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”Phenol-water1≤n≤3 revisited: An ab initio study on the photophysics
of these clusters at the level of coupled cluster response theory”

Journal of Chemical Physics, 127, 174304 (2007), doi: 10.1063/1.2794037

Ausgewählt für: Virtual Journal of Biological Physics Research, 14/10 (2007).

Kapitel 3
D. Schemmel and M. Schütz
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1 General introduction

1.1 Preface

Starting from the time of the ancient Indians and Greeks we know about the
concept that the microscopic world around us is built of smallest units. Two and
a half millenia later there is no doubt that the matter around us is composed of
distinct molecules and macromolecular structures which themselves are consisting
of nuclei and electrons. This gluing of the atoms to extended structures is due
to the formation of chemical bonds, i.e. a stable equilibrium of the electrons and
nuclei in their mutual electric fields.

However, regarding the macroscopic behavior of gases and liquids, even our daily
experiences tell us that also attractive and repulsive forces between the molecules
have to be present, since the world around us can neither be arbitrarily compressed
nor evaporated. Starting from the nineteenth century this topic has been addressed
by science. Whereas the ideal gas law assumes non interacting and non colliding
molecules, starting with van der Waals and his famous corrections to this equation,
the field of intermolecular interactions has been founded.

Figure 1.1: Exemplary intermolecular potential function.
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1 General introduction

A typical intermolecular potential curve can be estimated as seen in figure 1.1.
The steep incline at small distances shows that the volumes of the interacting
molecules refuse to penetrate each other. At very large distances, the interaction
is zero, being conform with the good applicability of the ideal gas law on describing
gases of low density. At intermediate distances, attractive forces and a minimum
can be assumed, reflecting the observation that a gas can condense into a liquid,
because the molecules tend to glue to each other. Usually the depth of the mini-
mum is shallower than that of a chemical bond, since a phase transition can take
place without altering the bonding patterns in the molecules. Whereas the bind-
ing energy of the weakest covalent bonds start at approximately 50 kcal/mol, the
intermolecular binding energies lie in the range of a few kcal/mol only.

Interestingly, the presence of intermolecular forces eminently influences our view
on our environment. They are not only crucial for the description of the fluids, but
also influence chemical reactions in solvents. The vast field of biochemistry mainly
describes systems and reactions in aqueous solution. The macroscopic properties
of elastic polymers and the folding of proteins are all governed by intermolecular
forces. Furthermore the biological phenomena such as the climbing abilities of the
Tokay geckos rely on weak intermolecular interactions [1]. There are numerous
further examples.

From the physical point of view, the intermolecular interactions can be divided
into meaningful parts [2–4]. This can be seen when we try to apply Rayleigh-
Schrödinger perturbation theory on two non interacting subsystems. The per-
turbation in this case is the electron repulsion between the subsystems and the
Hamiltonian is the sum of the Hamiltonians of the two subsystems. This is known
as the polarization theory. Consequently the wavefunction (in the zeroth order of
perturbation) is the product of the wavefunctions of the subsystems. In the first or-
der, one obtains the electrostatic energy. This can be interpreted as the interaction
energy of static charge distributions of the subsystems. In the second order, the
polarization energy and the dispersion energy are obtained. The polarization in-
teraction means the influence of the field of one subsystem on the other subsystem.
This type of interaction always is attractive. The term dispersion describes the
electron correlation between the subsystems, which leads to mutually induced den-
sity fluctuations in each subsystem. All these contributions can be approximated
at large separations as power laws of distance with negative exponents.

It turns out that the polarization theory suffers from severe drawbacks. Not
only the perturbation series diverges in higher orders, also the theory is qualita-
tively wrong at intermediate and short distances. The reason for this is, that the
wavefunction of the system is antisymmetric under the exchange of two electron
belonging only to the same subsystem. The approach however assumes a product
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1.2 Experiment

wavefunction, so that the electron exchange between the subsystems is symmetri-
cal, which is incorrect for fermions such as electrons. To remedy this problem, the
antisymmetry between the subsystems needs to be enforced. Among other theo-
ries formulated, the field of the symmetry-adapted perturbation theories (SAPT)
is rather successful. Here the antisymmetry between the subsystems is corrected a
posteriori [2, 5–8]. A plethora of different approaches exist, but generally a set of
additional correction terms to terms already known from the polarization theory
are obtained. In the first order the exchange-repulsion energy describes on the
one hand the attractive tunneling of electrons between the subsystems, but on the
other hand the repulsive situation due to the Pauli principle, when the electrons of
the same spin but from different subsystems attempt to occupy the same space. In
the second order the corrections differ from theory to theory, but can generally be
seen as the exchange corrections to polarization and dispersion. These short-range
contributions to the energy vanish exponentially, and thus can be neglected at
large distances. Still, the convergence problem remains unsolved. The SAPT can
be implemented as a double perturbation theory, using inter- and intramonomer
perturbations [9]. Modern implementations up to second order, such as DF-DFT-
SAPT [10] or local EOM-CCSD [11] offer an accuracy for the interaction energy
similar to the ”golden standard” of quantum chemistry, CCSD(T), or beyond.

Also noteworthy is the fact, that the interaction energy cannot only be written
as a sum of two-body interactions in terms of atoms or molecules, but also involves
higher-body contributions. Thus it is commonly expanded in the many-body ex-
pansion [12, 13],

Eint =
∑

i>j

Eij

︸ ︷︷ ︸

E2body

+
∑

i>j>k

Eijk

︸ ︷︷ ︸

E3body

+
∑

i>j>k>l

Eijkl

︸ ︷︷ ︸

E4body

+ · · · (1.1)

Three-body and higher terms often cannot be neglected, thus the induction energy
inherently is a many-body effect and also the dispersion energy contains many-body
effects. An example for that is the well-known Axilrod-Teller-Muto tripole-dipole
dispersion [14, 15].

1.2 Experiment

From a molecular point of view, molecular clusters, i. e. isolated aggregates of
one to many molecules (monomers) play a prominent role as test systems in the
experimental investigation of intermolecular interactions [16–18]. In the absence of
perturbations arising from environmental influences, solvent effects and collisions,
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1 General introduction

structure and binding of the clusters is solely determined by their intermolecular
behavior.

Experimentally, molecular clusters are produced in supersonic beam expansions.
Here the monomer substances are mixed with a seed gas and are expanded under
pressure (continuously or pulsed) through a tiny nozzle into high vacuum. The
evaporating seed gas cools the produced clusters down to very low temperatures
of approximately 15 to 30 Kelvin (vibrational temperature). By varying the ex-
perimental parameters, such as pulse length, mixing ratios or pressure, the cluster
formation can be influenced.

The beam can then be characterized by various spectroscopic methods [19]. Di-
rect indicators for intermolecular forces within the clusters are the intermolecular
vibrational modes, which lie in the far infrared region. With far infrared vibra-
tional rotational-tunneling spectroscopy (FIR-VRT) [20, 21] it is possible to mea-
sure these transitions directly and with a high resolution. But transitions in the far
infrared region are generally not easily accessible. Their measurement is possible
indirectly via electronically excited states, or via the intramolecular vibrational
modes of the monomers. By using resonant two-photon ionization (R2PI) it is pos-
sible to measure intermolecular modes size selectively. This can also be combined
with laser induced dispersed fluorescence emission and hole burning techniques.
Via mass analyzed threshold ionization (MATI) spectroscopy it is in some cases
also possible to determine binding energies with high precision [22]. All these
methods have in common, that an ultraviolet chromophore has to be contained in
the cluster system, which acts as an antenna and makes the electronically excited
states due to its high transition strength accessible. Therefore these methods are
limited to clusters with at least one aromatic molecule.

Another way of characterization is the infrared cluster spectroscopy. Here the
intramolecular modes are regarded as indicators for the acting intermolecular forces
in the clusters [23–25]. Especially for H bonded clusters the OH or NH stretch
modes are meaningful, because the spectral shift of these bands with respect to
the signal in the lone monomer directly allows conclusions on the cluster topology
[26–28] and structure. Since no chromophore is needed, these measurements can
be applied to a larger variety of systems, e.g. homogenous solvent clusters.

In many cases the obtained spectra are complicated, so that without a comple-
mentary analysis by theoretical methods their interpretation can only be done on
a speculative footing. Fortunately the clusters are not extended systems and thus
in the scope of high-level ab initio methods.
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1.3 Theory

1.3 Theory

1.3.1 Synopsis

Ab initio electronic structure theory describes chemical systems by solving the
stationary form of the Schrödinger’s equation ”from the beginning”, i.e. without
the usage of empirical data.

Ĥψ = Eψ (1.2)

A hierarchical system of approximations allows accuracy up to the limit of available
computational resources (also see figure 1.2). Therefore, the ongoing development
of computational resources and algorithms gradually lifts the limitations on accu-
racy and system size, hence enabling the application of these methods to a wider
range of systems. In contrast to the empirical description of chemistry, theory
offers a systematic and insightful access to interprete existing data, but also the
ability to generate interesting challenges for experimental investigations.

The Born-Oppenheimer approximation [29] is the most basic and almost univer-
sally used simplification. It practically defines the chemists’ picture of a molecule
and enables drawing structural formulae. It adiabatically decouples the motion of
the electrons from the movements of the nuclei. The electronic wavefunction then
depends parametrically on the spatial coordinates of the nuclei. Then, solving the
electronic Schrödinger equation gives the electronic energy for a certain molecular
geometry. The electronic energies of all geometries possible are represented by the
potential energy surface (PES), which is a function of that space. Using the PES
as the potential energy, the remaining nuclear Schrödinger equation can be solved
to investigate e.g. vibrations or reactions. At near-degeneracies or crossings of elec-
tronic states the approximation fails, because the non-adiabatic coupling becomes
non zero.

Relativistic effects are of importance for heavy elements mainly. For light ele-
ments up to the second period they are very small and usually neglected. These
effects can be partially accounted for by substituting the heavy nuclei and their in-
ner electrons by pseudopotentials [30]. Nevertheless, to describe relativistic effects
directly, different theoretical approaches need to be employed [31].

For solving the electronic Schrödinger equation numerically, a finite basis set is
used for representing the wavefunction. Usually, this basis consists of Gaussian
type functions, which offer computational advantages by virtue of the Gaussian
product theorem. Gaussian functions as a basis have the drawback, that a linear
combination of many functions is required to properly describe the Coulomb hole,
i.e. the situation when two electrons of opposite spins come spatially close. Hence,
the truncation of the full infinite basis is an approximation. Since the computa-
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1 General introduction

Figure 1.2: Schematic overview of the three axes of hierarchical approximations
in the ab initio electron structure theory. Since the computational re-
sources are limited, an appropriate level of accuracy has to be chosen.
The choices are the truncation of the basis set, treating the electron cor-
relation approximately and accounting for relativistic effects by using
different hamilton operators.

tional problem sizes of the methods used scale with a power law to the basis set size,
the selection of the actual basis set is therefore a compromise. There are hierarchi-
cal series of basis sets, such as the correlation-consistent sets of Dunning [32–34],
which allow systematic convergency towards the basis set limit and furthermore
allow the usage of extrapolation techniques [35].

The basic step in solving the Schrödinger equation for the electrons, alias their
many-body problem, is the self-consistent field procedure. Here the approximation
is that the electrons are treated as if they move in the average field of themselves
(excluding their own respective field), i.e. they are uncorrelated. The wavefunction
is a product of molecular orbitals (MOs), antisymmetrized by the Slater deter-
minant approach. MOs are a linear combination of atomic orbitals (AOs) with
variationally determined coefficients. Usually a single Slater determinant is used
in the first place, which is known as Hartree-Fock (HF) [36, 37]. To treat the
correlation of the electrons on top of the HF wavefunction, a linear combination
of the obtained non excited determinant and all possible excited determinant is
required. This is known as full configuration interaction (Full CI), and practically
only solvable for the smallest systems. In order to approximatively treat the miss-
ing correlation a wide range of methods exist which truncate this expansion. The
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1.3 Theory

restriction to certain determinants in terms of excitation classes is known as CI
with single excitations (CIS), single and double excitations (CISD), . . . A more
clever way of addressing the expansion coefficients by an exponential approach
is known as coupled cluster (vide infra) [38]. Also perturbation theoretical ap-
proaches exist. A prominent example is the Møller-Plesset perturbation theory in
second order (MP2) [39]. All methods have in common that the computational
complexity increases by their accuracy, so again here a tradeoff has to be done. A
remedy to this problem is to use local methods, which exploit the spatially short-
ranged nature of the correlation and try to achieve low-order scaling behavior with
respect to the system size (vide infra).

1.3.2 Supermolecule method

Besides the perturbative approach by means of the above discussed SAPT, another
prominent way to calculate the interaction between molecules is the so-called su-
permolecule ansatz. Basically, the interaction energy is calculated as the difference
between the total energies of the complete cluster and the single monomers,

Eint = Ecluster −
∑

i

Emonomer
i . (1.3)

The so obtained interaction energy can be further decomposed into the many-
body terms by a gradual, systematic subtraction of the interaction energies of
the contained subclusters [13]. So the three-body interaction energy of a trimer
is obtained by subtracting the interaction energies of the three possible dimer
subclusters from the total interaction energy.

This approach is problematic, in the sense that the interaction energies are usu-
ally very small as compared to the total energies. Therefore, the accuracy of the
calculations needs to be high. Sufficiently sized basis sets as well as post-HF meth-
ods to describe the dispersion are hence mandatory. Furthermore each calculation
has to be done not only with the same basis set quality but also in exactly the same
basis set size. Thus, dummy functions on ghost atoms which substitute the lacking
other monomers, are used in the monomer or subcluster calculations. The reason
for this is the correction of the basis set superposition error (BSSE). If no ghost
centers were used, the tails of the lacking basis set functions positioned on these
centers could not improve the wavefunction of monomers, as they do in the full
cluster calculation. This procedure is known as the counterpoise correction (CPC)
[40]. The usage of local correlation methods is beneficial in this context, since they
avoid a large fraction of the BSSE of the correlation energy by construction [41].
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1 General introduction

The interaction energy is just a theoretical concept. The binding energy, ob-
tained as the energy difference of the cluster and the monomers in infinite distance,
also includes relaxational effects as well as the vibrational zero-point energy dif-
ference. The relaxation energy is calculated as the difference of the monomer in
the cluster geometry and its relaxed geometry. Usually only the monomer basis
without ghost functions is used, to avoid linear dependency problems of the basis.
Obtaining the zero-point energy within the harmonic approximation is problematic
in clusters, because the important intermolecular vibrational modes typically con-
tain strong anharmonicity. The usage of methods to correct of the anharmonicity,
such as multi-dimensional vibrational SCF (VSCF) or CI (VCI) [42–45], are often
computationally too costly.

For the calculations of the single-point energies in this thesis the Møller-Plesset
perturbation theory in second order and the time-dependent coupled cluster linear
response theory based on the CC2 model [46, 47] and their spin component scaled
(SCS) [48, 49] versions are prominently used. A brief overview is given in the
following sections.

1.3.3 Coupled cluster model

In contrast to to the CI expansion, which is a linear combination of the reference
wavefunction |0〉 and its i-fold excited configuration state functions (CSFs), |µi〉,
the coupled cluster wavefunction is based on an exponential ansatz [38],

|CC〉 = exp(T̂ )|0〉 = exp(
∑

µ

tµτ̂µ)|0〉. (1.4)

Here the cluster amplitudes tµ are the equivalents of CI coefficients. The operator
τ̂µ is the plain excitation operator, which generates the excited configurations.
Similar to CI, the coupled cluster expansion can be truncated in terms of excitation
classes. This is done by truncating the cluster operator T̂ = T̂1 + T̂2 + . . . (after
T̂1 for CCS, after T̂2 for CCSD, . . . ). The advantage of this ansatz is twofold: On
one hand, the exponential ansatz guarantees a multiplicative separability, which
leads to size-consistent energies. On the other hand, it can be seen by expressing
the exponential cluster operator in a Taylor expansion, that not only the sole T̂µ

describes the excitation µ, but also product terms of the same total excitation class
µ contribute. In other words, coupled cluster achieves a more efficient mapping of
the information with the same amount of numbers.
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1.3 Theory

The CC problem is then to solve the amplitude equation system 1.6 and the
energy equation 1.5,

〈0| exp(−T̂ )Ĥ exp(T̂ )|0〉 = 〈0|Ĥ exp(T̂ )|0〉 = ECC, (1.5)

〈µ| exp(−T̂ )Ĥ exp(T̂ )|0〉 = 0. (1.6)

The use of the projected equations is beneficial, because the variational approach
to the amplitudes requires the solution of a nonlinear equation system with the
full set of full CI determinants and high-order products of the amplitudes. The
formulae above are the linked coupled cluster equations, which use the similarity-
transformed Hamiltonian H̄ = exp(−T )Ĥ exp(T ). It can be shown that these
are equivalent to the unlinked equations, which omit the exp(−T ). By using the
Baker-Campbell-Hausdorff expansion,

exp(−T̂ )Ĥ exp(T̂ ) = Ĥ + [Ĥ, T̂ ] +
1

2!
[[Ĥ, T̂ ], T̂ ] +

1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ] + . . . , (1.7)

polynomial commutator expressions are obtained. These can be written in terms
of amplitudes and integrals by using diagrammatic techniques [50, 51], which can
be then evaluated numerically.

1.3.4 MP2 and CC2

The Møller-Plesset perturbation theory [39] bases on the Fock operator F̂ and
fluctuation potential as the perturbation. The sum of the energies zeroth and
first order energy are equivalent to the Hartree-Fock energy. In coupled cluster
formulation the amplitudes of the second order (MP2) can be obtained by equation
1.9 and the energy from equation 1.8.

〈0|Ĥ + [Ĥ, T̂2]|0〉 = EMP2 (1.8)

〈µ2|[F̂ , T̂2] + Ĥ|0〉 = 0, (1.9)

The CC2 method [46, 47] is very similar to MP2. Yet it treats the single exci-
tations in zeroth order. With the T1-similarity-transformed Hamilton operator,
H̄ = exp(−T̂1)Ĥ exp(T̂1), the energy equation,

〈0|H̄ + [H̄, T̂2]|0〉 = ECC2, (1.10)

and the amplitude equations,

〈µ1|H̄ + [H̄, T̂2]|0〉 = 0, (1.11)

〈µ2|[F̂ , T̂2] + H̄|0〉 = 0, (1.12)
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1 General introduction

can be derived. It can be shown that the MP2 case is obtained by setting the
singles amplitudes to zero. The accuracy of CC2 is comparable to MP2, since the
inclusion of the singles has only little effect on the ground state energy.

The real advantage of including the singles in zeroth order is, that they de-
scribe an approximal orbital relaxation, which is particularly important when
ground and excited state properties are treated via the response theory. Thus,
the excitation energies and transition moments can be identified as the poles and
residuals of the CC2 linear response function. This function is based on the time-
dependent CC2 Lagrangian, which is the time-dependent quasi energy with the
time-dependent CC2 amplitude equations in the presence of external perturbations
as additional constraints and therefore includes corrections for the non-fulfillment
of the Hellmann-Feynman theorem. The poles are correct up to second order.

1.3.5 Spin component scaled methods

The spin component scaling introduces two empirical determined scaling factors.
So the spin component scaled methods can be considered as semiempirical methods.
These scaling factors pσσ′ are 1

3
for even spin combinations, and 6

5
for uneven spin

combinations. They are introduced in the respective energy equations of MP2 (see
equation 1.8, H̃ ⇒ Ĥ) and CC2 (see equation 1.10, H̃ ⇒ H̄),

〈0|H̃ +
∑

σσ′

pσσ′ [H̃, T̂ σσ′

2 ]|0〉 = ESCS, (1.13)

and additionally in the singles amplitude equation in the case of CC2 (see equation
1.11),

〈µ1|H̄ +
∑

σσ′

pσσ′ [H̄, T̂ σσ′

2 ]|0〉 = 0. (1.14)

This numerical trick is attractive, since with virtually no higher computational
costs, the systematic errors of the underlying methods are partially damped [48, 49].
SCS-MP2 describes, in contrast to MP2, π stacking interactions sufficiently well.
In the case of H bonds the situation is inverse and MP2 is superior to SCS-MP2
[52]. Also other choices of the scaling factors are used, so employs e.g. the scaled
opposite spin (SOS) approach [53] the value 1.3 for uneven spin combinations,
but sets the other scaling factor to zero. This leads to improved scaling in the
algorithm under usage of the Laplace transform [54] in the implementation.
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1.3 Theory

1.3.6 Local approximation

The correlation is a short-range effect. E.g. the dispersion, which is a pure corre-
lation effect, decays by the distance to the minus sixth. Since canonical orbitals
tend to be delocalized over the whole system, their usage is not beneficial from a
computational point of view. A solution to this problem is an unitary transform
of the canonical orbitals into spatially localized orbitals. The effect is, that the
integral and amplitude matrices in MO basis become sparse in the local basis. This
can be exploited numerically [55–61].

There are multiple ways to obtain localized orbitals from canonical ones. Promi-
nently used is the procedure by Pipek and Mezey [62]. Here the Mulliken charge is
tried to be maximized on an atom by a localized MO. According to the approach
of Pulay [56], the occupied local orbitals (LMOs) still have to be orthogonal with
respect to each other. The virtual space then is spanned by projected AOs (PAOs),
which are obtained by projecting out the LMOs from the AO space.

Based on spatial criteria, e.g. atomar distances in the system, the correlation
problem can be truncated. So restricted LMO tuple lists can be specified, from
which distinct excitation subspaces of PAOs (domains) are defined. The space of
the problem which is not included in these lists and domains either is completely
neglected or treated computationally cheaper. This so-called local approximation
allows up to a linear scaling behavior of the computational costs with respect to
the system size.

However, the price to pay are more difficult algorithms to be implemented. The
Fock matrix is not diagonal anymore in case of local orbitals, the PAOs are no
longer orthogonal and the virtual space is overcomplete.

1.3.7 Density fitting approximation

The integrals can be seen as a four dimensional object. By using the density fitting
(DF) approximation [63–67] it is decomposed to objects of smaller dimensionality.
This is done in expressing the orbital product in the integral as an orbital density,

(ai|bj) =

∫
φa(r1)φi(r1)φb(r2)φj(r2)

r12

dr1dr2 =

∫
ρai(r1)ρbj(r2)

r12

dr1dr2. (1.15)

Then, the orbital density is fitted to an auxiliary basis set ΞA,

ρai(r) ≈ ρ̄ai(r) =
∑

A

dai
A ΞA(r). (1.16)

13



1 General introduction

The fitting coefficients dai
A can be determined by minimizing for instance the given

error functional,

f(dai
A ) =

∫

(ρai(r1) − ρ̄ai(r1))r
−1
12 (ρbj(r2) − ρ̄bj(r2))dr1dr2, (1.17)

which is equivalent of solving the set of linear equations,

∑

B

(A|B)dai
B = (ai|A). (1.18)

Then, the integrals can be approximated as

(ai|bj) ≈
∑

A

dai
A (A|bj) +

∑

B

(ai|B)dbj
B +

∑

AB

dai
A (A|B)dbj

B , (1.19)

which is known as robust fitting. By selecting the error functional based on the
coulomb metric as it is shown above in equation 1.17, the fitting is correct up to
second order and the integrals can be approximated to two and three dimensional
quantities,

(ai|bj) ≈
∑

A

dai
A (A|bj) =

∑

AB

(ai|A)(A|B)−1(B|bj). (1.20)

The use of the DF approximation does not reduce the scaling in MP2 and CC2,
but significantly reduces the prefactor of the scaling law. On the other hand the
loss in accuracy almost is negligible.

1.4 Overview

This thesis is structured in the following way: In chapter 2 the phenol-water1≤n≤3

clusters are investigated in their ground and lower excited states, and are compared
to the existing experimental data. Subsequently in chapter 3 the related 2-napthol-
water2 systems are explored in a similar way. Then, in chapter 4, the low lying
minima of the aniline di- and trimer cluster potential energy surfaces are located,
in order to set up the stage for the investigation of the important structures in the
excited states within chapter 5. Finally, the subject of chapter 6 is the structure
and binding of adduct compounds of tantalum chlorides and phosphorus sulfide
cage molecules.
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2 Phenol-water1≤n≤3 clusters

2.1 Introduction

Phenol (Ph) as the simplest aryl alcohol serves as a prototype molecule for struc-
turally related subunits of larger aromatic biomolecules (e.g., tyrosine residues in
proteins). Therefore the photophysics of this molecule is of particular interest. Fur-
thermore, clusters of phenol with simple solvent molecules, especially with water,
can be used to study hydrogen bonding, solvation effects, and their influence on the
photophysical behavior of the solute, with the phenol again mimicking structurally
related chromophores of larger biomolecules. Phenol-water clusters therefore have
been extensively investigated by many groups during the last two decades, both
experimentally and theoretically. In the context of this work we want to focus
on the Ph(H2O)n clusters with 1 ≤ n ≤ 3. Mass-selective absorption spectra ob-
tained by one or two-color resonance enhanced multiphoton ionization have been
measured by several groups [68–78] in the vicinity of the electronic origin of Ph. It
turns out that the absorption spectrum of the n = 2 cluster is strikingly different
from those obtained for the n = 1, n = 3, and n = 4 clusters. While on the one
hand for all the latter rather narrow line spectra with intense origins have been
obtained, the n = 2 cluster, on the other hand, exhibits only a weak, broad, and
congested band structure (see Fig. 2.1). Whereas for n = 1 and n = 3 it was read-
ily possible to measure well resolved dispersed fluorescence emission [74, 76, 77] or
ion dip spectra [73], this has not been possible for n = 2 due to the low quantum
yield and anomalously short lifetime of the S1 state. Jacoby et al. postulated in
Ref. 77 that a linear geometry might become more stable in the excited state than
the cyclic structure corresponding to the ground state vide infra. Due to the high
vibrational mode density provided by this linear geometry at the Franck-Condon
point, strong vibrational coupling between the modes of the cyclic and the linear
structure might occur, explaining the broadening of the band structure. In the
same work the authors also stated that the n = 2 cluster may be less stable in
the excited state than in the ground state. Yet since the n = 2 features are red-
shifted with respect to the Ph origin, this statement appears to be in conflict with
experimental evidence.
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2 Phenol-water1≤n≤3 clusters

Figure 2.1: Mass specific absorption spectra of the Ph(H2O)n, 1 ≤ n ≤ 3, clusters
in the vicinity of the electronic origin of Ph, obtained with two-color
resonant two photon ionization spectroscopy in a molecular beam ex-
periment. For details see Refs. 74 and 76.

Ab initio electronic structure calculations on these clusters in the electronic
ground state S0 (primarily at the level of Hartree-Fock or second-order Møller-
Plesset perturbation theory) have been performed by several groups [74, 76, 77, 79–
85], in order to elucidate low-energy geometries and corresponding (harmonic) vi-
brational frequencies. Furthermore, diffusion quantum Monte Carlo studies inves-
tigating the vibrational ground states on the S0 surfaces of these clusters are also
available in the literature [86, 87]. The equilibrium geometry of the binary complex
corresponds to a translinear hydrogen bonding arrangement reminiscent of water
dimer, with the H2O plane perpendicular to the phenol plane. For the Ph(H2O)2

cluster three cyclic low-energy geometries exist, usually denoted as (Udu), (Uud),
and (Udd), indicating, e.g., for the first minimum that the phenyl ring is in the
Up, the first free hydrogen in the down, and the second free hydrogen again in the
up position with respect to the plane given by the two hydrogen bonds involved
(donor-acceptor indicates the direction). The (Udu) is the most stable conformer
of Ph(H2O)2 on the S0 surface. The equilibrium geometry of the Ph(H2O)3 cluster
is also cyclic and can be described according to the notation above as (Udud).

