Polarization-sensitive absorption of THz radiation by interacting electrons in chirally stacked multilayer graphene

Maxim Trushin and John Schliemann
Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany

We show that opacity of a clean multilayer graphene flake depends on the helicity of the circular polarized electromagnetic radiation. The effect can be understood in terms of the pseudospin selection rules for the interband optical transitions in the presence of exchange electron-electron interactions which alter the pseudospin texture in momentum space. The interactions described within a semi-analytical Hartree–Fock approach lead to the formation of the topologically different broken–symmetry states characterized by Chern numbers and zero-field anomalous Hall conductivities.

I. INTRODUCTION

Multilayer graphene is a link between one atom thick carbon layers with the peculiar Dirac-like effective Hamiltonian for carriers and graphite which can be seen as millions of graphene layers stacked together. Graphene layers placed together do not lie exactly one on top of each other but are shifted in such a way that only half of the carbon atoms have a neighbor in another layer and the other half are projected right into the middle of the graphene’s “honeycomb” cell. If the third layer aligns with the first (and the n + 2 layer with the n-th) then we arrive at the more stable arrangement of graphene layers known as Bernal (or AB) stacking, see Fig. 1a. However, this is not the only possible configuration. One can imagine an alternative stacking when the third layer aligns neither the first nor the second but shifted with respect to both, see Fig. 1b. This arrangement is known as rhombohedral (or ABC) stacking and represents the main topic of this work.

The very first studies of Bernal and rhombohedral graphites, relying on the tight binding model have demonstrated the strong dependence of the band structure on the stacking order. Later on the progress in numerical methods made it possible to refine the tight binding model outcomes using \(\textbf{ab initio} \) calculations. The seminal transport measurements on graphene, \(\nu = \pm \) have inspired recent investigations of the band structure in a few layer graphene having different stacking patterns. The band structure demonstrates a large variety of behavior including a gapless spectrum, direct and indirect band gaps, and energetic overlap of the conduction and valence bands even though the number of layers has been limited by four. In addition, the Landau levels and electric field induced gap in a few layer graphene have been studied in Refs. The very interesting effect of Landau-level crossing has been found very recently in trilayer graphene. It has also been shown that electron-electron interaction effects play an important role in a few layer graphene where charge carriers may exhibit a variety of broken symmetry states.

The brief literature overview given above illustrates how rich the band structure of multilayer graphene (and the effects associated with) can be. Note, however, that among all stacking possibilities, only the pure ABC arrangement maintains the sublattice pseudospin chirality. In the simplest case of negligible interlayer asymmetries and trigonal warp the simplified two-band ABC graphene model leads to the following Hamiltonian close to the neutrality point.

\[
H^\nu_0 = \frac{(\hbar \nu_0)^N}{(-\gamma_1)^{N-1}} \begin{pmatrix}
0 & (\nu k_x - i k_y)^N \\
(\nu k_x + i k_y)^N & 0
\end{pmatrix}, \tag{1}
\]

where \(\nu_0 \approx 10^6 \text{ms}^{-1} \) is the group velocity for carriers in single layer graphene, \(\gamma_1 \) is the hopping parameter, \(\nu = \pm \) is the valley index, and \(N \) is the number of layers. As one can see from Eq. (1), the N-layer and (N+1)-layer graphene stacks differ, apart from the density of states, by only the winding number associated with the pseudospin orientation. The pseudospin texture in the momentum space associated with Hamiltonian (1) and shown in Fig. 2 is the main topic of this work. In what follows we focus on the influence of electron-electron exchange interactions on the pseudospin texture and its detection by optical means.

Note that the pseudospin lies in the \(xy \)-plane as long as its carrier remains in an eigenstate of \(H^\nu_0 \). The exchange...
Optical absorption via the direct interband optical transitions in monolayer graphene has been investigated theoretically and shown to be equal to the universal value $\pi e^2/\hbar c$. In the presence of the electron-electron interactions the interband absorption can be substantially reduced or enhanced as compared to its universal value $\pi e^2/\hbar c$ just by switching the helicity of the circularly polarized light. This effect is due to the peculiar pseudospin texture arising from the interplay between pseudospin-momentum coupling and exchange interactions. To observe the pseudospin texture in chirally stacked multilayer graphene by optical means the photon energy must be much smaller than the bottom of the lowest split-off bands $\gamma_1 = 0.4$ eV. To give an example, a CH$_3$OH 20 mW laser22 with wavelength 118 μm (i.e. with the photon energy 10.5 meV) safely satisfies this condition.

