Chapter 11

\textbf{P}_n \text{ and } \textbf{As}_n \text{ UNITS AS BUILDING BLOCKS FOR METALLACYCLES, CAGES, SANDWICH AND TRIPLE-DECKER COMPLEXES}

\textbf{O. J. Scherer, C. Blath, J. Braun, B. Höbel, K. Pfeiffer, B. Rink, H. Slodzyk, P. Walther, B. Werner and R. Winter}

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, W-6750 Kaiserslautern, Germany

\textbf{Abstract}

In the coordination sphere of substituted cyclopentadienyl transition-metal complex fragments PO, cyclo-P$_3^{3-}$, open-edged P$_6$ benzvalene and As$_6$ Dewar benzene, cyclo-As$_8$ as well as open-edged E$_{10}$ dihydrofulvalenes (E = P, As) have been stabilized for the first time. Source for the P$_n^{-}$ and As$_n^{-}$ units are white phosphorus, P$_4$, and yellow arsenic, As$_4$, respectively.

\textbf{1. \hspace{1em} INTRODUCTION}

Within the last years many novel complexes with substituent-free acyclic and cyclic E$_n$ units [1], E = P, As, Sb, Bi; $n = 1$-8, have been synthesized and characterized by IR, MS, NMR, and especially by X-ray analyses. Many of these compounds have forged bridges to organic chemistry (CH is isoelectronic and isolobal [2] to e.g. P and As), the solid-state chemistry of P$_n^X$-polyphosphides [3] and to acyclic and cyclic polyphosphanes [4]. This review mainly describes the newest developments on the reactivity of complexes with E$_n$.
ligands and the coordinative stabilization of cyclic, especially larger Eₙ units (E = P, As; n = 3, 4, 5, 6 and 8)

2. RESULTS

2.1. E₂ Ligands (E = P, As, Sb)

In the well-known series of dimetalla-diphospha tetrahedranes [1] derivative 2 [5] with two different metal atoms could be synthesized according to equation (1):

\[
\begin{align*}
[Cp^4Ni(\eta^3-P_3)] & \quad [CpW(CO)_3]_{2,\Delta} \quad \text{Cp}^4Ni \quad WCP(CO)_2 \\
& \quad \text{Cp}^4Ni \quad WP \quad \text{P} \quad \text{P} \quad \text{2} \quad \text{la}
\end{align*}
\]

\[
\begin{align*}
\text{la} \quad \text{Cp}^4 = \eta^5-C_5HiPr_4, \text{ Cp} = \eta^5-C_5H_5
\end{align*}
\]

Reaction of the dinickela-diphospha tetrahedrane 3 with \([W(CO)_5(thf)]\) leads to formation of the Ni₂WP₂-complex 4 which can be oxidized with bis(trimethylsilyl)peroxide to give 5, the first complex with a PO ligand [6].
For the tetragonal-pyramidally structured compounds 4 and 5 X-ray analyses show that 4 has a rather short P...P bond of 2.304(4) Å (2.624(5) Å in 5); the μ$_3$-PO ligands have P-O bond lengths of 1.46 and 1.48 Å (IR: ν(P=O)=1260 cm$^{-1}$) [6].

In analogy to the synthesis of 3 the interaction of [Cp$_4$Ni(η3-As$_3$)] (1b) with [Cp$_4$Ni(CO)]$_2$ [7] affords in high yield complex 6 (d(As-As) = 2.277(6)Å) [8].

[Cp$_4$Ni(η3-As$_3$)] → [Cp$_4$Ni(μ-CO)]$_2$,Δ

1b

Cp$_4$ = η5-C$_5$HiPr$_4$

7 (d(Sb-Sb) = 2.678(1)Å) was obtained in ca. 4 % yield on heating (180°C) [CpMo(CO)$_3$]$_2$ and metallic antimony for five days [9].

2.2. E$_3$ Ligands (E = P,As)

The cothermolysis of [Cp$_4$Ni(μ-CO)]$_2$ with an excess of E$_4$ (E = P,As) gives in about 60 % yield the nickelatripnictogena tetrahedranes 1 [8].
A side product of the reaction of \([(\eta^5-C_5Me_4R)Ru(CO)_2]_2\) with yellow arsenic, \(As_4\), is the tetranuclear cluster \([(\eta^5-C_5Me_4R)Ru(\eta^3-As_3)(\mu_3,\eta^3-As_3)(\mu_3-As_3)]\) \((\text{a}, \text{b}; \text{a}:R = \text{Me}, \text{b}:R = \text{Et})\), whose \(Ru_4As_9\) skeleton is shown in Fig. 1 [10].

![Diagram of \(Ru_4As_9\) skeleton]

Fig. 1 (Cp'-ligands have been omitted)

Interesting to note are the different \(d(As-As)\) values of 2.32 Å (As7-9) and 2.57 Å (As1,4,6) for the two cyclo-As3 ligands.

