  

0.2% (w/v) bovine serum albumin in 50 mM Tris/HCl, pH 7.4 and the investigated ligands at 

various concentrations. All H4R assays additionally contained 100 mM NaCl. Histamine was 

added  to  the  reaction  mixtures  (final  concentrations:  H1R:  1  µM;  H2R:  1  μM)  for  the 

determination of Kb‐values (antagonist mode of the GTPase activity assay). 

Reaction mixtures  (80  μl) were  incubated  for 2 min at 25°C before  the addition of  

20 μl of [γ‐32P]GTP (0.1 μCi/tube) or [γ‐33P]GTP (0.05 μCi/tube). All stock and work dilutions 

of [γ‐32P]GTP and [γ‐33P]GTP were prepared in 20 mM Tris/HCl, pH 7.4. Reactions were con‐

ducted  for 20 min  at 25°C. The  addition of 900  μl  slurry  consisting of 5%  (w/v)  activated 

charcoal  and  50  mM  NaH2PO4,  pH  2.0  terminated  the  reactions.  The  charcoal  absorbs  

nucleotides but not Pi. Charcoal‐quenched reaction mixtures were centrifuged for 7 min at 

room  temperature  at  13,000g.  Six  hundred microliters  of  the  supernatant were  removed 

and  32Pi/
33Pi was  determined  by  liquid  scintillation  counting.  Enzyme  activities were  cor‐

rected  for  spontaneous  degradation  of  radiolabeled  GTP.  Spontaneous  degradation  of 

radiolabeled GTP was determined in tubes containing all components described above, plus 

a  very  high  concentration  of  unlabeled  GTP  (1  mM)  which  competes  with  [γ‐32P]GTP/ 

[γ‐33P]GTP and prevents hydrolysis of radiolabeled GTP by enzymatic activities present in Sf9 

membranes. Spontaneous  [γ‐32P]GTP/[γ‐33P]GTP degradation was <1% of  the  total amount 
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of radioactivity added. The experimental conditions chosen ensured that not more than 20% 

of the total amount of radiolabeled GTP added was converted to 32Pi/
33Pi. 

 

GTPase activity (pmoles of Pi released per mg of membrane protein per min) was cal‐

culated as follows: 

݈݋݉݌
݉݃ ൈ ݉݅݊  ൌ  

ሺ݈ܿܽݐ݋ݐ ݉݌ െ ሻܲܶܩ ݉݌ܿ ൈ ݈ܾ݈݀݁݁ܽ݊ݑ ܲܶܩ ݈݋݉݌ ൈ 1.67
݀݁݀݀ܽ ݈ܽݐ݋ݐ ݉݌ܿ ൈ ݊݋݅ݐܾܽݑܿ݊݅ ݊݅݉ ൈ ݊݅݁ݐ݋ݎ݌ ݃݉  

Equation 2 

Explanations:   

cpm total:  radioactivity of [γ‐32P]GTP/[γ‐33P]GTP counted in the 600 μl aliquot 

taken from all assay tubes except those containing 1 mM GTP 

cpm GTP:  radioactivity of [γ‐32P]GTP/[γ‐33P]GTP counted in the 600 μl aliquot 

taken from the assay tubes containing 1 mM GTP 

pmol GTP unlabeled:  absolute amount of substrate present  in the assay tubes;  i.e. with 

100 nM GTP, 10 pmoles of GTP were present in the 100 μl reaction 

mixture; the small amount of radiolabeled GTP may be neglected 

1.67:  factor  correcting  the  fact  that  only  600  μl  out  of  1,000  μl  in  the 

assay tubes were counted 

cpm total added:  the  radioactivity  of  [γ‐32P]GTP/[γ‐33P]GTP  added  to  each  tube 

(no charcoal addition) 

min incubation:  assays were routinely conducted for 20 min 

mg protein:  absolute amount of membrane protein added per tube (0.01 mg) 

 

B.2.6 Prediction of off‐targets by Similarity Ensemble Approach 

For  the  prediction  of  new  off‐targets we  used  a  statistics‐based  chemoinformatics 

approach called Similarity Ensemble Approach  (SEA) (Keiser et al., 2007). By comparison of 

targets by  the similarity of  the  ligands  that bind  to  them,  so‐called expectation values are 

obtained which quantify  a  statistical  significance of  the observed  similarity between drug 

and  ligand. The simplified molecular  input  line entry specification (SMILES) formulas of the 

34 drugs were compared against ligands drawn from the MDL Drug Data Report. The main‐

tained  predictions were  analyzed  retrospectively  against  known  associations  drawn  from 

ChEMBL 02 database. 
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B.2.7 Construction of active and inactive state hHxR models with different com-

pounds in the binding pocket 

For generation of the inactive and active hH1R and hH4R models, the sequence of the 

hHxR was aligned to hβ2AR (Ballesteros et al., 2001). Based on this alignment, the homology 

models of hH1R and hH4R were generated using the crystal structure of the hβ2AR (Protein 

Data Bank code 2rh1) (Cherezov et al., 2007; Rasmussen et al., 2007; Rosenbaum et al., 

2007). The software package SYBYL 7.3 (Tripos, St. Louis, MO) was used as described (Straßer 

et al., 2008b; Deml et al., 2009; Igel et al., 2009). Loops with different length, compared with 

the hβ2AR, were modeled using the Loop Search module of SYBYL 7.3. Because of the lack of 

sufficient experimental data concerning the structure of the ICL3-loop and parts of the  

C-terminus, both were included only partially in the modelling studies. This approximation 

should not have much influence on the modelling of the ligand binding-mode. Subsequently, 

the receptor was minimized carefully. 

The modelling studies for the H2R were performed using a homology model of the 

hβ2AR (Protein Data Bank code 2rh1) (Cherezov et al., 2007; Rasmussen et al., 2007; 

Rosenbaum et al., 2007) published elsewhere (Ghorai et al., 2008). The docking of both TMP 

enantiomers and TIO was first performed manually in different positions in consideration of 

the probable binding site of the endogenous ligand HA (Del Valle et al., 1995). For TIO, muta-

tional data of the H2R (Gantz et al., 1992) and a pharmacophoric model derived from rigid 

TIO analogues (Haaksma et al., 1992) were considered. Next, several runs with the auto-

mated docking program FlexiDock of the SYBYL software package were performed. By a 

genetic algorithm the program is able to translate and rotate the ligand as well as to vary the 

torsion angles of both ligand and receptor amino acid side chains. The retrieved results were 

energy minimized with the force field MMFF94s (Halgren, 1999). 

 

B.2.8 Miscellaneous 

Ligand structures were illustrated using ChemDraw Ultra 11.0 (CambridgeSoft, Cam-

bridge, MA, USA). Protein was determined using the DC protein assay kit. All analyses of ex-

perimental data were performed with the Prism 5 program (GraphPad Software, San Diego, 

CA, USA). Statistical analysis was performed using Student`s t test. Kb-values were calculated 

using the Cheng and Prusoff equation (Cheng and Prusoff, 1973). 
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C. Results 

C.1 Analysis of antidepressants and antipsychotics at hH1R and hH2R 

hH1R hH2R 
Cpd. Ki [nM] 

± S.D. 
Kb [nM] 
± S.D. 

Inv. Eff. 
± S.D. 

Ki [nM] 
± S.D. 

Kb [nM] 
± S.D. 

Inv. Eff. 
± S.D. 

Therapeutic 
reference 
ranges [nM] 

AMI 1.3 ± 0.7 1.8 ± 0.1 -0.07 ± 0.01 67 ± 14 112 ± 45 -0.12 ± 0.01 255-6372 

AMO 8.0 ± 1.4 9.4 ± 3.9 -0.05 ± 0.01 n.d. 1,297 ± 195 -0.11 ± 0.01 637-1,5941 

CBZ > 100 µM > 100 µM ineffective n.d. > 100 µM ineffective 25.3-50.8 µM2 

CPZ 3.1 ± 1.7 3.4 ± 0.7 -0.28 ± 0.02 n.d. 1,534 ± 720 -0.22 ± 0.02 84-8442 

CPX 1.1 ± 0.06 2.1 ± 0.1 -0.12 ± 0.03 n.d. 592 ± 56 -0.15 ± 0.01 57-5682 

CPM 13 ± 2.0 9.0 ± 1.8 -0.10 ± 0.004 209 ± 12 168 ± 66 -0.14 ± 0.01 500-1,2812 

CLO 2.6 ± 0.8 4.3 ± 1.1 -0.04 ± 0.01 n.d. 528 ± 78 -0.09 ± 0.01 1,071-1,8362 

CLD 4.5 ± 0.9 4.9 ± 0.8 -0.11 ± 0.01 n.d. 1,624 ± 224 -0.14 ± 0.02 151-4,2974 

CLN 2,919 ± 860 3,388 ±1,085 -0.05 ± 0.01 n.d. > 100 µM ineffective 755 

DPM 68 ± 11 21.2 ± 4.2 -0.08 ± 0.01 1,548 ± 243 1,439 ± 702 -0.12 ± 0.01 330-9912 

DBP 24 ± 2.7 14 ± 3.4 -0.05 ± 0.01 1,966 ± 136 3,174 ± 154 -0.09 ± 0.01 85-8503 

DXP 1.2 ± 0.3 1.2 ± 0.3 -0.07 ± 0.01 198 ± 137 344 ± 79 -0.12 ± 0.02 158-4752 

FPZ 2.2 ± 0.2 65 ± 20 -0.16 ± 0.02 n.d. 16,702 ± 
1,729 

-0.14 ± 0.01 1.0-4.02 

HAL 1,947 ± 644 2,056 ± 43 -0.03 ± 0.02 n.d. 1,161 ± 289 -0.07 ± 0.01 13-452 

IMI 7.6 ± 2.0 5.7 ± 1.3 -0.10 ± 0.03 613 ± 394 791 ± 92 -0.13 ± 0.01 552-9472 

LMZ 1.7 ± 0.7 3.2 ± 0.2 -0.20 ± 0.03 n.d. 596 ± 130 -0.17 ± 0.01 41-1642 

LPM 243 ± 94 203 ± 79 -0.23 ± 0.02 4,415 ± 
1,354 

5,684 ± 
1,243 

-0.18 ± 0.01 12-423 

LOX 2.3 ± 0.4 7.3 ± 2.5 -0.07 ± 0.02 n.d. 1,221 ± 204 -0.10 ± 0.03 30-916 

MPT 1.4 ± 0.2 2.9 ± 1.0 -0.11 ± 0.03 782 ± 42 857 ± 118 -0.13 ± 0.01 398-6372 

MSN 1.2 ± 0.3 3.3 ± 0.4 -0.10 ± 0.03 445 ± 95 450 ± 16 -0.12 ± 0.004 50-2332 

MIR 1.3 ± 0.3 2.6 ± 0.2 -0.05 ± 0.01 n.d. 1,676 ± 206 -0.08 ± 0.01 151-3012 

NTL 3.0 ± 1.0 5.0 ± 1.6 -0.09 ± 0.02 648 ± 73 877 ± 289 -0.14 ± 0.01 233-5672 

OLA 3.1 ± 0.5 5.2 ± 1.1 -0.05 ± 0.005 n.d. 951 ± 87 -0.07 ± 0.01 64-2562 

OPI 6.0 ± 1.1 8.5 ± 1.1 -0.08 ± 0.01 4,498 ± 749 6,261 ± 617 -0.12 ± 0.01 140-5503 

PRX 12,703 ± 
2,190 

23,870 ± 
15,967 

-0.05 ± 0.04 n.d. 8,960 ± 
1,088 

-0.15 ± 0.04 157-2692 

PPZ 2.6 ± 1.2 3.6 ± 0.7 -0.13 ± 0.03 n.d. 2,817 ± 15 -0.15 ± 0.01 1.5-6.02 

PCP 6.0 ± 2.6 4.5 ± 1.8 -0.17 ± 0.002 n.d. 2,412 ± 135 -0.16 ± 0.01 27-1346 

PMZ 1.0 ± 0.2 1.7 ± 0.3 -0.14 ± 0.01 n.d. 197 ± 65 -0.15 ± 0.01 176-7036 

PTL 7.2 ± 1.0 13 ± 1.4 -0.11 ± 0.01 399 ± 32 688 ± 188 -0.14 ± 0.01 266-9501 

RIS 54 ± 11 22 ± 11 -0.07 ± 0.03 n.d. 202 ± 42 -0.07 ± 0.02 49-1462 

TRZ 2.4 ± 0.2 8.6 ± 0.7 -0.14 ± 0.04 n.d. 454 ± 112 -0.17 ± 0.02 491-4,9142 

MRZ 2.4 ± 0.5 3.5 ± 0.04 -0.08 ± 0.02 n.d. 1,228 ± 248 -0.12 ± 0.01 388-2,5876 

SRZ 3.4 ± 1.0 6.6 ± 3.0 -0.08 ± 0.01 n.d. 1,205 ± 283 -0.07 ± 0.01 159-6015 

TMP 1.5 ± 0.5 4.7 ± 1.3 -0.08 ± 0.01 41 ± 5.3 44 ± 12 -0.13 ± 0.01 365-8532 

        

Table C.1. Affinities (Ki), inhibiting potencies (KB) and inverse agonist efficacies (Inv. Eff.) of antidepressant 

and antipsychotic drugs at hH1R + RGS4 and hH2R-GsαS. Radioligand binding assay and GTPase assay were 
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performed with Sf9 membranes as described in Chapters B.2.4 and B.2.5. Reaction mixtures contained Sf9 

membranes expressing receptor and G proteins and antagonists at concentrations from 1 nM to 100 µM as 

appropriate to generate saturated competition curves. To determine the inverse agonist efficacies (Inv. Eff.), 

the effects of antagonists at a fixed concentration (10 µM to 100 μM) on basal GTPase activity were assessed 

and referred to the stimulatory effect of 100 μM HA (= 1.00). Data were analyzed by non-linear regression and 

were best fit to sigmoid concentration/response curves. Values are given in nanomolar and are the means ± 

S.D. of two to six experiments performed in duplicate and triplicate. n.d. = not determined 
1 Lexi-comp, 2010; s.v. “therapeutic reference range” 
2 Baumann et al., 2004; values are designated as “therapeutic reference ranges” 
3 Gutteck and Rentsch, 2003; values are designated as “therapeutic ranges” 
4 Olesen et al., 1995; values are designated as “serum ranges” 
5 Baumann et al., 2004; values are designated as “dose related plasma concentrations” 
6 Schulz and Schmoldt, 2003; values are designated as “therapeutic blood-plasma/blood-serum concentrations” 

 

For the examination of potential side effects of antidepressant and antipsychotic drugs 

related to HxRs we determined their affinities (Ki), potencies (KB) and inverse agonist effica-

cies (Inv. Eff.) and compared them with the particular therapeutic reference range, when 

available, or the therapeutic plasma concentration. Data for hH1R and hH2R are summarized 

in Table C.1 and Fig. C.1.  