Only a few calculations on the excited states of these clusters have been pub-
lished so far. Energies, geometries, and (harmonic) vibrations of the S1(π

∗ ← π)
state have been computed by Fang and Liu using the configuration interaction
singles (CIS) and complete active space self-consistent field (CASSCF) methods
[83, 84]. The equilibrium geometries on the S1(π

∗ ← π) surface turned out to be
quite similar to those on the S0 surface, i.e., a translinear (TL) hydrogen bond
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2.1 Introduction

and cyclic geometries were obtained for Ph(H2O) and Ph(H2O)2, respectively. In
particular, the linear Ph(H2O)2 geometry postulated by Jacoby et al. turned out
to lie 5.3 kcal/mol (CASSCF) and 9.2 kcal/mol (single-point CASPT2) above the
cyclic minimum-energy geometry on the S1(π

∗ ← π) surface. It has to be stressed
at this point that neither CIS nor CASSCF (without subsequent treatment of dy-
namic correlation) is a reliable method for excited-state calculations, yet analytic
energy gradients have not been available for other methods at that time. Re-
cently, Sobolewski et al. explored the S1(π

∗ ← π) and S2(σ
∗ ← π) surfaces of

Ph, Ph(H2O), and Ph(H2O)3 (enforcing Cs symmetry) in order to elucidate the
mechanism of photoinduced electron and proton transfer in these systems [88, 89].
Geometry optimizations were performed again at the level of CASSCF with ad-
ditional single-point energy calculations at the CASPT2 (perturbation theory of
second order using a CASSCF reference wave function) level. A conical intersection
(CI) between these two surfaces was found, which is responsible for predissociation
of the S1(π

∗ ← π) and subsequent concerted electron- and protontransfer reactions
from the chromophore to the solvent molecules. More recently, the authors also
performed quantum-wave-packet dynamics for the case of phenol in order to get a
more detailed picture of this predissociation of the S1(π

∗ ← π) state. In the light
of these results a connection between the observed congested band structure of the
absorption spectrum and the anomalously short lifetime of Ph(H2O)2, on the one
hand, and the S1(π

∗ ← π) / S2(σ
∗ ← π) conical intersection, on the other hand,

appears to be plausible.

In this work we have explored the S1(π
∗ ← π) surface and its conical intersection

with S2(σ
∗ ← π) at the level of coupled cluster response theory employing the CC2

model [46]. To the best of our knowledge these are the first excited-state geometry
optimizations for these systems performed at a theoretical level which includes
dynamical electron correlation effects. The Ph(H2O)2 minimum-energy geometries
so obtained are qualitatively different from those reported by Fang and Liu at the
CASSCF level: Only one stable cyclic ring structure (similar to the one in the S0

state) could be located, which lies about 3 kcal/mol above the global S1(π
∗ ← π)

minimum. Instead, two distinct conformers were found with the second water
molecule acting as a H donor to the aromatic ring system (one of these geometries
constitutes the global minimum). Apparently, the oxygen atom and the π-ring
system of phenol switch role in acting as H acceptors on going from the S0 to the
S1(π

∗ ← π) state. For n = 3 a stable cycle geometry similar to the one obtained for
the S0 state was found, yet energetically lower-lying minima featuring bonding to
the π-ring system were also located. Additional CASPT2 geometry optimizations,
performed for n = 2, confirm the existence of these global minimum structures.
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2 Phenol-water1≤n≤3 clusters

2.2 Computational Methods

The minimum-energy geometries on the S0 and the S1(π
∗ ← π) surfaces of Ph and

the Ph(H2O)n, 1 ≤ n ≤ 3, clusters were optimized by applying time-dependent
coupled cluster response theory at the level of the CC2 model. The analytic
CC2 energy gradient implemented by Hättig and Köhn in the TURBOMOLE program
package [90, 91] was used for that purpose. The minimum-energy geometries on
the conical intersection seam between the S1(π

∗ ← π) and the S2(σ
∗ ← π) states

were calculated by adopting the scheme proposed by Ragazos et al. [92]: The
gradient g used in the optimization is defined as

g = P∇E2 +
2|E2 − E1|

|g21|
g21, (2.1)

where E2 and E1 are the energies of the S2(σ
∗ ← π and the S1(π

∗ ← π) states,
respectively, g21 is the difference gradient vector g21 = ∇E2 − ∇E1, and P is a
projection operator projecting out the one-dimensional vector space given by the
direction of g21, i.e., P = (1− |g21〉〈g21|). Here, P deviates from the projector of
Ref. 92 insofar that the interstate coupling vector, which presently is not available
for CC2, has been neglected, assuming that it is small for the present two states,
which are rather different in their character.

One should mention at this point that due to the non-Hermitian character of
the coupled cluster ansatz, calculations on points on the conical intersection seam
are in general not unproblematic (for a recent discussion see Ref. 93). However, in
the particular case of the S1(π

∗ ← π) and S2(σ
∗ ← π) intersection of phenol and

its water clusters these problems turned out to be rather small. The maximum
imaginary component (right at the conical intersection) was less than 0.0004 eV,
i.e., much less than in the examples presented in Ref. 93.

Additional single-point energies at the stationary points of the ground- and
excited-state surfaces have been calculated within bigger atomic orbital (AO) basis
sets (vide infra) by using both canonical and local CC2 linear response theory [94,
95]. The local calculations, which by construction avoid the basis set superposition
error (BSSE) to a large extent [41], were performed with our local CC2 response
program [94, 95] recently implemented in the MOLPRO [96] program package to
have a means of comparison to the counterpoise (CP) corrected [40] canonical
excitation energies and interaction energies in the excited state. For the local
calculations, the Pipek-Mezey orbital localization was employed. The pair lists
remained untruncated. For the ground state amplitudes, the pair domains were
constructed from full monomer orbital domains. Redundancies in the pair domains
were specified at large intermonomer distances, which is the proper prescription
to avoid BSSE, as discussed in Ref. 41. Domains for the amplitude responses
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2.3 Results and Discussion

were determined according to the scheme proposed in Ref. 94, using a criterion of
κe = 0.995 to determine orbitals important for the related excited state.

In order to verify the stability of the new S1(π
∗ ← π) minimum-energy geome-

tries of the Ph(H2O)2 cluster predicted by the CC2 response theory, which are
markedly different from related geometries on the S0 surface and from minimum-
energy geometries predicted previously at the level of CASSCF for the S1(π

∗ ← π)
state (vide infra), additional geometry optimizations have been performed at the
level of CASPT2. The analytic energy gradient by Celani and Werner [97], im-
plemented recently in the MOLPRO package [96], has been used for that purpose.
An active space of six electrons in the six valence π orbitals of the phenyl ring
was chosen for the underlying CASSCF reference wave function. A level shift of
0.25 was used in the subsequent CASPT2 calculation due to the presence of an
intruder state. Test calculations without and with level shift performed within
the same active space for the clusters in the electronic ground state show that
the level shift causes an underestimation of the interaction energy by 10%–15%.
Since the CASPT2 gradient so far uses internal contraction only for the doubly
external configuration space, these geometry optimizations turned out to be very
time consuming.

As AO basis sets, the aug-cc-pVDZ sets [34, 98] together with the related fit-
ting basis sets optimized for DF-MP2 (Ref. 99) were employed in all geometry
optimizations. For the canonical and local CC2 single-point energy calculations at
the stationary points, the bigger aug-cc-pVTZ AOs with related fitting sets were
utilized.

2.3 Results and Discussion

Figure 2.1 shows the mass specific absorption spectra of the Ph(H2O)n, 1 ≤ n ≤ 3,
clusters in the vicinity of the electronic origin of Ph, measured by one of us 15
years ago (for experimental details, see Refs. 74 and 76). Evidently, both the n = 1
and n = 3 clusters exhibit narrow line spectra with the individual intermolecular
modes being clearly visible (for an interpretation of the spectra, again see Refs.
74 and 76). The spectrum of n = 3 shows apart from a very weak band at 186.9
cm−1 (intermolecular stretching mode) no further features higher 90 cm−1 above
the origin. Similar observations were made also for the deuterated species which
all indicates that efficient intramolecular vibrational redistribution (for the stretch
mode) and vibrational predissociation at rather small excess energies play a role
in the n = 3 cluster (see also discussion in Ref. 76).
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2 Phenol-water1≤n≤3 clusters

In contrast to n = 1 and n = 3, merely a broad, weak, and congested band
structure is observed for n = 2. This indicates, together with the short lifetime
and the low quantum yield, that no stable minimum, able to support the lowest
vibrationally excited modes or even the vibrational ground state, does exist on the
S1(π

∗ ← π) potential energy surface in the vicinity of the Franck-Condon point and
that efficient nonradiative channels are available at virtually no excess energies.

2.3.1 Minimum energy geometries

In Figs. 2.2–2.5 the CC2 minimum-energy geometries of the clusters on the S0

and the S1(π
∗ ← π) surfaces are displayed. A compilation of the counterpoise

corrected [40] interaction energies for the individual minima and other stationary
points on the S0 and the S1(π

∗ ← π) surfaces is given in Tables 2.1 and 2.2. For
n = 1 and n = 3 the global minima in the S0 state are represented by a translinear
and a cyclic (Udud) configuration, respectively. The lowest S0 energy minimum of
the n = 2 cluster corresponds to the (Udu) conformer with an interaction energy
of -16.59 kcal/mol (aug-cc-pVTZ basis), followed by the (Udd) and the (Uud)
conformers, 0.42 and 0.58 kcal/mol above (Udu), respectively. Such an energy
separation appears to be sufficient that at typical temperatures of a molecular
beam experiment (vibrational temperature around 50 K) the absorption spectrum
is dominated by the (Udu) conformer. This is also in agreement with the results
obtained by hole-burning experiments reported by Lipert and Colson in Ref. 72.

Figure 2.2: Ph(H2O) structure minima on the S1 surface.

Table 2.3 compiles the S1 ← S0 oscillator strength f (length gauge) and the
relative size of the component of the transition dipole vector µ perpendicular to the
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DF-CC2 CASPT2 DF-CC2∗ DF-CC2 DF-LCC2∗

aug-cc-pVDZ aug-cc-pVTZ

S0 S1 S0 S1 S0 S1 S0 S1 S0 S1

n = 1

TL,S0 -6.34 -3.61 -5.50 -2.64 -7.51 -6.97 -6.75 -6.20 -6.67 -6.13

TL,S1 -7.57 -6.33 -8.92 -8.10 -8.03

CI -3.10 -6.65 -5.57 -5.50

n = 2

(Udu),S0 -15.45 -11.59 -13.68 -9.93 -18.57 -16.99 -16.59 -15.00 -16.44 -14.81

hat -16.81 a -20.66 -18.30 -18.06

CI -11.03 -16.46 -14.34 -14.06

(Udd),S0 -15.03 -10.91 -13.38 -9.60 -18.00 -16.14 -16.17 -14.31 -16.01 -14.06

ortho(Udu) -17.85 -14.23 -21.69 -19.39 -19.32

ortho(Udd) -18.00 -14.45 -21.85 -19.55 -19.46

(Uud),S0 -14.85 -11.00 -13.17 -9.53 -17.79 -16.20 -16.01 -14.40 -15.86 -14.18

(Uud),S1 -15.35 -13.39 -18.37 -16.57 -16.35

n = 3

(Udud),S0 -25.98 -21.74 -31.02 -29.07 -28.01 -26.05 -27.68 -25.61

(Udud),S1 -26.16 -31.23 -28.25 -27.85

(Udud) CI -19.86 -26.84 -23.52 -23.12

a) Ph(H2O)2 hat collapses to ortho(Udd) on the CASPT2 S1 potential energy surface.

Table 2.1: Interaction energies in kcal/mol. All columns except those denoted by an asterisk contain counterpoise
corrected values.
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2 Phenol-water1≤n≤3 clusters

DF-CC2, S1

aug-cc-pVDZ aug-cc-pVTZ

n = 1

TL -7.57 -8.10

meta -2.67 -3.20

ortho -2.62 -3.11

hat -3.86 -4.43

hat’ -3.82 -4.38

n = 2

hat -16.81 -18.30

TS hat↔ortho(Udu) -16.36 -17.78

ortho(Udu) -17.85 -19.39

ortho(Udd) -18.00 -19.55

ortho(Uuu) -17.17 -18.71

ortho(Uud) -17.86 -19.40

TS ortho(Udu) -17.52 -19.08

↔ortho(Udd)

(Uud) -15.35 -16.57

n = 3

(Udud) -26.16 -28.25

hat -28.59 -31.13

meta(Uddu) -26.92 -29.19

meta(Uudu) -26.76 -29.08

ortho(Udud) -27.81 -30.22

ortho(Uudu) -27.07 -29.40

Table 2.2: Counterpoise corrected interaction energies in kcal/mol for different sta-
tionary points on the S1 surface.
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2.3 Results and Discussion

Figure 2.3: Ph(H2O)2 S1 (first row) and S0 (second row) minimum-energy
geometries.

phenyl-ring plane (with respect to the norm of µ for the individual S0 minimum-
energy geometries of n = 1, n = 2, and n = 3. Evidently, the perpendicular
component of µ increases from 0 to about 30% on going from n = 1 to n = 2
and n = 3, implying that also out-of-plane modes can couple with the S1 ← S0

excitation for n ≥ 2. In Table 2.4 the local and CP corrected canonical adiabatic
and 0–0 excitation energies are given for the excitations from the global S0 minima
to the relevant minima on the S1 surface (vide infra). The 0–0 excitation energies
are based on the harmonic zero-point energy correction calculated within the aug-
cc-pVDZ basis. The resulting CC2 values for the 0–0 excitations agree quite well
with the experiment with discrepancies of less than 0.1 eV. The CASPT2 results,
on the other hand, do not agree so well. Already the adiabatic excitation energies
are lower than the experimental values by about 0.3 eV, which presumably is being
caused by the level shift (see Section 2.2). Furthermore, we note in passing that
the local and the CP corrected canonical excitation energies deviate by less than
0.005 eV.

From Table 2.4 it is evident that the error in the excitation energies is very
systematic (the CC2/aug-cc-pVTZ 0–0 excitation energies are blueshifted by 0.06–

23



2 Phenol-water1≤n≤3 clusters

Figure 2.4: Manifold of Ph(H2O)2 ortho conformers with transition state structures
ortho(Udd)↔(Udu) and hat↔ortho(Udu).

0.07 eV relative to the experiment [73]). This implies that for the interaction
energies of the individual clusters, and even more so for the relative energies of
individual conformers of a given cluster size, the errors in the excitation energies
are virtually identical and cancel. For CC2 we expect a methodical error similar
to MP2 for ground state calculations, for which it is known that for hydrogen
bonded systems close to equilibrium geometries, interaction energies very similar
to CCSD(T) are obtained (see Ref. 100 and references therein). Of more concern
than the methodical error is the error related to the basis set size. For that
reason single-point calculations within the aug-cc-pVTZ basis set were performed
at the individual CC2/aug-cc-pVDZ stationary points. The remaining error in the
CC2/aug-cc-pVTZ interaction energies can be expected to be considerably smaller
than the difference between CC2/aug-cc-pVTZ and CC2/aug-cc-pVDZ interaction
energies.

Let us now turn to the stationary points on the S1(π
∗ ← π) surface. The global

minimum of the binary complex again is translinear, structures with the water
subunit acting as a donor to the π-ring system (see Fig. 2.2 and Table Table 2.2)
are much less stable. The structural discrepancy between the two translinear S0
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2.3 Results and Discussion

Figure 2.5: Ph(H2O)3 (Udud) S0 and S1 geometries (superimposed) and several
other minimum-energy geometries such as hat, meta, and ortho of
Ph(H2O)3.

and S1 geometries of n = 1 is small, the root-mean-square (rms) deviation in the
atomic positions (see Eq. (64) in Ref. 101) is only 0.06 Å. The primary effect of the
S1 ←S0 excitation on the n = 1 geometry manifests in an elongation of the C–C
distances within the phenyl ring (by about 0.03 Å, see Table 2.5), a shortening of
the C–O distance (≈ 0.02 Å), and a substantial shortening of the hydrogen bond
(≈ 0.08 Å), reflecting the enhanced acidity of Ph in the S1(π

∗ ← π) state. The
interaction energy increases by 1.35 kcal/mol due to excitation to the S1 state,
which corresponds to a shift of the origin relative to that of bare phenol by 472
cm−1 (experimentally observed: 354 cm−1)

For n = 3 a cyclic (Udud) structure, very similar to the global minimum of the
ground state, represents also a minimum on the 1(π

∗ ← π) surface (not the global
minimum though, vide infra). The rms deviations in the atomic positions between
the S0 and S1 (Udud) geometries are again small, i.e., 0.09 Å, with similar changes
in the phenyl ring, the C–O distance, and contractions of the hydrogen bonds as
obtained for n = 1. The interaction energy increases only slightly by 0.25 kcal/mol
on excitation to the S1 state.
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2 Phenol-water1≤n≤3 clusters

f µ⊥/|µ| f µ⊥/|µ|

aug-cc-pVDZ aug-cc-pVTZ

Ph(H2O) TL 0.0305 0.21% 0.0287 0.21%

Ph(H2O)2 (Udu) 0.0240 27.17% 0.0226 27.20%

Ph(H2O)2 (Udd) 0.0236 33.79% 0.0222 33.76%

Ph(H2O)2 (Uud) 0.0253 27.50% 0.0238 27.46%

Ph(H2O)3 (Udud) 0.0225 31.65% 0.0212 31.76%

Table 2.3: CC2 oscillator strengths f (length gauge) and ratios of the components
perpendicular to the plane of the phenyl ring of µ, µ⊥/|µ|, for the S1

← S0 excitations of the individual clusters.

For the n = 2 cluster, on the other hand, the situation turned out to be different:
while for the cyclic (Uud) S0 conformer a corresponding stable S1 geometry with
a rms deviation of 0.09 Å could be located, no corresponding cyclic S1 geometries
were found for the more stable S0 conformers (Udu) and (Udd). In the S1 state
the oxygen atom and the phenyl ring switch roles in acting as H acceptors for the
second water molecule. Starting from the cyclic (Udu) geometry, i.e., the global
minimum on the S0 surface, in a geometry optimization on the S1 surface, an S1

conformer was found with the second water subunit acting as a double H donor to
a π system (see Fig. 2.3). This hat conformer is 1.73 kcal/mol more stable than the
cyclic (Uud) S1 conformer. Similarly, starting from the (Udd) geometry another
even more stable S1 conformer was found with the second water subunit acting
as a H donor to a C atom in ortho position. The rms deviations of the hat and
ortho(Udu) conformers with respect to the related parental starting geometries
are much larger and amount to 0.63 and 0.88 Å, respectively. The increase in
the interaction energies on going from the cyclic (Udu) geometry in the S0 state
to the hat or ortho(Udu) conformers in the S1 state is rather large and amount
to 1.71 and 2.96 kcal/mol, respectively, implying that the related origins in the
absorption spectrum would appear on the red side of the origin of the n = 1 cluster.
Furthermore, the shortenings of the C–O distance and the first (phenolic) hydrogen
bond on going from the cyclic (Udu) S0 to ortho(Udu) S1 geometry are substantially
larger than for n = 1 and n = 3, i.e., 0.04 and 0.17 Å, respectively (see Table 2.5).
This again reflects the much increased stabilization of the cluster due to the S1 ←
S0 excitation compared to n = 1 and n = 3. As a particular feature of both the
hat and ortho(Udu) geometries, a distinct puckering of the phenyl ring is noticed.
hat and ortho geometries are separated by a transition state (TS) structure 0.52
kcal/mol above the hat minimum. For the ortho geometry four different conformers
do exist, which (similar to the cyclic ground state) differ in the positions of the free
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DF-CC2 CASPT2 DF-CC2 DF-LCC2
Experiment

aug-cc-pVDZ aug-cc-pVTZ

Ph 37700.38 (36361.12) 33992.15 38280.68 (36941.42) 38280.69 36352 (-589)

Ph(H2O) TL 37269.79 (35963.43) 33733.03 37808.51 (36502.15) 37804.93 35998 (-504)

Ph(H2O)2 hat←(Udu) 37226.20 (36029.80) a 37682.94 (36486.54) 37715.26
36231

Ph(H2O)2 ortho(Udu)←(Udu) 36863.27 (35615.38) 33829.79 37300.83 (36052.94) 37276.06

Ph(H2O)3 (Udud) 37483.30 (36039.40) 38197.60 (36753.70) 38222.16 36261 (-493)

a) Not available since Ph(H2O)2 hat is no minimum geometry on the CASPT2 S1 surface.

Table 2.4: Adiabatic excitation energies in cm−1 calculated with DF-CC2, CASPT2 and DF-LCC2. 0–0 excitation
energies are also given (in parentheses). All energies are counterpoise corrected, except those of DF-LCC2.
Harmonic zero-point energy corrections were calculated within the aug-cc-pVDZ basis set. Experimental
values (Ref. 73) are given in the right column, together with the difference to the DF-CC2 0-0 excitation
energies within aug-cc-pVTZ basis-set (in parentheses).
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n = 1 n = 2 n = 3

TL,S0 TL,S1 CI (Udu),S0 ortho,S1 CI (Udud),S0 (Udud),S1 CI

d(C −−O) 1.366 1.358 1.323 1.384 1.349 1.327 1.387 1.363 1.330

d(O −−H) 0.980 0.990 1.031 0.987 1.010 1.051 0.996 1.010 1.031

d(H · · ·OH)a 1.851 1.775 1.554 1.824 1.655 1.468 1.708 1.634 1.537

d(H · · ·OH)b 1.883 1.783 1.680 1.740 1.725 1.669

d(H · · ·OH)c 1.767 1.779 1.792

a) H-bond length between Ph and 1st H2O

b) H-bond length between 1st and 2nd H2O

c) H-bond length between 2nd and 3rd H2O

Table 2.5: Distances (in Å) for some key parameters of the stationary point geometries of the Ph(H2O)n clusters
with 1 ≤ n ≤ 3. All geometries were optimized with the CC2 (response) method and the aug-cc-pVDZ
AO basis set.
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2.3 Results and Discussion

hydrogen atoms relative to the planes defined by the related two hydrogen bonds
and which, ordered from most to least stable conformer, can be denoted according
to our notation introduced above as ortho(Udd), ortho(Uud), ortho(Udu), and
ortho(Uuu) (see Fig. 2.4 and Table 2.2). The TS structure between ortho(Udd)
and ortho(Udu) was also located (see Fig. 2.4) and a barrier of 0.47 kcal/ mol for
isomerization was obtained. For the less stable hat form, only one geometry was
found. Any optimization starting from an alternative geometry with flipped free
hydrogen atoms collapsed to one of the ortho geometries.

In order to verify these findings, additional geometry optimizations by a method
complementary to CC2, i.e., CASPT2, were performed. The related interaction
energies, compiled in Table 2.1, are smaller than the related CC2 values, yet one
should again keep in mind that for the CASPT2 calculations, due to an intruder
state problem, a level shift had to be used, which leads to an underestimation of the
interaction energies by 10%–15% (see Sec. 2.2). In any case, the CASPT2 results
provide more or less the same picture as those of CC2, in particular, they confirm
(i) that no stable cyclic structure exists on the S1(π

∗ ← π) surface in the vicinity
of the (Udu) Franck-Condon point and (ii) that the ortho geometries are indeed
the most stable structures for the n = 2 cluster. In contrast to the CC2 results,
the hat geometry was not stable and collapsed to the ortho(Udd) configuration.

Table 2.1 furthermore compares local CC2 interaction energies for ground and
excited states with the corresponding canonical CC2 values without and with CP
correction (aug-cc-pVTZ basis only). It is evident that (i) the BSSE of the aug-cc-
pVTZ basis still amounts to more than 10% of the interaction energy and (ii) that
uncorrected local and CP corrected canonical interaction energies closely agree,
notably, also for the excited states.

Accepting the fact that for n = 2 the oxygen atom and the phenyl-ring switch
roles in acting as H acceptors, the immediate next question is if this also applies for
n = 3 with the less strained cyclic structure including three water units. Indeed,
also for n = 3, analogous ortho, meta, and hat geometries could be located on
the S1(π

∗ ← π) surface, which are more stable than the cyclic (Udud) with the
phenol-oxygen acting as the H acceptor (see Table 2.2). However, in contrast to
n = 2, the latter still constitutes a stable local minimum close to the Franck-
Condon point. Several transition structures between the metastable cyclic (Udud)
conformer and the energetically lower-lying structures were located with the lowest
one corresponding to a barrier of 0.18 kcal/mol (63 cm−1, CP corrected CC2/aug-
cc-pVDZ result). We can conclude that the H acceptor switching in phenol from
the oxygen atom to the π system of the ring in the S1(π

∗ ← π) state already
explains qualitatively the different absorption spectra measured for the n = 1,
n = 2, and n = 3 clusters.
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2 Phenol-water1≤n≤3 clusters

For n = 1 the minima in the S0 and the S1(π
∗ ← π) state both correspond to a

translinear hydrogen bond arrangement with a rms deviation in the atomic posi-
tions of 0.06 Å. Reasonably large Franck-Condon factors therefore can be expected,
leading to absorption spectra featuring bands related to the relevant intermolecular
modes as observed experimentally. For n = 3, which has a stable cyclic (Udud) S1

minimum close to the Franck-Condon point (0.09 Å rms), the situation is similar.
However, this minimum is metastable and can only support intermolecular modes
up to a certain energy. Beyond that, predissociation occurs. The redshift of the
origin of the cyclic (Udud) local minimum is, according to the calculations (see
Table 2.4), considerably smaller than for n = 1, which is in agreement with the
experiment.

For n = 2 on the other hand, due to the large deviation between the cyclic (Udu)
S0 and the S1 ortho geometries (0.75 Å rms), only a very small Franck-Condon
factor for the 00

0 transition of this most stable conformer of the n = 2 cluster
and therefore a very weak electronic origin with a larger redshift than n = 1 are
expected. The observed n = 2 band structure in Fig. 2.1 on the blue side of the
n = 1 origin may then correspond to some intramolecular mode of phenol and
not to the origin. This intramolecular mode of phenol could possibly be of out-
of-plane type considering the puckered ring in the S1(π

∗ ← π) ortho conformers.
Note that the component of the oscillator strength vector perpendicular to the
phenyl ring plane increases from 0 to 25%–30% of its norm on going from n = 1
to n = 2 or n = 3 (see Table 2.3). Alternatively, the existence of a very shallow
minimum close to the Franck-Condon point corresponding to the cyclic S0 (Udu)
conformer also cannot entirely be ruled out, even though it is not found in the
present calculations. Coupling between low-frequency intermolecular modes of
this minimum and vibrational states of the more stable ortho/hat minima (with
high density of modes at that energy) may give rise to the extremely low-frequency
progression and the broad shape of the band. In both cases, the n = 2 cluster,
either being vibrationally excited in an intramolecular out-of-plane mode of Ph or
due to vibrational coupling between modes of the cyclic local minimum and the
ortho/hat conformers, may carry enough energy in the relevant degrees of freedom
to cross the conical intersection seam and to access the energetically much lower-
lying configuration space of S1 with σ∗ ← π character, where the proton has been
transferred from Ph to the solute molecules.

