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Low-energy quasiparticle states near extended scatterers in d-wave

superconductors and their connection with SUSY quantum mechanics
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Low-energy quasiparticle states, arising from scattering by single-particle potentials in d-wave
superconductors, are addressed. Via a natural extension of the Andreev approximation, the idea
that sign-variations in the superconducting pair-potential lead to such states is extended beyond its
original setting of boundary scattering to the broader context of scattering by general single-particle
potentials, such as those due to impurities. The index-theoretic origin of these states is exhibited
via a simple connection with Witten’s supersymmetric quantum-mechanical model.

PACS numbers: 74.62.Dh, 74.72.-h, 03.65.Sq, 11.30.Pb, 61.16.Ch

Introduction: In the present work we shall explore the
low-energy quasiparticle states available in d-wave super-
conductors due to the presence of an extended scatterer
such as a boundary or an impurity more than a few Fermi
wavelengths across. In the context of boundary scat-
tering, such states represent an important signature of
sign-variations of the superconducting order parameter,
as they have been shown to originate in the possibility of
scattering between momentum orientations that are sub-
ject to superconducting pair-potentials of differing sign.
The main aims of our work are to extend the idea that
sign-variations in the superconducting pair-potential lead
to low-energy quasiparticle states to the context of scat-
tering by general single-particle potentials, such as those
due to impurities (i.e., beyond scattering by boundaries),
and to explore the robustness of this effect.

The theoretical framework that we shall adopt is the
semiclassical approach to the quantum-mechanical prob-
lem of scattering from the single-particle potential, via
which the eigenvalue problem at hand reduces to a family
of effectively one-dimensional problems for the particle-
hole dynamics in the presence of the superconducting
pair-potential. Through this approach, we shall be able
to see that the density of low-energy quasiparticle states
(DOS) is determined solely by the classical scattering
properties of the single-particle potential and, further-
more, that this DOS is insensitive to any suppression of
the pair-potential that the impurity might cause. This
approach also provides us with a framework for classi-
fying and calculating corrections to the DOS at low en-
ergies, such as those due to diffraction during scatter-
ing from the single-particle potential itself, or due to
any pair-potential modifications beyond mere suppres-
sion (such as the induction of any out-of-phase compo-
nents of the pair-potential).

Along the way, we shall discuss the fact that the emerg-
ing one-dimensional eigenproblem is a realization of Wit-
ten’s supersymmetric quantum-mechanical model [1,2]
which, via the Witten index [1,2], provides a natural set-
ting in which to explore zero-energy states [3,4]. Through
this identification with Witten’s model we shall see that

the conditions under which zero-energy states exist are
indeed those mentioned above, viz., propagation between
pair-potentials of differing signs. In addition, we shall ex-
amine the role played by the semiclassical approximation
to the scattering problem vis-à-vis the existence of zero-
energy states, and thus see how it is that going beyond
this semiclassical approximation generically introduces
transition amplitudes between classical scattering trajec-
tories, thus causing the dispersion of the formerly zero-
energy states, e.g., into one or more low-energy peaks in
the DOS.

We would like to stress at the outset that the issue
of the origin of the low-energy states, viz., sign changes
in the pair-potential, has already been soundly under-
stood and extensively developed theoretically in several
contexts: notable examples include the works of Buch-
holtz and Zwicknagl [6] on p-wave superconductors near
surfaces; and of Hu [8], Buchholtz et al. [7], and Fo-
gelström et al. [9] on d-wave superconductors near flat
surfaces. Low-energy states have also received exten-
sive experimental attention in the context of boundary-
scattering in high-temperature superconductors. In par-
ticular, measurements of the (macroscopic) tunneling
conductance [10] have revealed a zero-bias anomaly in-
dicative of the existence of low-energy states near bound-
aries.