Nearly all examined compounds acted as weak partial inverse agonists with affini-

ties/potencies in the low nanomolar range at H1R. The tricyclic antidepressants desipramine 

(DPM) and LPM exhibited affinities/potencies in the higher nanomolar range, while the anti-

psychotics CLN, HAL, dibenzepin (DBP) and RIS as well as the mood stabilizer CBZ and the 

selective 5-HT reuptake inhibitor PRX showed no relevant affinities and, therefore, are not 

likely to cause any side effects via H1R in comparison to all other investigated drugs. All in-

verse agonist efficacies were in the range between -0.04 and -0.28, relative to HA. 

All compounds also decreased GTPase activities below basal values and, thus, showed 

partial inverse agonistic behavior at hH2R, but most affinities and potencies varied between 

the low nanomolar and micromolar range. As the most outstanding structures we identified 

the TCAs TMP, AMI, clomipramine (CPM), DXP, IMI and protriptyline (PTL), while LPM 

showed only moderate potency. For hH2R, also antipsychotics with phenothiazine structures 

like PMZ and thioridazine (TRZ) and its metabolite mesoridazine MRZ, the thioxanthene CPX 

as well as the atypical antipsychotic CLO and its metabolite CLD displayed a reasonable po-

tency. Again, CBZ, CLN, HAL and PRX showed no relevant potencies there. In summary, we 
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determined for 12 of 34 compounds (i.e. 35%) affinities/potencies below the concentrations 

that are likely to be reached in vivo under therapy. 
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Fig. C.1. Affinities (Ki) or inhibiting potencies (KB) of antidepressant and antipsychotic drugs to hH1R + RGS4 

( ) and hH2R-GsαS ( ) in comparison to their therapeutic reference ranges ( ). Drugs were ordered 

according to structural similarities to visualize structure–activity relationship. Plasma/serum concentration was 

used if a therapeutic reference range was not available. Data points shown are the means of two to six inde-

pendent experiments performed in duplicates or triplicates. A summary of all results is shown in Table C.1. 

 

C.2 Analysis of antidepressants and antipsychotics at hH3R and hH4R 

Also for hH3R and hH4R, affinities (Ki), potencies (EC50/IC50) and efficacies (Emax/Inv. Eff.) 

of all compounds were examined and compared with the particular therapeutic reference 

range (when available) or the therapeutic plasma concentration, both summarized in  

Table C.2 and Fig. C.2. Nearly all examined compounds showed strong partial inverse agonis-

tic behavior in the high micromolar range at H3R. No effects at all were determined for the 

mood stabilizer CBZ and the antipsychotic metabolite CLN. All inverse agonist efficacies 

ranged between -0.18 and -0.95, relative to HA. Clinically relevant interactions of the ex-
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amined compounds can be excluded as the necessary concentrations are not reached under 

therapy. 

 

hH3R hH4R 

Cpd. Ki [µM] ± 
S.D. 

IC50 [µM] ± 
S.D. 

Inv. Eff. ± 
S.D. 

Ki [µM] ± 
S.D. 

EC50/IC50 
[µM] ± S.D. 

Emax / Inv. 

Eff. ± S.D. 

Therapeutic 
reference 
ranges [nM] 

AMI 76 ± 31 > 100 -0.59 ± 0.04 27 ± 8.9 > 100 -0.68 ± 0.12* 255-6372 

AMO > 100 99 ± 59 -0.37 ± 0.11* 6.4 ± 1.3 8.0 ± 0.4 -0.36 ± 0.07 637-1,5941 

CBZ > 100 > 100 ineffective > 100 > 100 ineffective 25.3-50.8 µM2 

CPZ 41 ± 8 8.1 ± 2.2 -0.71 ± 0.10◊ 15 ± 5.4 6.9 ± 1.7 -0.96 ± 0.12◊ 84-8442 

CPX 27 ± 6 62 ± 31 -0.71 ± 0.13◊* 3.2 ± 0.9 2.9 ± 1.3 0.39 ± 0.13◊ 57-5682 

CPM 9.7 ± 0.2 51 ± 22 -0.39 ± 0.08◊ 5.8 ± 0.5 22 ± 2.1 -0.71 ± 0.17◊ 500-1,2812 

CLO > 100 > 100 -0.49 ± 0.12* 1.2 ± 0.3 1.7 ± 0.2 0.66 ± 0.09 1,071-1,8362 

CLD 53 ± 19 > 100 -0.61 ± 0.02* 1.8 ± 0.5 2.6 ± 1.1 0.36 ± 0.20 151-4,2974 

CLN > 100 > 100 ineffective > 100 > 100 0.28 ± 0.08 755 

DPM > 100 > 100 -0.51 ± 0.12* 9.6 ± 3.5 63 ± 15 -0.61 ± 0.08 330-9912 

DBP > 100 > 100 -0.44 ± 0.14* > 100 > 100 -0.21 ± 0.10* 85-8503 

DXP 39 ± 16 77 ± 27 -0.66 ± 0.05 15 ± 1.7 17 ± 4.1 -0.20 ± 0.05 158-4752 

FPZ 24 ± 6 50 ± 22 -0.69 ± 0.11◊* 24 ± 7.9 > 100 -0.67 ± 0.22◊ 1.0-4.02 

HAL > 100 > 100 -0.18 ± 0.04* > 100 > 100 ineffective 13-452 

IMI > 100 > 100 -0.54 ± 0.12* 24 ± 9.7 59 ± 19 -0.78 ± 0.13* 552-9472 

LMZ > 100 > 100 -0.84 ± 0.07* 75 ± 22 > 100 -1.17 ± 0.11* 41-1642 

LPM 79 ± 4.1 3.4 ± 1.1 -0.42 ± 0.08 36 ± 12 9.2 ± 2.7 -0.55 ± 0.06 12-423 

LOX 55 ± 15 > 100 -0.71 ± 0.12* 8.6 ± 1.2 > 100 ineffective 30-916 

MPT 67 ± 30 > 100 -0.71 ± 0.12* 84 ± 37 > 100 -1.06 ± 0.11* 398-6372 

MSN 96 ± 19 > 100 -0.95 ± 0.13* > 100 > 100 -1.17 ± 0.21* 50-2332 

MIR 83 ± 22 > 100 -0.56 ± 0.08* > 100 37 ± 4.0 -0.22 ± 0.08* 151-3012 

NTL 46 ± 18 > 100 -0.63 ± 0.10* 6.9 ± 1.4 > 100 -0.82 ± 0.04* 233-5672 

OLA > 100 17 ± 10 -0.33 ± 0.13 17 ± 8.3 38 ± 8.3 0.57 ± 0.08 64-2562 

OPI 62 ± 23 61 ± 8.1 -0.74 ± 0.11 > 100 > 100 -0.49 ± 0.16* 140-5503 

PRX 95 ± 17 > 100 -0.56 ± 0.12◊ 44 ± 4.5 > 100 -0.34 ± 0.10◊* 157-2692 

PPZ 46 ± 12 16 ± 3.3 -0.78 ± 0.12◊ > 100 15 ± 4.5 -0.54 ± 0.15◊* 1.5-6.02 

PCP 17 ± 4.0 22 ± 6.2 -0.82 ± 0.12◊ 18 ± 3.9 27 ± 9.2 -0.51 ± 0.14◊* 27-1346 

PMZ > 100 > 100 -0.76 ± 0.10 77 ± 8.9 > 100 -1.10 ± 0.15* 176-7036 

PTL > 100 > 100 -0.54 ± 0.10* 15 ± 8.2 > 100 -0.43 ± 0.05* 266-9501 

RIS > 100 90 ± 38 -0.27 ± 0.10 > 100 > 100 ineffective 49-1462 

TRZ 12 ± 0.7 27 ± 9.4 -0.87 ± 0.07◊ 14 ± 4.5 > 100 -0.93 ± 0.17◊* 491-4,9142 

MRZ 40 ± 8.8 36 ± 3.9 -0.83 ± 0.13 > 100 74 ± 16 -1.21 ± 0.11 388-2,5876 

SRZ 33 ± 22 95 ± 9.1 -0.71 ± 0.11 > 100 86 ± 12 -0.66 ± 0.14 159-6015 

TMP > 100 > 100 -0.68 ± 0.12 44 ± 5.9 > 100 -0.93 ± 0.13* 365-8532 

        
Table C.2. Affinities (Ki), potencies (EC50 or IC50) and efficacies (Emax) or inverse agonist efficacies (Inv. Eff.) of 

antidepressant and antipsychotic drugs at hH3R + Gαi2 + β1γ2 and hH4R + Gαi2 + β1γ2 (respectively hH4R-GAIP + 

Gαi2 + β1γ2). Radioligand binding assay and GTPase assay were performed with Sf9 membranes as described in 

Chapters B.2.4 and B.2.5. Reaction mixtures contained Sf9 membranes expressing receptor and G proteins and 

antagonists at concentrations from 1 nM to 500 μM as appropriate to generate saturated competition curves. 
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To determine the inverse agonist efficacies (Inv. Eff.), the effects of antagonists at fixed concentrations  

(100 μM to 500 μM) on basal GTPase activity were assessed and referred to the stimulatory effect of  

100 μM HA (= 1.00). In case of unspecific effects by ligands at higher concentrations, Emax/inverse efficacy was 

measured at 100 µM, as indicated by ◊. If saturation was not achieved within these concentration ranges, the 

inverse agonist efficacies were determined at 100 or 500 µM and are indicated by ◊* and *, respectively. Data 

were analyzed by non-linear regression and were best fit to sigmoidal concentration/response curves. Values 

are given in micromolar and are the means ± S.D. of two to six experiments performed in duplicate and 

triplicate. 
1 Lexi-comp, 2010; s.v. “therapeutic reference range” 
2 Baumann et al., 2004; values are designated as ”therapeutic reference ranges” 
3 Gutteck and Rentsch, 2003; values are designated as “therapeutic ranges” 
4 Olesen et al., 1995; values are designated as “serum ranges” 
5 Baumann et al., 2004; values are designated as “dose related plasma concentrations” 
6 Schulz and Schmoldt, 2003; values are designated as “therapeutic blood-plasma/blood-serum concentrations” 
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Fig. C.2. Affinities (Ki) of antidepressant and antipsychotic drugs to hH3R + Gαi2 + β1γ2 ( ) and hH4R + Gαi2 + 

β1γ2 ( ) in comparison to their therapeutic reference ranges ( ). Drugs were ordered according to structural 

similarities to visualize structure–activity relationship. Plasma/serum concentration was used if no therapeutic 

reference range was applicable. Data points shown are the means of two to six independent experiments per-

formed in triplicates. A summary of all results is shown in Table C.2. 
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A different picture reveals the hH4R: most of the compounds also displayed partial in-

verse agonistic behavior at hH4R (Emax -0.20 to -1.21, relative to HA), but the atypical antipsy-

chotics CLO, CLD, CLN and OLA as well as the typical antipsychotic CPX with its thioxanthene 

structure acted as partial agonists with efficacies from 0.28 to 0.66, relative to HA. Affinities 

and inhibiting potencies varied in the micromolar range. Compared with the therapeutic 

reference ranges or plasma concentrations the only relevant interaction is possibly given for 

CLO and CLD, while all other affinities/potencies are beyond the reference ranges. 

 

C.2.1 Representative competition binding curves for hHxR 

Some representative data sets summarized in Table C.1 and Table C.2 are depicted in 

the following as competition binding curves of all four HxRs (Fig. C.3). All binding isotherms 

were monophasic with a Hill slope close to unity, indicative for a single ligand binding site. 

Apparent is the wide range of affinities at HxRs which is obtained by the different com-

pounds except of hH3R where affinities were all very low. The competition of the SSRI PRX 

could not be saturated at hH1R which coincides with the fact that PRX is a more selective 

drug and, therefore, less sedating than the other examined compounds, e.g. TCAs (Hassan et 

al., 1985). 
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Fig. C.3. Competition bindings of HxR [3H]radioligands and selected drugs in Sf9 membranes expressing hHxR. 

A, competition binding with [3H]MEP at hH1R + RGS4 as described in Chapter B.2.4. Reaction mixtures con-

tained Sf9 membranes (25 μg of protein per tube) expressing the recombinant proteins, 5 nM [3H]MEP and 

ligands at the concentrations indicated on the abscissa. B, competition binding with [3H]TIO at hH2R-GsαS as 

described in Chapter B.2.4. Reaction mixtures contained Sf9 membranes (100 μg of protein per tube) 

expressing the recombinant proteins, 20 nM [3H]TIO and ligands at the concentrations indicated on the 

abscissa. C, competition binding with [3H]NAMH at hH3R + Gαi2 + β1γ2 as described in Chapter B.2.4. Reaction 

mixtures contained Sf9 membranes (45 μg of protein per tube) expressing the recombinant proteins, 3 nM 

[3H]NAMH and ligands at the concentrations indicated on the abscissa. D, competition binding with [3H]HA at  

hH4R + Gαi2 + β1γ2 as described in Chapter B.2.4. Reaction mixtures contained Sf9 membranes (75 μg of protein 

per tube) expressing the recombinant proteins, 10 nM [3H]HA and ligands at the concentrations indicated on 

the abscissa. Data points shown are the means ± S.D. Three to five independent experiments were performed 

in triplicates. A summary of all results is shown in Table C.1 and Table C.2. 
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C.2.2 Representative concentration/response curves for drugs at hHxR in the 

GTPase assay  

Some representative data sets summarized in Table C.1 and Table C.2 are depicted in 

the following as concentration/response curves of all four HxRs (Fig. C.4). While all 

substances with relevant potencies acted as inverse agonists displaying a very narrow range 

of efficacies at hH1R and hH2R, potencies at hH3R and hH4R were much lower and also the 

efficacies relative to HA varied over a wider span, even up to full inverse agonists. At the 

hH4R receptor four of the tested compounds even acted as partial agonists, although there is 

no noticeable similarity of structures between CLO, its metabolites and OLA on the one hand 

and CPX on the other. 
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Fig. C.4. Concentration-dependent alteration of GTP hydrolysis by antidepressants and antipsychotics in 

membranes expressing hH1R + RGS4, hH2R-GsαS, hH3R + Gαi2 + β1γ2 + RGS4 or hH4R-GAIP + Gαi2 + β1γ2. GTPase 

activity in Sf9 membranes was determined as described in Chapter B.2.5. Reaction mixtures contained mem-

branes (10 μg of protein/tube) expressing receptor, proteins and drugs at concentrations indicated on the 

abscissa. In A and B, HA was added to the reaction mixtures (1 μM) for the determination of Kb-values, while in 

C and D, the agonist/inverse agonist mode was performed in absence of HA. Data shown are the means ± S.D. 