With respect to the oxidation state of IV, which is almost the only occurring state for thorium, the unsubstituted phosphorus ligand in \(\text{c} [11]\) is described as cyclo-P3\(^{3-}\) \((d(P-P) = 2.185 \text{ Å})\), a formulation isoelectronic with cyclo-S3.
Treatment of a dichloromethane solution of \([(\text{triphos})\text{Co}(\eta^3-P_3)](\text{10})\) with [AuCl(PR₃)] or RHgCl in the presence of TlPF₆ affords the complexes 11 [12] and 12 [13].

X-ray structure analyses reveal that in 11 [12] the coordinated PP bond is lengthened to 2.30/2.31(2) Å; the same holds for 12(2.293(8) Å) [13].

2.3. \(E_4\) Ligands (\(E = P, As\))

In addition to \([\text{Cp}^*\text{(CO)}_2\text{Nb}(\eta^4-E_4)](\text{13a}: E=P [14], \text{13b}: E=As [15])\) 14, the tantalum analogue, can be synthesized photochemically according to equation (2) [16]:
The X-ray data of 14 (d(P-P) = 2.17 Å, 13a: 2.16 Å [14]) and 13a are nearly the same. 14 also shows a slight distortion of the planar P₄ base to a kite shape [16]. The Wade-Mingos electron counting rules [17] for the P₄Ta tetragonal pyramid in 14 lead to the necessary number of SEP (n+2 = 7 Skeletal Electron Pairs) for the nido structure.

Cyclo-P₄ as 12e donor ligand (four times W(CO)₅-terminal coordination) has been stabilized in complex 15 (d(P-P = 2.15 Å) which was made from P₄ and [W(CO)₅(thf)] [18].

Tight-binding band electronic structure calculations on a prototype skutterudite LaFe₄P₁₂ were performed in order to gain insight into the electronic properties of binary (i.e. CoAs₃) and ternary skutterudite compounds. The major contribution to the highest occupied band of LaFe₄P₁₂ comes
from the orbitals of the P$_4$ rings that form the phosphorus sublattice [19].

2.4. E$_5$ Ligands (E = P, As)

The first mixed carbonyl(pentaphosphacyclopentadienyl)-metal complex 16 (and further examples) was obtained by the following metathetic reaction [20]:

\[
\begin{align*}
\text{DMF, 155°C} & \\
\text{KP$_5$ + [Mn(CO)$_5$Br]} & \rightarrow [(\eta^5-P$_5$)Mn(CO)$_3$] \\
& - KBr, - 2CO
\end{align*}
\]

Starting with the sandwich complexes [Cp*Fe(\eta5-E$_5$)], E = P, As; Cp* = \eta5-C$_5$Me$_5$, and [(OC)$_3$Mo(NCMe)$_3$] the 30 valence electron "triple deckers" 17 and 18 (Fig. 2) have been realized in a stacking reaction [21].
It is worthwhile to mention that in both dinuclear complexes d(Fe...Mo) is 3.44 Å (17: d(P-P) = 2.13 Å, 18: d(As-As) = 2.35 Å) [21]; for triple deckers with shorter metal-metal bonds, see reference [1]).

2.5. \(E_6 \) Ligands (\(E = P, As \))

In the triple-decker sandwich complex 19 with a rather distorted cyclo-P\(_6\) ligand [1] further terminal coordination to a phosphorus lone pair has been achieved for the first time [16].

\[
\begin{align*}
\text{Scheme 1} \\
&\xrightarrow{[\text{M(CO)}_5(\text{thf})]} \\
&\xrightarrow{[\text{[(Cp''Nb)}_2(\mu,\eta^3:3-P_6)]]} \\
&\xrightarrow{[(\text{Cp''Nb})_2(\mu,\eta^3:3-P_6)]} \\
&\text{Cp''} = \eta^5-1,3-\text{tBu}_2\text{C}_5\text{H}_3 \\
&\text{M} = \text{Cr, W} \\
&\text{A} \quad \text{B} \quad \text{C} \quad \text{D} \quad \text{E}
\end{align*}
\]

From the classical (CH)\(_6\)-valence isomers A-E of benzene intact or open-edged \(E_6 \) analogues, \(E = P, As \), have been stabilized in the coordination sphere of transition metal complex fragments.
The cothermolyses of \([\text{Cp}_2\text{"Th}(\eta^4-C_4H_6)]\) with \(P_4\) and \([\text{Cp}^*\text{Co(CO)}_2]\) with \(\text{As}_4\) give the di- and trinuclear complexes \(\text{19} [11], \text{20} [22]\) and \(\text{21} [22]\) (Fig. 3).