2.3.2 Conical Intersection and Proton Transfer

As just mentioned, there exists a conical intersection seam between the S1(π
∗ ← π)

and the S2(σ
∗ ← π) surfaces. Beyond the conical intersection seam, proton trans-
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2.3 Results and Discussion

fer from Ph to the solvent molecules takes place. The corresponding dissociated
structures are energetically more favorable than the minima on the S1(π

∗ ← π)
surface discussed so far. In order to investigate if the conical intersection seam is
of any relevance for the low-energy configuration space considered in the present
work, geometry optimizations on the seams of the individual clusters have been
performed employing the scheme outlined in Sec. 2.2. The resulting geometries are
displayed in Fig. 2.6 and the related interaction energies are compiled in Table 2.1.
For n = 1 again a translinear geometry is found featuring even larger contractions
of the C–O distance and the hydrogen bond relative to the ground state minimum
than the S1 minimum-energy geometry, i.e., by ≈0.05 and 0.30 Å, respectively (see
Table 2.5). The CI geometries of both the n = 2 and n = 3 clusters feature open
chain conformers with the last water subunit no longer acting as a H donor (see
Fig. 2.6).

Figure 2.6: Conical intersection seam geometries of the lowest energy of Ph(H2O)n,
1 ≤ n ≤ 3.

For n = 2 the C–O distance and the first H bond again contract dramatically
by 0.06 and 0.36 Å, respectively, compared to the cyclic S0 (Udu) conformer. Also
the second H bond contracts by 0.20 Å. For n = 3 the C–O distance shortens by a
similar amount (0.06 Å) relative to the cyclic S0 (Udud) conformer, however, the
H-bond contractions are less pronounced, i.e., by 0.17 and 0.06 Å for the first and
second H bonds, respectively. These strong H-bond contractions are forestalling
the H transfer from Ph to the solvent cluster beyond the conical intersection. The
CI geometries lie energetically 0.63, 0.66, and 2.53 kcal/mol above the correspond-
ing Franck-Condon points on the S1(π

∗ ← π) surface for n = 1, n = 2, and n = 3,
respectively (see Table 2.1), which corresponds to 8%, 3%, and 9% of the corre-
sponding interaction energy of the clusters in the S1 state. Since the n = 2 cluster
has the highest excess energy for the reasons discussed above, we anticipate that
n = 2 more easily reaches the seam and undergoes proton transfer to the solvent
than n = 1 or n = 3. This would then explain the much shorter lifetime and the
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2 Phenol-water1≤n≤3 clusters

low quantum yield of n = 2 in comparison to n = 1 and n = 3 as observed in the
experiments.

2.4 Conclusions

In this work the S1(π
∗ ← π) state surfaces of the phenol-water1≤n≤3 clusters were

reexplored at the level of coupled cluster (CC2) response theory, aiming at a better
understanding of the anomalous behavior of n = 2 (broad congested absorption
band structure, low quantum yield, short lifetime) in comparison to n = 1 and
n = 3. Minima and other stationary points were located – to our knowledge for
the first time – at a level of theory which includes dynamical electron correlation.
As a consequence, global minimum structures were found for n = 2 and n = 3,
which are qualitatively different from those obtained so far using methods such
as CIS or CASSCF. Evidently, the oxygen atom and the π-ring system of phenol
switch roles as H acceptors on going from the S0 to the S1 state. The global minima
on the S1 surface for n = 2 and n = 3 correspond to cyclic structures where the
second (third) water subunit acts as a donor to the π ring. These structures
deviate substantially from those corresponding to the global S0 minima. The
Franck-Condon factors related to the corresponding 0–0 transitions therefore are
expected to be very small. For n = 2 no local minimum close to the Franck-Condon
point could be located, while for n = 3 such a minimum exists. Furthermore, the
n = 2 cluster, having a rather high excess energy possibly in an out-of-plane
mode driving it toward the conical intersection seam, is more likely to cross the
conical intersection and to undergo proton transfer to the solvent molecules than
the n = 1 and n = 3 clusters. These results now offer a qualitative explanation
of the anomalous behavior of n = 2 and the predissociation of n = 3 at excess
energies beyond ≈100 cm−1 apparent in the absorption spectrum. We can conclude
that the interpretation given almost a decade ago by Jacoby et al. in Ref. 77 for
the broad congested absorption band structure observed for n = 2 is basically
correct, provided that the anticipated linear hydrogen arrangement is replaced by
a cyclic structure where the π-ring system acts as H acceptor for the second water
subunit.
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3 2-Naphthol-water2 clusters

3.1 Introduction

The photophysics of hydrogen-bonded clusters formed between aryl alcohols and
water or ammonia have been investigated extensively within the last two decades.
They mimic intermolecular interactions ubiquitous in biochemical systems, but are
also interesting by themselves. Experimentally, such clusters can be synthesized
in molecular beam expansions at very low (vibrational) temperatures. Further-
more, due to the aromatic chromophore they are spectroscopically easily acces-
sible by various laser spectroscopic techniques, including the mass-selective res-
onant two-photon ionization (R2PI) spectroscopy. Theoretically, the description
of the relevant excited states and, in particular, the determination of the related
minimum-energy geometries still is a challenging task, since long-range dynamical
correlation effects, i.e., van der Waals forces, play a nonnegligible role in these
systems. Analytical gradients of energy functionals fulfilling these requirements
still are scarce.

Recently, we re-explored the S1(π
∗ ← π) state surfaces of the phenol-watern,

n ∈ {1, 2, 3} clusters at the level of time-dependent coupled cluster (CC2) re-
sponse theory [102]. Based on these calculations it became possible to elucidate
the photophysics of these systems and, in particular, to resolve the anomalous be-
havior of the n = 2 cluster featuring a broad congested absorption band structure,
low quantum yield, and a short lifetime, in stark contrast to the other n = 1 and
n = 3 clusters. A disturbing disagreement between experiment and theory per-
sisting for almost a decade so was finally settled. In the present work we applied
the same methodology in a study on the S0 and S1(π

∗ ← π) state surfaces of the
2-naphthol-watern, n ∈ {1, 2} clusters. 2-naphthol (2-NpOH) exists in a cis and
a trans isomeric form due to the two possible rotational orientations of the OH
group relative to the naphthyl ring system. There is experimental evidence that
the cis isomer is more stable in the S0 state, whereas the trans isomer becomes
more stable in the S1 state [103–105]. Different experiments have been carried out
by Ebata et al. to photoinduce the isomerization in the S1 state with the result
that (i) the isomerization yield is only high for cis −→ trans isomerization and
(ii) hydrogen-bonding strongly enhances the isomerization yield [106, 107]. Mass-
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3 2-Naphthol-water2 clusters

selective R2PI absorption and fluorescence emission spectra of 2-NpOH clustered
with water, ammonia, and other solvent molecules were measured by several groups
[75, 108, 109], especially also in the context of photoinduced proton transfer for
bigger clusters [108] (2-NpOH is known to be a weak acid in the S0 state but a
strong acid in the S1 state with pKa values of 9.8 and 2.8, respectively [110]). Ex-
perimental information on the geometries of some of the binary complexes, based
on rotationally resolved fluorescence excitation spectra, is also available in the lit-
erature [111]. Furthermore, geometrical assignments were deduced by Matsumoto
et al. [112] for the 2-NpOH(H2O)n clusters up to n = 5 in the S0 state, based
on comparisons of experimental OH stretch vibrational frequencies [measured by
infrared (IR)-ultraviolet double-resonance spectroscopy] with corresponding har-
monic Hartree-Fock values obtained at the related minimum-energy geometries.
The proposed geometries coincide closely to those of phenol(H2O)n or (H2O)n+1

with a translinear (TL) Cs arrangement for n = 1, cyclic structures for n ∈ {2, 3},
and a cage structure for n = 5. By applying photofragment-detected IR spec-
troscopy the same group also provided an upper bound of 7.6 kcal/mol for the S0

binding energy of 2-NpOH·H2O [113].

Theoretically, the 2-NpOH(H2O)n clusters were not yet studied with more so-
phisticated ab initio electronic structure methods. So far, the S0 potential energy
surfaces (PESs) were investigated at the level of Hartree-Fock theory with rather
modest atomic orbital (AO) basis sets, focusing mainly on the relevant, i.e., en-
ergetically low-lying minimum-energy structures, and calculating the related nor-
mal modes and (harmonic) vibrational frequencies [109, 112]. The S1 PES of
these clusters, to our knowledge, remained unexplored so far. The S1 state of
the 2-NpOH·NH3 complex was recently studied by using the (semiempirical) time-
dependent density functional tight binding method [114].

The R2PI spectrum of 2-NpOH(H2O)2, similarly to the phenol(H2O)2 case, fea-
tures some peculiarities distinguishing it from those of the n = 1 and n = 3 clusters.
The two band structures assigned to the cis and trans isomers are broad and con-
gested for n = 2, whereas sharp progressions are observed for n = 1 and n = 3
(cf. Fig. 3.1). This is in close analogy to the situation encountered for the phenol-
water clusters. However, the R2PI spectrum of 2-NpOH(H2O)2 features also a
third band structure, namely, two rather long progressions of sharp lines shifted
quite far to the red. No analogous band shape is seen, neither in the spectrum of
phenol(H2O)2 nor in the spectra of 2-NpOH(H2O){1,3}. Also in the spectrum of
the deuterated 2-NpOD(D2O)2 such a feature is absent (cf. Fig. 6 in Ref. 75).
This implies that for the 2-NpOH(H2O)2 cluster at least a third stable conformer,
responsible for these line progressions, has to exist in the S0 state, which, on the
other hand, is not stable for the deuterated cluster.
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Figure 3.1: Mass-selective resonant two-photon ionization (R2PI) spectra of 2-
NpOH(H2O)n, n ∈ {1, 2, 3}.

In this work we have explored the relevant regions of the S0 and S1 state PESs
of the 2-NpOH(H2O){1,2} clusters at the level of coupled cluster response theory
employing the CC2 model [46]. Various low-energy stationary points were located
and harmonic vibrational frequencies were calculated at these points in order to get
an estimate for the corresponding zero-point energy (ZPE) corrections. The main
impetus for the present work was again to obtain at least a qualitative explanation
for the anomalous behavior of the n = 2 cluster and, in particular, to identify
the third stable conformer responsible for the sharp line progressions in its R2PI
spectrum.

3.2 Computational methods

The minimum-energy and first-order saddle point geometries on the S0 and S1(π
∗ ←

π) PES of the two 2-NpOH isomers and their water clusters 2-NpOH(H2O)n,
n ∈ {1, 2} were optimized by applying time-dependent coupled cluster response
theory at the level of the CC2 model. The analytic CC2 energy gradient program
implemented by Hättig and Köhn in the TURBOMOLE program package [90, 91],
which employs the density fitting (DF) approximation to factorize the electron re-
pulsion integrals, was used for that purpose. For the individual stationary points
the harmonic ZPE corrections were computed based on the nuclear Hessians ob-
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3 2-Naphthol-water2 clusters

tained by numerical differentiation of the analytic CC2 gradients. Furthermore,
for the individual minima on the S0 surface the one-photon transition strength
vectors were calculated from the residues of the CC2 linear response functions.
These calculations were carried out by using both canonical [115] and local [94, 95]
CC2 response theory, the later being implemented in the MOLPRO program package
[96]. In the present context the local method has the major advantage of avoiding
basis set superposition error (BSSE) effects to large extent [41, 102]. For the local
calculations Pipek-Mezey orbital localization was used. The pair list remained un-
truncated. Domains were constructed by natural population analysis (NPA) [116]
and extended by all next nearest neighbor atoms (relative to those of the NPA
core domains). Redundancies in the pair domains were determined at large inter-
monomer distances and kept fixed. The domains for the amplitude responses were
obtained via NPA analysis of density matrices calculated from semilocal CC2 re-
sponse singles eigenvectors of the excited state and also extended by all next nearest
neighbor atoms. Important orbitals (for the excitation) were determined according
to the scheme discussed in Ref. 94, using the default criterion of κe = 0.995.

As AO basis sets the aug-cc-pVXZ sets [34, 98] together with the related fitting
basis sets optimized for DF-MP2 (Ref. 99) were employed in all calculations.
For the geometry optimizations and the calculations of the geometric relaxation
energies, transition strengths, and ZPE corrections, X=D was used. In order to
obtain better converged (with respect to the AO basis) interaction and excitation
energies additional single-point calculations within the X=T basis were performed
at the stationary points of the S0 and S1 state surfaces corresponding to the X=D
basis (vide infra). Interaction energies obtained from canonical calculations were
counterpoise corrected [40] to correct for BSSE effects. The transition strength
vectors were also computed with the X=T basis (with the local method only).

3.3 Results and discussion

Figure 3.1 displays the mass-selective absorption spectra of the 2-NpOH(H2O)n,
n ∈ {1, 2, 3} clusters in the vicinity of the two electronic origins (related to the
cis and trans isomers) of 2-NpOH. These two-color R2PI spectra were measured
by one of us about 15 years ago, for experimental details, we refer to Ref. 109.
The two origins of n = 1 appearing at 30256 and 30535 cm−1, which belong
to the trans and cis isomers, respectively, are clearly visible. The absorption
spectrum of n = 1 features a set of sharp bands corresponding to intermolecular
modes of the complex, for example, the short progressions of the intermolecular
stretch modes (≈150 cm−1) are clearly recognizable for both isomers. There are
also bands corresponding to intramolecular modes present in the spectrum, for a
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detailed assignment, we again refer to Ref. 109. Also for the n = 3 cluster the two
systems of bands corresponding to the two isomers are easily identified. Again, the
spectrum consists of sharp bands. The two origins of n = 3 are much less redshifted
(relative to the corresponding origins of the bare 2-NpOH monomer) than those
of n = 1, i.e., 372 cm−1 (n = 1) versus 226 cm−1 (n = 3) for the cis isomer
and 334 cm−1 (n = 1) versus 7 cm−1 for trans. The corresponding redshifts for
phenol·H2O and phenol(H2O)3 amount to 350 and 92 cm−1, respectively [74, 76].
The redshifts of the electronic origins of the clusters relative to those of the bare
monomer directly indicate the increase of their binding energies upon electronic
excitation.

The R2PI spectrum of the 2-NpOH(H2O)2 cluster, on the other hand, is quite
different. It exhibits two congested broad band structures, quite similar to the one
observed for phenol(H2O)2. These two band structures at 30536 and 30676 cm−1

were assigned to the trans and cis isomers of a cyclic hydrogen-bonding arrange-
ment, respectively [75]. Surprisingly, there is an additional third band structure
consisting of two rather long progressions of sharp lines with the same fundamental
frequency of 20 cm−1, starting at 30376 and 30381 cm−1. Such band shapes are
entirely absent in the R2PI spectrum of the deuterated 2-NpOD(D2O)2 species, as
well as in the spectra of phenol(H2O)2 or its deuterated subspecies. In Ref. 75
these band shapes were assigned to open-chain hydrogen-bonding arrangements.
Based on these experimental facts and on the results of our theoretical study on
the phenol-water clusters [102] we conjecture that (i) the two broad band shapes
of 2-NpOH(H2O)2 indeed correspond to cyclic hydrogen-bonding arrangements of
the trans and cis forms of 2-NpOH, (ii) the cyclic hydrogen-bonding arrangements
are either unstable (or metastable with very low barriers) in the excited S1 state,
(iii) at least a third, energetically competitive conformer coexists in the S0 state,
corresponding to a hydrogen-bonding arrangement where the π system of the naph-
thyl ring rather than the oxygen atom acts as the H acceptor of 2-NpOH, (iv) the
corresponding geometries, in analogy to the phenol(H2O)2 case, are stable in the
S1 state (which is a prerequisite for the observed line progressions), and (v) the
lower ZPE of the deuterated species preferentially stabilizes the cyclic hydrogen-
bonding arrangements.In the following we want to test this hypothesis at the level
of time-dependent CC2 response theory.

3.3.1 S0 minimum-energy geometries

The energy relevant S0 minimum-energy geometries of the cis- and trans-2-NpOH-
(H2O)n, n ∈ {1, 2} clusters are displayed in Figs. 3.2 and 3.3, respectively, and
the related binding energies are compiled in Table 3.1. The final binding energies
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in Table 3.1 are BSSE corrected and include the geometric relaxation energies of
the related monomers. Supplementary binding energies including harmonic ZPE
corrections of the undeuterated or the deuterated species are also given, even
though the harmonic approximation is bound to fail for some of the intermolecular
modes. This is especially true for the low-energy isomerization coordinates of the
n = 2 cluster vide infra. Therefore, the ZPE uncorrected binding energies are used
in the discussion of the relative stability of the individual n = 2 conformers. A
further problem is the BSSE, which can deviate by more than a kcal/mol between
different conformers of the same cluster (cf. Table 3.1). Since BSSE free geometry
optimizations are too expensive with canonical methods and analytical local CC2
nuclear energy gradients not yet available, we have to rely on the assumption
that the effect of BSSE on geometries is much less severe than on the interaction
energies.

The binary n = 1 complexes show the usual TL hydrogen-bonding arrangement
as known from the water dimer and from phenol·H2O. The binding energies are
slightly larger than those obtained for phenol·H2O, i.e., -4.79/-4.82 versus -4.59
and -5.24/-5.27 versus -5.04 kcal/mol for the X=D and the X=T bases, respec-
tively (relaxation energies and ZPE corrections always are calculated with the
X=D basis).

For the n = 2 clusters, evidently, there are two groups of relevant S0 minimum-
energy geometries, namely, those forming a cyclic hydrogen-bonding arrangement
involving the 2-NpOH OH group as H donor and acceptor and those forming
a hydrogen-bonding network where the NpOH π system acts as the H acceptor
instead. For the cyclic cis and trans geometries the usual three conformers exist,
denoted as (Udu), (Uud), and (Udd), respectively. This nomenclature, introduced
originally in Ref. 117 in the context of the water timer, indicates, e.g., for the first
minimum, that the aromatic ring is in Up, the first free hydrogen atom in down,
and the second free hydrogen again in up position relative to the plane defined
by the two hydrogen bonds involved (donor-acceptor indicates the direction of the
axial vector of the plane). Analogous cyclic geometries were found for the water
trimer and phenol(H2O)2. The most stable cyclic conformer for both isomers again
is (Udu), the others are 0.4–0.7 kcal/mol above (Udu).

For the second group with the naphthyl π system acting as the H acceptor of
2-NpOH also numerous conformers coexist. The two ortho C atoms, either in
syn- or anti-position relative to the hydrogen atom of the OH group, act as H
acceptors of the naphthyl π system, again with several sub-conformers differing in
the relative positions of the dangling H atoms. The notations ortho and ortho′,
respectively, are used to distinguish these geometries from the cyclic ones, e.g.,
(orthoUdu) for the corresponding conformer. No geometries of that kind were
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Figure 3.2: cis-2-naphthol(H2O)n, n ∈ {0, 1, 2} geometries of the electronic ground
state.
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3 2-Naphthol-water2 clusters

Figure 3.3: trans-2-naphthol(H2O)n, n ∈ {0, 1, 2} geometries of the electronic
ground state.
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m-2-NpOH(H2O)n X=D X=T

m n Conformer δBSSE δrel ∆E ∆EH ∆ED δBSSE ∆E ∆EH ∆ED

cis 1 TL 1.60 -0.11 -6.55 -4.79 -5.15 0.78 -6.99 -5.24 -5.60

cis 2 Udd 3.77 -0.48 -15.08 -10.80 -11.73 1.86 -16.40 -12.13 -13.05

cis 2 Udu 4.16 -0.44 -15.54 -11.13 -12.08 2.05 -16.90 -12.50 -13.45

cis 2 Uud 3.63 -0.50 -14.86 -10.59 -11.54 1.81 -16.19 -11.92 -12.87

cis 2 orthoUdd 4.76 -0.93 -15.60 -11.33 -12.22 2.26 -17.08 -12.81 -13.70

cis 2 orthoUdu 4.81 -1.09 -15.60 -11.35 -12.24 2.28 -17.09 -12.84 -13.72

cis 2 orthoUud 4.62 -1.07 -15.23 -11.15 -12.01 2.21 -16.72 -12.63 -13.49

cis 2 orthoUuu 4.60 -1.13 -14.68 -10.91 -11.70 2.20 -16.14 -12.37 -13.16

cis 2 ortho’Udu 5.15 -2.19 -14.68 -10.58 -11.42 2.43 -16.13 -12.03 -12.87

trans 1 TL 1.58 -0.11 -6.62 -4.82 -5.19 0.77 -7.07 -5.27 -5.64

trans 2 Udd 3.76 -0.49 -15.34 -10.99 -11.93 1.84 -16.90 -12.33 -13.26

trans 2 Udu 4.05 -0.44 -15.75 -11.25 -12.22 1.99 -17.12 -12.61 -13.59

trans 2 Uud 3.63 -0.50 -15.03 -10.70 -11.66 1.80 -16.37 -12.04 -13.00

trans 2 orthoUdd 4.71 -1.21 -15.42 -11.19 -12.06 2.25 -16.92 -12.68 -13.56

trans 2 orthoUud 4.64 -1.43 -14.94 -10.97 -11.80 2.22 -16.44 -12.47 -13.30

trans 2 ortho’Udu 5.05 -1.80 -15.15 -10.89 -11.76 2.38 -16.67 -12.41 -13.28

trans 2 ortho’Uuu 4.91 -1.86 -14.13 -10.25 -11.03 2.33 -15.64 -11.76 -12.54

cis 2 [Udu⇆orthoUdd]‡ 4.31 -0.49 -15.37 2.09 -16.75

cis 2 [Udu⇆orthoUdu]‡ 4.43 -0.65 -15.12 2.12 -16.50

cis 2 orthoUd[d⇆u]‡ 4.66 -0.99 -15.33 2.19 -16.79

cis 2 [U⇆D]du‡ 3.30 -0.52 -14.90 1.68 -16.24

trans 2 [Udu⇆orthoUdd]‡ 4.44 -0.70 -15.27 2.11 -16.66

Table 3.1: Counterpoise corrected binding energies ∆E in kcal/mol of the individual low-energy minima and first-
order saddle points on the S0 PES, calculated with the aug-cc-pVXZ AO basis and corresponding fitting
sets. δBSSE and δrel are the incremental BSSE and geometric relaxation energies, respectively. The
harmonic ZPE corrected binding energies for both the undeuterated and the deuterated (H atoms on
hydroxy group and water molecules) cluster are also given.
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3 2-Naphthol-water2 clusters

found for the phenol(H2O)2 cluster in the S0 state. For the cis isomer the three
conformers (orthoUdu), (orthoUdd), and (Udu) differ by the tiny amount of less
than 0.06 kcal/mol (local CC2 single-point calculation without counterpoise cor-
rection yields 0.03 kcal/mol or 10 cm−1). This difference certainly is below the
accuracy of the present method. These three conformers hence are expected to be
significantly populated at typical vibrational temperatures of a molecular beam
expansion, confirming conjecture (iii) of our initial hypothesis. Interestingly, the
barrier separating the cyclic (Udu) conformer from (orthoUdd) is very low (50–60
cm−1). Only a slight tilting movement of the second water molecule is required to
go from (Udu) to (orthoUdd) and vice versa. Its free and its H bonded hydrogen
atoms change role in a concerted way along the interconversion pathway, in the
transition state (TS) structure it acts as a double donor to both the hydroxy group
and the π system of 2-NpOH. The barrier separating (Udu) from (orthoUdu), on
the other hand, is almost three times as high. Here, the H bond of the second wa-
ter molecule is broken and reformed and no switching of roles of its two H atoms
occurs. The interconversion pathway linking orthoUdd with orthoUdu corresponds
to a flip of the dangling H atom. Consequently no hydrogen bond is broken in the
process and the related barrier amounts to 94 cm−1.

For the trans isomer the situation is somewhat less subtle. The most stable
ortho conformer, trans(orthoUdd), is about 0.3 kcal/mol less stable than the cyclic
(Udu) structure. The TS between these two geometries lies 52 cm−1 above the
ortho conformer. Due to this low barrier and the lower energy of the cyclic (Udu)
structure the latter is anticipated to be of primary relevance for the R2PI spec-
trum, quite similar to the situation encountered in phenol(H2O)2. Moreover, the
CC2 method (such as MP2) treats dispersion at the uncoupled Hartree-Fock level.
Consequently, CC2 may somewhat overestimate this component of the intermolec-
ular interaction energy, then even being slightly biased in favor of those conformers
where the π system is involved in the H bonding relative to the cyclic ones.

The difference in the (harmonic) ZPEs of undeuterated and deuterated cluster
species reveals no hint on why the related R2PI spectra are so different. Deutera-
tion apparently leads to a slight destabilization of the ortho relative to the cyclic
cluster geometries (cf. binding energies with harmonic ZPE corrections in Table
3.1), yet the effect at the level of the harmonic approximation is tiny. Hence,
conjecture (v) cannot be verified at the present stage. On the other hand, the
harmonic approximation is bound to fail entirely for those modes corresponding to
the interconversion pathways connecting the individual low-energy minima of the
cis isomer.

Finally, the barrier corresponding to the up and down flip of the naphthyl ring
system was determined. This barrier connects the three cyclic minima with their
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3.3 Results and discussion

enantiomeric counterparts, i.e., (Udu) with (Ddu) = (Uud). A value of 224 cm−1

was obtained, which is more than three times higher than the barrier for intercon-
version to the ortho conformer.

3.3.2 S1 minimum-energy geometries

The relevant minimum-energy geometries on the S1(π
∗ ← π) state surfaces are

depicted in Figs. 3.4 and 3.5 for cis and trans, respectively. Table 3.2 compiles
the corresponding binding energies, which again are counterpoise corrected and
include geometric relaxation of the monomers. Additionally, as for the S0 minima,
binding energies corrected for the harmonic ZPE are also given. Table 3.3 shows
the relations between the individual minima on the S0 and S1 surfaces, i.e., to
which S1 geometry an initial S0 geometry converges in the geometry optimizations.
The discrepancies between related S0 and S1 geometries are also given in Table 3.3
as the root-rean-square (rms) deviation of their atomic positions [see Eq. (64) in
Ref. 101 for the definition of drms.

For the binary n = 1 complexes again the usual TL hydrogen-bonding arrange-
ment is found. The length of the hydrogen bond shrinks by 0.07 Å(cis) and 0.08
Å(trans) on going from the S0 to the S1 state (cf. Table 3.4). The geometric discrep-
ancy between these two geometries is only dRMS = 0.04 Å(cis) and dRMS = 0.06
Å(trans). Thus, sizable Franck-Condon factors are anticipated, reflected in the
absorption spectrum as rather short progressions of sharp bands related to the
individual inter- and intramolecular modes. This is exactly what is observed ex-
perimentally. The binding energies of the complex increase by about 30% and 25%
from the S0 to the S1 state, for cis and trans, respectively. This is very similar to
the values obtained for the phenol·H2O case.