Apart from the effects of flat boundaries, theoretical re-
search on low-energy quasiparticle resonances in d-wave
materials has mostly been concerned with the effects of
point-like impurities (i.e., impurities for which the size
of the impurity is not much larger than the Fermi wave-
length λF). Of particular interest has been the effect of
the impurity strength on the energies and wave functions
of the resonances [11,12]. More recently, attention has
been paid to the effects on these resonances of impurity-
induced suppression of the superconducting order param-
eter [13,14]. Emerging from this body of work is a picture
in which each strong, point-like impurity gives rise to a
low-energy resonance. This resonance, which would show
up in the tunneling DOS as a pair of peaks symmetrically
located around zero energy, transforms (in the particle-
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hole symmetric case) into a single, marginal, bound state
at zero energy in the unitary scattering limit. As the im-
purity strength is reduced, the energy of this resonance
moves towards the gap maximum. Moreover, the quan-
titative details of the band structure and/or order pa-
rameter can play important roles [15]. In particular, in
particle-hole asymmetric systems the energies of the res-
onances no longer tend asymptotically to zero in the uni-
tary limit.
In contrast, the present work suggests that an extended

(rather than point-like) impurity induces a zero-energy
peak in the DOS with a weight of order the linear size
of the impurity (measured in units of the Fermi wave-
length). Moreover, the resulting low-energy DOS is much
less sensitive to details such as the precise form of the
band structure and any in-phase order parameter varia-
tions, i.e., the peak at zero energy is inert. In this re-
spect, extended impurities behave more like flat bound-
aries than like point-like impurities.
The theoretical distinctions between point-like and ex-

tended impurities raised in this Letter have, to some ex-
tent, been addressed experimentally via scanning tun-
neling spectroscopy on Bi2Sr2CaCu2O8 surfaces [16,17].
Work on native defects [16,17], which often appear to
be essentially point-like in STM imaging, yield weak sig-
natures in the (smeared, local) DOS near each defect.
Such signatures can each be interpreted as being induced
by a point-like impurity that yields a resonance of unit
weight. In contrast, the artificially-induced defects de-
scribed in Ref. [17], which appear to be more extended
in STM imaging, show much stronger signatures in the
DOS. This is consistent with the idea that extended im-
purities produce many states, as the present work indi-
cates they should.
Bogoliubov-de Gennes eigenproblem: We regard the
single-quasiparticle excitations as being described by the
Bogoliubov-de Gennes (BdG) eigenproblem [18,19]

(

ĥ ∆̂
∆̂† −ĥ

)(

u
v

)

= E

(

u
v

)

, (1)

where the components u(x) and v(x) of the energy eigen-
state respectively give the amplitudes for finding an elec-
tron and a hole at the position x, E is the energy eigen-

value, and ĥ = −∇2 − k2F + V (x) is the one-particle
hamiltonian, in which k2F is the chemical potential [i.e.,
kF (≡ 2π/λF) is the Fermi wave vector] and V is the
single-particle potential. We have adopted units in which
h̄2/2m = 1, where m is the (effective) mass of the

electrons and holes. The operator ∆̂ (which should
ultimately be determined self-consistently) is the pair-
potential (integral) operator, whose action on the wave
functions is specified by the (nonlocal) kernel ∆(x,x′)

via: [∆̂v](x) =
∫

dx′∆(x,x′) v(x′). We assume that suf-
ficiently far from the scatterer ∆ returns to the value
that characterizes the bulk superconductor (e.g., s-wave,
d-wave, mixed, etc.). As we shall see below, our compu-
tation of the low-energy DOS is insensitive to the precise

form of any suppression of the superconducting order in-
duced by the single-particle potential, and therefore con-
tinues to hold when ∆ is replaced by its self-consistent
value. However, as we shall also see below, induced mod-
ifications of the superconducting order parameter that go
beyond simple suppression in a manner that causes local
supercurrents [i.e., via the addition of any intrinsically
out-of-phase component to ∆] spoil this robustness.
Andreev’s approximation for a strong single-particle po-
tential: To analyze the BdG eigenproblem we first ap-
ply a semiclassical approximation, which reduces the full
problem to a family of first-order differential eigenprob-
lems labeled by the classical trajectories of a particle
at the Fermi energy in the presence of the full single-
particle potential. This amounts to extending the An-
dreev approximation to situations in which there is a
single-particle potential whose energy scale V0 is not neg-
ligible compared with the Fermi energy. In technical
terms, we are making an asymptotic approximation valid
when k2F ≫ (∆0, E), V0 ∼ k2F, and V (x) is slowly vary-
ing relative to λF. To implement this approximation we
consider the semiclassical solution of