II. MODEL

We start from the Coulomb exchange Hamiltonian for chiral carriers which is given by

$$H_{\text{exch}}(k) = -\sum_{\kappa'}\int\frac{d^2k'}{4\pi^2} U_{|k-k'|} \langle \chi^\nu_{\kappa'} \rangle \langle \chi^\nu_{\kappa'} \rangle \quad (2)$$

with $U_{|k-k'|} = 2\pi e^2/\varepsilon |k - k'|$ and κ' being the band index with $\kappa = +$ for the conduction band. In order to consider the exchange Hamiltonian for any N on the equal footing we assume strictly two-dimensional Fourier transform for Coulomb potential. This is in contrast to20 where the interlayer distance d has been included in the screening multiplier. The intervalley overlap is assumed to be negligible, and the eigenstates of $H^\nu = H^\nu_0 + H^\nu_{\text{exch}}$ can be formulated as $\Psi^\nu_{\kappa}(r) = e^{i\mathbf{k}r}|\chi^\nu_{\kappa}\rangle$ with spinors $|\chi^\nu_{\kappa}\rangle = (\cos \frac{\theta_k}{2}, \nu \sin \frac{\theta_k}{2} e^{i\varphi N\nu})^T$, $|\chi^\nu_{\kappa'}\rangle = (\sin \frac{\theta_k}{2}, -\nu \cos \frac{\theta_k}{2} e^{i\varphi N\nu})^T$, and $\tan \varphi = k_y/k_x$, where a non-zero out-of-plane pseudospin component corresponds to $\theta_k \neq \pi/2$. To diagonalize H^ν the following ν-independent equation for θ_k must be satisfied18,23

$$\left(\frac{\hbar v_F k}{\nu}\right)^N \frac{(-\gamma_1)^{N-1}}{\cos \theta_k + \sum_{\kappa'} \int \frac{d^2k'}{8\pi^2} \kappa' U_{|k-k'|} [\cos \varphi' \sin \theta_k - \sin \varphi' \cos \theta_k \cos (N\varphi' - N\varphi)]} = 0 \quad (3)$$

Here the integration goes over the occupied states. Note that the conduction and valence states are entangled, and the latter cannot be disregarded even at positive Fermi energies assumed below. Thus, in order to evaluate the integrals in Eq. (3) a momentum cut-off Λ is necessary. Most natural choice $\Lambda = \gamma_1/\hbar v_F$ corresponds to the energy scale γ_1 at which the split-off bands of bilayer graphene become relevant and our two-band model no longer applies. Substituting $x = k/\Lambda$ we arrive at

$$\frac{4\pi}{\alpha^*} x^N \cos \theta_k = \int d\varphi' \int_0^{1/k_F/\Lambda} dx' x' \cos \varphi' \sin \theta_k - \sin \varphi' \cos \theta_k \cos N\varphi' \sqrt{x^2 + x'^2 - 2xx' \cos \varphi'},$$

(4)

where $\alpha^* = e^2/(\varepsilon \hbar v_0)$. The momentum cut-off is assumed to be much larger than the Fermi momentum k_F, and, therefore, we can set the lower integral limit to zero. In this case our outcomes do not depend on the value of Λ.

Besides a trivial solution with $\theta_0 = \pi/2$ independent of k, there are non-trivial ones $\vartheta_1 = \vartheta(k)$ and $\vartheta_2 = \pi - \vartheta(k)$ with $\vartheta(k)$ shown in Figs. 1a and 1b for different N and α^*. The solutions ϑ_0 and $\vartheta_{1,2}$ represent to two phases with different total ground state energies E_{tot}^N (E_0^N) for the in-plane (out-of-plane) pseudospin phase. The difference
strong electron-electron interactions with α and SiO$_2$ for substrate-free chirally stacked N-layer graphene numerically calculated from Eq. (1). Right panel: The total ground state energy difference ΔE between the in-plane and out-of-plane phases for different N. Increasing N makes the out-of-plane phase more preferable. The $\vartheta(k)$ curve for $N = 1$ differs from the one given in ΔE since we have improved the precision of our calculations here. Note, that the Coulomb interactions are completely unscreened here. The screening is taken into account in Fig. 3 by introducing the effective dielectric constant ε which relates to $\alpha^* = e^2/(\varepsilon \hbar v_0)$.