Two to six independent experiments were performed in duplicates. Data were analyzed by non-linear regres-

sion and were best fitted to sigmoidal concentration/response curves. 

 

C.3 Prediction of ligand binding by Similarity Ensemble Approach 

A very promising approach in the search for new off-targets emerged from statistics-

based chemoinformatics. The previously published Similarity Ensemble Approach (SEA) 

explores possible interactions computationally by comparing targets – not like bioinformatic 

methods by sequence or structural similarity among the targets – but rather by the similarity 

of the ligands that bind to them, expressed as expectation values (E-values) (Keiser et al., 

2007). The generated E-values (Table C.3) hereby do not equate the experimentally 
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determined affinities or potencies, they rather quantify a statistical significance of the 

observed similarity between drug and ligand. 

 

hH1R hH2R hH3R hH4R 
Cpd. 

E-value 
Ki-value 

[M] 
E-value 

Kb-value 
[M] 

E-value 
Ki-value 

[M] 
E-value 

Ki-value 
[M] 

AMI 1.23 x 10-12 1.27 x 10-9 4.59 x 10-11 1.12 x 10-7 --- --- --- --- 

AMO 3.36 x 10-9 7.97 x 10-9 --- --- --- --- 5.70 x 10-14 6.37 x 10-6 

CPZ 1.22 x 10-9 3.13 x 10-9 7.49 x 10-2 1.53 x 10-6 --- --- --- --- 

CPX 7.65 x 10-12 1.13 x 10-9 5.39 x 10-9 5.92 x 10-7 --- --- --- --- 

CPM 2.04 x 10-9 1.29 x 10-8 2.21 x 10-6 1.68 x 10-7 --- --- --- --- 

CLO 3.77 x 10-4 2.60 x 10-9 --- --- --- --- 1.47 x 10-15 1.19 x 10-6 

CLN --- --- --- --- --- --- 1.75 x 10-14 >1.00 x 10-4 

DPM 4.18 x 10-1 6.77 x 10-8 5.12 x 10-5 1.44 x 10-6 --- --- --- --- 

DBP --- --- 7.02 x 10-2 3.17 x 10-6 --- --- --- --- 

DXP 8.78 x 10-14 1.24 x 10-9 4.38 x 10-6 3.44 x 10-7 --- --- --- --- 

FPZ 2.38 x 10-6 2.25 x 10-9 2.33 x 10-3 1.67 x 10-5 --- --- --- --- 

HAL 7.61 x 10-35 1.95 x 10-6 8.24 x 10-16 1.16 x 10-6 1.34 x 10-7 >1.00 x 10-4 --- --- 

IMI 2.23 x 10-13 7.61 x 10-9 2.44 x 10-14 7.91 x 10-7 --- --- --- --- 

LMZ 1.23 x 10-1 1.66 x 10-9 --- --- --- --- --- --- 

LPM 1.50 x 10-8 2.43 x 10-7 3.19 x 10-5 5.68 x 10-6 1.12 x 10-1 7.90 x 10-5 --- --- 

LOX 2.30 x 10-11 2.25 x 10-9 --- --- --- --- 3.61 x 10-25 8.63 x 10-6 

MPT 4.82 x 10-10 1.39 x 10-9 1.01 x 10-36 8.57 x 10-7 --- --- --- --- 

MSN 3.60 x 10-12 1.20 x 10-9 7.65 x 10-12 4.50 x 10-7 --- --- --- --- 

MIR 6.32 x 10-1 1.33 x 10-9 4.18 x 10-1 1.68 x 10-6 --- --- --- --- 

NTL 3.21 x 10-8 3.04 x 10-9 1.24 x 10-7 8.77 x 10-7 --- --- --- --- 

OLA 5.15 x 10-6 3.05 x 10-9 --- --- --- --- 6.50 x 10-7 1.70 x 10-5 

OPI 2.16 x 10-5 5.99 x 10-9 1.05 x 10-2 6.26 x 10-6 9.63 x 10-1 6.15 x 10-5 --- --- 

PRX --- --- --- --- 9.58 x 10-1 9.51 x 10-5 --- --- 

PPZ 7.65 x 10-12 2.57 x 10-9 --- --- --- --- --- --- 

PCP 1.18 x 10-12 6.01 x 10-9 2.01 x 10-2 2.41 x 10-6 1.12 x 10-2 1.71 x 10-5 3.67 x 10-24 1.77 x 10-5 

RIS 6.36 x 10-6 5.37 x 10-8 --- --- --- --- --- --- 

TMP --- --- 1.08 x 10-4 4.41 x 10-8 --- --- --- --- 

         

Table C.3. Comparison of E-values and affinities (Ki) or inhibiting potencies (Kb) at hHxR. Known-true-predic-

tions are indicated in blue, under-predictions with a weak SEA score but a good Ki or Kb in grey and over-predic-

tions with a good SEA score but a weak Ki or Kb in black. Data sets with no available SEA-predictions are indi-

cated by ---. Data were analyzed by non-linear regression and were best fit to sigmoidal concentra-

tion/response curves. Ki-/Kb-values are the means of two to six experiments performed in duplicate and tripli-

cate. Ki-/Kb-data are summarized completely in Table C.1 and Table C.2. 
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We determined predictions for one or more HxR for 27 of the 34 compounds tested. 

The majority of them were obtained for H1R, thereof eleven known-true-predictions and ten 

over-predictions with a good SEA score but a weak Ki- or Kb-value. For LMZ and CLO, in con-

trast, under-predictions resulted at H1R with a good Ki- or Kb-value but a weak SEA score. 

These ligands or structurally similar compounds were obviously not registered in the used 

database yet, although at least for CLO hH1R affinity was described before (Richelson and 

Nelson, 1984). A similar pattern was obtained for hH2R. Here, we found six known-true-

predictions, five over-predictions and several potential new interactions, preeminently TMP. 

Its high affinity to hH2R was not reproduced adequately by the SEA. This finding is particu-

larly surprising as the affinity of at least some TCAs for H2R was reported before (Green and 

Maayani, 1977) and several of these compounds were subject of trials for a therapy of duo-

denal and gastric peptic ulcer disease (Ries et al., 1984; Wilson et al., 1985). Only few new 

targets were predicted for hH3R: of five interactions four were under-predictions. However, 

since all those affinities are still exceeding therapeutic reference ranges, no clinically rele-

vant interactions are to be expected. All ligands found for hH4R are over-predictions: the 

achieved SEA score was much better than the corresponding dissociation constant Ki or Kb, 

e.g. CLN, OLA or prochlorperazine (PCP). Interestingly, all of the six substances are antipsy-

chotics containing a piperazine-moiety in the side chain, but differ in the tricyclic ring 

system. 
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C.4 Molecular modelling 

C.4.1 Binding of trimipramine to hH2R 

 

 
Fig. C.5. Side view of the hH2R model in complex with (R)-TMP in A and (S)-TMP in B. The putative inverse 

agonist binding site and the extracellular components of the hH2R are shown. TMP (carbon atoms in orange) 

was manually docked into the putative binding pocket. Colored ribbons represent the transmembrane domains 

TM1-TM7; thin grey lines represent extracellular loops ECL1, ECL2 and ECL3. The model – based on the crystal 

structure of the hβ2AR – was generated as described under Materials and Methods in Chapter B.2.7. 

 

A 

B 
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While we used the racemate to generate the experimental results, we were able to 

differ the two enantiomers of TMP for the modelling studies. Two positions are possible 

binding to hH2R. At physiological pH the protonated nitrogen of the side chain interacts with 

the negatively charged aspartic acid in TM3 (Asp-98) or TM5 (Asp-186). The docking mode 

with the charged nitrogen near Asp-98 as displayed in Fig. C.5 was preferred by the docking 

results. The amino acids contributing to binding belong to TM3, TM5, TM6 and TM7. The 

heterocycle of (R)- and (S)-TMP is positioned similarly and closely interacts with the hydro-

phobic amino acids Trp-247, Tyr-250, Phe-251, Phe-254 and a possible π-cation interaction 

with Arg-257 of TM6. This part of the binding pocket (Fig. C.6) is furthermore formed by  

Tyr-182, Asp-186 and Thr-190 of TM5 (Gantz et al., 1992; Nederkoorn et al., 1996) and 

amino acids Val-176 and Val-178 of ECL2, as well as Thr-95 and Val-99 of TM3. The 2-methyl 

group of (R)-TMP interacts with Leu-274 of TM7 and Val-176 of ECL2. The corresponding 

methyl group of the (S)-enantiomer points towards Val-176, Thr-95, Val-99 and Asp-98. 

Further contacts to the side chain of TMP occur with Tyr-250, Leu-274 and Tyr-278 of TM7, 

Tyr-94 and Asp-98 of TM3. 

 

  
Fig. C.6. Electrostatic potential surface in the binding pocket of inactive hH2R with (R)-TMP and (S)-TMP in its 

binding conformation. The electrostatic potential of the binding pocket surface is rather lipophilic (brown 

surface) and can, therefore, interact with the hydrophobic ring system of TMP (carbon atoms in orange, yellow 

dotted line). A, open binding pocket with inlaying (R)-TMP. B, open binding pocket with inlaying (S)-TMP. The 

model was generated as described in Chapter B.2.7. 

A B 
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C.4.2 Binding of tiotidine to hH2R 

 

Fig. C.7. Side view of the hH2R model in complex with TIO. The putative inverse agonist binding site and the 

extracellular components of the hH2R are shown. TIO (carbon atoms in orange, yellow dotted line) was ma-

nually docked into the putative binding pocket. Colored ribbons represent transmembrane domains  

TM1-TM7; thin grey lines represent extracellular loops ECL1, ECL2 and ECL3. The model – based on the crystal 

structure of the hβ2AR – was generated as described under Materials and Methods in Chapter B.2.7. 

 

Interacting amino acids for TIO at hH2R are similar to those which contribute to the 

TMP-binding. According to the docking results, most important are amino acids Asp-186 and 

Thr-190 of TM5 and Asp-98 of TM3 (Fig. C.7). They enable hydrogen bonds to the guanidine 

moiety and the cyanoguanidine moiety of TIO. Moreover, these amino acids were shown to 

be important for the binding of TIO (Gantz et al., 1992). Lys-175 of ECL2 seems to be 

essential, too. In the docking result a further hydrogen bond between Lys-175 and the cyano 

group of TIO exists. 
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C.4.3 Binding of trimipramine to hH1R 

The data obtained in the steady-state GTPase assay show that TMP acts as an inverse 

agonist at hH1R, quite similarly as at hH2R. According to the docking results, the highly con-

served Asp-107 in TM3, which interacts with TMP by electrostatic interactions, as well as the 

hydrophobic amino acids Trp-428, Tyr-431 and Phe-435 in TM6, which interact with the tri-

cyclic ring system of TMP, are the most important are amino acids (Fig. C.8). 

 

 

 

Fig. C.8. Side view of the hH1R model in complex with (R)-TMP in A and (S)-TMP in B. The putative inverse 

agonist binding site of the hH1R is shown. TMP (carbon atoms in grey, yellow dotted line) was manually docked 

into the putative binding pocket. Colored ribbons represent transmembrane domains TM1-TM7. The model 

was generated as described in Chapter B.2.7. 
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C.4.4 Binding of clozapine to hH1R 

The SEA predictions were not sufficient for the binding of CLO to the hH1R. We, 

therefore, performed the docking of this atypical antipsychotic with this receptor. The inter-

acting amino acids are similar to those which contribute to the binding of TMP. According to 

the docking results, the highly conserved Asp-107 in TM3, which stabilizes the position by 

electrostatic interactions, as well as the hydrophobic amino acids Trp-428, Tyr-431 and  

Phe-435 in TM6, which interact with the aromatic ring system, are the most important are 

amino acids (Fig. C.9). 

 

 
Fig. C.9. Side view of the hH1R model in complex with CLO. The putative inverse agonist binding site of the 

hH1R is shown. CLO (carbon atoms in grey, yellow dotted line) was manually docked into the putative binding 

pocket. Colored ribbons represent transmembrane domains TM1-TM7. The model was generated as described 

in Chapter B.2.7. 

 

C.4.5 Binding of trimipramine to hH4R 

The affinity of TMP to the hH4R is only marginal in comparison to the hH1R and hH2R. 

Nevertheless, we conducted docking studies for the TCA at this receptor, too. According to 

these studies, the most important interacting amino acids for TMP at hH4R are electrostatic 

interactions with the highly conserved Asp-94 in TM3 and aromatic ring interactions with the 

hydrophobic amino acids Tyr-95 in TM3, Trp-316 and Tyr-319 in TM6 (Fig. C.10). However, 

TMP does not fit optimally into the binding pocket and the hydrophobic interactions are not 

established well, compared to the docking at hH1R. In comparison to CLO, TMP contains no 
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structure-stabilizing piperazine ring and is more flexible. This property might be responsible 

for a diminished fitting into the binding pocket and, therefore, reduced affinity. 

 

 

 

Fig. C.10. Side view of the hH4R model in complex with (R)-TMP in A and (S)-TMP in B. The putative inverse 

agonist binding site of the hH4R is shown. TMP (carbon atoms in grey, yellow dotted line) was manually docked 

into the putative binding pocket. Colored ribbons represent transmembrane domains TM1-TM7. The model 

was generated as described in Chapter B.2.7. 
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C.4.6 Binding of clozapine to hH4R 

The data obtained in the steady-state GTPase assays show that CLO acts as a partial 

agonist at hH4R and, therefore, CLO was docked into the active state model of hH4R  

(Fig. C.11). This activation is based on a change of the highly conserved Trp-316 in TM6 into a 

horizontal conformation, described as toggle switch (Crocker et al., 2006). Interacting amino 

acids for CLO at hH4R are similar to those which contribute to the TMP binding. According to 

the docking results, most important are amino acids Asp-94 in TM3 with its electrostatic 

interactions and the hydrophobic amino acids Tyr-95, Trp-316, Tyr-319 in TM6 and Tyr-340 

in TM7 with the aromatic ring system. In contrary to the binding to hH1R, CLO exhibits a 

different orientation at hH4R which may explain the reduced affinity. 

 

 
Fig. C.11. Side view of the hH4R model in complex with CLO. The putative agonist binding site of the hH4R is 

shown. CLO (carbon atoms in grey, yellow dotted line) was manually docked into the putative binding pocket. 

The green circle indicates the highly conserved Trp-316 in TM6, which is important element in the rotamer 

toggle switch during receptor activation. Colored ribbons represent transmembrane domains TM1-TM7. The 

model was generated as described in Chapter B.2.7. 