For the n = 2 clusters the situation is much more complicated. The cyclic cluster
geometries with the hydroxy group of 2-NpOH acting as H acceptor are no longer
competitive to those cluster geometries where the naphthyl π system is taking
up this role. Analogously to the phenol(H2O)2 case [102] the π system becomes
the preferred H acceptor in the S1 state. Of the three cyclic conformers in the
S0 state only the (Uud) conformer constitutes a local minimum on the S1 surface
at rather high energies, about 2 kcal/mol (cis) and 2.9 kcal/mol (trans) above
the corresponding global minimum. The other conformers all collapse to various
distinct cluster geometries involving the π system, as displayed in Figs. 3.4 and
3.5. In particular, the cis(Udu) conformer collapses to cis(hatUd–) geometry about
0.8 kcal/mol above the global minimum, where the second water acts as a double
donor to the π system (the two water molecules arrange as a TL water dimer
alike geometry). The trans(Udu) conformer, on the other hand, collapses to the
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3 2-Naphthol-water2 clusters

Figure 3.4: cis-2-naphthol(H2O)n, n ∈ {0, 1, 2} geometries of the S1 electronically
excited state.
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3.3 Results and discussion

Figure 3.5: trans-2-naphthol(H2O)n, n ∈ {0, 1, 2} geometries of the S1 electroni-
cally excited state.
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m-2-NpOH(H2O)n X=D X=T

m n Conformer δBSSE δrel ∆E ∆EH ∆ED δBSSE ∆E ∆EH ∆ED

cis 1 TL 1.77 -0.22 -8.04 -6.23 -6.57 0.84 -8.55 -6.75 -7.09

cis 2 hatUd– 5.47 -2.40 -16.93 -12.63 -13.48 2.54 -18.51 -14.21 -15.06

cis 2 Uud 3.67 -0.70 -15.72 -11.75 -12.60 1.79 -17.06 -13.09 -13.94

cis 2 orthoUdd 4.95 -1.49 -17.52 -13.45 -14.26 2.34 -19.15 -15.08 -15.89

cis 2 metaUdd 5.04 -2.31 -17.57 -13.46 -14.25 2.34 -19.24 -15.13 -15.92

cis 2 metaUdu 5.09 -2.30 -17.71 -13.44 -14.27 2.34 -19.39 -15.12 -15.95

cis 2 metaUud 4.87 -2.15 -17.40 -13.34 -14.13 2.29 -19.06 -15.00 -15.78

trans 1 TL 1.72 -0.23 -7.81 -6.03 -6.36 0.83 -8.34 -6.57 -6.90

trans 2 Uud 3.69 -0.72 -15.38 -11.39 -12.24 1.79 -16.75 -12.77 -13.61

trans 2 orthoUdd 4.87 -2.09 -18.29 -13.67 -14.53 2.30 -20.15 -15.53 -16.39

trans 2 orthoUdu 4.91 -2.21 -18.18 -13.55 -14.41 2.30 -20.01 -15.39 -16.25

trans 2 orthoUud 4.72 -2.28 -18.23 -13.71 -14.55 2.27 -20.07 -15.55 -16.39

trans 2 orthoUuu 4.79 -2.31 -17.54 -13.14 -13.96 2.26 -19.36 -14.96 -15.77

cis 2 [ortho⇆meta]Udd‡ a

cis 2 metaUd[d⇆u]‡ 5.04 -2.16 -17.57 2.31 -19.26

a) PES too shallow, could not be located.

Table 3.2: Counterpoise corrected binding energies ∆E in kcal/mol of the individual low-energy minima and first-
order saddle points on the S1 PES, calculated with the aug-cc-pVXZ AO basis and corresponding fitting
sets. δBSSE and δrel are the incremental BSSE and geometric relaxation energies, respectively. The
harmonic ZPE corrected binding energies for both the undeuterated and the deuterated (H atoms on
hydroxy group and water molecules) cluster are also given.
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m-2-NpOH(H2O)n m-2-NpOD(D2O)n

m n Conf. S0 → Conf. S1 dRMS X=D X=T Exp. X=D X=T Exp.

cis 0 0.0379 30952.74 (31929.56) 31352.41 (32329.23) 30903 30948.46 31348.13

cis 1 TL TL 0.0415 30449.89 (31408.31) 30805.41 (31763.84) 30535 30450.46 30805.98 30547

cis 2 Udd hatUd– 1.0808 30313.46 (31279.87) 30583.43 (31549.84) 30333.85 30603.81

cis 2 Udu hatUd– 0.6744 30429.84 (31440.41) 30702.80 (31713.37) 30458.96 30731.93

cis 2 Uud Uud 0.0853 30547.65 (31630.40) 30927.84 (32010.59) 30577.47 30957.66

cis 2 orthoUdd orthoUdd 0.1358 30209.41 (31257.38) 30702.96 (31750.93) 30376,30381 30234.52 30728.07

cis 2 orthoUdu metaUdu 0.3494 30222.35 (31192.93) 30509.82 (31480.40) 30376,30381 30238.04 30525.51

cis 2 orthoUud metaUud 0.4126 30185.41 (31169.71) 30478.09 (31462.39) 30206.69 30499.38

cis 2 orthoUuu metaUud 0.8608 30101.85 (30977.36) 30397.80 (31273.31) 30098.34 30394.29

cis 2 ortho’Udu hatUd– 0.1282 30235.76 (31139.67) 30550.92 (31454.82) 30227.27 30542.42

trans 0 0.0346 30466.49 (31431.34) 30857.26 (31822.11) 30586 30459.22 30849.99

trans 1 TL TL 0.0582 30041.38 (31015.82) 30433.98 (31408.43) 30256 30048.01 30440.61 30273

trans 2 Udd orthoUdd 0.8832 29528.72 (30398.06) 29775.33 (30644.67) 29548.51 29795.12

trans 2 Udu orthoUdd 0.6413 29618.78 (30541.85) 30040.37 (30963.44) 29650.28 30071.87

trans 2 Uud Uud 0.0820 30223.07 (31309.36) 30592.42 (31678.71) 30254.98 30624.33

trans 2 orthoUdd orthoUdd 0.3739 29597.58 (30428.40) 30074.54 (30905.36) 29596.81 30073.77

trans 2 orthoUud orthoUud 0.4723 29506.93 (30281.81) 29820.92 (30595.80) 29495.14 29809.14

trans 2 ortho’Udu orthoUdd 0.7216 29492.66 (30331.60) 29974.61 (30813.56) 29490.40 29972.35

trans 2 ortho’Uuu orthoUuu 0.7491 29453.39 (30235.64) 29768.11 (30550.36) 29436.05 29750.77

Table 3.3: rms geometry differences dRMS (see text) and 0–0 excitation energies (harmonic ZPE correction) in cm−1.
Adiabatic excitation energies are given in parentheses. The aug-cc-pVXZ AO basis, together with the cor-
responding fitting sets, were used. All energies are counterpoise corrected. Experimental values according
to Ref. 105 and Fig. 3.1 are also given.
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3 2-Naphthol-water2 clusters

trans(orthoUdd) cluster geometry in the S1 state, i.e., the global minimum. The
structural discrepancies between the energetically relevant cyclic (Udu) conformers
in the S0 state and the related structures on the S1 state surface therefore are rather
large (drms values of 0.67 and 0.64 Å, cf. Table 3.3). This is exactly the situation
encountered for the phenol(H2O)2 case [102] and confirms conjecture (i) and (ii)
of our hypothesis. Accordingly, the two weak, broad, and congested bands in the
absorption spectrum are assigned to the cyclic cis- and trans(Udu) conformers,
respectively.

For the cis(orthoUdd) and cis(orthoUdu) conformers, on the other hand, which
are energetically competitive to cis(Udu) in the S0 state, closely related geometries
do exist as minima on the S1 state surface, i.e., the cis(orthoUdd) and cis(metaUdu)
minima, respectively (cf. Fig. 3.4). The latter constitutes the global minimum.
The structural discrepancy between the related S0 and S1 geometries is rather small,
in particular, for cis(orthoUdd) with drms = 0.14 Å(cf. Table 3.3). Further energet-
ically low-lying cis conformers are the cis(metaUdd) and the cis(metaUud) geome-
tries. The barriers along the pathway leading from cis(orthoUdd) via cis(metaUdd)
to cis(metaUdu) are negligibly small (cf. Table 3.2), i.e., virtually nonexisting. Ap-
parently, the π system provides a rather isotropic electron density for hydrogen
bonding. Judging from the X=T single-point energies it could as well be that
the three minima just collapse to the single cis(metaUdu) geometry if a more ex-
tended basis set is employed. In any case, the PES along these coordinates is highly
anharmonic and the related harmonic frequencies are entirely untrustworthy.

The related S1 structure to the trans(orthoUdd) S0 geometry, which, according to
the ground state calculation, is significantly less stable than the cyclic counterpart,
is the S1 trans(orthoUdd) minimum, virtually isoenergetic to the trans(orthoUud)
geometry for the X=D basis. One of these constitutes the global minimum on the
S1 PES for the trans isomer.

Based on the results presented in this and the previous section we assign the
two long progressions of sharp bands emerging at 30375 cm−1 in the R2PI spec-
trum to the cis(orthoUdd) and the cis(orthoUdu) S0 minima (or a superposition
thereof), i.e., not to the trans isomer as in previous assignments [112]. Indeed,
there is further data ruling out an assignment to the trans isomer (vide infra). In
contrast to the case of phenol(H2O)2, we noticed no indications of a nearby conical
intersection during the various optimizations on the S1 PES.

3.3.3 Excitation energies and transition moments

In Table 3.3 the counterpoise corrected adiabatic and (harmonic) 0–0 excitation
energies are collected for the excitations originating from the individual S0 to the
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m-2-NpOH(H2O)n

m n Conformer State d(C–O) d(O–H) d(H · · ·OH)a d(H · · ·OH)b β(H–O–C–C)c γ(H)d d(O–H)e α(H–O–H)f

cis 0 S0 1.383 0.971 0.000 0.000

cis 0 S1 1.365 0.975 0.000 0.000

cis 1 TL S0 1.376 0.981 1.849 0.000 0.000

cis 1 TL S1 1.355 0.989 1.779 0.000 0.000

cis 2 Udu S0 1.382 0.988 1.819 1.876 -0.348 -0.336

cis 2 hatUd– S1 1.351 0.997 1.784 1.855 22.321 2.171

cis 2 orthoUdd S0 1.370 0.988 1.805 1.854 15.172 -0.812 0.977 104.075

cis 2 orthoUdd S1 1.349 1.001 1.704 1.827 14.214 -1.401 0.977 104.213

cis 2 orthoUdu S0 1.369 0.988 1.809 1.852 18.323 -0.355 0.977 104.025

cis 2 metaUdu S1 1.347 1.002 1.713 1.830 18.464 0.751 0.977 104.354

trans 0 S0 1.384 0.971 0.000 0.001

trans 0 S1 1.364 0.975 0.000 0.000

trans 1 TL S0 1.377 0.980 1.850 0.002 0.000

trans 1 TL S1 1.354 0.990 1.768 0.000 0.000

trans 2 Udu S0 1.384 0.987 1.821 1.882 2.962 -0.112

trans 2 orthoUdd S0 1.372 0.987 1.811 1.857 25.394 0.058 0.976 103.482

trans 2 orthoUdd S1 1.345 1.007 1.661 1.798 10.019 -12.496 0.987 104.580

a) H bond length between 2-NpOH and 1st H2O

b) H bond length between 1st and 2nd H2O

c) Out-of-plane torsion of the hydroxy group of 2-NpOH

d) Out-of-plane angle of the ortho hydrogen atom

e) O–H bond length of the bond of the 2nd H2O pointing to 2Np-OH aromatic system

f) Bend angle of the 2nd H2O molecule

Table 3.4: Some selected structural parameters of energetically low-lying conformers in the S0 and S1 states. Bond
lengths are given in Å and angles in degrees.
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3 2-Naphthol-water2 clusters

related S1 minima. The aug-cc-pVTZ 0–0 excitation energies of the cis and trans

monomers are overestimated by 0.06 and 0.03 eV, respectively, which is well within
the expected error bars of the CC2 model. For the smaller aug-cc-pVDZ basis set
the agreement with experiment is fortuitously even better. The spectral shifts of
the origins of the binary complexes relative to those of the monomers are somewhat
overestimated, i.e., -503 cm−1 (X=D) or -547 cm−1 (X=T) versus -368 cm−1 (exp.)
for the cis and -425 cm−1 (X=D) or -423 cm−1 (X=T) versus -330 cm−1 (exp.) for
the trans isomer. Since the geometries represent true stationary points on the aug-
cc-pVDZ surfaces only we restrict the following discussion about spectral shifts to
that basis.

For the n = 2 cluster the origins of the cyclic (Udu) conformers are anticipated
to appear on the red sides of the corresponding n = 1 origins, shifted by -20 cm−1

and by -423 cm−1 for cis(Udu) and trans(Udu), respectively. The large difference
in these shifts between cis and trans is due to the fact that the related S1 geometry
to cis(Udu), cis(hatUd–), is a metastable local minimum on the X=D S1 state
surface, 273 cm−1 above the global minimum. In the R2PI spectrum, on the other
hand, the diffuse congested bands ascribed to the cyclic conformers occur on the
blue sides of the corresponding n = 1 origins. Therefore it is plausible that the two
diffuse bands do not constitute the origins but are related to some intramolecular
mode of 2-NpOH. Due to the high density of states in the vicinity of such an
intramolecular level diffuse congested bands are likely to appear. The true origin
was probably not detected due to small Franck-Condon factors (cf. Sec. 3.3.2). A
similar interpretation was recently proposed by us for the R2PI spectrum of the
phenol(H2O)2 cluster [102].

The spectral origins of the cis(orthoUdd) and cis(orthoUdu) minima are com-
puted to appear 240 and 228 cm−1, respectively, to the red of the n = 1 cis origin,
whereas for the trans(orthoUdd) conformer a redshift relative to n = 1 trans of
444 cm−1 is calculated. These shifts clearly rule out an assignment of the two long
progressions in the R2PI spectrum, emerging 160 cm−1 to the red of the n = 1 cis

origin, to any of the trans(ortho) geometries [which anyway are energetically less
stable than the cyclic trans(Udu) structure].

Table 3.5 presents the S1 ← S0 transition strength vectors obtained by canoni-
cal and local CC2 response methods, respectively. For the latter, BSSE effects are
expected to be small. The discrepancies between canonical and local transition
strength vectors turn out to be quite small. Strikingly, for the cis(ortho) struc-
tures the transition strength vectors exhibit a sizable component perpendicular to
the naphthyl ring plane, while for the corresponding trans conformers the tran-
sition strength vectors remain essentially parallel to this plane. Considering the
planar symmetry of the solute molecule as still only slightly perturbed by the wa-
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m-2-NpOH(H2O)n DF-CC2, X=D DF-LCC2, X=D DF-LCC2, X=T

m n Conformer Sshort
‖ Slong

‖ S⊥ f Sshort
‖ Slong

‖ S⊥ f Sshort
‖ Slong

‖ S⊥ f

cis 0 -0.2426 -0.0130 0.0000 0.0294 -0.2405 -0.0117 0.0000 0.0291 -0.2271 -0.0078 0.0000 0.0270

cis 1 TL -0.3008 0.1742 0.0000 0.0348 -0.2988 0.1736 0.0000 0.0346 -0.2814 0.1642 0.0000 0.0325

cis 2 Udd -0.2385 0.1335 -0.0155 0.0276 -0.2380 0.1332 -0.0155 0.0276

cis 2 Udu -0.2322 0.1417 -0.0411 0.0281 -0.2295 0.1403 -0.0408 0.0278 -0.2200 0.1348 -0.0391 0.0265

cis 2 Uud -0.2563 0.1174 -0.0130 0.0289 -0.2547 0.1172 -0.0129 0.0288

cis 2 orthoUdd -0.2441 0.1753 -0.1275 0.0349 -0.2413 0.1739 -0.1265 0.0345 -0.2316 0.1675 -0.1215 0.0330

cis 2 orthoUdu -0.2352 0.1666 -0.1389 0.0349 -0.2330 0.1658 -0.1381 0.0347 -0.2247 0.1609 -0.1334 0.0332

cis 2 orthoUud -0.2408 0.1751 -0.1469 0.0363 -0.2381 0.1740 -0.1459 0.0360

cis 2 orthoUuu -0.2358 0.1662 -0.1512 0.0362 -0.2338 0.1659 -0.1505 0.0360

cis 2 ortho’Udu -0.1675 0.1102 -0.1445 0.0292 -0.1672 0.1101 -0.1447 0.0292

trans 0 -0.3048 0.0269 0.0000 0.0330 -0.3031 0.0277 0.0000 0.0328 -0.2877 0.0288 0.0000 0.0308

trans 1 TL -0.2976 -0.0794 0.0000 0.0380 -0.2956 -0.0759 0.0000 0.0376 -0.2853 -0.0688 0.0000 0.0357

trans 2 Udd -0.2455 -0.0229 -0.0595 0.0310 -0.2444 -0.0215 -0.0590 0.0308

trans 2 Udu -0.2524 -0.0328 -0.0475 0.0315 -0.2523 -0.0320 -0.0474 0.0314 -0.2424 -0.0274 -0.0450 0.0297

trans 2 Uud -0.2706 0.0210 -0.0722 0.0324 -0.2705 0.0213 -0.0720 0.0324

trans 2 orthoUdd -0.2358 -0.0950 0.0061 0.0382 -0.2358 -0.0934 0.0061 0.0380 -0.2313 -0.0859 0.0087 0.0364

trans 2 orthoUud -0.2307 -0.0759 0.0012 0.0373 -0.2313 -0.0745 0.0012 0.0372

trans 2 ortho’Udu -0.1704 -0.0729 0.0604 0.0283 -0.1719 -0.0727 0.0611 0.0285

trans 2 ortho’Uuu -0.1980 -0.0471 0.0416 0.0278 -0.2015 -0.0462 0.0426 0.0280

Table 3.5: Transition strength vectors and oscillator strengths calculated with the aug-cc-pVXZ AO basis and corre-
sponding fitting sets using both canonical and local CC2 response methods. The latter avoid BSSE effects
to large extent by construction. Sshort

‖ , Slong
‖ , and S⊥ denote the components of the transition strength

vectors parallel to the short and long axis of, and perpendicular to the naphthyl frame, respectively.
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3 2-Naphthol-water2 clusters

ter solvent molecules of the cluster, then the S1 ← S0 transition can be regarded
as electronically allowed for the cis(ortho), and electronically forbidden for the
trans(ortho) conformers, for light polarized in the direction perpendicular to the
ring plane. This might be of use for an experimental distinction between cis and
trans related band shapes.

3.3.4 Vibrational modes

Both the S0 and S1 PESs of the n = 2 cluster are very anharmonic along the
various intermolecular degrees of freedom. This is reflected by the multiple low-
energy minima separated by low barriers. To scrutinize the vibrational problem
of the intermolecular modes of this cluster hence is an intricate task and beyond
the scope of the present paper. Nevertheless, in order to get a first handle on
possible modes in the S1 state which might be related to the observed two long
progressions in the R2PI spectrum, the projections of the geometric displacement
vectors between the cis(orthoUdu), cis(orthoUdd) S0 minima, and the related S1

minima onto the normal modes of the latter were computed. By far the largest
component occurs along the translational mode of lowest harmonic frequency, in-
volving in phase movement of the two water molecules. The second water molecule
is skimming essentially parallel to the surface of the π system, in the direction of
the C(1)–C(2) bond (enumeration according to the fixed numbering system for
the naphthyl ring), trailing the first water molecule behind (cf. Fig. 3.6). The
harmonic vibrational frequencies for these modes amount to 38 and 15 cm−1 for
cis(metaUdu) and cis(orthoUdd), respectively (the harmonic frequencies are just
given here as a very rough estimate). Based on this analysis we tentatively assign
the two long progressions featured by the R2PI spectrum to such low-frequency
skimming modes.

3.4 Conclusions

In this work the S0 and S1(π
∗ ← π) state surfaces of the 2-NpOH (H2O)n, n ∈

{1, 2} clusters were studied at the level of coupled cluster (CC2) response theory.
Low-energy minima and related first-order saddle points were located and charac-
terized with the aim to interpret, on solid theoretical grounds, the rather peculiar
R2PI spectrum of the n = 2 cluster, measured by one of us 15 years ago. For
the n = 1 cluster, as expected, the usual TL hydrogen-bonding arrangement was
found as the only relevant structure on both surfaces. The interpretation of the
R2PI spectrum hence is straightforward and simple (cf. Ref. 109). For n = 2 the

52
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Figure 3.6: Normal coordinate of the lowest frequency mode at the S1 minima
cis(orthoUdd) and cis(metaUdu) (light color). The S1 geometries are
superimposed by those of the related S0 conformers. The transition
strength vector (calculated for the S0 geometries) is also displayed (dark
color).

situation is much more complicated. Already in the S0 state two different types
of hydrogen-bonding networks can coexist, a cyclic one [similar to (H2O)3 and
phenol(H2O)2], where the hydroxy group of the 2-NpOH acts as H acceptor for the
second water molecule, and an alternative one where the π system of 2-NpOH is
taking over this role. While for the trans isomer the cyclic (Udu) conformer still is
energetically preferred, these two forms become equivalent for the cis isomer. On
the S1 surface, on the other hand, the cyclic forms are no longer competitive, as
it is the case for phenol(H2O)2 [102]. The cyclic S0 conformers of trans and cis

therefore have broad and congested band shapes in the R2PI spectrum [as that of
phenol(H2O)2]. The alternative S0 cis conformers with the π system acting as H ac-
ceptor for the second water molecule, due to much more modest structural changes
between S0 and related S1 minima, are expected to have much more structured
band shapes. This is exactly what is observed experimentally. Based on these
calculations we assign the two long low-frequency progression to cis conformers of
this type, in disagreement to previous assignments where these bands were related
to the trans isomer. Furthermore, based on a simple vibrational analysis we ten-
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3 2-Naphthol-water2 clusters

tatively assign the related modes to a ”skimming” movement of the second water
molecule essentially parallel to the ring plane along the direction of the C(1)–C(2)
bond. A more comprehensive study of the low-energy intermolecular vibrations in
ground and excited states will be the subject of further work.
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4 Aniline clusters in the electronic

ground state

4.1 Introduction

Intermolecular forces are ubiquitous in nature, being of major importance for many
different phenomena in physics, chemistry, and biology. Complex processes such
as the self-assembly of molecular superstructures in nanoscience, the reproduc-
tion of biological information stored in DNA, or the catalytic activity of proteins
are all based on and tuned by intermolecular forces. Molecular clusters, i.e., iso-
lated aggregates of two to many molecules of interest are ideal systems to study
such interactions in detail. Experimentally, such clusters can be synthesized in
molecular beam expansions and analyzed subsequently. If (at least) one of the
individual molecules of the cluster is an (aromatic) chromophore then the toolbox
of spectroscopic methods to characterize such clusters is particularly rich: reso-
nant two-photon ionization (R2PI) spectroscopy can be employed to obtain mass
selective absorption spectra, the combination of that method with, e.g., infrared
depletion spectroscopy provides information on the electronic ground state, hole
burning experiments can be used to check if one or more distinct isomers coexist,
etc [19].

Since molecular clusters are isolated systems of a well defined size (controlled
in the experiment by the mass selective detection technique) a direct compari-
son of experiment and theory is possible. For a proper treatment of weak inter-
molecular forces however a level of electronic structure theory is required which
includes dynamic electron correlation and long range van der Waals forces. Fur-
thermore since (potentially many) different cluster minimum energy geometries
and other stationary points on the potential energy surfaces (PES) have to be
located the availability of analytical energy gradients (with respect to nuclear dis-
placements) is indispensable. Efficient electronic structure methods fulfilling these
requirements are Møller-Plesset perturbation theory of the second order (MP2) for
electronic ground states. In our recent studies on phenol-watern (n ∈ {1, 2, 3}) and
2-naphthol-watern (n ∈ {1, 2}) CC2 response theory was successfully applied in
order to understand the anomalous R2PI absorption spectra of the n = 2 clusters
[102, 118].
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4 Aniline clusters in the electronic ground state

In this contribution we present results from an ab initio study on the dimer
and the trimer of aniline. Aniline (An) is the simplest member of the class of
aromatic amines and an important precursor for the synthesis of more complex
chemicals. Few experimental papers about the aniline dimer are in the literature.
R2PI spectra on An2 (both deuterated and nondeuterated) were measured by Yeh
et al. [119]. The spectral shift of the S1 ← S0 origin of the dimer relative to that
of the monomer is unusually large (a redshift of 678 cm−1 was measured for the
nondeuterated species), indicating a large increase in the binding energy of the
complex on going from the electronic ground to the S1 state. Furthermore, there
is evidence for an An2 excimer in the spectra. Hole burning experiments revealed
that all the multiple bands in the vicinity of the origin belong to the same An2

isomer [120]. IRDS measurements of the N–H stretch frequencies finally show that
both of the amino groups of An2 are equivalent [121], indicating that the minimum
energy structure in the S0 state is of sandwich type in a head-to-tail arrangement
of the two amino groups (cf. Fig. 4.1), which is in agreement with the MP2
calculations of Yamamoto et al. [120]. This ”symmetric” sandwich head-to-tail
geometry of An2 (labeled as An2R33-1, according to our nomenclature,vide infra),
where NH2–π type H bonding appears to contribute significantly to the interaction
energy, is entirely different to the known asymmetric structure of the phenol dimer.
The latter structure is governed by hydrogen bonding involving the two hydroxy
groups with one of the phenol monomers acting as the H donor and the other as
the H acceptor.

In this work we determined the relevant low-energy minima on the ground state
PES of An2 and An3 employing local MP2 (LMP2), and spin-component-scaled
LMP2 (SCS-LMP2) [48]. Already for An3, a large number of possible low energy
conformers has to be screened. It is a well known problem that the number of
possible minima on the PES increases exponentially with the cluster size [122,
123]. This problem is handled by a global optimization strategy [124], which
has been successfully applied before in the context of small water clusters [125].
In order to systematically classify the various low energy cluster conformers, a
general topological nomenclature is introduced, which is applicable also to other
homoclusters (see Sec. 4.3). In order to gain more informa tion about the trait
of the intermolecular interactions DFT-SAPT (symmetry adapted intermolecular
perturbation theory, based on DFT monomer properties) calculations were carried
out for three typical dimer minimum energy geometries of the electronic ground
state. Finally, harmonic vibrational frequency shifts of the N–H stretch modes were
computed for the lowest S0 minima of An2 and An3. In an upcoming publication
we will present the results of a study on the lowest excited states of An2 and An3.
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4.2 Computational methods

4.2 Computational methods

The search for energetically low lying minimum energy structures was performed
by applying the following scheme: a set of global optimizations is carried out on
an energy hypersurface described by a model potential. Each individual global
optimization (with subsequent quenching to the next local minimum) yields a new
candidate structure, which is added to a pool of possible low energy geometries.
Its interaction energy is calculated with the chosen ab initio method. Before the
next global optimization is carried out, the parameters of the model potential (or a
subset thereof) are refitted to the ab initio interaction energies of the geometries in
the pool, i.e., to the energies of the present and all previous geometries. Once the
global optimizations no longer provide any new structural motifs, the collection of
geometries with the lowest ab initio energies is considered as fully minimized on
the ab initio energy hypersurface.