(

−∇2 − k2F + V (x)
) (

A(x) eikFS(x)
)

= 0, (2)

i.e., the “large” part of the BdG eigenproblem, where
both A(x) and S(x) are taken to be slowly varying (with
respect to λF) [20]. By retaining the first and second
powers in kF we obtain, from Eq. (2), the Hamilton-

Jacobi equation |∇S(x)|
2
= 1 − k−2

F V (x) and the con-
servation condition ∇ ·

(

A(x)2 ∇S(x)
)

= 0. We then use
the resulting semiclassical solution, which is specified in
terms of the incoming momentum orientation n via the
asymptotic behavior S(x;n) ∼ n · x [21] (for x far from
the scattering center) and includes all of the fast (i.e.,
order of λF) variations of the exact BdG eigenfunctions,
to perform a generalized separation of rapidly and slowly
varying components by writing

(

u(x)
v(x)

)

= A(x) eikFS(x;n)

(

ū(x)
v̄(x)

)

, (3)

where ū and v̄ are assumed to be slowly varying relative
to λF. Then, by inserting this form into Eq. (1) we obtain

[

ĥ
(

AeikFS ū
) ]

(x) ∼ −2ikFA(x) eikFS(x;n)
(

∇S
)

·
(

∇ū
)

,

for the action of ĥ on A exp
(

ikFS
)

ū.
We now turn to the “small” part of the BdG eigenprob-

lem, which involves the off-diagonal integral operator ∆̂.
It is convenient to transform to relative and center-of-
mass coordinates, r and R:

∆̄(r,R) ≡ ∆(x,x′), r ≡ x− x
′, R ≡

x+ x
′

2
. (4)

Then the action of ∆̂ can be asymptotically approxi-
mated (for k2F ≫ ∆0) as
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[

∆̂
(

A eikFS ū
)

]

(x) =

∫

dr ∆̄(r,x− r/2) ū(x− r/2)A(x− r/2) eikFS(x−r/2;n) ≈
(

A(x) eikFS(x;n)
)

ū(x)∆eff(x;n), (5a)

∆eff(x;n) ≡

∫

dr ∆̄(r,x− r/2)
A(x− r/2)

A(x)
exp

(

ikFS(x− r;n)− ikFS(x;n)
)

, (5b)

provided we assume that
(

ū(x), v̄(x)
)

varies much more
slowly than λF. Thus the task of solving the full
BdG eigenproblem (1) is reduced to the task of solving
the (classical) Hamilton-Jacobi equation, along with the
(2× 2) first-order partial differential eigenproblem

(

−2ikF∇S ·∇ ∆eff(x;n)
∆∗

eff(x;n) 2ikF∇S ·∇

)(

ū
v̄

)

= E

(

ū
v̄

)

. (6)

In fact, the eigenproblem is an ordinary rather than par-

tial one. To see this, recall the element of Hamilton-
Jacobi theory [23] in which one establishes that the so-
lution S of the Hamilton-Jacobi equation (at least for
classically allowed regions) is indeed the action computed
along the classical trajectory xc(·) that solves Newton’s
equation k2F ∂2

s xc(s) = −∇V (xc) subject to the condi-
tion |∂s xc(s)| → 1 as s → ±∞ (so that the classical
motion is at the Fermi energy). Owing to this connec-
tion between ∇S and ẋc, Eq. (6) can be rewritten as [24]

Ĥ

(

ū
v̄

)

= E

(

ū
v̄

)