 

In comparison to a previously described model by (Jongejan et al., 2008) this model 

displays some differences: the nitrogen atom in position 1 of the piperazine system needs to 

adopt a planar conformation. Further, more likely than the boat conformation for the tri-

cyclic component is that of a capsized boat. Finally, due to our calculations any interactions 

of the glutamate in TM5 with CLO seem to be improbable. 
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C.5 Schild analysis of trimipramine and tiotidine at hH2R 
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Fig. C.12. Concentration-dependent increase of GTPase activity by HA and competition with TMP (A) and TIO 

(B) in membranes expressing hH2R-GsαS. GTPase activity in Sf9 membranes was determined as described in 

Chapter B.2.5. Reaction mixtures contained membranes (10 μg of protein/tube) expressing receptor and pro-

teins and HA at concentrations indicated on the abscissa. Through addition of various concentrations of TMP or 

TIO right shifts with consistent maximum stimulatory effect were yielded (TMP: pA2 = 7.50 ± 0.07;  

Schild Slope = 1.02; r2 = 0.99; TIO: pA2 = 6.84; Schild Slope = 0.82; r2 = 0.99). Data shown were performed in 

duplicates and analyzed by Gaddum/Schild EC50 shift. 

A 

B 
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A Schild analysis was conducted in order to illuminate the quality of TMP antagonism 

and to determine its pA2 at the H2R. To increasing concentrations of HA constant concentra-

tions of TMP were added. Different concentrations of TMP caused a right-shift of these con-

centration/response curves due to a competition of HA with TMP for the binding pocket. As 

the Emax of the various concentration/response curves were constant and did not decline, 

TMP is a competitive antagonist of HA. According to the Law of mass action both ligands 

competed for the same binding site. The displacement of the agonist HA by TMP led to the 

right shift. As TMP is a competitive antagonist, it can also be redisplaced by increasing con-

centrations of HA so that the maximum efficacy of the agonist is still achieved. Quality of 

TMP antagonism was also validated by a Schild Slope ≈ 1 and a comparable pA2-value in the 

low nanomolar range. The same behavior was found for TIO so that HA, TMP and TIO are 

likely to compete for the same binding site. 

 

C.6 Comparison of various antidepressants and antipsychotics at hH2R and 

gpH2R 

The analysis of a series of agonists and antagonists at human, canine, guinea pig and 

rat H2R revealed that within the species isoforms most discrepancies were determined for 

hH2R and gpH2R. Data are summarized in Table C.4. All drugs acted consistently as weak in-

verse agonists (Emax -0.05 to -0.22). The inhibitory potencies were comparable at both re-

ceptor isoforms with significantly decreased Kb-values at gpH2R for some structurally unre-

lated compounds. Inversely, only the potency for RIS was significantly lower at hH2R than at 

gpH2R. The correlation of pKb-values of seven structurally similar TCAs for hH2R and gpH2R 

displayed no significant difference between these two isoforms, only a slight right-shift due 

to the higher pKb-values at hH2R (Fig. C.13). 



Results 72

hH2R gpH2R 
Cpd. 

Kb [nM] ± S.D. Inv. Eff. ± S.D. Kb [nM] ± S.D. Inv. Eff. ± S.D. 

AMI 118 ± 45 -0.12 ± 0.01 174 ± 83 -0.12 ± 0.01 

CPZ 1,534 ± 720 -0.22 ± 0.02 833 ± 70 -0.19 ± 0.02 

CPX 592 ± 56*** -0.15 ± 0.01*** 192 ± 33 -0.14 ± 0.01 

CPM 168 ± 66 -0.14 ± 0.01 158 ± 46 -0.13 ± 0.01 

DPM 1,439 ± 702 -0.12 ± 0.01 1,244 ± 251 -0.11 ± 0.004 

DBP 3,174 ± 154 -0.09 ± 0.01 2,860 ± 635  -0.09 ± 0.003 

DXP 344 ± 79 -0.12 ± 0.02 461 ± 22 -0.12 ± 0.01 

FPZ 16,702 ± 1,729*** -0.14 ± 0.01 8,188 ± 1,075 -0.16 ± 0.01 

IMI 791 ± 92** -0.13 ± 0.01 539 ± 39 -0.12 ± 0.01 

LMZ 596 ± 130 -0.17 ± 0.01 469 ± 39 -0.16 ± 0.01 

LPM 5,684 ± 1,243** -0.18 ± 0.01* 1,818 ± 151 -0.16 ± 0.01 

LOX 1,221 ± 204** -0.10 ± 0.03 726 ± 100 -0.10 ± 0.01 

MPT 857 ± 118 -0.13 ± 0.01 720 ± 55 -0.12 ± 0.01 

MSN 450 ± 16*** -0.12 ± 0.004 240 ± 38 -0.12 ± 0.01 

NTL 877 ± 289 -0.14 ± 0.01 684 ± 33 -0.11 ± 0.03 

OPI 6,261 ± 617** -0.12 ± 0.01 3,801 ± 611 -0.11 ± 0.01 

PRX 8,960 ± 1,088** -0.15 ± 0.04 5,148 ± 271 -0.12 ± 0.003 

PMZ 197 ± 65 -0.15 ± 0.01 133 ± 33 -0.14 ± 0.01 

PTL 688 ± 188 -0.14 ± 0.01 754 ± 109 -0.13 ± 0.003 

RIS 202 ± 42*** -0.07 ± 0.02 525 ± 68 -0.05 ± 0.03 

TRZ 454 ± 112 -0.17 ± 0.02 357 ± 29 -0.16 ± 0.01 

MRZ 1,228 ± 248* -0.12 ± 0.01 807 ± 147 -0.12 ± 0.02 

TMP 44 ± 12 -0.13 ± 0.01 56 ± 7 -0.10 ± 0.02 

     
Table C.4. Inhibiting potencies (Kb) and inverse agonist efficacies (Inv. Eff.) of antidepressant and antipsy-

chotic drugs at human and guinea pig (gp) H1R + RGS4 and human and guinea pig H2R-GsαS. GTPase assay was 

performed with Sf9 membranes as described in Chapter B.2.5. Reaction mixtures contained Sf9 membranes 

expressing receptor and G proteins and antagonists at concentrations from 1 nM to 100 μM as appropriate to 

generate saturated competition curves. To determine the inverse agonist efficacies (Inv. Eff.), the effects of 

antagonists at fixed concentrations (10 μM to 100 μM) on basal GTPase activity were assessed and referred to 

the stimulatory effect of 100 μM HA (= 1.00). Data were analyzed by non-linear regression and were best fitted 

to sigmoid concentration/response curves. Shown are the means ± S.D. Two to five experiments were per-

formed in duplicates and triplicates. The potencies of compounds at hH2R-GsαS were compared with the corre-

sponding potencies of compounds at gpH2R- GsαS using the t test. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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Fig. C.13. Correlation of potencies (pKb) of various TCAs at hH2R-GsαS and gpH2R-GsαS. Data shown were ana-

lyzed by linear regression: slope = 0.90 ± 0.06; r2 = 0.98. The dashed lines indicate the 95% confidence intervals 

of the regression lines. The diagonal dotted line has a slope of 1 and represents a theoretical curve for identical 

values. 

 

C.7 Agonism of antipsychotic drugs at hH4R 

Most of the 34 examined antidepressants and antipsychotics acted as inverse agonists 

at H4R. Only four of them displayed partial agonistic activity (Fig. C.14). For the atypical 

antipsychotic CLO a slightly higher potency and efficacy (EC50 = 1.7 µM; Emax = 0.66) were 

determined than for its demethyled metabolite CLD (EC50 = 2.6 µM; Emax = 0.36). The other 

tested metabolite CLN acted also partial agonistic (Emax = 0.28), but due to the N-oxide with 

much lower potency of > 100 µM. OLA, which differs from CLO only by substitution of  

2-methylthiophene, was as efficacious but much less potent (EC50 = 38 µM; Emax = 0.57). 

Although structurally dissimilar, the thioxanthene CPX exhibited similar pharmacological 

properties (EC50 = 2.9 µM; Emax = 0.39) as the atypical antipsychotics CLO and CLD, but only 

the two latter are likely to interact with hH4R at therapeutic relevant concentrations. 
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Fig. C.14. Concentration-dependent increase of GTP hydrolysis by various antipsychotics in membranes ex-

pressing hH4R-GAIP + Gαi2 + β1γ2. GTPase activity in Sf9 membranes was determined as described in Chapter 

B.2.5. Reaction mixtures contained membranes (10 μg of protein/tube) expressing receptor, proteins and 

ligands at concentrations indicated on the abscissa. Data shown are the means ± S.D. Three independent ex-

periments were performed in duplicates. Data were analyzed by non-linear regression and were best fitted to 

sigmoidal concentration/response curves. 

 

C.8 Inverse agonism of psychiatric drugs at hH3R 

All of the examined antidepressant and antipsychotic drugs except CBZ and CLN 

exhibited inverse agonism at hH3R but to a varying extent (Fig. C.15). The TCAs CPM and LPM 

and the antipsychotics AMO, CLO, DBP, HAL, OLA and RIS acted as weak inverse partial 

agonists with Emax < -0.5. For the remaining compounds inverse agonist efficacies with more 

than half-maximal stimulation were determined. MSN revealed nearby fully inverse agonism 

relative to HA (Emax = -0.95). Due to the low potencies in comparison to the therapeutic 

plasma concentrations none of the drugs is likely to cause any effects related to H3R under 

clinical conditions. 
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Fig. C.15. Concentration-dependent decrease of GTP hydrolysis by antidepressants and antipsychotics in 

membranes expressing hH3R + Gαi2 + β1γ2 + RGS4. GTPase activity in Sf9 membranes was determined as de-

scribed in Chapter B.2.5. Reaction mixtures contained membranes (10 μg of protein/tube) expressing receptor, 

proteins and ligands at concentrations indicated on the abscissa. Data shown are the means ± S.D. Three inde-

pendent experiments were performed in duplicates. Data were analyzed by non-linear regression and were 

best fitted to sigmoidal concentration/response curves. 

 

C.9 Direct G protein-stimulatory effects of ligands at higher concentrations 

The main effects during a therapy with antidepressant and antipsychotic drugs are 

known to be the result of interaction with receptors like D2R, 5-HTxR, H1R and α1AR. Never-

theless, we found that some compounds of both medication groups activate G proteins at 

higher concentrations also in a receptor-independent manner because some drugs displayed 

varying agonistic or antagonistic properties depending on their concentrations. Therefore, 

assays were conducted with Sf9 membranes expressing only Gαi2 + β1γ2 but no HxR. We 

found that the typical antipsychotics CPZ, CPX, FPZ, PPZ, PCP and TRZ, the SSRI PRX and the 

TCA CPM increased the hydrolysis of GTP to GDP and Pi at concentrations higher than  

100 µM although no histamine receptor was present (Fig. C.16). The remaining substances 

showed no such effects within concentrations up to 500 µM and, thus, an involvement in the 

therapeutic effects of psychiatric medication can be excluded. The identified unspecific 

effects were not relevant for determination of affinities, potencies and efficacies of 

compounds since we did not consider ligand concentrations > 100 µM. 

Such direct G protein-stimulatory effects of cationic-amphiphilic compounds were al-

ready described for mast cell-activating substances, like mastoparan, substance P and com-
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pound 48/80 (Higashijima et al., 1988; Mousli et al., 1990a; 1990b) and H1R agonists and 

antagonists, such as 2-(3-chlorophenyl)histamine (Seifert et al., 1994), diphenhydramine and 

chlorpheniramine, which stimulate HL-60 cells, basophils and mast cells without receptor 

activation (Burde et al., 1996). 

All these substances share a physicochemical property: they are cationic amphiphiles. 

At physiological pH the nitrogen of the side chain is protonated to a quaternary ammonium 

cation. Furthermore, the structures can be divided into a lipophilic and a polar or cationic 

domain. The G protein-activating properties seem to depend on the arrangement of these 

domains and, thus, its basicity (Detert et al., 1996). Accountable for this alternative mode of 

G protein-regulation is possibly a novel group of proteins that act as receptor-independent 

activators of G protein signalling (AGS). Three different groups of AGS (AGS1-3) were 

identified in a pheromone response pathway in Saccharomyces cerevisiae and alter  

G protein-signalling by influencing nucleotide exchange or G protein-subunit interactions 

unrelated to a cell surface receptor (Cismowski et al., 2001; Blumer et al., 2005). 
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Fig. C.16. Direct G protein-stimulatory effects of ligands at higher concentrations. GTPase activity in Sf9 mem-

branes expressing Gαi2 + β1γ2 was determined as described in Chapter B.2.5. Reaction mixtures contained 

membranes (10 μg of protein/tube) expressing G proteins and ligands at concentrations indicated on the 

abscissa. Data shown are the means ± S.D. performed in duplicates. 
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C.10 [3H]tiotidine saturation binding at hH2R 

[3H]TIO is a commonly used radioligand for binding studies at H2R with a dissociation 

constant (Kd) of 42.3 nM. Despite the use of 0.3% (m/V) polyethyleneimine a non-specific 

binding of more than 60% still occurred in Sf9 membranes with saturating radioligand 

concentrations (Fig. C.17). Obviously, the majority of ligand-free hH2R-GsαS protein exists in a 

conformation that is not capable of binding [3H]TIO (Kelley et al., 2001). 
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Fig. C.17. [3H]tiotidine saturation binding in Sf9 cell membranes expressing hH2R-GsαS. Experiments were 

performed as described in Chapter B.2.4. Data were analyzed by non-linear regression and were best fitted to 

hyperbolic one-site saturation isotherms. The closed triangles (▲) show the data for the specific [3H]TIO 

binding (Kd = 42.3 nM; Bmax = 0.48 pmol/mg). Data points shown are the means ± S. D. performed in triplicates. 

 

C.11 [3H]trimipramine saturation binding at hH2R 

Due to the high affinity of TMP to hH2R (Ki = 41 nM; Kb = 44 nM), the tritiated TCA is 

possibly an applicable radioligand for the use in Sf9 membranes. We determined a Kd of  

45.2 nM for [3H]TMP which is also in a comparable high range than that of [3H]TIO. Non-

specific binding of [3H]TMP was even exceeding 80% (Fig. C.18). The non-selectivity and 

binding properties to several other targets such as 5-HTxR, mAChR, H1R, DxR and αAR also 

limit the use of TMP as radioligand to recombinant systems expressing H2R, so that [3H]TIO is 

still superior to [3H]TMP as radioligand. 
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Fig. C.18. [3H]trimipramine saturation binding in Sf9 cell membranes expressing hH2R-GsαS. Experiments were 

performed as described in Chapter B.2.4. Data were analyzed by non-linear regression and were best fitted to 

hyperbolic one-site saturation isotherms. The closed triangles (▲) show the data for the specific [3H]TMP 

binding (Kd = 45.2 nM; Bmax = 0.91 pmol/mg). The inset shows the first six data sets at a larger scale. Data points 

shown are the means ± S. D. performed in duplicates. 