The global optimizations were performed with simulated annealing [126, 127]
and threshold acceptance [128] methods (here using the OBA2 N algorithm [129])
with adaptive step length [130]. For the model potential, the electrostatic and
induction energies were calculated with polarizable monopoles [131], for dispersion
and exchange repulsion a Buckingham potential EBuck = f exp(−gr)− d

r6 was used.
The usage of higher-order multipoles and polarizabilities in the potential turned
out to be computationally too expensive to be used within the global optimizations.

All ab initio calculations were carried out with the MOLPRO program package
(Ref. 96). The energies needed in the context of the global optimization procedure
outlined above, and the analytic energy gradients (with respect to nuclear displace-
ments), required for the subsequent local optimizations on the ab initio energy
hypersurface, were mainly calculated at the level of spin-component-scaled (SCS)
[48], density fitted local Møller-Plesset perturbation theory of second-order (SCS
DF-LMP2) [101, 132]. For comparison, local optimizations were also carried out
at the (unscaled) DF-LMP2 level. At the optimized cluster geometries additional
single point energy calculations at the level of density fitted local coupled cluster
theory with single, double, and perturbative triple substitutions, DF-LCCSD(T)
[59, 60, 133, 134], were performed, in order to compare DF-LMP2, SCS DF-LMP2,
and DF-LCCSD(T). The local T0 approximation as described in Ref. 60 was used
throughout for the triples correction in the DF-LCCSD(T) calculations, the post-
fix ”0” is omitted in the following for brevity. Harmonic vibrational frequencies
were calculated at the level of SCS DF-LMP2 by numerical differentiation of the
corresponding analytic gradients [101].

Furthermore, for the three lowest ground state minima of the aniline dimer,
as well as for the parallel-displaced geometry of the benzene dimer (for the pur-
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4 Aniline clusters in the electronic ground state

pose of reference), density fitted DFT-SAPT (cf. Ref. 10 and references therein)
calculations were carried out, which provide information on the individual phys-
ical components of the interaction energy. For these calculations the LPBE0AC
exchange-correlation (xc) potential in combination with the ALDA kernel, as justi-
fied before in Ref. 10, was used. This potential involves an asymptotic correction
based on the gradient-regulated connection of inner to outer parts of the xc poten-
tial (as described in detail in Ref. 135), adding, as a constant shift the difference
between the negative ionization potential and the highest occupied molecular or-
bital (HOMO) energy of the underlying xc functional, to the asymptotic part of
the potential. HOMO energies, as well as ionization potentials, were calculated for
the individual monomers with the PBE0 functional in the respective AO basis sets;
the resulting shift parameters amount to 0.0678 and 0.0719 hartree, for benzene
and aniline, respectively (no relevant basis set dependence of these parameters was
observed).

In the following, when referencing the individual methods used, the prefix ”DF”
is omitted altogether and it is implicitly understood that the density fitting ap-
proximation for the electron repulsion integrals is invoked.

In all calculations the augmented correlation consistent aug-cc-pVXZ AO basis
sets [34] with X∈{D, T}, in conjunction with the corresponding fitting sets opti-
mized for MP2 (Ref. 99) were used. For the methods based on a density fitted
Hartree-Fock reference, i.e., the LMP2, SCS-LMP2, and LCCSD(T) calculations,
the JK-fitting sets [136] related to the cc-pV(X+1)Z AO basis were used for the
Hartree-Fock part of energies and gradients. The DFT-SAPT calculations were
performed in the X=T and X=Q AO basis, employing related fitting sets, i.e., cc-
pVXZ/JKFIT plus one additional even tempered diffuse function per primitive set
(cf. MOLPRO basis set library) for Hartree-Fock and the generalized Coulomb and
exchange matrices occurring in the first order and second-order induction terms
of DFT-SAPT [10], and aug-cc-pVXZ/MP2FIT for the second-order dispersion
terms.

The localized occupied MOs needed for the local methods were obtained with
Pipek-Mezey localization [62], with the most diffuse functions being discarded in
the localization procedure (option CPLDEL=1). Excitation domains were gener-
ated at large intermonomer distance (100 bohr) by using a completeness criterion
of 0.980, 0.985, and 0.990 for X=D, X=T, and X=Q AO basis sets, respectively.
Additional calculations were performed with extended pair domains, which (i) in-
clude either all nearest atom centers within a distance of 3 bohr from the centers of
the Boughton-Pulay core domains [137], or (ii) all centers on the aniline monomers.
Geometry optimizations were carried out in force-constant weighted internal coor-
dinates [138]. Finally, complete basis set (CBS) limits of the ground state inter-
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action energies were estimated by extrapolating the correlation part according to
the two-point formula [35] based on X=T and X = Q single point calculations at
the optimized geometries.

In the following the term binding energy implies the inclusion of relaxational
effects to the interaction energy, which in turn is understood to be calculated
between rigid monomers.

4.3 Nomenclature

i Edge type βi Directional?

0 π · · ·π interaction no

1 NH 99K N hydrogen bond yes

2 NH 99K π hydrogen bond yes

3 NH2 99K π hydrogen bond yes

Table 4.1: Types of edges βi (intermonomer bonding) in the nomenclature of the
aniline clusters.

In order to entitle the cluster structures a nomenclature is introduced. It is
required to give information about the cluster size, constitution, and conformation.
Therefore each structure name consists of three parts. First AnM denotes the
constitution of the monomer where M is the cluster size. Then information about
the topology is given. After that different conformations of the same topology can
be enumerated. One can clarify the topology as a graph. The vertices represent the
monomers and the edges βi bonds between them. Each edge β may be directional
and is characterized by a number i, which defines the type of the bond, see Table
4.1. A graph is entitled by a number of topological elements Γ, which are defined
in Table 4.2. These set up a pathway through the graph, passing every vertex at
least once. Every symbol Γ is followed by the type of its edge or edges. A number
of rules define the syntax:

• An edge can be substituted by a subgraph. This nesting can be given by putting
the subgraph in round brackets at the position of the substituted edge. An edge
which is substituted by only a linear series of edges can be written for convenience
without round brackets and symbol L.

• If more than one edge belongs to a symbol, e.g., an branching with symbol B,
the edges are separated by a dot and ordered by their length (if nested).
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4 Aniline clusters in the electronic ground state

Γ Topological symbol Example Comment

L linear Lij i j

I inverse Iij i j Starting and terminal vertices
change place.

C closed Ci.jk
i

j k

R ring Rijk
i

k j Starting and terminal vertices
are the same.

B branching point Bi.j i j No terminal vertex.

J junction Ji.j i j No terminal vertex. Equivalent
to B(Ii).(Ij).

X disconnected X Starting and terminal vertices
are the same.

Table 4.2: Topological symbols Γ of the nomenclature. The initial and terminal
vertices are draw empty.

• To insert a side chain edge leaving the path after the last edge, it is written in
square brackets. The terminal edge on the side chain is not continued.

• Every symbol has a defined initial vertex. Every symbol except B and J also
has a defined terminal vertex. Therefore the symbols B and J can only be at the
end of the path or a side chain. The symbol C has identical initial and terminal
vertices.

• The symbol I inverts the direction of the following edge.

• It is possible to lead the path multiple times through a common edge. In this
case, this common edge has to be designated by a defined number of primes.

• The path can go through nondirectional edges in both directions.

• Unconnected parts of a graph are separated by a diagonal slash. Single vertices
are denoted by the symbol X.

• Since there are many possibilities to denote the topology, the simplest is to be
preferred.

As an example the naming of the structure An3L1R33-1 is reviewed. It consists
of an aniline monomer which binds via an H bond between NH and N (type 1) to
a stack of two monomers, which mutually bind their NH2 group to the opposed π
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system (in both cases type 3).

1 3

3

To describe this graph, we start from the left vertex with L1 to the cycle R33,
which gives L1R33. Alternatively one could start at the two other vertices, but
this will produce more complicated solutions. For other systems, one can redefine
the edge types to also use this nomenclature.

4.4 Results and Discussion

4.4.1 Structures and interaction energies

The aniline dimer, An2

Figure 4.1: Aniline dimer geometries, together with binding energies ∆E0 in kcal/-
mol relative to the most stable structure, calculated with SCS-LMP2
and by 3 bohr extended domains, extrapolated to the CBS limit (based
on X=T and X=Q).
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4 Aniline clusters in the electronic ground state

The five lowest energy geometries of the aniline dimer, located by the opti-
mization scheme outlined in the previous section, are displayed in Fig. 4.1. The
individual conformers are labeled according to a topological nomenclature, which
is explained in detail in Section 4.3. In Table 4.3 the binding energies are given for
different basis sets and extended/full monomer domains, along with the extrapo-
lated CBS limits.

The most stable structure denoted as An2R33-1 features a head-to-tail arrange-
ment of the monomers. This is in agreement with the mass selective infrared
depletion spectra measured by Sugawara et al. in molecular beam expansions
[121]. The binding energy of An2R33-1, calculated at the level of SCS-MP2 and
extrapolated to the basis set limit, amounts to 7.6 kcal/mol (cf. Table 4.3). In
contrast to earlier work by Yamamoto et al. [120], who performed MP2 geometry
optimizations on An2 in the rather smallish cc-pVDZ basis, both aniline monomers
are slightly tilted with respect to each other (around their phenyl–N axes, each in
the opposite direction), thus breaking the C2h symmetry.

The C2h conformer is only slightly higher in energy though, i.e., by 0.038 kcal/-
mol, at the level of SCS-LMP2/X=D with full monomer domains. A harmonic
vibrational frequency analysis at that level yields a single imaginary frequency of
32.23i cm−1 related to the coordinate linking C2h with the two C1 minima, which
indicates that the C2h geometry corresponds to a transition state. Due to the tiny
barrier the level splitting caused by such a double minimum potential is too small
to be resolved in the spectra, as already conjectured by Sugawara et al. [121].

The four other local minima of Fig. 4.1 ranging between 1.1 and 1.7 kcal/mol
above An2R33-1 are the displaced head-to-head (sandwich) conformers (An2L1-
{1,2,3}) and the T-shaped head-to-head geometry (An2L1-1’). They all feature
a single distinct NH–N hydrogen bond, rather than the two NH2–π H bonding
interactions of An2R33-1. In Ref. 120 Yamamoto et al. also reported a head-to-
head conformer with NH–N H bonding topology about 1.2 kcal/mol above their
head-to-tail C2h minimum. Anyway, since typical molecular beam temperatures
are very low (vibrational temperature around 50 K) it is unlikely that any other
geometry but An2R33-1 plays a significant role in the measured spectra.

In Table 4.4 the individual components of the DFT-SAPT interaction energies
of the three lowest An2 dimer geometries An2R33-1, An2L1-1, and An2L1-2 (all
optimized for the SCS-LMP2 energy functional and the X=T basis) are compared
to those of the benzene dimer Bz2 (most stable parallel displaced geometry of
Ref. 10). Evidently, neither An2R33-1, nor Bz2 are bound at the uncorrelated
Hartree-Fock level, although, for the latter, the Hartree-Fock interaction energy is
much more repulsive. The first order electrostatic plus exchange repulsion compo-
nents, E

(1)
pol +E

(1)
xc , are repulsive (2.8 kcal/mol for An2R33-1 versus 5.5 kcal/mol for
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X=D, Y=D X=T, Y=T X=Q, Y=T X→ ∞, Y=T

Geometry normal ext. full normal ext. normal ext. normal ext.

An2R33-1 -5.466 -6.078 -5.923 -6.134 -6.646 -6.459 -6.739 -7.467 -7.578

An2L1-1 -4.866 -5.397 -5.335 -5.331 -5.708 -5.481 -5.710 -6.380 -6.502

An2L1-2 -4.502 -5.091 -5.109 -4.954 -5.412 -5.128 -5.419 -6.060 -6.228

An2L1-3 -4.130 -4.613 -4.629 -4.663 -5.040 -4.819 -5.056 -5.695 -5.830

An2L1-1’ -4.383 -4.712 -4.459 -4.765 -5.143 -4.978 -5.171 -5.907 -5.964

An3L11-1
-12.260 -13.327 -13.076 -12.993 -14.142 -13.474 -14.337 -14.992 -15.647

-0.670 -0.718 -0.815 -0.744 -0.767 -0.728 -0.773 -0.717 -0.778

An3R122-1
-11.517 -12.647 -12.536 -12.117 -13.171 -12.354 -13.259 -13.659 -14.455

-0.354 -0.443 -0.511 -0.309 -0.330 -0.278 -0.320 -0.255 -0.313

An3R122-2
-11.584 -12.630 -12.453 -12.438 -13.513 -12.922 -13.670 -14.434 -14.942

-0.504 -0.585 -0.557 -0.495 -0.514 -0.492 -0.512 -0.491 -0.512

An3L1R33-1
-10.683 -11.839 -11.756 -11.331 -12.355 -11.565 -12.410 -12.907 -13.621

-0.032 -0.076 -0.117 -0.005 -0.019 0.024 -0.005 0.046 0.006

Table 4.3: Binding energies in kcal/mol, calculated with SCS-LMP2. X and Y refer to the basis sets during the
single point calculations and the optimization, respectively. Ext. denotes by 3 bohr extended domains,
full denotes extended domains over the whole particular monomer. In the second line of the trimers, the
three-body interaction energy is given.
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Geometry Bz2 An2R33-1 An2L1-1 An2L1-2

Basis set X = T X = Q X = T X = Q X = T X = T

Eint(HF) 5.13 5.13 0.72 0.72 -0.37 1.43

δ(HF)a -0.62 -0.62 -0.72 -0.72 -0.69 -0.71

Eb
rest 4.72 4.72 1.32 1.32 0.53 2.07

E
(1)
pol -2.05 -2.05 -5.64 -5.63 -5.62 -4.54

E
(1)
xc 7.58 7.57 8.42 8.41 7.54 8.03

E
(2)
ind + E

(2)
xind -0.19 -0.19 -0.74 -0.73 -0.70 -0.70

E
(2)
disp + E

(2)
xdisp -7.45 -7.58 -8.89 -9.04 -7.00 -8.20

Ec
int -2.72 -2.86 -7.58 -7.71 -6.47 -6.12

a) δ(HF ) = Eint(HF) − E
(1)
pol(HF ) − E

(1)
xc (HF ) − E

(2)
ind(HF ) − E

(2)
xind(HF )

b) Erest = E
(1)
pol + E

(1)
xc + E

(2)
ind + E

(2)
xind + δ(HF)

c) Eint = E
(1)
pol + E

(1)
xc + E

(2)
ind + E

(2)
xind + E

(2)
disp + E

(2)
xdisp + δ(HF)

Table 4.4: DFT-SAPT components of the interaction energies for the benzene
dimer and the three lowest-energy geometries of the aniline dimer op-
timized using SCS-LMP2 and the X=T basis set. The LPBE0AC ex-
change correlation potential in combination with the ALDA kernel has
been used for the DFT-SAPT calculations. All values are given in
kcal/mol.

Bz2; the smaller value for An2 is primarily due to the more attractive electrostatic
component). The corresponding second order induction plus exchange induction

contributions, E
(2)
ind + E

(2)
xind, are slightly attractive (–0.7 kcal/mol for An2 versus

–0.2 kcal/mol for Bz2). The total interaction energy is, in spite of the more attrac-
tive electrostatic and inductive components for An2, dominated by van der Waals
dispersion in both cases; the sums of the second order dispersion, E

(2)
disp, and its ex-

change counterpart, E
(2)
xdisp, are adding up to –9.0 kcal/mol for An2R33-1 and –7.6

kcal/mol for Bz2, respectively. For An2R33-1, the overall DFT-SAPT interaction
energy amounts to –7.7 kcal/mol, which compares well to the SCS-MP2 X=Q value
of –7.2 kcal/mol (no geometry relaxation effects are included here, in contrast to
Table 4.3), appreciating the fact that DFT-SAPT and SCS-MP2 are entirely com-
plementary approaches to calculate intermolecular interaction energies. For Bz2,
on the other hand, the overall DFT-SAPT interaction energy amounts to only –2.9
kcal/mol. Thus, while for Bz2 the total interaction energy is somewhat more than
a third of the dispersive component; for An2R33-1 it is of similar magnitude. We
conclude that the cyclic NH2–π H bonding situation is somewhere intermediate
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between a (weak) H bond and an (almost) purely dispersive π–π interaction like
that of the Bz2 prototype.

The changes in the SAPT components on going from An2R33-1 to An2L1-1 and
An2L1-2 reflect the delicate balance between NH–N and NH–π H bonding, and
π-stacking, at work in aniline clusters. For the An2L1-1 geometry the dimer is
already stable at the uncorrelated Hartree-Fock level, although the sum of the first
order and second order induction components (evaluated for DFT monomers) is
still repulsive. Comparison with An2R33-1 reveals that the first order exchange
repulsion is reduced by 1 kcal/mol, while electrostatics is hardly affected. However
this comes at a price of losing almost 2 kcal/mol in van der Waals dispersion,
rendering An2L1-1 as less stable than An2R33-1. An2L1-2, on the other hand,
with a more parallel arrangement of the two phenyl rings than An2L1-1, again has
a larger dispersive component, but loses in the electrostatic and the first order
exchange component against the latter.

Table 4.5 compares SCS-LMP2, LMP2, and LCCSD versus LCCSD(T) inter-
action energies for the five energetically lowest An2 structures. All calculations
were carried out by using the X=D AO basis sets and standard domain sizes. The
geometry optimizations were performed for both SCS-LMP2 and unscaled LMP2
for comparison. Evidently, SCS-LMP2, for the present case, indeed provides in-
teraction energies much closer to LCCSD(T) than unscaled LMP2. Furthermore,
larger (abs. value) LCCSD(T) interaction energies are obtained at SCS-LMP2 ge-
ometries than at unscaled LMP2 geometries. This justifies our decision to optimize
the An2 and An3 geometries for the SCS-LMP2 energy functional. Comparison of
LCCSD versus LCCSD(T) shows that the former consistently underestimates the
interaction energies by (13%–24%), yet, in contrast to LMP2 the energetical order
of the five An2 structures is the same as that of LCCSD(T).

The aniline trimer, An3

The four energetically lowest An3 geometries are depicted in Fig. 4.2, along with
the related SCS-LMP2 CBS limit binding energy differences relative to the most
stable An3L11-1 conformer.As for the dimer, the trimer structures are labeled
according to the nomenclature defined in Sec. 4.3. Table 4.3 compiles the SCS-
LMP2 binding energies of the four An3 geometries computed in different AO basis
sets and with extended/full monomer domains, along with the related extrapolated
CBS limits (based on the X=T and X=Q correlation energies). Furthermore, the
nonadditive three-body terms [12, 13] are given.

The An3L11-1 conformer, with a binding energy of –15.6 kcal/mol (basis set
limit estimate) clearly constitutes the most stable minimum found by our global
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4 Aniline clusters in the electronic ground state

Geometry LCCSD(T) LCCSD LMP2 SCS-LMP2

LMP2 dimer geometries

An2R33-1 -5.324 -4.152 (+22.0%) -7.691 (-44.5%) -5.401 (-1.4%)

An2L1-1 -4.797 -3.765 (+21.5%) -6.919 (-44.2%) -4.867 (-1.5%)

An2L1-2 -4.166 -2.809 (+32.6%) -7.023 (-68.6%) -4.463 (-7.1%)

An2L1-3 -3.896 -2.658 (+31.8%) -6.380 (-63.8%) -4.092 (-5.0%)

An2L1-1’ -4.560 -3.847 (+15.6%) -5.833 (-27.9%) -4.331 (+5.0%)

SCS-LMP2 dimer geometries

An2R33-1 -5.589 -4.573 (+18.2%) -7.617 (-36.3%) -5.646 (-1.0%)

An2L1-1 -5.146 -4.294 (+16.6%) -6.832 (-32.8%) -5.142 (+0.1%)

An2L1-2 -4.656 -3.546 (+23.8%) -6.920 (-48.6%) -4.838 (-3.9%)

An2L1-3 -4.272 -3.232 (+24.3%) -6.300 (-47.5%) -4.391 (-2.8%)

An2L1-1’ -4.702 -4.073 (+13.4%) -5.785 (-23.0%) -4.485 (+4.6%)

SCS-LMP2 trimer geometries

An3L11-1
-13.066 -11.344 (+13.2%) -16.312 (-24.8%) -12.681 (+2.9%)

-0.547 -0.570 (+4.2%) -0.675 (+23.4%) -0.670 (+22.5%)

An3R122-1
-12.135 -10.499 (+13.5%) -15.676 (-29.2%) -11.921 (+1.8%)

-0.205 -0.245 (+19.5%) -0.349 (+70.2%) -0.354 (+72.7%)

An3R122-2
-12.135 -10.612 (+12.6%) -15.449 (-27.3%) -11.890 (+2.0%)

-0.364 -0.400 (+9.9%) -0.506 (+39.0%) -0.504 (+38.5%)

An3L1R33-1
-11.107 -9.425 (+15.1%) -15.009 (-35.1%) -11.198 (-0.8%)

-0.005 -0.022 (+340.0%) -0.026 (+420.0%) -0.032 (+540.0%)

Table 4.5: Counterpoise corrected interaction energies in kcal/mol, calculated
within X=D basis sets and normal domains. In parentheses the de-
viations from the LCCSD(T) reference calculations are given. For the
trimer structures the individual three-body interaction energies [and
their deviations from the LCCSD(T) reference value] are given in the
second line.
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4.4 Results and Discussion

Figure 4.2: Aniline trimer geometries, together with binding energies ∆E0 in kcal/-
mol relative to the most stable structure, calculated with SCS-LMP2
and by 3 bohr extended domains, extrapolated to the CBS limit (based
on X=T and X=Q).

optimization scheme. It features two directional NH–N hydrogen bonds with one
monomer acting as H donor, another as H acceptor, and the third simultaneously
as H donor and H acceptor. It can be considered as an assembly of two T-shaped
head-to-head geometries (An2L1-1’), arranged such that they nearly form a ring.
Yet the distance between the acceptor N atom and the phenyl ring of the donor is
too long to form a third H bond of NH–π type (apparently, the ring strain is too
large). An3L11-1 also features the largest nonadditive three-body contribution,
which amounts to about 5% of the binding energy. The next lowest geometries
are the An3R122-{1,2} conformers, 0.7 and 1.2 kcal/mol above the most stable
minimum. An3R122-{1,2} both feature a single NH–N and two NH–π type hydro-
gen bonds, so one of the two NH–N hydrogen bonds of An3L11-1 is sacrificed to
ease the ring strain and to form two NH–π H bonds instead. The two geometries
An3R122-1 and An3R122-2 are quite similar; the root-mean-square deviation of
the atomic positions amounts to only 0.2388 and 0.3037 Å, for the X=D and X=T
structures, respectively. Already 2.0 kcal/mol above the most stable minimum is
the An3L1R33-1 conformer, which features a single NH–N hydrogen bond plus two
NH2–π bonds as found in the dimer. It can be considered as a combination of the
structural motifs An2R33-1 and An2L1-1, the two most stable dimer conformers.
Apparently these most stable dimer motifs are not competitive as substructures in
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4 Aniline clusters in the electronic ground state

the trimer, compared to other hydrogen bonding arrangements. In any case the
(sole) An3 conformer of relevance in molecular beam expansions is An3L11-1.

In Table 4.5 again SCS-LMP2, LMP2, and LCCSD interaction energies are com-
pared to the LCCSD(T) reference values, now for the trimer. Moreover, apart
from the interaction energies also the nonadditive three-body contributions are
considered. In the LCCSD and LCCSD(T) calculations, to save time, only the
intermolecular pairs were treated at the local coupled cluster level, whereas the
intramolecular pairs were described at the LMP2 level only. Since test calcula-
tions on the An2R33-1 dimer gave for these both cases exactly the same result for
the counterpoise corrected interac tionenergy, this approximation is well justified.
Comparison of SCS-LMP2 and LCCSD(T) yields the same favorable picture as
for the dimer with deviations of 2%–3%. Not surprisingly, the largest deviation
occurs for the most stable An3L11-1 conformer, featuring directional NH–N hydro-
gen bonds and hardly any π-stacking. LCCSD again consistently underestimates
the LCCSD(T) interaction energy (by 13%–15%), yet in a much more regular way
than LMP2 overestimates it.

When comparing the three-body contributions in Table 4.5 it is evident that
the errors of the LMP2 and SCS-LMP2 methods, relative to LCCSD(T), are very
similar, and quite large, while those of LCCSD are much smaller. This may be re-
lated to the absence of nonadditive three-body dispersion (Axilrod-Teller) terms in
second-order perturbation theory. The lowest-order SAPT three-body dispersion
term E

(30)
disp,ABC (of third-order with respect to the inter- and of zeroth-order with

respect to the intramolecular perturbation operator) appears in supermolecular
calculations based on the Møller-Plesset partitioning in third-order (cf., e.g., Eqs.
(8) and (9), and Fig. 1 in Ref. 139). This is not so much of a problem here, since
the importance of the nonadditive three-body term overall, and the Axilrod-Teller
term in particular relative to the total interaction energy is rather modest, and
also π-stacking is of lesser importance for An3 than for An2 (certainly so for the
most stable An3L11-1 geometry). However, for systems where the relative impor-
tance of dispersion generally, and nonadditive three-body dispersion particularly,
is larger, the SCS-LMP2 method should not be used blindly!

4.4.2 Vibrational frequencies of the N–H stretch modes

For the most stable geometry of An2 and An3, i.e., An2R33-1 and An3L11-1, re-
spectively, normal mode analysis based on the SCS-LMP2/X=D energy functional
was carried out. Of interest here are the harmonic vibrational frequencies of the
symmetric and antisymmetric N–H stretch modes, which are primarily affected by
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Geometry Vibration harm. rel. Int. Exp.

An νs 3541.7 5.10 3421.8

νas 3651.0 5.86 3508.2

An2R33-1 νs 3533.5 (-8.2) 0.01

νs 3533.9 (-7.8) 10.07 3394.0 (-27.8)

νas 3632.4 (-18.6) 2.16 3465.9 (-42.3)

νas 3632.5 (-18.6) 1.92 3465.9 (-42.3)

An3L11-1 νs 3480.8 (-60.9) 44.69

νs 3501.7 (-40.0) 83.36

νs 3516.7 (-25.0) 5.36

νas 3607.5 (-43.5) 25.30

νas 3625.7 (-25.3) 13.51

νas 3626.4 (-24.7) 15.71

Table 4.6: Calculated harmonic vibrational frequencies in cm−1, their according
shifts (in parentheses) and the relative intensities (arbitrary units), cal-
culated with SCS-LMP2 and X=D basis sets. Experimental data are
also given, cf. Refs. 119–121.

cluster formation. Table 4.6 compiles the frequencies, frequency shifts relative to
the monomer, and the corresponding intensities of these modes. The SCS-LMP2
values are consistently too high, compared to the available experimental monomer
and dimer values. The frequency shifts calculated for the dimer are correctly pre-
dicted as redshifts, but are far too small. It appears that a harmonic frequency
analysis is insufficient for the present case. Unfortunately higher level calcula-
tions such as higher dimensional variational SCF and CI [42–45] turned out as too
expensive for these systems.