, Ĥ ≡

(

−2ikF∂s ∆eff(s)
∆∗

eff(s) 2ikF∂s

)

,

where ∆eff(s) is defined to be ∆eff(xc(s);n). This
family of first-order ordinary differential eigenproblems
is parametrized by n and the impact parameter b,
which uniquely specify the classical trajectory xc(·) from
amongst those having energy k2F.
Zero-energy states: To search for zero-energy states it is
useful to reduce the eigenproblem via the following se-
quence of steps. We apply the unitary transformation
(in electron-hole space) Û ≡ 1√

2

(

1
i

1
−i

)

, under which

Ĥ → Ĥ ′ ≡ Û † Ĥ Û =

(

0 Â
Â† 0

)

, (7a)

Â ≡ −2ikF∂s − i∆eff(s), Â
† ≡ −2ikF∂s + i∆eff(s). (7b)

We emphasize that it is not possible to arrive at this
structure for values of ∆eff that are intrinsically complex
(i.e., cannot be made real by an elementary gauge trans-
formation), as is the case, e.g., for supercurrent-carrying
states. The virtue of the structure of Eqs. (7a) and (7b)
is that it allows us to recognize that zero-energy eigen-
functions of Ĥ ′ have the form

(

ϕ+

0

)

or
(

0
ϕ

−

)

, where the

functions ϕ± obey

(2kF∂s ∓∆eff)ϕ± = 0, (8)

provided they exist (i.e., are normalizable). Owing to
their first-order nature, these (zero-energy) eigenprob-
lems may readily be integrated to give

ϕ±(s) ∝ exp

(

±(2kF)
−1

∫ s

ds′ ∆eff(s
′)

)

. (9)

However, the ability to normalize ϕ±, and therefore the
existence of zero-energy eigenvalues, depends on the form
of ∆eff via the limiting values ∆± ≡ lims→∞ ∆eff(±s) for
a given semiclassical path xc(·). Specifically, for semiclas-
sical paths for which ∆+ ∆− is negative, one or other (but
not both) of ϕ± is normalizable and, therefore, for such
paths provide precisely one zero-energy eigenvalue. On
the other hand, for semiclassical paths for which ∆+ ∆−
is positive, neither of ϕ± is normalizable, and therefore
such paths provide no zero-energy eigenvalues.

This diagnostic for when semiclassical paths lead to
zero-energy states allows us to assemble the zero-energy
contributions to the DOS. If, for the sake of concreteness,
we restrict our attention to two-dimensional systems then
our approximation to the low-energy DOS has the form

ρSC(E) = δ(E)
kF
2π

∫

dn db (1− sgn∆+ sgn∆−) . (10)

This formula should have corrections, which vanish as E
tends to zero, coming from the nodes in the gap of the
homogeneous d-wave state, as well as suppression of the
superconducting state near the impurity.

Let us now highlight some features of Eq. (10). (i) The
evaluation of Eq. (10) requires only knowledge of the clas-
sical scattering trajectories for V . (ii) The DOS peak is
located at zero energy. Corrections to this result, ow-
ing inter alia to particle-hole asymmetry, are of relative
order max

(

1/kFR,∆0/k
2
F

)

(where R is the characteris-

tic extent of the impurity). For small ∆0/k
2
F and ex-

tended impurities these corrections are small. (iii) Only
the asymptotic signs of ∆ at the ends of the classical tra-
jectories feature; the DOS is unchanged by deformations
of the pair-potential, provided the asymptotic signs are
preserved and no out-of-phase components are induced.
(iv) The degeneracy of the zero-energy level is of order
kFR, the constant of proportionality being dependent on
the form of V .