$$\Delta E_{\text{tot}} = E_{\text{tot}}^{\text{in}} - E_{\text{tot}}^{\text{out}}$$ per volume is given by

$$\frac{\Delta E_{\text{tot}}}{\hbar v_0 A^3} = -\frac{g_s g_v}{2\pi^2} \int \frac{dx' x'^N}{x'^N + 1} (1 - \sin \vartheta_{k'}) \left[-\alpha^* \frac{g_s g_v}{32\pi^3} \int \frac{dx'}{x'^N + 1} \right] \left[(1 - \sin \vartheta_{k'} \sin \vartheta_k) \cos(N \varphi' - N \varphi) - \cos \vartheta_{k'} \cos \vartheta_k \right]$$

The ground state energy is the same for both valleys and spins, and, therefore, Eq. (1) contain $g_s = 2$ and $g_v = 2$ for spin and valley degeneracy respectively. ΔE_{tot} has been evaluated numerically and the resulting ΔE_{tot} vs. N dependency is shown in Figs. 3a and 4a for suspended and SiO$_2$-placed graphene respectively. One can see that strong electron-electron interactions with $\alpha^* = 2$ definitely make the out-of-plane phase energetically preferable for $N > 1$. For graphene placed on SiO$_2$ substrate the pseudosublattice out-of-plane phase is energetically preferable only for $N \geq 3$. Note that the estimates of α^* for clean monoatomic graphene flake vary from 2 (Ref. 22) to 2.8 (Ref. 23) and, therefore, even monolayer graphene may get to the pseudosublattice out-of-plane phase.

Note that it is possible to choose either the same or opposite solutions for two valleys. The former choice breaks the parity invariance whereas the latter one does so with the time reversal symmetry ΔE in what follows we consider possible manifestations of these solutions in the optical absorption measurements on multilayer graphene.

III. OPTICAL ABSORPTION

We assume that an electromagnetic wave is propagating along z axis perpendicular to graphene plane. It can be described by the electric field $E = E_0 \exp(ik_z z - i\omega t)$, where k_z is the wave vector, and ω is the radiation frequency. For our purpose it is more convenient to characterize the electromagnetic wave by its vector potential $A = A_0 \exp(ik_z z - i\omega t)$, where $A_0 = i e E/\omega$. The relation between E and A is unambiguous since A is always in xy plane resulting in a gauge with $\text{div} A = 0$. The interaction Hamiltonian can be then written in the lowest order in A as

$$H_{\text{int}}^\nu = \frac{\nu \hbar \omega}{k(-\gamma_1)^{N-1}} e_N \left(e^{i\phi(N-1)}(A_x + i\nu A_y) \right)$$

The total absorption P can be calculated as a ratio between the total electromagnetic power absorbed by graphene per unit square $W_a = \hbar \omega \sum_{\nu} \int \frac{dx}{2\pi} \omega k k_r(W_{\nu})$ and the incident energy flux $W_i = \omega^2 A^2/4\pi c$. The probability to excite an electron from the valence band to an unoccupied state in the conduction band $w(k^+, k^-)$ can be calculated using Fermi’s golden-rule

$$w(k^+, k^-) = \frac{2\pi}{\hbar} \left| \langle k \mid \left| H_{\text{int}}^\nu \right| k^- \rangle \right|^2 \delta(E_{k^+} - E_{k^-} - \hbar \omega).$$

Because of normal incidence there is zero momentum transfer from photons to electrons. What is important is that the inter-band transition matrix elements of H_{int}^ν turn out to be sensitive to the light polarization and pseudospin orientations in the initial and final states. In particular, for linear polarization with $A_x = A \cos \varphi_{\text{pol}}$ and $A_y = A \sin \varphi_{\text{pol}}$ the probability to excite an electron with a given momentum reads

$$w(k^+, k^-)_{\nu = +} = \frac{\pi}{\hbar} \left(\frac{c N}{\hbar c} A \right)^2 \frac{2N^2 k^2 N^{-2}}{(-\gamma_1)^{2N-2}} \delta(E_{k^+} - E_{k^-} - \hbar \omega) \times \left[1 + \cos^2 \vartheta_k - \sin^2 \vartheta_k \cos(2N \varphi - 2N \varphi_{\text{pol}}) \right].$$