4.5 Conclusions

In the present work the aniline dimer and trimer were studied by means of ab initio

electronic structure theory. The ground state surfaces were thoroughly searched
for energetically low lying minima by combining global optimizations on a model
potential with ab initio energy calculations and adapting iteratively the model
potential to the ab initio interaction energies for a growing set of relevant geome-
tries. These calculations were performed at the level of local MP2 (LMP2) and
SCS-LMP2. For the dimer, as well as for the trimer, a single ground state mini-
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4 Aniline clusters in the electronic ground state

mum appears to be populated at typical molecular beam temperatures. For the
dimer this minimum corresponds to head-to-tail arrangement of the two monomers,
where each amino group acts as a double H donor to the π system of the phenyl
rings. DFT-SAPT calculations reveal that the interaction energy is dominated by
the component of van der Waals dispersion, which is of similar size as in the ben-
zene dimer, yet in contrast to the latter, the component of first-order (polarization
plus exchange repulsion) is much less repulsive. Overall the interaction energy of
the aniline dimer is much larger than that of the benzene dimer (7.9 versus 2.9
kcal/mol, according to DFT-SAPT calculations in aug-cc-pVQZ basis).

The geometry of the relevant trimer ground state minimum exhibits two direc-
tional NH–N hydrogen bonds. Thus, in contrast to the dimer, the three monomers
are non-equivalent, but can clearly be distinguished as an H donor, an H acceptor,
and as an H donor and acceptor, respectively. This is of particular relevance for the
absorption spectra, since in such a case three different electronic origins might be
observed, related to the three individual chromophores in a different environment.
This will be further discussed in chapter 5, where the lowest excited states of the
aniline dimer and trimer are explored.

The nonadditive three-body terms of the trimer amount to 5% or less of the
total interaction energy. The difference between MP2 (or SCS-MP2) and LCCSD,
which we roughly relate to the three-body dispersion contribution, is repulsive and
amounts to about 18% of the total three-body term for the most stable trimer ge-
ometry. From this angle, application of SCS-LMP2 to aniline clusters still appears
to be justified.
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5 The low-lying electronic excited

states of aniline clusters

5.1 Introduction

Intermolecular forces between stable molecules are omnipresent in physics, chem-
istry, and biology. Moreover, electronic excitation of a chromophore can signifi-
cantly influence the strength of such forces, with which it interacts with its envi-
ronment, e.g., with the solvent molecules of a solvent shell, or with nearby amino
acid residues in a binding pocket of a protein [140, 141]. Intermolecular interactions
between molecules are therefore of great interest, particularly so, if one or multiple
chromophores are involved. Molecular clusters, i.e., isolated aggregates of two to
many molecules of interest are ideal systems to study such interactions in detail
[142]. Experimentally, such clusters are synthesized in molecular beam expan-
sions and detected/analyzed by using laser spectroscopy. If the cluster contains
at least one (aromatic) chromophore, then the spectroscopic toolbox is particu-
larly rich: mass selective absorption spectra can be obtained by applying resonant
two-photon ionization (R2PI) spectroscopy, the combination of that method with,
e.g., infrared depletion spectroscopy (IRDS) provides information on the electronic
ground state, hole burning experiments can be used to check if one or more distinct
isomers coexist, etc. [19]

In a previous study [143] the aniline (An) dimer and trimer were investigated in
their electronic ground states. Using an ab initio global optimization approach,
where the model potential used for the global optimization procedure is con-
stantly recalibrated and thus improved on-the-fly by ab initio calculations (spin-
component-scaled [48] local MP2) at relevant configurations, the lowest-energy
configurations of these clusters could be determined. For the An2 dimer this was
a symmetric head-to-tail arrangement with two NH2-π type interactions between
amino groups and π systems of the two monomers (cf. Fig. 5.1). The Van der Waals
dispersion is predominant in this system, as density functional theory-symmetry-
adapted perturbation theory (DFT-SAPT) calculations show. The global mini-
mum of the An3 trimer, on the other hand, corresponds to an assembly of two
head-to-head arrangements, grouped such that the three monomers nearly form a
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5 The low-lying electronic excited states of aniline clusters

ring. Two directional NH-N hydrogen bonds are formed, with one aniline subunit
acting as a H donor, another as H acceptor, and the third simultaneously as H
donor and acceptor (cf. Fig. 5.3). Therefore, each aniline monomer has a clearly
distinct H-bonding environment, which is in strong contrast to the dimer. The
distance between the acceptor N atom and the phenyl ring of the donor is too long
to form a third H bond of NH-π type (apparently, the ring strain is too large). Non-
additive three-body contributions amount to about 5%. Of these, only about 20%
are related to dispersion (Axilrod-Teller contributions). A second-order treatment
(which neglects Axilrod-Teller terms) therefore still is justified for this system.

To distinguish the multitude of individual geometries generated by the global op-
timization procedure, a topological nomenclature was introduced (cf. appendix in
Ref. 143). According to this nomenclature the symmetric head-to-tail arrangement
of the the An2 dimer is denoted as An2R33-1, while the label An3L11-1 is used for
the global minimum of An3 with the two directional NH-N hydrogen bonds.

For aniline clusters not much is presently known about their excited states. Few
experimental papers on An2 are available in literature. R2PI spectra (both deuter-
ated and nondeuterated An2) were measured by Yeh et al. [119]. The S1 ← S0

origin of the dimer is redshifted by 678 cm-1 relative to the monomer (nondeuter-
ated species), which corresponds to an untypically large increase in the binding
energy of the complex on going from the electronic ground to the S1 state. Further-
more, there is a broad background feature in the spectrum hinting at the existence
of an energetically lower lying excimer state. The multiple sharp bands of the
spectra in the vicinity of the origin belong, as hole burning experiments reveal, all
to the same (ground state) An2 isomer. IRDS measurements of the N-H stretch
frequencies finally ascertain the equivalence of both amino groups of An2, implying
a sandwich type head-to-tail arrangement for the relevant S0 state minimum, in
agreement with ab initio calculations [120, 143].

Ab initio calculations investigating the excited states of An2 have not yet been
carried out so far, its S1 state geometry is unknown. Also the aniline trimer is
terra incognita. To our knowledge neither experimental nor theoretical studies on
An3 are available in literature, even though there have been measurements done
on the dimer and trimer ions by Ohashi et al. [144, 145]

In the present work we have investigated the two/three lowest electronically
excited states of An2 and An3, respectively. Starting from the Franck-Condon point
geometry optimizations were carried out on the individual excited state surfaces
by employing time-dependent coupled cluster CC2 response theory (CC2 response)
[46], as well as the spin-component-scaled variant of CC2 response [49]. CC2
response theory has already been applied successfully in our previous studies on
phenol-watern and 2-naphthol-watern solvent clusters in order to understand the
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anomalous R2PI absorption spectra of the n = 2 clusters [102, 118]. In the next
section we provide details about the computational methods employed. The results
of our study are presented and discussed in Sec. 5.3. Section 5.4 finally concludes
this chapter.

5.2 Computational methods

Geometry optimizations on the excited state surfaces of An2 and An3 were studied
with time-dependent coupled cluster response theory at the level of the second-
order CC2 model [46]. Primarily, the spin-component-scaled (SCS) variant of
CC2 (Ref. 49) was employed, though, also unscaled CC2 response calculations
were performed for comparison. It turned out that the SCS-CC2 minima provide
better (lower) interaction energies at the higher level of CCSD response theory
than the CC2 minima (vide infra), which is due to the well known fact that the
second-order CC2 model, such as MP2, describes van der Waals dispersion just at a
level corresponding to the uncoupled Hartree-Fock representation of the underlying
dynamical polarizabilities. This usually leads to a significant overestimation of the
binding energy, particularly so, if the dispersive component is dominant as is the
case, e.g., in the An2 cluster. Spin-component scaling [48] alleviates this deficiency
to some extent and was therefore used as the main tool in the present work. The
geometry optimizations were carried out by using the density fitted, analytic CC2
response gradient implementation of Hättig and Köhn [90, 91, 115] available in
the TURBOMOLE program package (Ref. 146). The CCSD response calculations
were performed by using the equation-of-motion CCSD program [11] implemented
in the MOLPRO program package [96].

For all calculations the augmented correlation consistent aug-cc-pVXZ AO basis
sets [34] with X∈{D, T}, together with the related fitting sets [99], were used: X=D
for geometry optimizations and X=T for single point energies. Also the An2 and
An3 ground state geometries in Ref. 143 were reoptimized at the level of CC2 and
SCS-CC2 response, respectively, in order to calculate adiabatic excitation energies,
bathochromic shifts, and vertical density differences consistently.

In the following, the term ”binding energy” implies the inclusion of relaxational
effects to the ”interaction energy”, which is in turn understood to be calculated
between rigid monomers. There is an ambiguity when calculating interaction en-
ergies, basis set superposition errors (BSSE, via the counterpoise correction), or
relaxation energies of clusters involving excited states where the excitation is de-
localized over individual monomers as, e.g., for the dimer (vide infra) due to the
fact that the geometries of the noninteracting monomers taken as the reference are
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5 The low-lying electronic excited states of aniline clusters

unrelaxed and therefore different. Since only one of the noninteracting monomers
is electronically excited it is ambiguous which one to choose. This problem does
not appear for the dimer geometries obtained with the SCS-CC2 response method,
which are virtually symmetric, yet it is present for the unscaled CC2 response ge-
ometries, which are not as symmetric. For the latter we provide both values. For
the trimer, on the other hand, a clear assignment of the excitation to a particular
monomer is possible since the excitations are localized on the individual monomers.
For binding energies the ambiguity disappears in any case since here the reference
is unambiguously represented by the relaxed geometries of the monomers in ground
and excited states.

Concerning the numeration of the states we use the individual ground state
geometries, i.e., the Franck-Condon points (FCPs) as reference. Thus S1 is the
lowest state, S2 is the second lowest state, etc., at the related FCP, implying that,
e.g., S2 may become the lowest state for some other geometry, provided that S1

and S2 intersect. Furthermore, we use the term ”minima” for stationary points
obtained from a geometry optimization, even though only for structures An S0,
An S1, An2R33-1 S0, and An2R33 S2, this was strictly verified by calculating the
nuclear Hessian. However, since all other provided structures have no symmetry
it can be quite safely assumed that the optimization procedure converges to a
minimum and not a saddle point.

5.3 Results and Discussion

5.3.1 The aniline dimer, An2

The S1 ← S0 excitation of the aniline monomer is of π∗ ← π type. Since An2

comprises two monomers, two different excited states originating from this π∗ ← π
excitation are expected. Furthermore since the two monomers are nearly equivalent
(the An2R33-1 S0 geometry almost has C2h symmetry) the two excited states reflect
this symmetry and are therefore delocalized. Analyzing the two excited states in
the framework of C2h symmetry, the energetically lower S1 excited state of An2

transforms as a basis function for the Bg irreducible representation (irrep) of the
C2h point group. The related transition is dipole-forbidden; the SCS-CC2 oscillator
strength is therefore very weak, i.e., f = 0.001.

The energetically higher S2 excited state, on the other hand, transforms as a
basis function for the Au irrep and the related transition is dipole-allowed (in
the z-direction): The SCS-CC2 oscillator strength here amounts to f = 0.035.
Figure 5.2 displays the SCS-CC2 density difference plots between the densities of
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Figure 5.1: Aniline dimer minimum energy geometries in the ground and the ex-
cited state, calculated with SCS CC2 response in the X=D basis set,
together with the respective binding energies ∆E0 in kcal/mol.

S1(π
∗
u ← πu) and S2(π

∗
g ← πu/π

∗
u ← πg), respectively, and the density of the ground

state, all calculated at the SCS-CC2 ground state minimum structure An2R33-1
S0. Obviously, for both transitions the excitation is delocalized on both aniline
subunits. Furthermore, it is clearly seen that the S1 ← S0 excitation in An2

increases the electron density between the two monomers, which is not the case
for the optically stronger S2 ← S0 excitation. This buildup of density between
the monomers in the S1 state leads to the formation of an excimer: Geometry
optimization on the S1 state surface leads to the structure denoted as ”An2R33
S1” in Fig. 5.1, where a bond of length 1.794 Å is formed between the two ortho-
C atoms of the monomers. This structure and the related energies have to be
taken with a grain of salt though, since a response method based on a closed-shell
reference most likely is inappropriate. The newly formed ”covalent” excimer bond
is elongated and most likely leads to near degeneracy effects, such that a proper
description of the ground state requires multiple determinants. Also calculating
interaction energies is problematic since the excimer bond would need to be broken
for the counterpoise correction. The BSSE uncorrected SCS-CC2 binding energy of
the excimer amounts to -21.28 kcal/mol, which compares to -20.40 kcal/mol for the
An2R33 S2 minimum (vide infra). The related values for unscaled CC2 are -33.49
kcal/mol versus -20.83 kcal/mol. Again, these energetics are highly unreliable, yet
what can be postulated on the basis of these calculations is the existence of an
excimer corresponding to the minimum on the S1 state surface, which is below the
An2R33 S2 minimum. This is in line with Fig. 4 in Ref. 119 and the conjecture
made in that paper on the basis of the measured R2PI spectra (vide supra).

In order to obtain the minimum on the S2(π
∗
g ← πu/π

∗
u ← πg) state surface

an initial geometry optimization within C2h symmetry on the lowest Au excited
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5 The low-lying electronic excited states of aniline clusters

Figure 5.2: Density differences, calculated at the An2R33-1 S0 ground state geome-
try, between S1 and S0 (left) and S2 and S0 (right). The red iso-surface
represents a value of 0.001, the blue one -0.001. (Upon excitation the
electron density moves from blue to red regions)

state was carried out first [a direct relaxation in C1 symmetry on the S2 surface
starting from the FCP again leads to the S1(π

∗
u ← πu) minimum of the excimer].

During this optimization the Au state falls energetically below the Bg state. The
resulting geometry was then fully relaxed in C1 symmetry. The final geometry,
denoted as ”An2R33 S2”, is depicted in Fig. 5.1. The geometry of this dimer
minimum overall is similar to the An2R33-1 S0 head-to-tail arrangement, yet the
vertical distance between the two phenyl rings decreases from 3.170 to 2.727 Å,
while the horizontal displacement along the long axis decreases from 3.010 to 2.351
Å (cf. Table 5.1). The root-mean-square (rms) deviation in atomic positions drms

between both structures is 1.977 Å (cf. Table 5.2). These rather large changes in
the vertical distance and the horizontal displacement may be the origin for the low-
frequency progressions and combination bands as seen in the absorption spectra
of the dimer [119, 121].

A characteristic feature of the relevant π∗ ← π excitation is the flattening of the
amino group; for the aniline monomer the dihedral angle βCHHN decreases from
33.1◦ to essentially 0◦ on going from the S0 to the S1 state (the amino group is
entirely planar in the S1 state). For the dimer these angles decrease from 35.6◦ in
the An2R33-1 S0 minimum to 27.4◦ in the An2R33 S2 minimum, as can be seen in
Table 5.1. Furthermore, the ipso C atom, along with the adjacent amino group, is
appreciably displaced by 8.5◦ out of the plane defined by the remaining C atoms,
which compares to only 0.8◦ in the ground state structure.

The binding energy of the An2R33 S2 minimum is 4.44 kcal/mol larger than that
of the An2R33-1 S0 minimum (cf. Table 5.3). This corresponds to a bathochro-
mic shift of -1553 cm-1 for the origin of the absorption spectrum, which is more
than twice as large as the experimentally observed redshift of 678 cm-1 (Ref. 119)
(cf. Table 5.4). The calculation of such bathochromic shifts is a difficult task since
it requires a well balanced description of the subtle intermolecular interactions in
ground and excited states, and might be beyond the accuracy of a second-order
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Geometry ∆Ph
‖, long ∆Ph

‖, short ∆Ph
⊥ dNH-N βNCCN βCHHN

An S0 33.1

An S1 0.0

An2R33-1 S0 3.010 0.000 3.170 175.5 35.6, 35.6

An2R33 S2 2.351 0.000 2.727 180.0 27.4, 27.4

An2R33 S1/S2 CI 3.253 0.000 3.004 180.0 26.6, 26.6

An3L11-1 S0 2.193, 2.224 33.4, 32.6, 34.8

An3L11 S1(D) 2.058, 2.243 13.3, 33.3, 35.3

An3R123 S2(DA) 1.924 33.2, 9.5, 35.6

An3R122 S3(A) 2.218 32.6, 35.0, 8.4

Table 5.1: Selected geometry parameters of the individual SCS-CC2/X=D minima.
The ∆ denote parallel and perpendicular components of the distance
vector between the centers of the two phenyl rings of An2. dNH-N denotes
the individual NH-N H bonding distances. βNCCN denotes the dihedral
angle describing the displacement of the ipso C atom out of the plane
defined by the five other C atoms of the individual monomers, and
βCHHN denotes the dihedral angle measuring the non-planarity of a NH2

group. Distances are given in Å, angle in degrees.

method. Using CCSD (instead of SCS-CC2) response interaction energies, calcu-
lated at the SCS-CC2 An2R33-1 S0 and An2R33 S2 geometries (cf. Table 5.5) and
combined with the corresponding SCS-CC2 relaxation energies of Table 5.3, yields
a value of -710 cm-1 for the bathochromic shift, which is much closer to experiment.
Basis set extension, on the other hand, does not lead to an improvement of the
bathochromic shifts, as the SCS-CC2 X=T results in Table 5.3 show.

In the context of the present work calculations based on unscaled CC2 response
theory were also carried out, the resulting interaction and binding energies are
compared to those of SCS-CC2 response in Table 5.5. CCSD response reference
calculations, performed at the CC2 and SCS-CC2 An2R33-1 S0 and An2R33 S2

minimum structures, however, reveal that (i) the deviations from the CCSD in-
teraction energies are much larger for CC2 than for SCS-CC2 at the related ge-
ometries, and (ii) the CCSD interaction energies are larger (absolute value) at the
SCS-CC2 than at the unscaled CC2 geometries (cf. Table 5.5). This indicates
that the CCSD minima most likely are closer to the SCS-CC2 minima than to the
unscaled CC2 minima. Probably, even though spin-component scaling is not the
ultimate answer for systems with a delicate balance between hydrogen bonding
and π stacking [52], it seems to be more reliable than unscaled CC2. Thus, the
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5 The low-lying electronic excited states of aniline clusters

An2 R33-1 S0 R33 S2 R33 S1/S2 CI

R33 S2 1.9770

R33 S1/S2 CI 1.9446 0.4255

R33 S1 0.5414 1.9579 2.0253

An3 L11-1 S0 L11 S1(D) R123 S2(DA)

L11 S1(D) 0.1087

R123 S2(DA) 1.1316 1.1968

R122 S3(A) 0.9328 0.9655 1.0582

Table 5.2: RMS geometry differences dRMS between two individual aniline dimer
and trimer geometries. All the geometries are calculated with SCS-CC2
response in the X=D AO basis set. The values are given in Å.

remaining discussion on the excited states of the An2 and An3 clusters is based on
SCS-CC2 response calculations.

Between the S2 and the S1 state surfaces there is a conical intersection seam.
We tried to locate a minimum energy point on the seam in the vicinity of the
FCP by employing the same approach as in previous work [102], i.e., without

the nonadiabatic coupling vector, which unfortunately is not yet available for the
DF-SCS-CC2 implementation of TURBOMOLE [146]. The resulting geometry
obtained from these tedious calculations is shown in Fig. 5.1, labeled as ”An2R33
S1/S2 CI”. It is again similar to the S0 head-to-tail arrangement An2R33-1 S0

of the ground state, and as for the An2R33 S2 minimum, there is quite a large
change in the vertical distance and the horizontal long axis displacement of the
two phenyl rings. The vertical distance decreases from 3.170 to 3.004 Å, while
the horizontal displacement increases from 3.010 to 3.253 Å. The dihedral angles
βCHHN describing the ”nonplanarity” of the amino groups, amount to 26.6◦, i.e., a
similar simultaneous flattening of both amino groups occurs as for the An2R33 S2

minimum. Overall, the geometry of the conical intersection minimum is close to
both the An2R33-1 S0 and the An2R33 S2 minima; actually, the rms deviation in
atomic positions drms between the An2R33 S2 minimum and the conical intersection
is, with only 0.43 Å, rather small (cf. Table 5.2). It is therefore not surprising that
the optimization of the An2R33 S2 minimum turned out to be difficult and tedious
(vide supra).
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X=D X=T

Geometry ∆ECP
int δBSSE δrel ∆ECP

bind ∆ECP
int δBSSE ∆ECP

bind

An2R33-1 S0 -6.59 6.37 -0.35 -6.25 -7.23 2.68 -6.89

An2R33 S2 -15.50 9.71 -4.80 -10.69 -16.87 3.96 -12.07

An2R33 S1/S2 CI -8.41 7.09 -3.28 -5.14 -9.25 2.97 -5.97

An3L11-1 S0 -14.27 12.70 -0.55 -13.72 -15.62 5.67 -15.07

An3L11 S1(D) -17.79 13.37 -0.91 -16.88 -19.23 5.97 -18.32

An3R123 S2(DA) -18.73 13.41 -1.37 -17.36 -20.20 5.94 -18.83

An3R122 S3(A) -16.70 12.50 -0.87 -15.83 -18.10 5.59 -17.23

Table 5.3: Counterpoise corrected interaction energies ∆ECP
int , BSSE δBSSE, relax-

ation energies δrel (calculated within monomer basis) and binding ener-
gies ∆ECP

bind. The calculations were performed with SCS-CC2 response
in the X=D and X=T AO basis sets at the X=D geometries. For the
X=T binding energies the X=D relaxational energies were used. All
values are given in kcal/mol.

5.3.2 The aniline trimer, An3

In contrast to the dimer the three individual monomers of the trimer are not equiv-
alent (or nearly equivalent) at the An3L11-1 S0 minimum, but clearly distinguish-
able as a NH-N donor (D), an acceptor (A), and a monomer acting simultaneously
as donor and acceptor (DA) (cf. Fig. 5.3). Therefore, it can be anticipated that,
in principle, three distinct electronic origins should be visible in the absorption
spectrum, where the π∗ ← π excitation is localized either on the D, the A, or the
DA monomer. This can be seen clearly in Fig. 5.4 displaying the density differ-
ences of the lowest excited states S1(D), S2(DA), and S3(A) versus ground state
at the FCP. The oscillator strengths for these three excitations amount to 0.0186,
0.0261, and 0.0119, respectively. For each of these three individual excited states
geometry optimizations were carried out, which turned out to be even more tedious
than for the dimer [at least for S2(DA) and S3(A)] due to the presence of conical
intersection seams. Minimizing the energy on the S1(D) surface, i.e., where the
π∗ ← π excitation is located on the donor, leads to a geometry denoted in Fig. 5.3
(according to the nomenclature specified in Ref. 143) as ”An3L11 S1(D)”. It is quite
similar to the S0 minimum, and as the latter, has two directional NH-N hydrogen
bonds. The rms deviation in atomic positions between the two geometries is quite
small and amounts to a value of drms = 0.109 Å. On going from the S0 to the S1(D)
minimum, the NH-N distance between D and DA decreases from 2.193 to 2.058
Å, while the NH-N distance between DA and A increases somewhat from 2.224 to
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5 The low-lying electronic excited states of aniline clusters

Conformer GS → Conformer XS SCS-CC2 Exp.

An S0 An S1 4.327 4.219

An2R33-1 S0 R33 S1 (4.395)

R33 S2 4.134 (4.534) 4.135

An3L11-1 S0 L11 S1(D) 4.190 (4.430)

R123 S2(DA) 4.169 (4.582)

R122 S3(A) 4.235 (4.621)

Table 5.4: Adiabatic excitation energies in eV, calculated with SCS-CC2 response
in the X=D AO basis set, between ground state (GS) and excited
state (XS). In parentheses the vertical excitation energies at the Frank-
Condon point of the respective state are given. Experimental values
according to Ref. 119 are also included, for comparison.

2.243 Å (cf. Table 5.1). Furthermore, there is a distinct flattening of the amino
group on the D monomer from βCHHN = 33.4◦ to βCHHN = 13.3◦, whereas the
amino groups of the DA and A monomers remain unaffected. This is indicative of
the fact that the π∗ ← π excitation remains localized on the D monomer. Figure
5.4 depicts the density difference between the S1(D) and S0 states at the An3L11
S1(D) minimum. Evidently, the density difference is indeed entirely localized on
the D monomer.

The binding energy of the An3L11 S1(D) minimum is 3.16 kcal/mol larger than
that of the ground state minimum (cf. Table 5.3). This corresponds to a bathochro-
mic shift of -1105 cm-1, which is 448 cm-1 less (absolute value) than that obtained
for the dimer (vide supra). Unfortunately, there is no experimental value available
for comparison.

The minimum geometry obtained on the initial S2(DA) state surface is denoted
as ”An3R123 S2(DA)” in Fig. 5.3 and corresponds to the lowest root. The three
monomers are arranged in a ringlike fashion. Just one directional NH-N hydrogen
bond between the almost planar DA monomer carrying the electronic excitation
and the A monomer occurs. The NH-N distance is quite short (1.924 Å, cf. Table
5.1), which is indicative of quite a strong H bond. The D monomer now acts as a
donor to the DA molecule in a NH2-π type interaction, while the A monomer now
is also a donor to the D subunit via a NH-π type interaction.

Again, only the amino group of a single molecule, the DA monomer here, is
affected by the excitation. The dihedral angle βCHHN decreases from 32.6◦ to 9.5◦,
whereas for the other monomers the ground state value is preserved (cf. Table 5.1).
Evidently, the π∗ ← π excitation remains localized on the DA monomer also for
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5.3 Results and Discussion

Figure 5.3: Aniline trimer minimum energy geometries in the ground and the ex-
cited state, calculated with SCS CC2 response in the X=D basis set,
together with the respective binding energies ∆E0 in kcal/mol.

the relaxed structure. This is also illustrated by the density difference plot between
the S2 and S0 states at the An3R123 S2(DA) geometry in Fig. 5.4.

The An3R123 S2(DA) geometry constitutes the most stable excited trimer mini-
mum found in the course of the present work. The binding energy increases by 3.64
kcal/mol relative to the ground state minimum, which corresponds to a bathochro-
mic shift of -1273 cm-1. Its electronic origin thus is predicted to be shifted to the red
relative to that of the An3L11 S1(D) minimum. On the other hand, the structural
changes relative to the An3L11-1 S0 geometry are much larger (drms = 1.132Å)
than for the An3L11 S1(D) conformer. Consequently, the related Franck-Condon
factors are anticipated to be much smaller. This implies a much weaker electronic
origin for the An3R123 S2(DA) compared to that of the An3L11 S1(D) conformer.