 

C.12 Functional analysis of sibutramine at hH1R and hH2R 

Sibutramine is an appetite suppressant for the treatment of obesity and acts as SNRI. 

Its structure resembles that of amphetamine, which enhances a reverse function of DAT and 

SERT, and the SNRI venlafaxine. All compounds increase the concentrations of monoamines 

in the synaptic cleft and, thereby, induce satiety. 
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The mechanism of action is similar to that of TCAs and the pharmacological effects are 

mainly caused by its two active metabolites (Ryan et al., 1995). Although the drug was 

examined in animals and humans for its antidepressant properties 20 years ago (Buckett et 

al., 1988; Luscombe et al., 1989), it was never used for this indication. Because the 
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Sibutramine Cardiovascular Outcome Trial observed an increased risk of serious, non-fatal 

cardiovascular events, such as stroke or heart attack, the European Medicines Agency (EMA) 

suspended sibutramine from the European market (Williams, 2010). The increase of appetite 

and a consecutive weight gain is a common side effect for most psychiatric drugs and is 

often also associated to antagonism at H1R (Kim et al., 2007). Many anti-histaminic drugs 

acting at H1R also display these orexigenic properties (Sakata et al., 1988). Hypothalamic 

neuronal HA signalling via H1R contributes to appetite modulation. Food intake was sup-

pressed by injection of HA into rat ventromedial and paraventricular nuclei (Ookuma et al., 

1993). The same effect was mediated by the appetite suppressor leptin which increased 

secretion of HA in the hypothalamus (Masaki and Yoshimatsu, 2006). In patients with 

anorexia nervosa the density of H1R was increased (Yoshizawa et al., 2009). Thus, it is likely 

that the appetite-suppressing properties of endogenous HA are blocked by psychiatric drugs 

with H1R antagonism such as CLO or TMP, whereas the lack of affinity to this receptor for 

sibutramine maintains the activating properties of HA in hypothalamic cells and suppresses 

appetite. 

As sibutramine as well as venlafaxine (Westenberg and Sandner, 2006) and PRX are 

rather selective and have no affinity to H1R within the therapeutic plasma concentrations 

(Table C.5), no weight gain is expected here which facilitates therapy of obese patients with 

depression. Studies of other orexigenic or anorexigenic receptors did not identify a novel 

binding site contributing to the induced weight gain (Theisen et al., 2007). Nevertheless, as 

psychiatric drugs show a broad receptor binding profile that is not fully understood yet, also 

other effects may still account for the modulation of food intake. The missing effect of 

sibutramine on hH2R in contrary to many other psychiatric medications is likely to be 

associated with the potential lack of antidepressant quality – the indication originally 

developed. 
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hH1R hH2R 

Cpd. Kb [µM] ± 
S.D. 

Inv. Eff. ± 
S.D. 

Kb [µM] ± 
S.D. 

Inv. Eff. 

Plasma concentration 
of main metabolites 

[µM] 

sibutramine 20 ± 1.5 -0.10 ± 0.08 32 ± 3.5 -0.15 0.015 to 0.032† 

      
Table C.5. Inhibiting potencies (Kb) and inverse agonist efficacies (Inv. Eff.) of sibutramine at hH1R + RGS4 and 

hH2R-GsαS. GTPase assays were performed with Sf9 membranes as described in Chapter B.2.5. Reaction mix-

tures contained Sf9 membranes expressing receptor and G proteins, HA (1 µM) and sibutramine at concentra-

tions from 100 nM to 500 μM as appropriate to generate saturated competition curves. To determine the in-

verse agonist efficacies (Inv. Eff.), the effects of antagonists at a fixed concentration (500 μM) on basal GTPase 

activity were assessed and referred to the stimulatory effect of 100 μM HA (= 1.00). Data were analyzed by 

non-linear regression and were best fit to sigmoidal concentration/response curves. Values are given in micro-

molar and are the means ± S.D. of two to five experiments performed in duplicate. 

† plasma concentrations of the main metabolites were calculated according to Talbot et al., 2010 
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D. Discussion 

As shown in Chapter C, interactions between the examined psychiatric drugs and the 

four HA receptor subtypes are complex. Because of similarities between affinities, potencies 

and therapeutic reference ranges it is likely that some of these interactions are also thera-

peutically relevant. Thus, the number of interaction sites of the single drug has to be ex-

tended. This “polypharmacology” through interaction with multiple molecular targets may 

be crucial for its therapeutic efficacy, but also pivotal for its side effect profile (Roth et al., 

2004). 

 

D.1 Structure-activity relationships for hHxR 

The key ligand-receptor interaction sites of the substances that were explored by mo-

lecular modelling are localized in TM3, most notably the highly conserved aspartic acid 

(hH1R: Asp-107; hH2R: Asp-98; hH4R: Asp-94) and in TM6, most notably the highly conserved 

amino acids tryptophan (hH1R: Trp-428; hH2R: Trp-247; hH4R: Trp-316) and tyrosine  

(hH1R: Tyr-431; hH2R: Tyr-250; hH4R: Tyr-319), while Phe-435 and Phe-251 interact solely 

with ligands binding to hH1R and hH2R, respectively (Fig. D.1). Due to the low affinities for 

H3R no interaction sites could be identified. The endogenous ligand HA interacts not only 

with amino acids in TM5, but also with the highly conserved aspartic acid in TM3. Besides, 

interaction of ligands with hH1R, hH2R and hH4R is also mediated by other non-conserved 

amino acids in ECL2, TM5 and TM7. The highly conserved aspartic acid in TM3 is present in 

all receptors for biogenic amines and serves as a counter anion to the cationic amino group 

of the amines, which occurs under physiological conditions (Gantz et al., 1992) (q.v. the 

binding mode of HA in Fig. A.12). In contrast, the orientation of the highly conserved 

tryptophan in TM6 plays an integral part in stabilizing active or inactive conformation of the 

receptor described as toggle switch (Crocker et al., 2006). Therefore, interaction with these 

two amino acids is crucial for binding and functional effect of ligands at HxR. 
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           |-----------N-Terminus--------||-------------TMI------------||-I1-||--------TMII----- 

 hH
1
R    1--------MSLPNSSCLLEDKMCEGNKTTMASPQLMPLVVVLSTICLVTVGLNLLVLYAVRSERKLHTVGNLYIVSLSVADLIVGA-78 

 hH
2
R    1-----------------MAPNGTASSFCLDSTACKITITVVLAVLILITVAGNVVVCLAVGLNRRLRNLTNCFIVSLAITDLLLGL-69 

 hH
3
R    1-MERAPPDGPLNASGALAGEAAAAGGARGFSAAWTAVLAALMALLIVATVLGNALVMLAFVADSSLRTQNNFFLLNLAISDFLVGA-85 

 hH
4
R    1--------------------MPDTNSTINLSLSTRVTLAFFMSLVAFAIMLGNALVILAFVVDKNLRHRSSYFFLNLAISDFFVGV-66 

 

           -----------||ECL1||--------------TMIII-------------||---ICL2----||---------TMIV------- 

 hH
1
R   79-VVMPMNILYLLMSKWSLGRPLCLFWLSMDYVASTASIFSVFILCIDRYRSVQQPLRYLKYRTK-TRASATILGAWFLSFLWVIPI-162 

 hH
2
R   70-LVLPFSAIYQLSCKWSFGKVFCNIYTSLDVMLCTASILNLFMISLDRYCAVMDPLRYPVLVTPV-RVAISLVLIWVISITLSFLS-153 

 hH
3
R   86-FCIPLYVPYVLTGRWTFGRGLCKLWLVVDYLLCTSSAFNIVLISYDRFLSVTRAVSYRAQQGDTRRAVRKMLLVWVLAFLLYGPA-170 

 hH
4
R   67-ISIPLYIPHTLFE-WDFGKEICVFWLTTDYLLCTASVYNIVLISYDRYLSVSNAVSYRTQHTGVLKIVTLMVAVWVLAFLVNGPM-150 

 

           -||--------ECL2--------||----------TMV-----------||-----------ICL3--------||--------- 

 hH
1
R  163-LGW---NHFMQQTSVRREDKCETDFYDVTWFKVMTAIINFYLPTLLMLWFYAKIYKAVRQHCQ....QYVSGLHMNRERKAAKQL-417 

 hH
2
R  154-IHLGWNSRNETSKGNHTTSKCKV--QVNEVYGLVDGLVTFYLPLLIMCITYYRIFKVARDQAKRINHISSWKAATIREHKATVTL-236 

 hH
3
R  171-ILS---WEYLSGGSSIPEGHCYAEFFYNWYFLITASTLEFFTPFLSVTFFNLSIYLNIQRRTR....SFTQRFRLSRDRKVAKSL-360 

 hH
4
R  151-ILV----SESWKDEG--SE-CEPGFFSEWYILAITSFLEFVIPVILVAYFNMNIYWSLWKRDH....HQREHVELLRARRLAKSL-305 

 

-          -------TMVI---------||--ECL3-||--------TMVII------||----------C-Terminus------------- 

 hH
1
R  418-GFIMAAFILCWIPYFIFFMVIAFCKNC--CNEHLHMFTIWLGYINSTLNPLIYPLCNENFKKTFKRILHIRS--------------487 

 hH
2
R  237-AAVMGAFIICWFPYFTAFVYRGLRGDD-AINEVLEAIVLWLGYANSALNPILYAALNRDFRTGYQQLFCCRLANRNSHKTSLRSN-320 

 hH
3
R  361-AVIVSIFGLCWAPYTLLMIIRAACHGH-CVPDYWYETSFWLLWANSAVNPVLYPLCHHSFRRAFTKLLCPQKLKIQPHSSLEHCW-444 

 hH
4
R  306-AILLGVFAVCWAPYSLFTIVLSFYSSATGPKSVWYRIAFWLQWFNSFVNPLLYPLCHKRFQKAFLKIFCIKKQPLPSQHSRSVSS-390 

 

 hH
1
R      --------------------------------------- 

 hH
2
R  321-ASQLSRTQSREPRQQEEKPLKLQVWSGTEVTAPQGATDR-359 

 hH
3
R  445-K---------------------------------------445 

 hH
4
R      --------------------------------------- 

 

Fig. D.1. Alignment of the amino acid sequences of hH1R, hH2R, hH3R and hH4R. Dots in the sequences of 

hH1R, hH3R and hH4R indicate incomplete amino acid sequence of the long ICL3. Hyphens indicate missing 

amino acids. Amino acids with gray shading are the most conserved amino acids, according to the numbering 

scheme used by Ballesteros et al. (2001). Amino acids in white with black shading indicate the amino acids that 

are proposed to interact in the binding pocket of the hHxR models as described in Chapter C.4. The amino acid 

sequences are given in the one-letter code. The sequence alignment was performed as multi-sequence 

alignment using ClustalW 2.0 (Larkin et al., 2007) and subsequently edited manually. 

 

Some minor structural changes of the examined ligands appear to be pivotal for 

affinity and potency to hHxRs. Contrary to the observation previously made for other recep-

tors (Richelson, 1982) that tertiary amine tricyclic antidepressants (AMI, CPM, DXP, IMI and 

TPM) are more potent ligands than their secondary amine counterparts (DPM, nortriptyline 

NTL and PTL), this is not true for hHxR. The experimental conditions at pH 7.4 ensured that 

both types of TCAs were protonated according to their pKa-values between 8.0 and 10.2. At 

hH1R the secondary amine antidepressant PTL (Kb = 13 nM) was as potent as the tertiary 

amines CPM and IMI (Kb = 9.0 nM and 5.7 nM, respectively), while the highly lipophilic LPM 

(Kb = 203 nM) appeared to unveil its full effect not until it was metabolized to the secondary 

amine DPM (Kb = 21.2 nM). Also for hH2R, a sole classification of TCAs in tertiary and 
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secondary amines as described by (Richelson, 1982; Kanba and Richelson, 1983) is not 

sufficient. While the tertiary amine compounds TMP, AMI and CPM (Kb = 44 nM, 112 nM and 

344 nM, respectively) displayed the highest potencies measured for hH2R, IMI (Kb = 791 nM) 

with its tertiary amine function was as potent as the secondary amines PTL and NTL  

(Kb = 688 nM and 877 nM, respectively). A closer examination of TMP, IMI and DPM  

(Kb = 1.4 µM) verifies that solely the difference of two methyl groups decreased potency by a 

factor of 20 and 30, respectively, suggesting that the furcation of the side chain in case of 

TMP is crucial and even more decisive for potency at hH2R than the tertiary amine function. 

An elongation of the side chain like for LPM (Kb = 5.7 µM) and OPI (Kb = 6.2 µM) reduced 

potency of TCAs to the hH2R even more. But obviously, also the heterocycle is important for 

the potency of TMP that shares the side chain with levomepromazine LMZ (Kb = 596 nM). For 

hH4R, correlations between structure and affinity of TCAs yield a heterogeneous picture. 

Arborization of the side chain may also account for the high potency of the phenothiazine 

PMZ (Kb = 197 nM) to hH2R. While insertion of a methoxy group into the heterocycle in case 

of the (R)-enantiomer LMZ (Kb = 596 nM) decreased potency by a factor of 3, an elongation 

of the side chain by integration of the branched methyl group and an additional chlorine 

substituent into the tricycle reduced potency in case of CPZ (Kb = 1.5 µM) by a factor of 8.  

A further elongation of the side chain like by an insertion of piperazine or a replacement of 

the chlorine substituent by a strongly electronegative trifluoromethyl group diminished 

potency even more (PPZ Kb = 2.8 µM; PCP Kb = 2.4 µM; FPZ Kb = 16 µM). The absence of the 

chlorine substituent combined with an exchange of the benzene ring for a thiophene ring in 

the heterocycle in case of OLA (Kb = 5.2 nM) yielded no changes in potency at hH1R in 

comparison to CLO. At hH2R, metabolization of CLO (Kb = 528 nM) to CLD (Kb = 1.6 µM) by 

demethylation reduced potency, while replacement of the diazepine structure by oxazepine 

did not affect the properties (AMO Kb = 1.3 µM; LOX Kb = 1.2 µM). The affinity of CLO  

(Ki = 1.2 µM) to hH4R, in contrary, remained unchanged by demethylation (CLD Ki = 1.8 µM), 

whereas it is diminished for the dibenzoxazepine analogues AMO (Ki = 6.4 µM) and LOX  

(Ki = 8.6 µM). Metabolization of the atypical antipsychotic CLO to the N-oxide is 

accompanied by a loss of potency at all receptor subtypes. In conclusion, small changes in a 

drug may modify the pharmacological properties remarkably but not consistently for all 

receptor subtypes. 
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The application of the Similarity Ensemble Approach was largely insufficient for the 

predictions of interactions of antidepressants and antipsychotics with hHxR. Interactions of 

the compounds with hH1R are well-known, which is reflected in the numerous SEA scores for 

this receptor, although only 41% of these are known-true-predictions. For the hH2R the 

approach yielded 22% of known-true-predictions, however, TMP was underpredicted. This is 

all the more astonishing as known-true-predictions were made for the structural similar 

TCAs AMI, DPM, DXP and NTL and their potency at hH2R was described already in the late 

1970s. Some over-predictions were yielded for the hH4R. As all of these compounds contain 

a piperazine moiety and except for PCP are all analogues of dibenzodiazepines, these predic-

tions are presumably based on the affinity of CLO to this receptor. This provided us with 

similar SEA scores for CLO and CLN, although their affinities diverge extremely. These defi-

ciencies may be due to incomplete databases. Also, the tricyclic ring system and its 

kekulization may lead to a different encoding of the structures in SMILES formulas to that of 

the reference ligands in the databases so that congruence of the compared ligands often 

remained undetected. Moreover, small changes in the molecules like for CLO and CLN with 

high impact on their pharmacology are only inadequately taken into account by this ap-

proach. In conclusion, SEA may be a helpful tool for the additional screening of numerous 

ligands and to suggest new targets but may not replace the experimentally examination in 

the laboratory. 

