Chapter 11

P_n and As_n UNITS AS BUILDING BLOCKS FOR METALLACYCLES, CAGES, SANDWICH AND TRIPLE-DECKER COMPLEXES

O. J. Scherer, C. Blath, J. Braun, B. Höbel, K. Pfeiffer, B. Rink, H. Slodzyk, P. Walther, B. Werner and R. Winter Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, W-6750 Kaiserslautern, Germany Abstract

In the coordination sphere of substituted cyclopenta-dienyl transition-metal complex fragments PO, cyclo- P_3^{3-} , open-edged P_6 benzvalene and As_6 Dewar benzene, cyclo- As_8 as well as open-edged E_{10} dihydrofulvalenes (E = P,As) have been stabilized for the first time. Source for the P_n - and As_n -units are white phosphorus, P_4 , and yellow arsenic, As_4 , respectively.

1. INTRODUCTION

Within the last years many novel complexes with substituent-free acyclic and cyclic E_n units [1], E=P, As, Sb, Bi; n=1-8, have been synthesized and characterized by IR, MS, NMR, and especially by X-ray analyses. Many of these compounds have forged bridges to organic chemistry (CH is isoelectronic and isolobal [2] to e.g. P and As), the solid-state chemistry of P_n^{X-} polyphosphides [3] and to acyclic and cyclic polyphosphanes [4]. This review mainly describes the newest developments on the reactivity of complexes with E_n

ligands and the coordinative stabilization of cyclic, especially larger E_n units (E = P,As; n = 3,4,5,6 and 8)

2. RESULTS

2.1. E_2 Ligands (E = P,As,Sb)

In the well-known series of dimetalla-diphospha tetra-hedranes [1] derivative $\underline{2}$ [5] with two different metal atoms could be synthesized according to equation (1):

$$[Cp^{4}Ni(\eta^{3}-P_{3})] \xrightarrow{\qquad \qquad } Cp^{4}Ni \xrightarrow{\qquad \qquad } Wcp(co)_{2}$$

$$- co \qquad \qquad P \xrightarrow{\qquad \qquad } P$$

$$cp^{4} = \frac{1a}{\eta^{5}} - c_{5}HiPr_{4}, Cp = \eta^{5} - c_{5}H_{5}$$

Reaction of the dinickela-diphospha tetrahedrane $\underline{3}$ with $[W(CO)_5(thf)]$ leads to formation of the Ni_2WP_2 -complex $\underline{4}$ which can be oxidized with bis(trimethylsilyl)peroxide to give $\underline{5}$, the first complex with a PO ligand [6].

$$[\operatorname{Cp}^{4}_{2}\operatorname{Ni}_{2}(\mu,\eta^{2:2}-P_{2})] \xrightarrow{[W(\operatorname{Co})_{5}(\operatorname{thf})]} \operatorname{Cp}^{4}\operatorname{Ni}\operatorname{Cp}^{4}$$

$$\frac{3}{2} \qquad \qquad \underbrace{+2 \quad (\operatorname{Me}_{3}\operatorname{Si})_{2}\operatorname{O}_{2}}_{-2 \quad (\operatorname{Me}_{3}\operatorname{Si})_{2}\operatorname{O}} \operatorname{Cp}^{4}\operatorname{Ni} \operatorname{Cp}^{4}}_{CO)_{4}}$$

$$\operatorname{Cp}^{4}\operatorname{Ni} \xrightarrow{p} \operatorname{O}_{1}\operatorname{Ni}\operatorname{Cp}^{4}$$

For the tetragonal-pyramidally structured compounds $\underline{4}$ and $\underline{5}$ X-ray analyses show that $\underline{4}$ has a rather short P...P bond of 2.304(4) Å (2.624(5) Å in $\underline{5}$); the μ_3 -PO ligands have P-O bond lengths of 1.46 and 1.48 Å (IR: $\nu(P=O)=1260$ cm⁻¹) [6].