Finally, the minimum geometry optimized on the initial S3(A) state surface is
denoted as ”An3R122 S3(A)” in Fig. 5.3. It also corresponds to the lowest root,
and, as before, the three monomers are cyclically arranged, and a single directional
NH-N hydrogen bond occurs. Yet here, this directional H bond is formed between
the D and the DA monomers, and its length is with 2.218 Å, not significantly
shorter than in the ground state (the A monomer carrying the excitation is not
involved in this hydrogen bond). Two NH-π type interactions, between DA and
A, and A and D, respectively, close the cycle. This structure is reminiscent of the
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5 The low-lying electronic excited states of aniline clusters

Figure 5.4: Density differences of An3 geometries between excited and ground state.
Left column: at ground state minimum; right column: at respective
excited state minima. The red iso-surface represents a value of 0.001,
the blue one -0.001. (Upon excitation electron density moves from blue
to red regions)

An2R122-1 ground state structure, as depicted in Fig. 2 of Ref. 143.

Here, the dihedral angle βCHHN of the A monomer decreases from 34.8◦ to 8.4◦,
while the amino groups of the D and DA monomers remain unaffected. The exci-
tation thus remains localized on the A monomer, which again is illustrated by the
corresponding density difference plot in Fig. 5.4.

The binding energy of the An3R122 S3(A) minimum is 2.11 kcal/mol larger than
that of the ground state minimum, which corresponds to a bathochromic shift of
-738 cm-1. The electronic origin related to the An3R122 S3(A) conformer is thus
predicted to be blueshifted relative to that of An3L11 S1(D), yet, again due to small
Franck-Condon factors (the geometric deviation from the ground state geometry
is with a drms value of 0.923 Å rather large) it probably would not constitute a
prominent feature in the absorption spectrum neither.
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Geometry CCSD CC2 SCS-CC2

An2R33-1 S0/CC2 -3.61 -9.58 -5.71

An2R33-1 S0/SCS-CC2 -4.82 -9.94 -6.59

An2R33 S2/CC2 -6.14/-4.28∗ -17.79/-15.79∗ -9.36/-7.46∗

An2R33 S2/SCS-CC2 -11.30 -25.05 -15.49

∗ Two values provided, cf. text at the end of section 5.2.

Table 5.5: Counterpoise corrected interaction energies, calculated at the individual
dimer geometries optimized by using the SCS –, and the unscaled CC2
response method, in the X=D AO basis set. All values are given in
kcal/mol.

5.4 Conclusions

In the present work the excited state surfaces of the aniline dimer and trimer,
related to the S1(π

∗ ← π) excitation of the monomer, were investigated at the
level of spin-component-scaled CC2 response theory. For the case of the dimer,
due to the near equivalence of the two monomers by symmetry, the two resulting
excited states are delocalized over the two monomers. The one, which at the FCP
is energetically lower, features an accretion of density between the two phenyl
rings; geometry minimization on the related surface leads to an excimer structure.
The existence of an excimer was also conjectured in previous experimental work
[119]. Minimization of the second state leads to a head-to-tail geometry, where,
relative to the ground state minimum the two phenyl rings exhibit a substantial
displacement along two well defined coordinates, i.e., along the vertical and long
horizontal axes. This offers an explanation for the occurrence of the low-frequency
overtone and combination bands observed in the mass selective absorption spectra.
In the vicinity of this geometry the second state corresponds to the lowest root,
thus there is a conical intersection seam between the two states. A low-energy
point of the seam was located in the course of this work, which also corresponds
to a head-to-tail arrangement of the two monomers with a vertical displacement of
the two phenyl rings somewhat smaller than that of the excited minimum energy
structure, but with larger horizontal displacement.

The SCS-CC2 response calculations overestimate by far the measured bathochro-
mic shift of the dimer. On the other hand, CCSD response single point calculations
at the SCS-CC2 geometries provide a value for the bathochromic shift which is in
quite good agreement with experiment. Possibly, a second-order method cannot
achieve sufficient accuracy for this particular property. However, this needs to be
investigated more thoroughly, separately in a systematic study involving several
different systems.

83



5 The low-lying electronic excited states of aniline clusters

In contrast to the dimer the three aniline subunits of the trimer are clearly
nonequivalent, each in a distinct hydrogen-bonding arrangement. The three exci-
tations related to the S1(π

∗ ← π) excitation of the monomer thus are localized
on the individual monomers, both at the FCP, as well as at the relaxed geome-
tries. One of these relaxed geometries closely resembles the trimer ground state
structure, with two directional NH-N hydrogen bonds and a donor (D), a donor/ac-
ceptor (DA), and an acceptor (A) monomer. For this geometry the excitation is
localized on the D subunit. The other two relaxed trimer geometries, with the
excitation either being localized on the DA or the A monomer, respectively, both
considerably deviate form the ground state structure and involve just a single di-
rectional NH-N hydrogen bond plus NH2-π and/or NH-π type interactions. One
of them is more stable than the first conformer. Each of the three geometries
corresponds to the lowest root in their respective geometrical environment.

Because of the large geometrical deviations from the ground state structure,
small Franck-Condon factors are anticipated for the two geometries with the exci-
tation either localized on the DA or the A monomer. The related electronic origins
therefore are not expected to be visible in the absorption spectrum. Consequently,
only the origin related to the first (metastable) minimum with the excitation lo-
calized on the D monomer might prominently appear in the spectrum. However,
this depends on the barriers shielding this minimum from energetically lower lying
configurations. If they are too small, then its vibrational states will dissolve in the
continuum of those from the lower lying minimum, leading to extensive broadening.
Based on these calculations, one may anticipate that the detection of the aniline
trimer in a R2PI absorption spectrum is rather difficult.
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6 Adducts of tantalum chlorides and

phosphorus sulfide cages

6.1 Introduction

Neutral molecules, such as Ph3P or CO, are frequently used as ligands for metal
complexes. Among the more uncommon species of this group are cage-like non-
metal molecules that can act as electron pair donors towards the metal. This
research topic has been of wide interest over recent years [147–162]. With restric-
tion to transition-metal halides such as TiX4 or NbX5 (X = halogen), adducts
such as (NbCl5)2(β-P4S4) and (NbCl5)(P4Se3) [163] or (TiX4)2(S4N4)2 (X = Cl,
Br, I) [148, 151, 154] were reported. We are now interested whether other cages,
especially phosphorus chalcogenide cages, can be used for such purposes.

Screening with different phosphorus sulfides was carried out. They show a
broader structural variety than the selenides and are easier to prepare and handle,
since phosphorus selenides tend to glass formation and are much less soluble in
any solvent.

In addition to the co-crystals (M2Cl10)(P4S10)2 [164] and the (MCl5)2(β-P4Ch4)
adducts [165] isotypic with (NbCl5)2(β-P4S4) [163] (M = Nb, Ta; Ch = S, Se),
new adduct compounds of different phosphorus sulfide cages could now be obtained:
(TaCl5)(α-P4S4), (TaCl5)(α-P4S5), (TaCl5)(β-P4S5), (NbCl5)(β-P4S5), and (TaCl5)(β-
P4S6).

To understand the nature of the binding between metal center and cage, elec-
tronic structure calculations were performed employing density functional theory
(DFT) as well as ab initio wavefunction-based methods. DFT yields exceedingly
low binding energies and distances considerably too long for the coordinative bond
between metal center and cage (in comparison to the experimental results). This
result suggests that a major fraction of the binding energy may come from long-
range van der Waals dispersion, which is not described at all by DFT in conjunction
with common functionals. Therefore, the individual adducts were studied also at
the level of Møller Plesset perturbation theory of second order (MP2), the compu-
tationally cheapest method capturing dynamical correlation effects (and thus van
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6 Adducts of tantalum chlorides and phosphorus sulfide cages

der Waals dispersion). In the present study, we employed the local MP2 (LMP2)
method [58], which apart from higher computational efficiency, also offers some
additional benefits over the canonical MP2 method [41]. Of course, MP2 can only
be applied if near degeneracy effects are absent. Indeed, the adducts investigated
in the present study are not multireference cases, as we could verify by initially
performing complete active space self-consistent field (CASSCF) test calculations.
Hence, LMP2 appears to be a suitable method for the present case.

6.2 Computational methods

Minimum energy geometries and relative energies of different isomers of the in-
dividual compounds were calculated by employing DFT, as well as second-order
Møller-Plesset perturbation theory. For the DFT calculations, the Becke-Perdew
BP86 [166] and the B3-LYP [167] exchange correlation functionals were used. The
MP2 calculations were performed because van der Waals forces, which are not in-
cluded in a DFT treatment with present functionals, are likely to play a significant
role in the bonding between the cage and the TaCl5 subunits. Initial complete
active space self-consistent field test calculations, also performed in the context
of this work, indicate that a multireference treatment is not required for a proper
description of the binding between the TaCl5 subunit and the individual cages.

For the MP2 calculations, the local MP2 method [58, 132] as implemented in the
MOLPRO [96] program package was used. The density fitting (DF) approximation for
the electron repulsion integrals was invoked, which allows for much more efficient
algorithms to be used (in particular also for computing analytic energy gradients
[101] as required for geometry optimizations) at virtually no loss in accuracy.

It was demonstrated previously that local correlation methods avoid basis set
superposition error (BSSE) effects to large extent by construction [41]. Hence, as a
further bonus of local MP2, quasi-BSSE-free geometry optimizations can be carried
out in a convenient way, that is, without any need for counterpoise correction [40]
of the individual energy gradients involved.

For the tantalum atoms, the Stuttgart/Cologne ECP60MWB quasi-relativistic
energy-adjusted pseudopotential, which substitutes the Ta13+ core orbitals, to-
gether with the related (8s7p6d2f1g)/[6s5p3d2f1g] AO basis set was employed
[168, 169]. For the remaining atoms, the augmented correlation consistent AO basis
sets aug-cc-pVXZ of Dunning [33, 34] were used (X=D for geometry optimizations,
X=T for single-point energies). As fitting basis sets for the DF approximation, the
auxiliary basis related to the aug-cc-pVXZ AO sets optimized for DF-MP2 [99]
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were taken for the MP2 component of energy and gradient, while for the Hartree-
Fock part the JK fitting basis sets of Weigend [136] related to the cc-pV(X+1)Z
AO basis were used. For the tantalum/ECP60MWB AO basis no optimized fitting
basis set is yet available. Therefore, the fitting basis set related to the QZVPP
AO basis [170] was used, which should be sufficiently large to guarantee accurate
fitting of the individual orbital product densities.

The localized molecular orbitals spanning the occupied orbital space of the
Hartree-Fock reference were generated by using the Pipek-Mezey localization pro-
cedure [62]. Pair domains were constructed by using a completeness criterion [137]
of 0.98 and 0.985 for the X=D and X=T AO basis sets, respectively. For all
calculations the pair domains were further extended by all next nearest-neighbor
centers.

For the DFT calculations (carried out by utilizing the TURBOMOLE program pack-
age [146, 171, 172]), the same AO and auxiliary basis sets and the same pseudopo-
tential as for the local MP2 calculations were used. For both geometry optimiza-
tions and single-point energy calculations X=T was used. The final interaction
energies, obtained at DFT and MP2 levels, were all counterpoise-corrected (in the
case of local MP2 to remove the BSSE of the Hartree-Fock energy) and also include
the relaxation energies of the individual fragments [173].

The experimental work is explained in detail in refs. 174 and 175.

6.3 Results and Discussion

6.3.1 Constitution and packing

Crystal-structure analysis showed that the title compounds are small adduct molecules
consisting of one TaCl5 or NbCl5 unit linked with a phosphorus sulfide cage (Fig-
ures 6.1–6.4). The constitution of the respective phosphorus sulfide part does not
change upon coordination. In contrast to the starting materials, tantalum and
niobium pentachloride are monomeric in all analyzed adducts. A distorted octahe-
dron was found as the coordination sphere around the metal atom for each adduct.
The coordinative bond towards the metal atoms is formed by a terminal sulfur
atom, if present, or otherwise by a phosphorus atom of the cages.

The dumbbell-shaped molecules are arranged in distorted hexagonal layers with
the layers oriented parallel to the crystallographic (001) planes in all cases (Figure
6.5).
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6 Adducts of tantalum chlorides and phosphorus sulfide cages

Figure 6.1: Experimental and calculated structures of (TaCl5)(α-P4S4). Phospho-
rus: black, sulfur: light gray, tantalum: dark gray, chlorine: white.
Left: Crystal structure; ellipsoids enclose 70 % probability for atomic
displacement. Right: The four largest changes (labeled a, b, c, d) in
bond lengths from experimental results and calculations with DFT (us-
ing B3LYP and BP86 xc functional, aug-cc-pVTZ AO basis set) and
LMP2 (by one-nearest-neighbor extended domains, aug-cc-pVDZ AO
basis set) level of theory. Bottom: coordination alternatives with rela-
tive energies relative to coordination modes found. See Table 6.2.

In (TaCl5)(α-P4S4), one of the four equivalent phosphorus atoms of the D2d-
symmetrical α-P4S4 molecule is connected to one metal chloride unit. The Cs

symmetry of the resulting adduct is almost preserved in the crystal structure.

In the closely related adducts (NbCl5)(β-P4S5) and (TaCl5)(β-P4S5), one phos-
phorus atom of the remaining P2 dumbbell in the C2v-symmetrical β-P4S5 cage
is bound to the metal chloride unit. The deviation of the adduct molecule from
Cs symmetry is a bit larger than that in α-P4S4-containing molecules. As the two
β-P4S5-containing adducts are similar, only the one with TaCl5 will be referred to
further.

In (TaCl5)(α-P4S5) and (TaCl5)(β-P4S6), the terminal sulfur atoms of the cages
form coordinative bonds to the metal atoms. Since the free α-P4S5 cage is entirely
unsymmetrical, the adduct molecules of (TaCl5)(α-P4S5) are unsymmetrical as
well. β-P4S6, in contrast, exhibits Cs symmetry. However, the adduct molecules
(TaCl5)(β-P4S6) also have only C1 symmetry. The two compounds crystallize with
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Figure 6.2: Experimental and calculated structures of (TaCl5)(β-P4S5); see legend
of Figure 6.1.

very similar packing of the molecules. The projections of the crystal structures
along the [100] direction are given in Figure 6.5.

6.3.2 Conformation

Nonperiodic ab initio electronic-structure calculations were performed to assess the
strength of the interaction between TaCl5 and the individual cages and to study
alternative conformers not observed experimentally. The geometry optimizations
of the individual adduct molecules yielded structural parameters that are reason-
ably close to those observed in the crystal structures. Therefore, the orientations
of the four equatorial chlorine atoms of the MCl5 groups (anticipated to rotate
almost freely), and the orientations of the whole MCl5 units relative to the in-
dividual cages (for molecules with a terminal sulfur atom at the cages) observed
experimentally are not primarily related to crystal formation but a property of the
individual adduct molecules themselves.

Nevertheless, there are small deviations: In (TaCl5)(α-P4S4) and (TaCl5)(β-
P4S5), the TaCl5 unit is turned out of the ”ideal” position for Cs symmetry by up
to 10◦, which cannot be considered as being the energetic minimum of the single
molecule and which therefore has to be attributed to the influence of intermolecular
forces or packing of molecules in the crystal.
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6 Adducts of tantalum chlorides and phosphorus sulfide cages

Figure 6.3: Experimental and calculated structures of (TaCl5)(α-P4S5); see legend
of Figure 6.1.

In the two adduct molecules with a terminal sulfur atom connected to the
metal center, the TaCl5 units possess greater flexibility because of the additional
P–Sterminal rotation axis. Closer examination of the molecular conformation of
(TaCl5)(α-P4S5) and (TaCl5)(β-P4S6) reveals that stabilizing intramolecular inter-
actions may force the metal chloride units to arrange as observed. The closest
chlorine atoms reach more or less into a cavity of the cage – a five-membered ring
of phosphorus and sulfur of the α-P4S5 cage and a six-membered ring of the β-P4S6

cage. Thus, comparatively short distances between the nonbonded atoms S(1) and
Cl(14) in α-P4S5 of 3.19 Å(exptl)/3.20 Å(calcd) and between S(1) and Cl(12) in
β-P4S6 of 3.16 Å(exptl)/3.19 Å(calcd) result. Rotation about the P–Sterminal axis
leads to conformers that display energetic minima as well (see below).

As already stated, the coordination octahedra of the metal atoms formed by
chlorine and phosphorus or sulfur atoms are distorted. The angles (Clequatorial–
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Figure 6.4: Experimental and calculated structures of (TaCl5)(β-P4S6); see legend
of Figure 6.1.

Ta–Claxial) are enlarged, which shifts the equatorial chlorine atoms towards the
phosphorus or sulfur atoms, so the metal atoms lie about 0.2 to 0.4 Åfrom the
Clequatorial plane. In addition, the P–Ta–Claxial or S–Ta–Claxial axis bends. The
corresponding bond angles are 173.78 (exptl)/175.08 (calcd) for the α-P4S4 adduct,
175.18 (exptl)/174.98 (calcd) for the β-P4S5 adduct with Ta, 175.88 (exptl)/176.38
(calcd) for the α-P4S5 adduct, and 173.68 (exptl)/173.58 (calcd) for the β-P4S6

adduct. The distortion can be attributed to a second-order Jahn-Teller effect [176]
usually observed, for example, in octahedral complexes of d0 transition metals (e.g.
Na[TaCl6]) [177].

6.3.3 Bond lengths

Bond lengths: The experimentally obtained and the calculated distances d(P–Ta)
(or d(S–Ta)), and the different bond lengths within the individual cages of the four
adducts are compiled in Table 6.1. Evidently, the calculated LMP2 values for the
distances d(P–Ta) of the isolated complexes are in good agreement with the values
measured in the crystal. They deviate by 0.017 and 0.003 Åfrom the experimen-
tal values for (TaCl5)(α-P4S4) and (TaCl5)(β-P4S5), respectively. For DFT, the
agreement is much worse; for example, for the B3-LYP case, the corresponding
deviations amount to 0.138 and 0.133 Å.
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6 Adducts of tantalum chlorides and phosphorus sulfide cages

α-P4S4 (TaCl5)(α-P4S4)

Bond Exptla B3LYP BP86 LMP2 Exptl B3LYP BP86 LMP2

P(1) –P(3) 2.3530(8) 2.410 2.420 2.403 2.340(6) 2.397 2.404 2.375

–S(12) 2.1117(7) 2.139 2.141 2.146 2.104(5) 2.124 2.129 2.123

–S(14) 2.1095(7) 2.139 2.141 2.146 2.086(6) 2.124 2.129 2.123

P(2) –P(4) 2.3530(8) 2.409 2.419 2.403 2.379(6) 2.416 2.429 2.415

–S(12) 2.1068(8) 2.139 2.141 2.146 2.148(6) 2.141 2.142 2.155

–S(23) 2.1145(7) 2.139 2.141 2.146 2.117(9) 2.141 2.143 2.149

P(3) –S(23) 2.1145(7) 2.139 2.141 2.146 2.134(7) 2.137 2.140 2.148

–S(34) 2.1068(8) 2.139 2.141 2.146 2.089(7) 2.137 2.140 2.148

P(4) –S(14) 2.1095(7) 2.139 2.142 2.146 2.131(5) 2.141 2.142 2.155

–S(34) 2.1117(7) 2.139 2.141 2.146 2.141(7) 2.141 2.143 2.149

Ta(1) –P(1) 2.737(4) 2.875 2.812 2.754

α-P4S5 (TaCl5)(α-P4S5)

Bond Exptl B3LYP BP86 LMP2 Exptl B3LYP BP86 LMP2

P(1) –P(3) 2.269(1) 2.303 2.308 2.316 2.289(3) 2.314 2.324 2.330

–S(12) 2.179(1) 2.170 2.176 2.185 2.181(3) 2.180 2.185 2.196

–S(14) 2.130(1) 2.157 2.159 2.156 2.134(2) 2.151 2.155 2.153

P(2) –P(3) 2.240(1) 2.290 2.300 2.293 2.241(2) 2.298 2.305 2.300

–S(1) 1.950(1) 1.933 1.939 1.943 2.003(2) 1.988 1.999 2.003

–S(12) 2.098(1) 2.150 2.155 2.158 2.086(2) 2.121 2.125 2.126

–S(24) 2.100(1) 2.158 2.166 2.158 2.089(2) 2.133 2.138 2.127

P(3) –S(34) 2.080(1) 2.089 2.086 2.097 2.076(2) 2.087 2.086 2.094

P(4) –S(14) 2.122(1) 2.145 2.149 2.149 2.134(2) 2.144 2.146 2.151

–S(24) 2.134(1) 2.142 2.142 2.147 2.147(3) 2.157 2.161 2.162

–S(34) 2.145(1) 2.182 2.195 2.189 2.145(3) 2.174 2.183 2.180

Ta(1) –S(1) 2.665(2) 2.843 2.779 2.735

β-P4S5 (TaCl5)(β-P4S5)

Bond Exptl B3LYP BP86 LMP2 Exptl B3LYP BP86 LMP2

P(1) –P(3) 2.302(3) 2.346 2.361 2.343 2.304(1) 2.342 2.351 2.328

–S(12) 2.128(3) 2.144 2.145 2.150 2.092(1) 2.126 2.128 2.123

–S(14) 2.117(3) 2.144 2.145 2.150 2.090(2) 2.126 2.128 2.123

P(2) –S(12) 2.122(2) 2.147 2.153 2.152 2.144(2) 2.153 2.160 2.166

–S(23) 2.122(2) 2.147 2.153 2.152 2.126(2) 2.148 2.153 2.154

–S(24) 2.134(4) 2.163 2.167 2.164 2.120(2) 2.159 2.162 2.161

P(3) –S(23) 2.128(3) 2.144 2.145 2.150 2.118(2) 2.142 2.145 2.152

–S(34) 2.117(3) 2.144 2.145 2.150 2.113(2) 2.142 2.144 2.152

P(4) –S(14) 2.117(3) 2.147 2.153 2.152 2.131(2) 2.153 2.160 2.166

–S(24) 2.132(4) 2.163 2.167 2.164 2.116(2) 2.159 2.162 2.161

–S(34) 2.117(3) 2.147 2.153 2.152 2.115(2) 2.148 2.153 2.154

Ta(1) –P(1) 2.762(1) 2.895 2.822 2.765

β-P4S5 (TaCl5)(β-P4S5)

Bond Exptlb B3LYP BP86 LMP2 Exptl B3LYP BP86 LMP2

P(1) –S(1) 1.914(4) 1.930 1.937 1.942 1.990(2) 1.977 1.985 1.992

–S(12) 2.089(4) 2.142 2.149 2.143 2.074(2) 2.125 2.129 2.124

–S(13) 2.095(4) 2.142 2.150 2.143 2.104(3) 2.125 2.130 2.123

–S(14) 2.086(4) 2.136 2.135 2.134 2.080(2) 2.122 2.124 2.117

P(2) –P(3) 2.309(4) 2.360 2.369 2.362 2.305(3) 2.356 2.365 2.356

–S(12) 2.110(4) 2.139 2.141 2.147 2.143(2) 2.148 2.150 2.159

–S(24) 2.123(4) 2.146 2.150 2.150 2.118(3) 2.143 2.147 2.146

P(3) –S(13) 2.115(4) 2.139 2.141 2.147 2.138(3) 2.146 2.149 2.156

–S(34) 2.104(4) 2.146 2.150 2.150 2.146(3) 2.142 2.145 2.149

P(4) –S(14) 2.145(5) 2.188 2.201 2.187 2.159(3) 2.193 2.201 2.192

–S(24) 2.092(5) 2.135 2.138 2.142 2.098(3) 2.136 2.139 2.144

–S(34) 2.145(5) 2.135 2.138 2.142 2.121(3) 2.135 2.138 2.141

Ta(1) –S(1) 2.702(2) 2.912 2.846 2.798

a) Experimental data taken from Ref. 178.

b) Experimental data taken from Ref. 179.

Table 6.1: Bond lengths [Å] in coordinated and noncoordinated cages.
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6.3 Results and Discussion

Figure 6.5: Projection of the crystal structures of (TaCl5)(α-P4S4), (TaCl5)(α-
P4S5), (TaCl5)(β-P4S5), and (TaCl5)(β-P4S6) in the [100] direction.
Phosphorus: black, sulfur: light gray, tantalum: dark gray, chlorine:
white.

For the distances d(S–Ta) in the adducts in which the free terminal sulfur atoms
act as the donors of the cages, the deviations between the calculated LMP2 val-
ues and the experimental values measured in the crystal increase to 0.07 Åfor
(TaCl5)(α-P4S5) and to 0.096 Åfor (TaCl5)(β-P4S6). Again, the discrepancies for
the corresponding B3-LYP results are significantly larger, amounting to 0.178 and
to 0.21 Å, respectively. Since the latter complexes are more flexible (see above),
the influence of crystal packing on their structural parameters is expected to be
larger than for adducts with a direct linkage of Ta to a P atom of the cage. Hence,
the bigger discrepancies between calculated and measured values for the distances
d(S–Ta) are not surprising. The bad performance of DFT in comparison with
LMP2 indicates that van der Waals dispersion (absent in DFT calculations em-
ploying the usual xc functionals) plays a crucial role in the binding between TaCl5
and the individual cages. Furthermore, if van der Waals dispersion contributes
substantially to the binding energy, then the LMP2 results are likely to improve
further when the AO basis set is extended and the large core pseudopotential for
tantalum is substituted by a small core pseudopotential (presently not available).
The importance of van der Waals dispersion in the binding of these adducts will
be discussed further in the next section.
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6 Adducts of tantalum chlorides and phosphorus sulfide cages

Coordination causes certain bonds within the individual cages to contract or
elongate, as is evident from experimental as well as theoretical data compiled
in Figures 6.1–6.4 and Table 6.1. As known from other adduct molecules such
as (SbCl5)(S4N4) [180] or (SbCl5)(S8O) [181], the formation of the coordinative
bond between Lewis acid (electron-pair acceptor) and Lewis base (electron-pair
donor, phosphorus sulfide in this case) not only weakens the adjacent bond but
also alters the bond lengths throughout the whole cage molecule (Figure 6.6). In
(SbCl5)(S4N4), this even leads to cleavage of the S–S bonds: the S4N4 molecule
connected to SbCl5 is merely annular [182].

Figure 6.6: Molecules S4N4 [182], S8 [183], and adducts (SbCl5)(S4N4) [180] and
(SbCl5)(S8O) [181]. Antimony: dark gray, chlorine: white, sulfur: light
gray, nitrogen: black, oxygen: medium gray.

For the adducts presented herein, it is notable that especially the bond between
phosphorus and the terminal sulfur atoms, if present, lengthens considerably upon
coordination, as do the second nearest bonds within the cages (this situation holds
also for adducts linked through phosphorus), whereas the bonds in between are
shortened slightly. In Figures 6.1–6.4, bonds that show the strongest alterations
upon coordination of the metal chloride units are marked with a, b, c, and d. The
scheme of alternate elongation and contraction of bonds is disturbed by the shape
of the cages, being composed of concatenated rings of atoms. In (SbCl5)(S8O), the
analogous sequence of bond elongation and shortening relative to the noncoordi-
nated S8O can be followed more explicitly because of the ring shape of the sulfur
oxide [181, 183].