 

D.2 Relationship between histamine receptor function and psychiatric 

diseases 

Several observations suggest a correlation between HA receptors and psychiatric 

diseases, above all depression and schizophrenia. In animals, a reduction of HA receptor 

function induced symptoms similar to depression in man (Nath et al., 1988; Ito et al., 1999). 

Further, histaminergic neurons are modulated also through 5-HT2CR which influence higher 

brain functions and pathological states such as epilepsy and depression by pre-messenger 

RNA (mRNA) editing (Sergeeva et al., 2007) correlating with suicide (Schmauss, 2003; Haas et 

al., 2008). Also in schizophrenia, brain histamine seems to play a role. In various animal 

models of schizophrenia histamine turnover was enhanced (Browman et al., 2004; Dai et al., 

2004; Fox et al., 2005; Faucard et al., 2006; Day et al., 2007). Moreover, increased levels of 
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the major HA-metabolite Nτ-methylhistamine were found in the cerebrospinal fluid of 

schizophrenic patients, particularly in those with pronounced negative symptoms and sig-

nificantly related to the severity, indicating elevated histaminergic activity in brain (Prell et 

al., 1995; 1996). These observations suggest an involvement of histaminergic neuro-

transmission in the pathophysiology of depression and schizophrenia (Haas et al., 2008). 

 

D.2.1 Histamine H1 receptor 

The first TCAs were synthesized as potential antihistamines, so that their antagonism 

at H1R is not surprising. After discovering the presence of H1R in brain it was discussed that 

some of their remarkable properties may be the consequence of a blockade of H1R. Due to 

the fact that nearly all examined antidepressant and antipsychotic drugs display high affinity 

to hH1R, the comparison with their therapeutic reference ranges renders this assumption 

plausible and explains their sedative effects (Richelson, 1979). LPM and its metabolite DPM 

showed the lowest affinities of the TCAs. Thus, together with CLN, PRX, HAL and CBZ they 

are not likely to interact with hH1R and exhibit less sedating properties, clinically (Laux et al., 

2001). As all of these substances are inverse agonists at H1R, the observation of an 

antidepressant-like effect of H1R agonists like 2-(3-trifluoromethylphenyl)histamine 

(Lamberti et al., 1998) is not consistent. Otherwise, antidepressants with inverse agonistic 

properties in the nanomolar range would thwart any antidepressant-like effect by H1R 

agonism. Additionally, some of the first generation antihistamines act as 5-HT reuptake 

inhibitors in both animals and humans (Kanof and Greengard, 1978). Positron emission 

tomography studies using [11C]DXP revealed a correlation of severity of clinical depression 

and decreased binding to H1R in cortex and the cingulate gyrus (Kano et al., 2004; Haas et 

al., 2008). This may be explained by a reduced density of H1R as well as an increased release 

of endogenous HA. 

Also antipsychotic drugs exhibited high H1R inverse agonistic properties. Analogous 

to depression, the number of H1R in the frontal cortex of schizophrenics was reduced in 

postmortem binding studies using [3H]mepyramine as a ligand (Nakai et al., 1991). Positron 

emission tomography studies in frontal and prefrontal cortices and in the cingulate gyrus of 

schizophrenic patients using [11C]DXP produced the same output (Iwabuchi et al., 2005; Haas 

et al., 2008). Therefore, the reduced density of H1R may be involved in the pathophysiology 

of schizophrenia. The H1R antagonist mepyramine was also shown to impair working 
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memory in the prepulse inhibition test but improved reference memory on the radial-arm 

maze test in rats. So the blockade of H1R may be a beneficial action of antipsychotics 

(Roegge et al., 2007). 

The properties of antidepressant and antipsychotic drugs at H1R are not consistent 

and, therefore, it remains uncertain if they account largely for their therapeutic efficacy or 

rather for their unwanted side effects, such as weight gain. However, also if sometimes dis-

pleasing from the patient`s view, sedative effects of many compounds may exhibit auxiliary 

value for the therapy of psychiatric diseases. 

 

D.2.2 Histamine H2 receptor – with focus on polymorphisms and schizophrenia 

For twelve out of 34 examined antidepressants and antipsychotics we determined 

affinities and potencies for H2R that lie below the reference ranges during therapy and 

render interaction of the ligand with the receptor likely. The detection of H2R in brain and 

the fact that TCAs block the histamine induced cAMP production in mammalian brain (Green 

and Maayani, 1977; Kanof and Greengard, 1978; Kanof and Greengard, 1979) raised the 

question, if antidepressant activity of these compounds is associated with blockade of 

cerebral H2R, similar to the sedative properties being caused by H1R antagonism (Schwartz et 

al., 1981; Timmerman, 1989). AMI showed a biphasic inhibition of histamine-stimulated 

cAMP synthesis but a monophasic effect on dimaprit-stimulation and makes plausible that 

histamine stimulates cAMP synthesis in these cells by activating both H1R and H2R (Kanba 

and Richelson, 1983). The selective H2R antagonist famotidine which may penetrate the 

blood-brain barrier to a low extent (Kagevi et al., 1987) was able to reduce positive and 

particularly negative symptoms in schizophrenic patients when given as a sole medication 

for schizophrenia or augmentarily (Kaminsky et al., 1990; Oyewumi et al., 1994; Martínez, 

1999). Postmortem brains of schizophrenic patients showed selective alterations of HxRs 

indicating the possible existence of pathologically altered histaminergic neurotransmission 

(Deutsch et al., 1997). Furthermore, various efforts were made to link schizophrenia to 

several polymorphisms of H2R. Orange et al. (1996) reported an about 1.8 times increased 

incidence of the H2R649G allele for the H2R gene in subjects with schizophrenia, compared 

to the control population, and an elevation of even 2.8 times for the homozygous variant. 

These findings could not be verified by Ito and co-workers (2000), using the genetic material 

of individuals of different geographical areas. They allocated three additional H2R gene 
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polymorphisms, but their incidence was, however, not significantly different from control 

(Ito et al., 2000). Additional four H2R promoter polymorphisms were identified, although the 

differences were not significant. Due to a missing influence on receptor expression and an 

apparent lack of function, the participation of these variants in pathophysiology of 

schizophrenia is unlikely (Mancama et al., 2002). Although none of the reported H2R variants 

is clearly related to this disease, based on the number of H2R polymorphisms found recently, 

it is likely that more of these alternate variants will be identified, which may be associated 

with schizophrenia by causing altered coupling of the receptor (Deutsch et al., 1997). 

Atypical antidepressants like TMP, MSN, tianeptine or iprindole do not or only weakly 

inhibit the reuptake of 5-HT or NE which is the commonly suggested mechanism of action for 

antidepressant drugs. However, they exhibit a similar therapeutic efficacy as “typical” anti-

depressants for which reason another mechanism of action may be mainly responsible for 

their antidepressive effects. But like for schizophrenia, the investigations of the cerebral H2R 

in the pathophysiology of depression are inhomogeneous. Using the swimming despair test 

as a behavioral model of depression the H1R antagonist mepyramine did not affect immo-

bility induced by HA or the H2R agonist impromidine while the H2R antagonist cimetidine, IMI 

and DPM decreased it significantly. In conclusion, antidepressant drugs may block central 

H2R and, thus, depression is ameliorated (Nath et al., 1988). In contrast, several cases of 

depression induced by cimetidine were reported (Johnson and Bailey, 1979; Crowder and 

Pate, 1980; Billings et al., 1981; Pierce, 1983). Billings et al. suggested an imbalance between 

H1R and H2R signalling by inhibition of the latter receptor, but disregards that 

antidepressants are also effective inhibitors of H2R. Antell et al. (1989), however, negated 

any association of depression and cimetidine. Several H2R antagonists were reported to 

penetrate the blood-brain barrier to a low extent (Jönsson et al., 1984; Kagevi and Wahlby, 

1985) but it remains unclear if they may reach adequate cerebral concentrations to affect 

not only peripheral H2R. 

 

D.2.3 Histamine H3 receptor 

The H3R plays an important role in modulating a variety of neuropharmacological 

effects including cognition, locomotion, sleep-wake status and epilepsy. Although some 

indirect hints exist, there is no evidence for a direct correlation between H3R and depression 

yet. Studies in rat brain cortex showed that AMI counteracted a chronic stress-induced 



Discussion 88

decrease of the H3R density, while it increased the density of the receptor when chronically 

administered in the non-stressed control group (Ghi et al., 1995). Investigations of mice in 

the forced swim test, a model for depression in animals, displayed a significant anti-

depressant-like effect of the H3R/H4R antagonist thioperamide, which was prevented by the 

H3R agonist (R)-α-methylhistamine (Lamberti et al., 1998; Peréz-García et al., 1999). In a 

modified study the antidepressive effect of thioperamide was examined together with its 

serotonergic and/or antioxidant mechanisms and indicated its antioxidant potential (Akhtar 

et al., 2005). 

After the detection of an intermediate affinity of the atypical antipsychotic CLO for 

the H3R in rat brain cortex (Kathmann et al., 1994; Rodrigues et al., 1995), the antipsychotic 

effects have been associated with this HA receptor subtype as well. The localization of this 

receptor and its function not only as autoreceptor but also as heteroreceptor influencing 

also monoamine concentrations are reasons in favor of this hypothesis (Ito, 2009). 

Moreover, the elevated hH3R expression in the prefrontal cortex of schizophrenic post-

mortem brain samples suggests a connection between hippocampus and cortical regions 

and a regulation via hH3R (Jin et al., 2009). 

The H3R/H4R antagonist thioperamide was shown to exert not only antidepressive 

effects but also antipsychotic-like properties by potentiating HAL-induced catalepsy, 

reducing amphetamine-induced hyperactivity and reducing apomorphine-induced climbing 

in mice. These effects were reversed by (R)-α-methylhistamine, indicating the involvement 

of H3R, and suggest a potential for improving the refractory cases of schizophrenia (Akhtar et 

al., 2006). Also ciproxifan, a H3R antagonist/inverse agonist, potentiates neurochemical and 

behavioral effects of HAL in the rat (Pillot et al., 2002) and modulates the effects of 

methamphetamine on neuropeptide mRNA expression in rat striatum (Pillot et al., 2003). 

Due to the low affinity of CLO for the human H3R isoform and the missing affinities of 

all other tested antipsychotic drugs for the H3R, an antischizophrenic effect of this receptor 

is not likely at least for the substances studied herein. However, histamine neuron activity 

may also be modulated by a crosstalk of other co-localized receptors like a stimulation via 

blockade of the 5-HT2AR by several atypical antipsychotics (Morisset et al., 1999). Therefore, 

H3R antagonists or inverse agonists are not useful for a stand-alone therapy of schizophrenic 

symptoms but might constitute a valuable add-on medication for the treatment of cognitive 

deficits in schizophrenic subjects (Tiligada et al., 2009). A currently ongoing study with the 
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H3R inverse agonist tiprolisant may confirm the pro-cognitive properties (ClinicalTrials, 

2010). Further, the combination of D2-like receptor, 5-HT2R and H3R inverse agonism and 

decreased H1R affinity in one compound may be a promising approach in the treatment of 

schizophrenic subjects (von Coburg et al., 2009; Tiligada et al., 2009). 

Although there is no correlation of the tested substances and a modulation of their 

antidepressant and antipsychotic effects via H3R it is possible that more potent ligands are 

able to alter the concentrations of diverse neurotransmitters in brain by H3 auto- and 

heteroreceptor modulation. 

 

D.2.4 Histamine H4 receptor 

In contrast to H1R, H2R and H3R, the functional presence of the H4R on neurons in the 

CNS has been revealed just recently. The involvement of the H4R in brain diseases such as 

depression and schizophrenia is, therefore, still poorly understood and its potential as a 

target for new drugs, particularly in neurological diseases, needs to be elucidated. This 

finding will allow a further characterization of histaminergic neurotransmission in the 

mammalian brain in general (Connelly et al., 2009). 

The only clinical relevant interaction for the H4R we found was for CLO and its meta-

bolite CLD. Our findings are in agreement with Nguyen et al. (2001), Smits et al., (2006) and 

Jongejan et al., (2008). However, we were not able to verify affinities for this GPCR in the 

nanomolar range for AMI, CPZ, DXP, PMZ and MSN, as measured by Nguyen and co-workers. 

Also, Lim et al. (2005), Venable and Thurmond (2006) and Deml et al. (2009) could not con-

firm the high-affinity binding observed by Nguyen et al. (2001) either. These discrepancies 

may be explained by differences in the expression systems (mammalian vs. Sf9 insect cells) 

that could affect receptor glycosylation as well as oligomerization and, therefore, the 

pharmacological properties. As the interactions of a number of prototypical hH4R ligands 

with hH4R expressed in Sf9 insect cells and mammalian cells were verified to be very similar 

(Lim et al., 2005; Schneider et al., 2009; Schneider and Seifert, 2009), also an inadvertent or 

endogenous expression of H1R in the HEK293 cells used by Nguyen et al. (2001) is possible 

(Venable and Thurmond, 2006). 

The atypical antipsychotic CLO together with its metabolite CLD exhibits unique 

properties in comparison to other drugs in the therapy of schizophrenia. Both are further the 

only substances of the examined ones that allow interaction with the H4R at therapeutic 
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plasma concentrations. Whether and to what extent the agonistic behavior of CLO and CLD 

at H4R contributes to atypicality of antipsychotics remains subject of further investigation. 