In analogy to the synthesis of $\underline{3}$ the interaction of $[Cp^4Ni(\eta^3-As_3)]$ ($\underline{1b}$) with $[Cp^4Ni(CO)]_2$ [7] affords in high yield complex $\underline{6}$ (d(As-As) = 2.277(6)Å) [8].

$$[Cp^{4}Ni(\eta^{3}-As_{3})] \xrightarrow{[Cp^{4}Ni(\mu-co)]_{2},\Delta} \xrightarrow{As} \frac{1b}{As}$$

$$Cp^{4}Ni(\eta^{3}-As_{3})] \xrightarrow{\underline{b}} \qquad \underline{\underline{b}}$$

$$Cp^{4}Ni(\mu-co)]_{2},\Delta \xrightarrow{\underline{b}} \qquad \underline{\underline{b}}$$

$$Cp^{4}Ni(\mu-co)]_{2},\Delta \xrightarrow{\underline{b}} \qquad \underline{\underline{b}}$$

 $\underline{\underline{7}}$ (d(Sb-Sb) = 2.678(1)Å) was obtained in ca. 4 % yield on heating (180°C) [CpMo(CO)₃]₂ and metallic antimony for five days [9].

$$Cp (OC)_{2}MO \longrightarrow MO (CO)_{2}Cp$$

$$Cp = \eta^{5} - C_{5}H_{5}$$

$$Sb \longrightarrow Sb \qquad \underline{7}$$

2.2. E_3 Ligands (E = P,As)

The cothermolysis of $[Cp^4Ni(\mu-CO)]_2$ with an excess of E_4 (E = P,As) gives in about 60 % yield the nickelatriphictogena tetrahedranes $\underline{1}$ [8].

A side product of the reaction of $[(\eta^5-C_5Me_4R)Ru(CO)_2]_2$ with yellow arsenic, As_4 , is the tetranuclear cluster $[\{(\eta^5-C_5Me_4R)Ru\}_3Ru(\eta^3-As_3)(\mu_3,\eta^3-As_3)(\mu_3-As)_3]$ ($\underline{8}$ $\underline{a},\underline{b};$ $\underline{a}:R=Me,\underline{b}:R=Et)$, whose Ru_4As_9 skeleton is shown in Fig. 1 [10].

Fig. 1 (Cp'-ligands have been omitted)

Interesting to note are the different d(As-As) values of 2.32 Å (As7-9) and 2.57 Å (As1,4,6) for the two cyclo-As $_3$ ligands.

With respect to the oxidation state of IV, which is almost the only occurring state for thorium, the unsubstituted phosphorus ligand in $\underline{9}$ [11] is described as cyclo- P_3^{3-} (d(P-P) = 2.185 Å), a formulation isoelectronic with cyclo- S_3 .

$$2 \left[\text{Cp"}_{2}^{\text{Th}} (\eta^{4} - \text{C}_{4}^{\text{H}}_{6}) \right] \xrightarrow{P_{4}, \frac{1}{2} \text{MgCl}_{2}} \text{Cp"}_{2}^{\text{Th}} (C1) \text{Cp"}_{2}^{\text{Th}} (C1) \text{Cp"}_{2}^{\text{Th}}$$

$$\text{Cp"} = \eta^{5} - 1, 3 - \text{tBu}_{2}^{\text{C}}_{5}^{\text{H}}_{3} \qquad \underline{9}$$

Treatment of a dichloromethane solution of [(triphos)Co(η^3 -P₃)](<u>10</u>) with [AuCl(PR₃)] or RHgCl in the presence of TlPF₆ affords the complexes <u>11</u> [12] and <u>12</u> [13].

X-ray structure analyses reveal that in $\underline{11}$ [12] the coordinated PP bond is lengthened to 2.30/2.31(2) Å; the same holds for $\underline{12}$ (2.293(8) Å) [13].

2.3. E_4 Ligands (E = P,As)

In addition to $[Cp^*(CO)_2Nb(\eta^4-E_4)]$ (<u>13a</u>: E=P [14], <u>b</u>: E=As [15]) <u>14</u>, the tantalum analogue, can be sythesized photochemically according to equation (2) [16]:

[Cp"Ta(CO)₄]
$$\frac{P_4, h\nu}{- co}$$
 oc Cp"
$$- co$$

$$\frac{P_4, h\nu}{- co}$$

The X-ray data of $\underline{14}$ (d(P-P) = 2.17 Å, $\underline{13a}$: 2.16 Å [14]) and $\underline{13a}$ are nearly the same. $\underline{14}$ also shows a slight distortion of the planar P₄ base to a kite shape [16]. The Wade-Mingos electron counting rules [17] for the P₄Ta tetragonal pyramid in $\underline{14}$ lead to the necessary number of SEP (n+2 = 7 Skeletal Electron Pairs) for the nido structure.