In \([\text{Cp}^\prime\text{Th(\mu,}\eta^3:3\text{-P}_6)\text{ThCp}^\prime\text{]19 [11], Cp}^\prime=\eta^5-1,3\text{-tBu}_2\text{C}_5\text{H}_3\) the bicyclic \(\text{P}_6\) ligand can be formally regarded as \(\text{P}_6{}^{4-}\) and derived from \(\text{P}_6\) benzvalene (cf. \(\text{C}\), Scheme 1). The open-edged \(\text{As}_6\) Dewar benzene (cf. \(\text{D}\), Scheme 1) has been coordinatively stabilized in \([\text{Cp}^*\text{Co}_2(\text{As}_6)]\) \(\text{20} [22]\). Its As-As distances vary from 2.33 (\(\pi\)-bond coordination) to 2.44 (average) and 2.59 \(\AA\) (\(\pi\)-and \(\sigma\)-bond coordination) \(\text{[22]}\). Beside \([\text{Cp}^*\text{Co(\mu-}\eta^2:2\text{As}_2)]_2\) \(\text{22} [22]\) one can also isolate \([\text{Cp}^*\text{Co}_3(\text{As}_2)_3]\) \(\text{21},\)
Cp*=η⁵-C⁵Me₅), whose Co₃As₆ framework consists of three Cp*CoAs₂ units formally forming a strongly distorted Cp*Co capped As₆ prismane with As-As bond lengths between 2.29 and 3.05 Å [22].

The molecular dynamics/density functional (MD/DF) approach [23] shows that the most stable P₆ isomers are the benzvalene and prismane structure type [23].

2.6. E₈ Ligands (E = P, As)

Contrary to the many E₆ isomers only two complexes with an E₈ ligand have been synthesized so far.

On the one hand, the photolysis of a P₄/[Cp'Fe(CO)₂]₂ -
toluene solution affords \([\text{Cp'}_4\text{Fe}_4(\text{CO})_6(\text{P}_8)]\) [23] [24], whose P\(_8\) cage can be formally derived from the open-edged \((\text{CH})_8\) isomer cuneane [24] (see \(\text{G}\) in Scheme 2).

\[
\begin{align*}
\text{Cp'} & = \eta^5\text{-C}_5\text{H}_4\text{Me} \\
\text{Cp''} & = \eta^5\text{-1,3-tBu}_2\text{C}_5\text{H}_3
\end{align*}
\]
X-ray crystallographically P-P distances from 2.185(4) to 2.254(4) Å have been found for \[23\] [24].

On the other hand, in \([(\text{Cp}''\text{Nb})_2(\mu,\eta^{4:4}-\text{As}_8)](24)\) [25], synthesized from [Cp''Nb(CO)_4] and As_4 in decalin (170°C, 2h), the As_8 analogue of cyclooctatetraene (see \(\text{F}\) in Scheme 2) has been coordinatively stabilized as a puckered, strongly distorted eight-membered ring, whose As-As bond lengths vary between 2.355(3) and 2.530(3) Å [25].

Theoretical studies [23] have shown that, contrary to widespread belief, the most stable isomer of P_8 is not cubic, but the "wedge" or "cradle" structure ("cuneane") found as a structural motif in Hittorf phosphorus.

2.7. \(E_{10}\) Ligands (\(E = P, As\))

Up to now the largest \(E_n\) units that have been coordinated to transition-metal complex fragments are P_{10} and As_{10}.

![Diagram](attachment:image.png)

Scheme 3
Whereas P_{10}, synthesized by cothermolysis of $[\text{CpCr(CO)}_3]_2$, $\text{Cp}=\eta^5-\text{C}_5\text{H}_5$, and P_4, in the paramagnetic complex 25 [26] forms a polycyclic Cr_5P_{10} skeleton (cf. Baudler's polycyclic phosphanes [4]) E_{10} ($E = P, \text{As}$) can be formally derived from (CH)$_{10}$ dihydrofulvalene (see Scheme 3). Treatment of $[\text{Cp}''\text{Rh(CO)}_2]$ with E_4 at elevated temperature affords the tetranuclear complexes 26 (a: $M = P$, b: $M = \text{As}$) [27].

\[M = \text{CpCr(CO)}_2 \]
X-ray structure analyses show that in 25 the mean value of the P-P distances is 2.22 Å [26]. For 26a P-P-bond lengths between 2.14 and 2.19 Å are found. It is of interest to note that in 26a and 26b (its X-ray structure is until now of low quality) the E-E bond at the "end" of both five-membered rings adds oxidatively (d(P...P)=2.62 Å) [27] with formation of d⁶ rhodium.

Acknowledgement. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support as well as Johnson Matthey for a generous loan of RhCl₃.

3. REFERENCES
5 H. Slodzyk, unpublished results.
7 H. Sitzmann, unpublished results.
10 O.J. Scherer, C. Blath, G. Heckmann and G. Wolmershäuser,

11 O.J. Scherer, B. Werner, G. Heckmann and G. Wolmershäuser,

14 O. J. Scherer, J. Vondung and G. Wolmershäuser, Angew.

15 O. J. Scherer, J. Vondung and G. Wolmershäuser, J.

(1990) 2252.

20 M. Baudler and T. Etzbach, Angew. Chem. 103 (1991) 590;

21 B. Rink, O. J. Scherer, G. Heckmann and G. Wolmershäuser,
to be published.

22 O. J. Scherer, K. Pfeiffer, G. Heckmann and G. Wolmershäuser,

27 O. J. Scherer, B. Höbel, G. Heckmann and G. Wolmershäuser, to be published.