 

D.3 Trimipramine at histamine H2 receptor 

The interaction of the antidepressants AMI, IMI, DBP and iprindole with H2R linked to 

adenylyl cyclase in homogenates of guinea pig hippocampus was first reported by Green and 

Maayani (1977). This finding was independently confirmed for more compounds shortly 

afterwards by Kanof and Greengard (1978). However, the obtained potencies were 

questioned by impromidine-stimulated cAMP accumulation experiments in guinea pig hip-

pocampal slices (Dam Trung Tuong et al., 1980). Also, several tricyclic and non-tricyclic anti-

depressants were shown to inhibit the effect of HA on the H2R using rat isolated uterus. TMP 

and MSN displayed the highest potency, even superior to that of cimetidine whereas 

maprotiline (MPT) inhibited H2R activity with the lowest potency (Alvarez et al., 1986).  

A comparison of the different preparations yielded a Kd of 2.4 µM for TMP in dissociated 

tissue and 0.003 µM in homogenates of guinea pig hippocampus. However, also DXP  

(Kd of 1.4 µM in dissociated tissue and 0.17 µM for homogenates) and AMI (Kd of 1.9 µM in 

dissociated tissue, 3.5 µM in slices and 0.034 µM for homogenates) showed very 

heterogeneous results (Kanba and Richelson, 1983). In contrast to the studies with 

homogenized guinea pig hippocampus (Kanba and Richelson, 1983), we were able to 

perform a saturable binding of [3H]TMP to recombinant H2R fusion protein (Fig. C.18), 

although non-specific binding was exceeding 80%. As our results (TMP: Ki = 41 nM;  

DXP: Ki = 198 nM; AMI: Ki = 67 nM) have been obtained with membrane fractions of infected 

Sf9 cells they correspond very closely with those yielded with the cell-free homogenates. 

Small differences may be explained by the different test systems and also by using native 

tissue with many other interaction sites for the multiple-target ligands. However, the 

discrepancy between data of homogenates and dissociated hippocampal tissue for all 

examined antidepressants and antipsychotics but not H2R antagonists is striking. The 

potency of TMP is reduced 800-fold in the dissociated cell preparation than compared with 

the homogenates (Kanba and Richelson, 1983). Therefore, the therapeutic reference range 

of TMP (365-853 nM) and the yielded concentrations in plasma fit to data obtained at H2R in 
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homogenates but do not fit to cerebral H2R, in case they possess comparable properties as 

the examined brain slices or the dissociated tissue. 

It is possible that the molecules have only remote access to receptors in intact tissue 

or dissociated cells which consist of large clumps of cells of about 100 µm (Schwartz et al., 

1981; Kanba and Richelson, 1983). In this case, the data for dissociated cells with its aug-

mented surface should be more varying in comparison to the brain slices (Dam Trung Tuong 

et al., 1980; Kanba and Richelson, 1983). Schwartz and co-workers suggested not only a 

different receptor conformation in the presence of high concentrations of ATP, Mg2+, GTP 

and ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, which are required for 

an optimal adenylyl cyclase activity in homogenates, but also the modifications of drug dis-

criminatory characteristics of H2R by cell disruption as possible sources for the discrepancies. 

For the investigations in native tissue also high concentrations of the ions Na+, K+, Ca2+ and 

PO4
3- were used. A damage of the receptor by the homogenization step as ruled out by 

Kanba and Richelson can also be excluded by the similar findings with the recombinant H2R 

fusion protein. Angus and Black (1980) suggested that also a secondary intracellular action of 

the drug like inhibition of the phosphodiesterase activity in the intact cell preparations may 

explain the discrepancies. Possibly, antidepressant and antipsychotic drugs interact with the 

H2R differently in brain than with single cells and membrane fractions as well as in a diverse 

mode as mere H2R antagonist do. As shown in Chapters C.4.1 and C.4.2 the binding mode of 

TMP and the H2R antagonist TIO is, however, quite similar. TMP may displace HA by docking 

into the binding pocket. Like the endogenous ligand the charged quaternary ammonium of 

TMP interacts with Asp-98 as counterion. The binding pocket is formed by several amino 

acids in TM5 (Gantz et al., 1992; Nederkoorn et al., 1996) and two amino acids each in ECL2 

and TM3. The chiral side chain is preeminent for high affinity binding of TMP because its 

absence reduced affinity by a factor of 20. This moiety interacts with amino acids in ECL2 

and TM7 or TM3, respectively, depending on the orientation of the 2-methyl group of the 

(R)- and (S)-enantiomers. However, a significant preference for one of the two TMP 

enantiomers was not determinable in the modelling approach. Due to its heterocycle, TMP 

exhibits multiple interactions with the hydrophobic amino acids Trp-247, Tyr-250, Phe-251 

and Phe-254 in TM6 while the diaminomethylidene amino moiety of TIO at this position 

interacts with Asp-186 and Thr-190 in TM5. The latter interactions are, however, not 

plausible for other H2R antagonists except famotidine because they are lacking this partial 
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structure. Therefore, it is likely that there are indeed differences in the interaction of H2R 

antagonists and TCAs with H2R (Tsai and Yellin, 1984). Moreover, Beil et al. (1988) 

demonstrated that TMP, DXP and HAL interfere with H2R in parietal cell in a non-competitive 

mode. The Schild plots of TMP and TIO performed in the Sf9 cell system, however, refer to a 

competitive binding at H2R. To ascertain the role of H2R to the mechanism of action of 

antidepressants and also antipsychotic drugs further experiments are indispensable to clarify 

why data in cell assemblies are varying to that in cell fractions and if interference of 

antidepressants to H2R differs to that of H2R antagonists. 

 

D.3.1 Trimipramine for ulcer therapy 

Simultaneously to the finding that TCAs inhibit H2R linked to adenylyl cyclase in 

homogenates of guinea pig hippocampus (Green and Maayani, 1977) several studies 

investigated the use of these compounds for ulcer therapy, above all TMP. Therefore, low 

doses of the antidepressant were used, mainly 25-50 mg/day, while for the therapy of de-

pression 200 mg/day on average are recommended (Baumann et al., 2004). TMP was effec-

tive in treatment of both duodenal and gastric ulcer (Myren et al., 1979). Additional 

advantages to the inhibiting gastric secretion were benefits by the antipain/depression 

effect of TCAs, their long half-lives, low cost and readily available serum monitoring (Ries et 

al., 1984). Berstad et al. (1980) showed that in combination with antacids TMP was nearly as 

effective as cimetidine. In another clinical trial for treatment of peptic ulcer disease, TMP 

was superior to placebo and as effective as cimetidine. Due to the fact, that this effect may 

be mediated by anticholinergic receptor modulation and because of the strong sedating 

properties of TCAs, the usefulness as first-line anti-ulcer agents was doubted and a possible 

usage was suggested only for a short-term treatment of duodenal ulcers and for patients 

unresponsive to conventional anti-ulcer therapy (Berardi and Caplan, 1983). 

Other studies, however, reported that although TMP accelerated healing of duodenal 

ulcer it was inferior to cimetidine with respect to the rate of healing and the reduction of 

symptoms (Becker et al., 1983) and evoked frequently complaints of fatigue (Blum, 1985). 

Wilson et al. (1985) proved that TMP inhibited pentagastrin-stimulated secretion of acid by 

13% and MSN by 38%. MSN inhibited overnight gastric secretion by 37%, while TMP in-

creased it by 16%. Further, for TMP the cumulative percentages of patients with relapse of 

ulcers within twelve months was as high as no treatment while cimetidine, antacids, 
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ranitidine and sucralfate were significantly better (Hui et al., 1992). In summary, the 

evaluation of TMP in the treatment of ulcer is not significant and gives only inconsistent 

information relating to H2R, as also its anticholinergic effects may play a role. Since more 

effective treatment options have been introduced the use of TMP for this indication is not 

reasonable anymore. 

 

D.3.2 Connection between clinical profile and molecular affinities at HxR 

The sedative properties of antidepressants and antipsychotics seem to be correlated 

with the occupation of H1R at clinical dosage. Drowsiness and sedation are often observed 

with TCAs like AMI (Ki = 1.3 nM), DXP (Ki = 1.2 nM) and TMP (Ki = 1.5 nM). In contrast, LPM 

and its metabolite DPM, the TCAs with the lowest affinity to hH1R (Ki = 243 nM and 68 nM, 

respectively), are known to cause more agitation than sedation. Although their affinities are 

within the threshold of therapeutic reference ranges, the occupation of H1R seems to be 

insufficient for sedation. This observation is also made for antipsychotics. While sedation is a 

determining aspect in therapy with CLO (Ki = 2.6 nM) and PMZ (Ki = 1.0 nM), for RIS  

(Ki = 54 nM) only moderate sedating properties were reported. FLU shows also a high affinity 

to H1R. Due to its very low reference range, an adequate occupation of this receptor to 

mediate clinical effects is not secured. With affinities beyond the therapeutic reference 

ranges PRX (Ki = 13 µM) and HAL (Ki = 1.9 µM) display only low sedating properties. CBZ 

showed no affinity to this receptor at all which is in agreement with a lack of sedation (Laux 

et al., 2001; Lexi-comp, 2010). The association with weight gain is not consistent. Within the 

group of TCAs this side effect is most likely for AMI, although other TCAs had affinities in the 

same range. For DPM less or even no weight gain was reported (Stern et al., 1987; 

Fernstrom and Kupfer, 1988). Despite the low affinity of PRX to H1R, weight gain may be 

experienced during therapy. This fact may account for a contribution of other orexigenic 

substances like 5-HT2CR antagonists (Reynolds et al., 2006). The antipsychotics CLO, OLA, 

TRZ, CPZ, RIS and HAL also were shown to enhance weight gain. Its extent correlates with 

the measured affinities. Again, therapy with FLU has only small impact on weight gain due to 

its low blood concentration during therapy (Gitlin, 2007). 

A correlation of clinical antidepressant dosage and affinity to H2R as found for anti-

psychotics and D2R has not been observed while a correlation of clinical antidepressive 

effect and affinity to H2R is difficult to assess due to the variety of potential therapeutic 
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effects like mood brightening, anxiolysis, agitation. Interestingly, also the antipsychotics TRZ, 

PPZ and CPZ were reported to exhibit antidepressive effects (Hollister et al., 1967; Raskin et 

al., 1970; Becker, 1983). But only the affinity of TRZ is within the therapeutic reference 

ranges and sufficiently high to mediate this effect via H2R. For H3R, the measured affinities 

are not sufficiently high in comparison to the therapeutic reference ranges to cause any 

clinical effect. This is also the fact for H4R with exception of CLO and CLD. The atypical 

antipsychotic and its metabolite are, therefore, associated with the incidence of agranulocy-

tosis. 

 

D.4 Clozapine and histamine H4 receptor – a possible cause for 

agranulocytosis 

CLO showed the highest number of possible interactions with hHxRs among the 

examined substances. The blood concentrations under therapy are sufficiently high to 

modulate hH1R and hH2R as well as hH4R. Thereby, its properties change from an inverse 

agonist at hH1R and hH2R to a partial agonist at hH4R and in the same order potencies in-

crease from 4.3 nM, 528 nM to 1,700 nM. This also applies to the main metabolite CLD. The 

examined substances are known to decrease the number of circulating white blood cells, 

prevalently neutrophils. This leukopenia may impair to a severe and potentially lethal 

condition referred as agranulocytosis with less than 1,000 white blood cells/mm3 or  

500 granulocytes/mm3 of blood (Ryabik et al., 1993). Clinical signs of this agranulocytosis are 

sudden fever, sore throat and quickly progressing infections like pneumonia up to sepsis. 

CLO is one of the numerous drugs causing agranulocytosis and a prevalence of 1%. The 

highest risk appears in the first eighteen weeks of treatment (Ryabik et al., 1993). Therefore, 

the white blood cell counts are weekly monitored during the first few months. A secondary 

infection may rise the mortality rate from 38% to 50% if the patient is not taken off from CLO 

(Claas, 1989; Krupp and Barnes, 1989). A treatment is possible with granulocyte colony-

stimulating factor (G-CSF) (filgrastim) and granulocyte macrophage colony-stimulating factor 

(GM-CSF) (sargramostim), two human colony-stimulating cytokines (Delannoy and Géhenot, 

1989; Palmblad et al., 1990). As the H4R is mainly expressed on hematopoietic and 

immunocompetent cells and CLO is a potent partial agonist at H4R it has been discussed if 

agonist activity at this receptor may be related to agranulocytosis (Ito, 2009). The modifica-
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tion of differentiation through a permanent stimulation by the partial agonist would be 

reasonable. Also, CLN, CPX and OLA, a thienobenzodiazepine and advancement of CLO that 

was developed to reduce the risk of agranulocytosis, are partial agonists at H4R. The high 

incidence of agranulocytosis by CLO was at least reduced in OLA (Beasley et al., 1997; 

Tolosa-Vilella et al., 2002). This may be due to the fact, that therapeutic plasma concentra-

tion of OLA are too low for an interaction with H4R (Ki = 17 µM). Strikingly, also the H2R 

antagonists metiamide (Ki = 3.0 µM; Emax = 0.73) and cimetidine (Ki = 12.4 µM; Emax = 0.62), 

both known to cause agranulocytosis (Aymard et al., 1988), exhibited partial agonism at H4R 

but with low potency. In case of metiamide the thiourea moiety was made responsible for 

the high incidence of agranulocytosis (Fitchen and Koeffler, 1980). CLO, however, contains 

no such equivocal partial structure that cannot be found also in other common substances 

without elevated prevalence for agranulocytosis. Arguing also against this theory is the fact 

that the remaining substances which are also known for decreasing the white blood cell 

count, in contrary, acted as antagonists/inverse agonists at H4R. For this reason a 

relationship between the H4R and agranulocytosis is not consistent. 

 

D.5 Comparison of medication: mavericks or gregarious creatures? 

Although the examined drugs are structurally closely related and are all deployed in 

the therapy of either depression or schizophrenia, they may be assigned as mavericks. The 

smallest change in the molecule may already modify the binding profile for the single recep-

tor. The compounds are further known to bind to up to 20 different receptor families. Due to 

the number of feasible molecular targets, the result is a unique binding profile for each drug. 

By means of HxRs the varying binding performance within only one receptor family can be 

assessed.  

The amino acid sequence of the hH1R is tolerating these changes best. Apart from CBZ, 

CLN, HAL, LPM and PRX all drugs bound to this receptor in the low nanomolar range, 

although the mediated effects, sedation and weight gain, are of a different intensity. At H2R 

the affinities are inconsistent even within similar structural types. Affinities for the pheno-

thiazines varied between 197 nM and 16 µM, for the TCAs between 44 nM and 6.3 µM and 

for the dibenzodiazepines between 528 nM and > 100 µM. Despite structural diversities no 
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compound displayed a higher affinity for H3R than 10 µM. A different pattern is found for 

H4R: beside the dibenzodiazepines single compounds displayed at least moderate affinities. 