The local MP2 geometries mostly confirm these subtle changes of bond lengths
(cf. Figures 6.1–6.4 and Table 6.1). For (TaCl5)(α-P4S4), bonds of the phospho-
rus atom P(4) as well as the P(2)–S(12) bond are found to be significantly elon-
gated, the P(1)–S(14) bond in contrast is shortened. In (TaCl5)(β-P4S5), bonds of
the phosphorus atom P(1), which is directly connected to tantalum, is shortened,
the adjacent bonds P(2)–S(12) and P(4)–S(14) are elongated, P(2)–S(24) again is
shortened. (TaCl5)(α-P4S5) and (TaCl5)(β-P4S6) show a quite pronounced elonga-
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6.3 Results and Discussion

tion of the P–Sterminal bonds as mentioned earlier. Besides, bonds P(1)–P(3) and
P(4)–S(24) in (TaCl5)(α-P4S5) and P(2)–S(12) and P(3)–S(13) in (TaCl5)(β-P4S6)
are elongated, bonds P(2)–S(12) in (TaCl5)(α-P4S5) and P(1)–S(12) in (TaCl5)(β-
P4S6) are shortened. Interestingly, LMP2 and DFT predict very similar changes
in these bond lengths, as is evident from Figures 6.1–6.4. We conclude that these
changes are primarily induced by the weak chemical bond formed between TaCl5
and the individual cages, which is properly described both by LMP2 and DFT,
whereas van der Waals dispersion, even though constituting an important frac-
tion of the overall binding energy, does not induce any significant changes in the
intramolecular bonds of the cages.

6.3.4 Alternative coordination modes

Alternative coordination modes: For all phosphorus sulfide cages, only one coordi-
nation type was observed experimentally. In contrast, in the α-P4S5, β-P4S5, and
β-P4S6 cages, there are chemically different phosphorus atoms available as possible
bonding partners, and all phosphorus sulfide cages could coordinate through sulfur
atoms within the cage framework as well. However, phosphorus atoms connected
to three sulfur atoms were not found to form a coordinative bond to the metal
chlorides under investigation, in contrast to the case of P4S3 [149, 158–162]. In
fact, coordination through bridging sulfur atoms of the cages could not be observed
at all with the metal chlorides used, and only one example for such coordination
type is known [158, 162].

Alternative coordination sites of the phosphorus sulfides were explored by lo-
cating the corresponding minimum energy geometries on the DFT and local MP2
potential energy hypersurfaces. Structural parameters and the related binding en-
ergies (with respect to dissociation of the adducts into their phosphorus sulfide
and the TaCl5 fragments) are compiled in Figures 6.1–6.4 and Tables 6.1 and 6.2.
Table 6.3 demonstrates that the deviations between local and canonical MP2 are
rather small, especially when extended domains are employed (as in the present
work).

The binding between the TaCl5 subunit and the individual phosphorus sulfide
cages is rather delicate and needs some discussion. Comparison of the DFT and
local MP2 binding energies in Table 6.2 reveals that DFT grossly underestimates
the binding between the two subunits. In fact, the binding energy predicted by
DFT is even substantially smaller than that of a hydrogen bond, occurring, for
example, in the water dimer (about 20 kJ mol−1). This is particularly true for the
case of the hybrid functional, where self-interaction is reduced owing to admixing
of nonlocal (Hartree-Fock) exchange. At the level of Hartree-Fock theory, similar
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B3LYP BP LMP2 (ext. domains)

Adduct coord. No. in Eint Erel Erel Ebind Eint Erel Erel Ebind Eint Erel Erel Ebind

via Fig. 6.1–6.4 (TaCl5) (cage) (TaCl5) (cage) (TaCl5) (cage)

(TaCl5)(α-P4S4) P (1) -40.026 -26.874 -4.291 -8.861 -47.918 -25.296 -4.664 -17.959 -107.752 -13.219 -8.619 -85.914

S (2) -21.376 -23.893 -3.121 +5.638 -31.058 -25.142 -4.262 -1.654 -97.421 -17.415 -5.584 -74.421

(TaCl5)(α-P4S5) S(1) (4) -50.432 -36.917 -7.756 -5.759 -57.828 -36.827 -8.618 -12.382 -123.589 -34.966 -12.432 -76.191

S(1) (1) -53.384 -37.615 -6.545 -9.224 -59.581 -36.517 -6.565 -16.499 -127.951 -28.880 -9.441 -89.630

S(1) (6) -48.448 -35.748 -6.585 -6.115 -54.184 -35.141 -7.080 -11.964 -116.378 -33.869 -8.950 -73.559

P(1) (7) -31.148 -24.345 -2.896 -3.907 -44.667 -23.028 -3.600 -18.038 -98.138 -19.329 -6.650 -72.159

P(4) (3) -27.748 -23.517 -2.933 -1.298 -37.121 -22.802 -2.951 -11.368 -95.903 -11.143 -6.136 -78.624

S(14) -4.936 -15.639 -1.265 +11.968 -21.465 -23.441 -3.827 +5.803 -88.155 -24.496 -4.603 -59.056

S(14) (2) -29.655 -26.656 -4.389 +1.391 -41.390 -27.662 -5.697 -8.031 -110.258 -18.552 -6.154 -85.552

S(34) a -19.893 -21.976 -4.423 +6.506 -90.928 -13.695 -8.000 -69.234

S(34) (5) -14.653 -21.278 -2.570 +9.195 -26.186 -23.926 -3.584 +1.324 -94.692 -15.307 -4.823 -74.563

S(24) a -23.583 -24.558 -5.010 +5.985 -95.710 -25.824 -7.275 -62.610

S(24) a -14.673 -21.426 -3.382 +10.135 -86.761 -23.669 -5.288 -57.804

P(3) (8) -20.474 -23.783 -3.017 +6.326 -30.392 -23.459 -3.471 -3.462 -92.486 -12.518 -6.687 -72.159

S(12) -6.137 -15.212 -1.248 +10.322 -27.427 -24.700 -4.524 +1.797 -97.215 -19.119 -7.028 -71.068

S(12) a -14.888 -20.836 -2.520 +8.468 -86.840 -23.868 -3.941 -59.030

(TaCl5)(β-P4S5) P(1) (1) -39.850 -26.289 -3.973 -9.589 -48.580 -24.558 -4.445 -19.577 -114.329 -13.067 -8.165 -93.096

P(2) (3) -33.495 -24.878 -3.323 -5.295 -42.040 -23.728 -3.360 -14.952 -105.287 -12.155 -6.603 -86.529

S(12) -13.076 -20.712 -2.140 +9.776 -26.174 -24.891 -3.583 +2.300 -90.458 -24.507 -4.657 -61.295

S(12) (2) -30.422 -26.188 -4.400 +0.166 -41.859 -26.581 -5.632 -9.646 -112.881 -18.100 -6.404 -88.377

S(24) (4) -29.650 -26.935 -5.371 +2.656 -40.348 -27.520 -6.649 -6.179 -106.424 -17.877 -8.504 -80.043

(TaCl5)(β-P4S6) S(1) (5) -38.171 -31.966 -5.594 -0.610 -43.062 -31.144 -5.765 -6.154 -106.156 -23.401 -6.910 -75.845

S(1) -34.958 -30.815 -4.673 +0.529 -40.354 -30.558 -4.937 -4.860 -101.485 -23.446 -6.574 -71.465

S(1) -37.271 -31.552 -5.678 -0.041 -42.034 -30.702 -5.848 -5.485 -105.206 -23.551 -6.979 -74.677

P(2) (1) -35.320 -24.815 -3.653 -6.852 -44.613 -23.323 -3.916 -17.374 -113.429 -11.426 -8.358 -93.644

P(4) (3) -27.975 -23.738 -2.793 -1.444 -37.891 -23.132 -2.905 -11.854 -100.367 -12.109 -5.666 -82.592

S(12) a -7.379 -17.577 -2.492 +12.690 -80.494 -21.377 -5.477 -53.640

S(12) (4) a -24.548 -23.870 -4.130 +3.452 -101.250 -17.614 -5.521 -78.114

S(14) a -19.774 -22.669 -4.580 +7.475 -94.537 -24.207 -7.409 -62.920

S(24) a -19.559 -22.890 -3.587 +6.919 -86.616 -23.672 -4.167 -58.777

S(24) (2) -23.462 -24.193 -3.752 +4.483 -36.056 -25.684 -5.313 -5.058 -108.202 -17.486 -6.272 -84.444

(TaCl5)2 -168.832 -85.345 -85.347 +1.859 -169.427 -79.832 -79.832 -9.763 -246.380 -82.706 -82.701 -80.974

a) Not bound on the corresponding potential energy surface.

Table 6.2: Interaction, relaxation and binding energies of the structures and their coordination alternatives, in
kJ/mol. 96



6.3 Results and Discussion

Adduct Coord. No. in HF LMP2 LMP2 (ext. MP2

through Fig. 6.1–6.4 domains)

(TaCl5)(α-P4S4) P (1) -29.728 -102.514 -107.752 -107.382

S (2) -9.935 -89.782 -97.421 -97.991

(TaCl5)(α-P4S5) S(1) (4) -53.992 -117.157 -123.589 -123.479

S(1) (1) -50.559 -122.561 -127.951 -127.709

S(1) (6) -48.086 -110.063 -116.378 -116.285

P(1) (7) -19.047 -92.321 -98.138 -97.885

P(4) (3) -12.891 -89.570 -95.903 -95.804

S(14) 3.461 -81.364 -88.155 -88.210

S(14) (2) -11.343 -102.668 -110.258 -110.537

S(34) 5.022 -82.133 -90.928 -89.850

S(34) (5) -1.549 -87.345 -94.692 -95.105

S(24) 12.039 -86.813 -95.710 -96.143

S(24) 14.528 -81.656 -86.761 -86.453

P(3) (8) -4.352 -86.084 -92.486 -92.910

S(12) 0.002 -89.727 -97.215 -97.360

S(12) 10.485 -81.789 -86.840 -86.565

(TaCl5)(β-P4S5) P(1) (1) -27.659 -106.232 -114.329 -114.996

P(2) (3) -20.223 -99.920 105.287 -104.749

S(12) -0.249 -80.899 -90.458 -90.795

S(12) (2) -11.868 -104.690 -112.881 -112.927

S(24) (4) .14.758 -97.414 -106.424 -106.665

(TaCl5)(β-P4S6) S(1) (5) -36.085 -101.883 -106.156 -106.016

S(1) -35.106 -96.003 -101.485 -101.626

S(1) -35.288 -98.307 -105.206 -105.648

P(2) (1) -20.603 -107.319 -113.429 -112.913

P(4) (3) -12.573 -94.615 -100.367 -99.935

S(12) 17.938 -74.297 -80.494 -80.216

S(12) (4) 8.252 -93.683 -101.250 -101.313

S(14) 11.314 -87.920 -94.537 -94.786

S(24) 8.252 -78.819 -86.616 -86.767

S(24) (2) -6.027 -101.071 -108.202 -108.151

(TaCl5)2 -169.072 -241.826 -246.380 -245.265

Table 6.3: Interaction energies, calculated with X=T basis set at Hartree-Fock,
local (with normal and by 1 bond extended domains) and canonical
MP2 level of theory, respectively, in kJ/mol.
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6 Adducts of tantalum chlorides and phosphorus sulfide cages

binding energies are obtained as for DFT/B3-LYP. Nevertheless, a weak bond is
formed between TaCl5 and the individual cages at the Hartree-Fock level, which
is, for example, reflected by the fact that the localization procedure (used for the
subsequent local MP2 treatment; see above) generates a local bicentric orbital
involving the Ta and the P (or S) atoms of the related cage (Figure 6.7). The gain
in energy obtained by forming this bond, however, is to a large extent offset by
exchange repulsion and geometrical deformation energies. Hence, the net energy
gain due to formation of this bond is quite small. Nevertheless, this bond appears
to be responsible for the subtle changes of the bond lengths within the individual
cages resulting from coordination (see above).

Figure 6.7: Isoplot of the binding orbital between (TaCl5) and (α-P4S4) fragments
of value 0.015. This orbital was obtained by the Pipek-Mezey localiza-
tion procedure from the set of canonical Hartree-Fock orbitals.

At the MP2 level, however, substantially larger binding energies are obtained
(76–93 kJ mol−1). This difference could be attributed to long-range dispersion
electron correlation effects (such as van der Waals forces), which are absent both at
the Hartree-Fock level and in DFT (with presently available exchange-correlation
functionals), but which are accounted for at the level of MP2. Considering the large
polarizabilities of the individual subunits, noticeable van der Waals contributions
to the binding energy are not too surprising. Taking into account the astonishingly
small DFT binding energies, one may even argue that the major contributions to
the binding energies of the individual adducts are actually indeed of van der Waals
type. Van der Waals type interactions between closed-shell subunits are ubiquitous
in inorganic chemistry (see Ref. 184 for a review). For example, they are clearly
dominant in the aurophilic attraction between AuI ions [185, 186]. For a definite
answer about the role of van der Waals forces in the adducts characterized in
the present work, however, a more detailed study of the interactions between the
phosphorus sulfide and the TaCl5 subunits is required (e.g., based on a partitioning
of the LMP2 correlation energy), as was done previously for dimers of coinage metal
complexes [185, 186].
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In any case, because of the poor description of the binding of the adducts by
DFT, we will focus in the following discussion on the results obtained at the level
of local MP2. In Figures 6.1–6.4, the different adduct isomers are enumerated in
descending order with respect to their binding energies. For (TaCl5)(α-P4S4) the
alternative coordination mode (2) through a sulfur atom is 11.49 kJ mol−1 less
stable than the observed coordination through phosphorus.

For (TaCl5)(β-P4S5), the observed coordination through one of the phosphorus
dumbbell atoms leads to the adduct with lowest energy. Coordination mode 2
through one of the four equivalent sulfur atoms and coordination mode 3 through
an isolated phosphorus atom are 4.72 kJ mol−1 and 6.57 kJ mol−1, respectively,
less stable. The binding energies of adducts coordinated through the sulfur bridge
(4) decrease even further (by 13.05 kJ mol−1) relative to the global minimum.

For (TaCl5)(α-P4S5), the coordination mode (4) through the terminal sulfur
atom, observed in the conformation in the crystal, is according to the LMP2 calcu-
lations 13.44 kJ mol−1 above the global minimum, conformation 1, obtained from
4 by rotation about the P–Sterminal axis. As already stated, this rotation is not ster-
ically hindered and requires only a small activation energy. The alternative – and
most stable – conformer therefore is possibly not realized in the crystal for pack-
ing reasons but may also be the preferred one for the α-P4S5 adduct in solution.
Coordination mode 2 through the sulfur atom S(14) is still energetically favored
relative to 4 by 9.36 kJ mol−1, and even the coordination through the apical phos-
phorus atom P(4), variant 3, is more stable (by 2.43 kJ mol−1) than the observed
conformer. However, the coordination alternatives given as variants 5, 6, 7, and
8 (i.e., isomers coordinated through S(34), another conformational variant to the
S(1) linkage) and coordination through the basal phosphorus atoms P(1) or P(3)
are energetically less favored (by 1.63, 2.63, 4.03, and 4.03 kJ mol−1, respectively).
Notably, the three coordination modes through the terminal sulfur atom feature
stronger binding at the (uncorrelated) Hartree-Fock level by about 20 kJ mol−1

relative to the remaining conformers. This result indicates that for such coordina-
tion modes, the covalent bond and eventually also electrostatic interactions play a
more pronounced role in the binding than for the remaining conformers.

Finally, the global minimum for (TaCl5)(β-P4S6) features coordination through
one of the phosphorus dumbbell atoms P(2) or P(3) (variant 1). The binding
energy is 17.80 kJ mol−1 larger than for the experimentally observed coordination
through the terminal sulfur atom (variant 5). For this adduct there is a significant
mismatch between the structural arrangements occurring in the crystal on the
one hand and that of the isolated adduct predicted by theory on the other. Also,
other adduct isomers coordinated through the sulfur atom S(24) (variant 2), the
apical phosphorus atom P(4) (variant 3), or the sulfur atom S(12) (variant 4), are
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6 Adducts of tantalum chlorides and phosphorus sulfide cages

energetically more stable by 8.60, 6.75, and 2.27 kJ mol−1, respectively, relative to
the β-P4S6 adduct observed experimentally. However, the alternative conformer
for the linkage through the terminal sulfur atom given as variant 6 has a lower
binding energy (1.17 kJ mol−1) and is therefore less stable than the conformer
observed.

Geometry optimizations for all possible coordination conformers were performed.
Other coordination alternatives not listed here were found to be even less stable.
Considering the LMP2 dissociation energy of (TaCl5)2, which amounts to 80.97
kJ mol−1, the formation of all considered species presented herein is exothermic in
the gas phase.

In conclusion, there is a general preference for coordination through basal/-
dumbbell phosphorus atoms or terminal sulfur atoms (if present). Structural ar-
rangements corresponding to such coordination modes are found to be most stable.
A substantial part of the binding energy between the phosphorus sulfide cage and
the TaCl5 subunit can be ascribed to van der Waals dispersion. There is a mismatch
between experimental results and theory for one case, where the experimentally
found geometry does not correspond to the theoretically predicted global minimum.
The existence of a structure corresponding to the global minimum cannot yet be
ruled out, particularly as the differences in binding energy for the several adduct
isomers are rather small.

6.4 Conclusions

Not only the smallest phosphorus sulfide cage molecule P4S3 [147–162] but also
cage-like phosphorus sulfides with higher sulfur content can act as ligands in metal
complexes. Adducts of α-P4S4, β-P4S4, α-P4S5, β-P4S5, β-P4S6, and monomeric
TaCl5 or NbCl5 units could be obtained so far. Phosphorus or sulfur atoms of
the sulfide cages in principle can be connected to Lewis acids. We found that the
coordination to the cage molecule is favored either to phosphorus sites with one
adjacent phosphorus atom or to terminal sulfur sites. Coordination to bridging
sulfur sites or to phosphorus sites bound to three sulfur atoms was energetically
less stable.

The cage constitution is not changed upon coordination; however, certain bond
lengths within the cages change as a result of coordination to the metal.

Generally, bonds between phosphorus atoms and the coordinated terminal sulfur
site lengthen considerably. However, bonds involving phosphorus, either directly
coordinated or adjacent to a coordinated terminal sulfur site, shorten. The next
nearest bonds then lengthen. These relative changes of the individual bond lengths
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within the cages are rather well described by both DFT and LMP2, which suggests
that they are primarily caused by the weak coordinative bond formed between the
metal center and the cage. However, the contribution of this bond to the overall
binding energy of the adduct is small, and the dominant component appears to
be long-range van der Waals dispersion. The latter is not captured by DFT (in
conjunction with the usual functionals), which consequently leads to much too
small binding energies and too large lengths of the coordinative bond as predicted
by this method. MP2, on the other hand, describes van der Waals dispersion at
a level corresponding to the uncoupled Hartree-Fock representation of the under-
lying dynamical polarizabilities (which usually leads to significant overestimation
of binding energy in complexes such as the benzene dimer or argon clusters). So,
although not highly accurate, MP2 certainly paints a much more realistic picture
of the energetics than DFT in a situation in which long-range van der Waals dis-
persion is of importance (of course, we were lucky that near degeneracy effects
were absent in the present system; otherwise, perturbation theory based on a sin-
gle reference would not be applicable). Hence, we are sure to describe the present
system at least qualitatively correct. To further improve the accuracy, coupled
cluster calculations with reasonably large basis sets must be performed, which is
beyond the scope of the present study. DFT, however, qualitatively fails for the
present systems with weak coordinative bonds.
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7 Summary

In this project molecular clusters of phenol and 2-naphthol with water, and molec-
ular aniline homoclusters were studied by means of ab initio electronic structure
theory. These systems can be observed experimentally in supersonic beam ex-
periments and measured mass-selectively by spectroscopic methods. Molecular
clusters in such experimental setups serve as test beds to explore the intermolecu-
lar interactions, since they are vibrationally cold and isolated from environmental
influences. The complementary treatment of these systems by ab initio methods
allows for a more profound interpretation of the systems measured.

The phenol-water1≤n≤3 clusters were explored on the S1(π
∗ ← π) surfaces.

Especially the spectroscopical behavior of n = 2 is remarkably different from the
n = {1, 3} cases, because it exhibits a weak, broad and congested band structure
in its absorption spectrum, as well as low quantum yield and short lifetime, in
comparison to the narrow line spectra with defined origins of the absorption spectra
of the latter.

Figure 7.1: The global minimum structure of phenol-water2 on the S1(π
∗ ← π)

excited state.

It was found that for n = 2 the global minimum geometry (Fig. 7.1) in the
excited state significantly differs from the ground state minimum. Whereas in the
ground state the water molecules form a three membered ring with the hydroxy
group of the phenol molecule, in the excited state the second water molecule acts
as a H donor to the π system. Indeed similar structures could also be found for
the n = 3 case, but in the n = 2 system no energetically competitive minimum
exists in the vicinity of the Franck-Condon point, while this is the case for n = 3.
Thus the small Franck-Condon factors explains both the weak intensity of the
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band structure and the absence of the sharp line peaks in the spectrum of n = 2
in contrast to the spectra of n = {1, 3}. Furthermore, a conical intersection seam
was located, which allows the systems to transfer a proton to the solvent molecules.
The short lifetime of the n = 2 cluster can be explained by the rather high excess
energy in the direction of out-of-plane modes, leading the system towards the
conical intersection seam.

The 2-naphthol-water2 system can be regarded as the larger relative of the
phenol-water2 cluster. Likewise its absorption spectrum also exhibits a peculiar
structure. Two weak and congested bands structures along with two long progres-
sions of line peaks can be observed. Depending on the orientation of the hydroxy
group of the naphthol molecule, trans and cis conformers can be distinguished. It
has been found that the two different kinds of hydrogen networks can coexist even
in the ground state. Whereas the trans conformer energetically prefers the cyclic
arrangement of the water molecules similar to phenol-water2, for the cis conformer
the cyclic arrangement and an arrangement where the second water molecule acts
as a H donor to the π system are energetically almost equal. Upon excitation to
the S1(π

∗ ← π) state the cyclic networks are no longer energetically competing, as
it is the case in the phenol-water2 cluster. Therefore, the cyclic conformers can be
assigned to the weak and congested bands. The remaining cis conformer with the
second water molecule interacting with the π system show much smaller changes
in geometry upon excitation, and therefore can be assigned to the series of more
structured peaks in the spectrum.

In contrast to the rather pronounced minima of the phenol- and naphthol-watern

systems, the potential energy surfaces of molecular aniline homoclusters involve
a vast range of shallow minima. To locate the global and low-lying ground state
minima a global optimization scheme was applied on a model potential, which was
iteratively adapted to ab initio energies. It was found that the global minimum
geometries of the dimer and trimer are energetically enough separated to be the
only populated conformations within the typical vibrational temperatures in the
experiment.

Figure 7.2: The global minimum structures of aniline2 and aniline3 in the ground
state.
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The dimer forms a head-to-tail arrangement (Fig. 7.2 on the left-hand side), with
the amino groups of the almost equivalent molecules acting as double H donor to
the π system of the opposing molecule, respectively. Due to the virtual equivalence
of the monomers, two delocalized π∗ ← π excitations can be seen, of which the
lower dark state leads to the formation of an excimer. The second, bright state can
lead to a head-to-tail arrangement, but through the accessible conical intersection,
the system is able to relax to the dark state and form the excimer.

The aniline trimer features two H bonds between the three amino groups, lead-
ing to three distinct monomers: Donor, both donor and acceptor, and acceptor
monomer (Fig. 7.2 on the right-hand side). The three excited states are all local
π∗ ← π excitations. The lowest excited state with the excitation localized on the
donor monomer leads to a very similar geometry as the ground state geometry.
The other two excited states relax to geometries significantly different from the
Franck-Condon point, and thus, their origins are not anticipated to be visible in
the spectrum.

Beside molecular clusters adducts of tantalum chloride with the phospho-
rus sulfide cages, α-P4S4, α-P4S5, β-P4S5 and β-P4S6, were investigated, too.
As seen from experimental crystal structure data, the constitution of the cage
molecules does not change upon coordination. A wide range of possible coordina-
tion modes have been screened and compared to the experimental data. Ab initio

geometries without the crystal environment resemble the experimental geometries
to a large extent, thus the crystal packing has only little effect on the obtained
structures. Coordination to through basal/dumbbell phosphorus atoms or present
terminal sulfur atoms is preferred and most stable.

Figure 7.3: Uncoordinated phosphorus sulfide cage molecules, α-P4S4, α-P4S5, β-
P4S5 and β-P4S6 (from left to right).

The weak coordinative bond between the cage and the tantalum chloride units
causes a subtle change in the bond length pattern of the cage molecule. But it
only represents a small contribution to the total binding energy between both
subunits. The substantial part can be attributed to the long-range dispersion
electron correlation effects, such as van der Waals forces. Considering the large
polarizabilities of closed-shell compounds encountered in the inorganic chemistry,
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the ubiquitous van der Waals forces render the investigation of those systems
by means of density functional theory in conjunction with the frequently used
functionals questionable, as they are not capable of describing these forces.

In conclusion, the spectra of phenol- and 2-naphthol-water clusters, whose inter-
pretation was unclear for more than 15 years could finally be explained. Further-
more the delicate system of aniline homoclusters was interpreted. Also tantalum
chloride adducts with phosphorus sulfide cages were investigated with the intrigu-
ing result, that the often neglected dispersion interaction occasionally plays an
important role in inorganic systems.
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[66] Häser, M.; Almlöf, J. J. Chem. Phys. 1992, 96, 489.

[67] Feyereisen, M.; Fitzgerald, G.; Komornicki, A. Chem. Phys. Lett. 1993, 208,
359.

[68] Fuke, K.; Kaya, K. Chem. Phys. Lett. 1983, 94, 97.

[69] Oikawa, A.; Abe, H.; Mikami, N.; M.Ito, J. Phys. Chem. 1983, 87, 5083.

[70] Lipert, R. J.; Colson, S. D. J. Chem. Phys. 1988, 89, 4579.

[71] Lipert, R. J.; Colson, S. D. J. Phys. Chem. 1989, 93, 135.

[72] Lipert, R. J.; Colson, S. D. Chem. Phys. Lett. 1989, 161, 303.

[73] Stanley, R. J.; A. W. Castleman, J. J. Chem. Phys. 1991, 94, 7744.
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[94] Kats, D.; Korona, T.; Schütz, M. J. Chem. Phys. 2006, 125, 104106.
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[99] Weigend, F.; Köhn, A.; Hättig, C. J. Chem. Phys. 2002, 116, 3175.

111



Bibliography
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[135] Grüning, M.; Gritsenko, O.; van Gisergen, S.; Baerends, E. J. Chem. Phys.

2001, 114, 652.

[136] Weigend, F. Phys. Chem. Chem. Phys. 2002, 4, 4285.

[137] Boughton, J. W.; Pulay, P. J. Comput. Chem. 1993, 13, 736.
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[141] Sadeghian, K.; Bocola, M.; Schütz, M. Phys. Chem. Chem. Phys. 2010, 12,
8840.

113



Bibliography
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[184] Pyykkö, P. Chem. Rev. 1997, 97, 597.
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