Note that $w(k^+, k^-)$ does not depend on the valley index ν. The total optical absorption P is not sensitive to
the particular orientation of the polarization plane since the \(\varphi_{\text{pol}} \)-dependent term is integrated out in this case. In contrast, if we assume a circular polarization fulfilling \(A_x = \pm i A / \sqrt{2} \), \(A_y = A / \sqrt{2} \) then the interband transition probability for K-valley can be written as

\[
w(k+, k-)_{\nu=+} = \frac{4\pi}{\hbar} \left(\frac{eN}{\hbar c} A \right)^2 \frac{(hv_0)^2 N k_{2N-2}}{(-\gamma_1)^{2N-2}} \times \left\{ \sin^4 \frac{\vartheta_k}{2} - \cos^4 \frac{\vartheta_k}{2} \right\} \delta(E_{k+} - E_{k-} - \hbar \omega).
\] (8)

Here, the multipliers \(\sin^4(\vartheta_k/2) \) and \(\cos^4(\vartheta_k/2) \) are for two opposite helicities of light, and for K’-valley they are interchanged. If the out-of-plane pseudospin polarization is chosen to be opposite in two valleys then this helicity dependence survives the integration over momentum and summation over valley index resulting in the helicity-sensitive total absorption which reads

\[
P = \frac{16N^2 \pi e^2}{\hbar c} \frac{(hv_0)^2 N}{(-\gamma_1)^{2N-2}} \times \frac{A}{0} \int dk k^{2N-1} \left\{ \sin^4 \frac{\vartheta_k}{2} - \cos^4 \frac{\vartheta_k}{2} \right\} \delta(E_{k+} - E_{k-} - \hbar \omega). \] (9)

The absorption strongly depends on helicity as long as the radiation frequency is much smaller than the band split-off energy. This regime corresponds to the excitation of electrons with comparatively small momenta, and for K’-valley they are interchanged. If the out-of-plane pseudospin polarization is chosen to be opposite in two valleys then this helicity dependence survives the integration over momentum and summation over valley index resulting in the helicity-sensitive total absorption which reads

\[
P = \frac{16N^2 \pi e^2}{\hbar c} \frac{(hv_0)^2 N}{(-\gamma_1)^{2N-2}} \times \frac{A}{0} \int dk k^{2N-1} \left\{ \sin^4 \frac{\vartheta_k}{2} - \cos^4 \frac{\vartheta_k}{2} \right\} \delta(E_{k+} - E_{k-} - \hbar \omega). \] (9)

The only question is whether the time reversal broken states really occur in clean graphene samples. More in depth analysis performed by Nandkishore and Levitov suggests that this is the case at least for bilayer graphene. On the other hand Jung et al. demonstrates that the intervalley exchange coupling favors parallel pseudospin polarization in opposite valleys breaking the parity invariance. In this case the total absorption does not depend on the radiation helicity but the two valleys are occupied differently by the photoexcited carriers which might be useful for vallegtronics.

In the in-plane phase with \(\vartheta = \pi/2 \) the total absorption does not depend on light polarization, and in the non-interacting limit it equals to

\[
P = N \frac{\pi e^2}{\hbar c} \] (12)

At \(N = 1 \) it acquires the universal value \(\frac{\pi e^2}{\hbar c} \), as expected.

IV. Conclusion

We have demonstrated that the polarization-sensitive optical absorption predicted in single layer graphene can be found in chirally stacked carbon multilayers within a broader range of parameters. This is due to the enhancement of the interaction effects in multilayer graphene with larger number of layers. The conditions necessary for the observation of the polarization-dependent optical absorption can be summarized as follows. (i) Graphene samples must be prepared as cleaner as possible. It would be better to utilize suspended samples in order to isolate the interacting electrons from the environment with large relative permittivity. (ii) The exchange interactions must break the time reversal invariance rather than the parity. This situation corresponds to the topologically non-trivial state with the Chern number equal to \(N \). (iii) Finally, the low frequency radiation
is necessary to excite the electrons with smaller momenta having larger out-of-plane pseudospin components and to preclude the influence of split-off bands.

In addition, we would like to mention the possible existence of a zero-field Hall current in the slightly doped graphene samples where the time reversal invariance is broken as described above.

Acknowledgements

We would like to thank Tobias Stauber, Jeil Jung, and Fan Zhang for stimulating discussions. This work was supported by DFG via GRK 1570.