 

D.6 Examples for “new” mechanisms of drug action for antidepressants and 

antipsychotics 

A contribution of H2R to the therapeutic effects of antidepressants and antipsychotics 

may appear as follows: Blockade of cerebral H2R coupled to Gαs by antagonists reduces the 

synthesis of cAMP via AC. Protein kinase A (PKA) is inhibited and, therewith, the alteration of 

transcription in the cell nucleus by the cAMP response element-binding protein which may 

have impact on receptor sensitivity. Additionally to the G protein-dependent mechanism, 

H2R is directly linked to the phosphoinositide signalling pathway. For H2R inverse agonists a 

receptor up-regulation has been observed which may cause hypersensitivity to HA (Del Valle 

and Gantz, 1997). Some atypical antidepressants are known to have no effect on NE or 5-HT 

reuptake. Taking the monoamine hypothesis as the molecular basis of depression for 

granted the deficiency of the neurotransmitters has to be balanced otherwise. Threlfell et al. 

(2008) reported that the blockade of H2R expressed in the substantia nigra pars reticulata of 

rats enhanced 5-HT release independently of GABAergic or glutamatergic inputs. Hence, not 

only H3R but also H2R may regulate 5-HT neurotransmission and increase the concentration 

in the synaptic cleft. 

The signalling in GPCRs may also take place in a G protein-independent manner and 

mediate actions simultaneously through distinct effector systems (Beaulieu et al., 2005). The 

signalling molecules protein kinase B (Akt) and glycogen synthase kinase-3 (GSK3) play an 

important role in the regulation of DA and 5-HT and may, thus, be implicated in the actions 

of psychoactive drugs such as antidepressants, antipsychotics and the augmenter lithium. 

Investigations in mice revealed that the multifunctional scaffolding molecule β-arrestin-2, 

which is generally regulating desensitization of GPCRs, is involved in the Akt/GSK3 pathway 

of D2R (Beaulieu et al., 2009). This additional pathway was also shown for H2R in parietal 

cells. H2R inverse agonism may decrease the activity of phosphatidylinositol 3-kinase leading 

to a reduced activity of Akt and, hence, increase cAMP concentration (Mettler et al., 2007). 

This modulation might also proceed in cerebral H2R. Beside inhibition of inositol monophos-

phatases, recent findings suggest that the alkali metal lithium may reduce Akt activity and, 
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therefore, inhibition of GSK3β by destabilizing a DA receptor regulated signalling complex 

composed of Akt, protein phosphatase 2A and β-arrestin-2 (Beaulieu and Caron, 2008). 

Ahmed et al. (2008) showed differences for the antipsychotics HAL and CLO in affecting the 

expression of arrestins and GPCR kinases and in modulating the extracellular signal-regu-

lated kinase pathway, which may explain the discrepancy in their clinical profiles. Further, 

ligands may modulate the activity of two effector systems via AC and MAPK and show com-

plex pluridimensional efficacy profiles as reported for β1AR and β2AR (Galandrin and Bouvier, 

2006). 

Another influence on H2R-mediated Gαs trafficking and signalling may be exerted by 

lipid rafts and caveolae, specialized membrane microdomains that compartmentalize cellular 

processes. The findings of Allen et al. (2009) implicate that Gαs is removed from membrane 

signalling cascades by lipid rafts and caveolins, the integral membrane proteins of the micro-

domains. This reduces Gαs-mediated stimulation of AC and, thus, cAMP signalling. Chronic 

treatment with escitalopram is, consequently, able to increase AC activity and cAMP concen-

tration independently of 5-HT transporters by translocation of Gαs from lipid rafts back to a 

non-raft fraction of the plasma membrane (Zhang and Rasenick, 2010). Beside the typical 

targets, this effect may explain the delayed onset of therapeutic benefit of antidepressants. 

 

D.7 Future studies 

Recently, numerous psychotropic drugs entered the market featuring various pharma-

cological properties. But due to deficiency of selectivity of a single compound for a defined 

molecular target, in particular for the therapy of schizophrenia, many drugs still exhibit a 

wide varying spectrum of unwanted side effects. 

For verifying a significant involvement of the H2R in the pathophysiology of psychia-

tric diseases like depression or schizophrenia a more careful examination with TMP needs to 

be performed. Its lead structure should, therefore, become optimized for selective H2R 

antagonism while maintaining the essential property of penetrating the blood-brain barrier. 

Positron emission tomography studies may then be performed and shed light to the 

antagonism of antidepressants and antipsychotics in brain. Also, the initiated analysis of  

34 drugs at the four HA receptor subtypes should be completed with more compounds such 

as butriptyline, a combination of TMP and AMI, dosulepin, noxiptyline, propizepine, the 
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atypical antidepressants tianeptine, amineptine, iprindole, bupropion and trazodone. Helpful 

for clarifying the correlation of the unexplained disease patterns could also be the 

completion of data for 5-HTxR, DxRs, αARs or mAChRs and the examination of other receptor 

families like metabotropic glutamate receptors (mGluR). Further predictions of new off-

targets with SEA for diverse substances at receptors other than HxRs are also possible. The 

examination of TMP and optimized derivatives in mouse models could give interesting in-

sight into the functionality of H2R in brain. With the help of H2R knockout mice (Kobayashi et 

al., 2000) this relation should be studied. Suitable models for the analysis of depression-like 

symptoms in mice could be forced swim test, tail suspension test, olfactory bulbectomy and 

chronic mild stress (Cryan and Mombereau, 2004; Pollak et al., 2010). 
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E. Summary/Zusammenfassung 

E.1 Summary 

Antidepressant and antipsychotic drugs are known to affect multiple molecular tar-

gets. Beside their determinant effects on the neurotransmission of serotonin, 

norepinephrine and dopamine via several transporters and receptors, they may also 

modulate muscarinic acetylcholine receptors and the histamine H1 receptor (H1R). Conse-

quently, these drugs do not only yield unique profiles of desired effects but also several un-

wanted side effects that may impact therapy. In addition to the H1R, the histamine H2 recep-

tor (H2R), histamine H3 receptor (H3R) and histamine H4 receptor (H4R) belong to the large 

family of GPCRs and are very important drug targets. All four HxR subtypes are expressed in 

brain. An interaction of the highly lipophilic, blood-brain barrier-penetrating compounds 

with histamine receptors may, thus, not only affect peripheral receptors but also cerebral 

receptors and contribute to the therapeutic and unwanted effects of the medication. 

The aim of this thesis was to investigate possible interactions of 34 antidepressants 

and antipsychotics with the four histamine receptor subtypes. By comparison of the ob-

tained data with literature-reported therapeutic reference ranges for the compounds, con-

clusions are drawn regarding their contribution to desired or unwanted effects. Almost all of 

the antidepressant and antipsychotic drugs displayed high binding affinities to H1R. We 

related the clinically relevant sedative effects to the molecular affinities at H1R while the 

association with weight gain was not consistent. Several antidepressant and antipsychotic 

drugs may achieve therapeutically blood concentrations that are sufficiently high to interact 

with central H2R. Possible reasons for the discrepancies between the results and literature-

obtained data from different tissue preparations are discussed. The highest H2R affinities 

were yielded for tricyclic antidepressants, most notably trimipramine. This atypical anti-

depressant inhibits the reuptake of monoamines only marginally but still possesses high 

clinical efficacy so that its antidepressive properties may be related to the H2R receptor. 

Hence, possible mechanisms of action for this H2R-mediated contribution to the therapeutic 

effects of antidepressant and antipsychotic drugs are discussed. Although H3R is involved in 

the release of the neurotransmitters serotonin, norepinephrine and dopamine and may, 

therefore, constitute a potential target to modulate monoamine concentrations in the 

therapy of psychiatric diseases, none of the examined compounds reaches blood concentra-
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tions that are, in comparison to their affinities to H3R, sufficient to mediate any clinical effect 

via this receptor. Similar properties were observed also for H4R at which receptor only the 

atypical antipsychotic clozapine caused a therapeutically significant interaction. In fact, the 

heterogeneous pharmacological profiles of the examined drugs indicate no involvement in 

the onset of the potentially lethal side effect agranulocytosis via H4R. 

Despite the homology of the histamine receptor subtypes, especially H3R and H4R, 

several compounds exhibit substantial pharmacological differences for the receptor sub-

types. These were explored in detailed investigations by construction of active and inactive 

state models for H1R, H2R and H4R with the most interesting compounds in the binding 

pocket. On this basis, structure-activity relationships are discussed. A comparison of the ex-

perimentally obtained data and the results of the Similarity Ensemble Approach showed an 

insufficient predictability for the determination of new off-targets by the statistics-based 

chemoinformatics method. 

In conclusion, this thesis provides new insights into the molecular interactions of a 

number of antidepressant and antipsychotic drugs to the histamine receptor subtypes. The 

pharmacological data for all known histamine receptor subtypes may be used to reduce ad-

verse effects and drug interactions as well as to develop novel optimized and selective drugs 

with a decreased number of off-targets. Further, this thesis contributes to the exploration of 

the role of cerebral H2R in the pathophysiology and therapy of psychiatric diseases. 
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E.2 Zusammenfassung 

Antidepressiva und Neuroleptika entfalten ihre spezifischen Wirkungen durch Interak-

tionen mit zahlreichen Zielstrukturen. Neben den Wirkungen auf die serotonerge, noradre-

nerge und dopaminerge Neurotransmission durch verschiedene Transporter und Rezeptoren 

interagieren sie ebenso mit muskarinischen Acetylcholin-Rezeptoren und dem Histamin H1 

Rezeptor (H1R). Infolgedessen zeichnen sich diese Arzneistoffe nicht nur durch ein spezifi-

sches Wirkprofil aus, sondern auch durch einige unerwünschte Wirkungen, die die Therapie 

erheblich beeinflussen können. Neben dem H1R gehören auch der Histamin H2 Rezeptor 

(H2R), der Histamin H3 Rezeptor (H3R) und der Histamin H4 Rezeptor (H4R) zur Superfamilie 

der G Protein-gekoppelten Rezeptoren und stellen wichtige pharmakologische Zielstrukturen 

dar. Alle vier Subtypen werden u.a. im zentralen Nervensystem exprimiert. Interaktionen 

von Antidepressiva und Neuroleptika mit Histamin-Rezeptoren betreffen daher nicht nur die 

Rezeptoren in der Körperperipherie, sondern auch im Gehirn, und könnten somit zur thera-

peutischen Wirkung ebenso wie zu unerwünschten Arzneimittelwirkungen der sehr lipophi-

len und damit gehirngängigen Arzneistoffe beitragen. 

Ziel dieser Arbeit war es, 34 Antidepressiva und Neuroleptika auf mögliche Interaktio-

nen mit den Histamin-Rezeptor-Subtypen zu untersuchen. Durch einen Vergleich der ge-

wonnenen Daten mit den jeweiligen therapeutischen Referenzbereichen aus der Literatur 

wurden Schlüsse auf eine Beteiligung an den erwünschten oder unerwünschten Arzneimit-

telwirkungen gezogen. Fast alle untersuchten Antidepressiva und Neuroleptika zeigten eine 

hohe Affinität zum H1R. Diese konnten mit den klinisch-relevanten sedierenden Eigenschaf-

ten der Substanzen in Beziehung gesetzt werden, eine Verbindung mit häufig auftretender 

Gewichtszunahme jedoch konnte nicht hergestellt werden. Einige Antidepressiva und Neu-

roleptika erreichen therapeutische Plasmakonzentrationen, die auch für eine Interaktion mit 

zentralen H2Rs ausreichend sind. Mögliche Ursachen für Diskrepanzen zwischen den 

gewonnenen Ergebnissen und Daten aus der Literatur von anderen Gewebepräparationen 

werden diskutiert. Die höchsten H2R-Affinitäten zeigten trizyklische Antidepressiva, allen 

voran Trimipramin. Dieses atypische Antidepressivum blockiert die Wiederaufnahme von 

Monoaminen trotz vergleichbarer klinischer Wirksamkeit nur unwesentlich, so dass eine 

Interaktion mit dem H2R ursächlich für die antidepressiven Eigenschaften sein könnte. Daher 

werden mögliche Wirkmechanismen einer H2R-Beteiligung an den therapeutischen Effekten 
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von Antidepressiva und Neuroleptika diskutiert. Obwohl der H3R an der Freisetzung der 

Neurotransmitter Serotonin, Noradrenalin und Dopamin beteiligt ist und durch 

Beeinflussung der Monoaminkonzentrationen daher eine Rolle in der Therapie von 

psychiatrischen Erkrankungen spielen könnte, erreichte keine der untersuchten 

Verbindungen im Blut Konzentrationen, die im Vergleich mit den jeweiligen Affinitäten 

ausreichend wäre, um einen klinische Wirkung über diesen Rezeptor zu vermitteln. Ein ganz 

ähnliches Verhalten zeigten die Substanzen am H4R, wo nur für das atypische Neuroleptikum 

Clozapin eine therapeutisch relevante Interaktionsmöglichkeit besteht. Aufgrund des 

heterogenen pharmakologischen Profils der Wirksubstanzen kann aber keine Verbindung 

des H4R mit Agranulozytose, einer potenziell tödlichen Nebenwirkung, hergestellt werden. 

Trotz der Homologie der Histamin-Rezeptor-Subtypen, besonders von H3R und H4R, 

weisen einige der Verbindungen erhebliche pharmakologische Unterschiede an den ver-

schiedenen Rezeptor-Subtypen auf. Für die interessantesten Substanzen wurden an H1R, H2R 

und H4R Rezeptormodelle in aktivem oder inaktivem Zustand erstellt und genauer unter-

sucht. Darauf basierend werden Struktur-Wirkungsbeziehungen entwickelt und diskutiert. 

Der Vergleich der experimentell gewonnen Ergebnisse mit den Resultaten des Similarity 

Ensemble Approach ergab nur eine ungenügende Vorhersagekraft von neuen Zielstrukturen 

durch diese auf Statistiken basierende Methode der Chemoinformatik. 

Zusammenfassend gewährt diese Dissertation neue Einblicke in die molekularen 

Interaktionsmöglichkeiten zahlreicher Antidepressiva und Neuroleptika mit Histamin-Rezep-

toren. Die gewonnenen pharmakologischen Daten für alle Histamin-Rezeptor-Subtypen kön-

nen darin Verwendung finden, Nebenwirkungen und Arzneimittelwechselwirkungen zu 

verringern sowie neue optimierte und selektive Wirkstoffe mit einer reduzierten Anzahl an 

Interaktionsmöglichkeiten zu entwickeln. Ferner trägt diese Arbeit zur weiteren Aufklärung 

der Rolle des zerebralen H2R in der Pathophysiologie und Therapie von psychiatrischen 

Erkrankungen bei. 
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