Connection with Witten’s model of supersymmetric

quantum mechanics and index theory : Having seen,
within the context of an explicit computation, the emer-
gence (or otherwise) or zero-energy states, we now dis-
cuss the structure that underlies this issue, namely in-
dex theory [5]. The relevant aspect of index theory is
Witten’s index from Witten’s model of supersymmetric
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quantum mechanics (SUSY QM). The specific connec-

tion is as follows: Ĥ ′2 (c.f. our 7a) is Witten’s SUSY
Hamiltonian; ∆eff (our 5b) is Witten’s SUSY potential;
A and A† (our 7b) are proportional to Witten’s annihila-
tion and creation operators. Indeed, the analysis leading
from Eq. (7a) to the conditions for the existence of a
zero-energy state, mirrors the (by now) standard SUSY
QM analysis.

In SUSY QM, an important tool is the Witten index,
i.e., the number of zero-energy states of the form

(

0
ϕ

−

)

minus the number of the form
(

ϕ+

0

)

. If the Witten in-
dex is nonzero then there certainly are zero-energy states
(i.e., SUSY is good; see, e.g., Ref. [2], Sec. 2.1). If the
Witten index is zero then there may or may not be zero-
energy states, as contributions may cancel. In the present
context, we are not prima facie concerned with the Wit-
ten index and its properties, but rather with ascertain-
ing the number of zero-energy states. However, owing to
the fact that there is at most one zero-energy state for
any semiclassical trajectory (because the normalizability
condition cannot be simultaneously satisfied by both ϕ+

and ϕ−) the (modulus of the) Witten index does indeed
permit the counting of the zero-energy states.

Discussion and outlook: The condition on the existence
of zero-energy states, together with Eq. (5b), provide us
with a way of calculating the DOS at low energies by
a simple counting of the number of classical trajecto-
ries that start and end with different signs of the super-
conducting pair-potential [see Eq. (10)]. Thus, the DOS
at low energies depends only on the classical scattering

properties of the single-particle potential .

As we have stressed earlier, this result is valid in the
regime in which the single-particle potential is both spa-
tially extended and strong and the pair-potential is much
smaller than the Fermi energy. Before turning to a dis-
cussion (and classification) of the generic corrections to
this result for the DOS, which arise upon the relaxation
of these conditions, we remark that the foregoing ap-
proximation scheme and results also hold for spatially
extended single-particle potentials that are weaker than
the Fermi energy. Moreover, in the regime V0

<
∼ ∆0 our

results can be extended to the case of rapidly-varying
single-particle potentials (such as are due to point-like
impurities). However, as the strength of the single-
particle potential is diminished, the classical trajectories
will tend towards straight lines and, hence, the number of
trajectories that “see” different signs of the pair-potential
will be reduced. This will result in a corresponding de-
crease in the degeneracy of the zero-energy level, in ac-
cordance with formula (10). Indeed, for V0

<
∼ ∆0 the tra-

jectories are essentially straight lines. Thus, there would
be no zero-energy states, but additional resonances (due
to the impurity) may arise if the pair-potential is sup-
pressed.

By contrast, in the regime V0 ∼ k2F but V (x) rapidly
varying (e.g., for strong, point-like impurities), the ap-
proximation scheme that enabled us to reduce the prob-

lem to a family of one-dimensional eigenproblems breaks
down, due to the fact that the previously-neglected
∇A term becomes comparable to previously-retained
∇S term. The former term introduces diffraction ef-
fects in the (quantum-mechanical) scattering from the
single-particle potential, as well as tunneling through
the classically-forbidden region. These effects can be
viewed as consequences of nonzero transition amplitudes
between states associated with the classical trajectories,
and would result in the dispersion of the previously-
degenerate zero energy states.
Let us conclude by remarking that the presence of an

impurity-induced subdominant component to the pair-
potential, provided it is in-phase with the dominant com-
ponent, would not change the picture presented here:
specifically, formula (10) would continue to hold. On the
other hand, if an out-of-phase component is induced (e.g.,
so that locally the state becomes d+is), this would cause
the zero-energy peak in the DOS to split into two peaks
of nonzero width [10,9], symmetrically disposed about
zero energy, the lineshapes depending on the full (rather
than solely the asymptotic) details of the pair-potential.
If the out-of-phase component is small then the resulting
lineshape can be computed via perturbation theory.
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