Cyclo- P_4 as 12e donor ligand (four times W(CO)₅-terminal coordination) has been stabilized in complex $\underline{15}$ (d(P-P = 2.15 Å) which was made from P_4 and [W(CO)₅(thf)] [18].

$$P_4,RT$$
[W(CO)₅(thf)] \longrightarrow [(OC)₄W(P₄){W(CO)₅}₄]

15

Tight-binding band electronic structure calculations on a prototype skutterudite $\text{LaFe}_4\text{P}_{12}$ were performed in order to gain insight into the electronic properties of binary (i.e. CoAs_3) and ternary skutterudite compounds. The major contribution to the highest occupied band of $\text{LaFe}_4\text{P}_{12}$ comes

from the orbitals of the P_4 rings that form the phosphorus sublattice [19].

2.4. E_5 Ligands (E = P,As)

The first mixed carbonyl(pentaphosphacyclopentadienyl)metal complex 16 (and further examples) was obtained by the
following metathetic reaction [20]:

$$KP_{5} + [Mn(CO)_{5}Br] \xrightarrow{DMF, 155 °C} [(\eta^{5}-P_{5})Mn(CO)_{3}] - KBr, - 2CO$$

Starting with the sandwich complexes [Cp*Fe(η^5 -E₅)], E = P,As; Cp* = η^5 -C₅Me₅, and [(OC)₃Mo(NCMe)₃] the 30 valence electron "triple deckers" <u>17</u> and <u>18</u> (Fig. 2) have been realized in a stacking reaction [21].

Fig. 2

It is worthwhile to mention that in both dinuclear complexes d(Fe...Mo) is 3.44 Å ($\underline{17}$: d(P-P) = 2.13 Å, $\underline{18}$: d(As-As) = 2.35 Å) [21]; for triple deckers with shorter metal-metal bonds, see reference [1]).

2.5. E_6 Ligands (E = P,As)

In the triple-decker sandwich complex $\underline{19}$ with a rather distorted cyclo- P_6 ligand [1] further terminal coordination to a phosphorus lone pair has been achieved for the first time [16].

$$[(Cp''Nb)_{2}(\mu,\eta^{3:3}-P_{6})] \xrightarrow{[M(CO)_{5}(thf)]} [(Cp''Nb)_{2}(P_{6})\{M(CO)_{5}\}]$$

$$\frac{19}{Cp''} = \eta^{5}-1,3-tBu_{2}C_{5}H_{3}$$

$$M = Cr,W$$

From the classical (CH) $_6$ -valence isomers **A-E** of benzene intact or open-edged E $_6$ analogues, E = P,As, have been stabilized in the coordination sphere of transition metal complex fragments.

The cothermolyses of $[Cp_2"Th(\eta^4-C_4H_6)]$ with P_4 and $[Cp^*Co(CO)_2]$ with As_4 give the di- and trinuclear complexes $\underline{19}$ [11], $\underline{20}$ [22] and $\underline{21}$ [22] (Fig. 3).

<u>19</u>

Fig. 3.0≡CBut

In $[Cp"_2Th(\mu,\eta^3:^3-P_6)ThCp"_2](\underline{19}$ [11], $Cp"=\eta^5-1$, $3-tBu_2C_5H_3$) the bicyclic P_6 ligand can be formally regarded as P_6^{4-} and derived from P_6 benzvalene (cf. \underline{C} , Scheme 1). The open-edged As_6 Dewar benzene (cf. \underline{D} , Scheme 1) has been coordinatively stabilized in $[Cp^*_2Co_2(As_6)]$ ($\underline{20}$) [22]. Its As-As distances vary from 2.33 (π -bond coordination) to 2.44 (average) and 2.59 Å (π -and σ -bond coordination) [22]. Beside $[Cp^*Co(\mu-\eta^2:^2As_2)]_2(\underline{22})$ [22] one can also isolate $[Cp^*_3Co_3(As_2)_3](\underline{21}$,

 $\text{Cp*=}\eta^5-\text{C}_5\text{Me}_5$), whose Co_3As_6 framework consists of three Cp*CoAs_2 units formally forming a strongly distorted Cp*Co capped As_6 prismane with As-As bond lengths between 2.29 and 3.05 Å [22].

The molecular dynamics/density functional (MD/DF) approach [23] shows that the most stable P_6 isomers are the benzvalene and prismane structure type [23].

2.6. E_8 Ligands (E = P,As)

Contrary to the many ${\bf E}_6$ isomers only two complexes with an ${\bf E}_8$ ligand have been synthesized so far.

Scheme 2

On the one hand, the photolysis of a $P_4/[Cp'Fe(CO)_2]_2$ -

toluene solution affords $[Cp'_4Fe_4(CO)_6(P_8)](\underline{23})$ [24], whose P_8 cage can be formally derived from the open-edged (CH) $_8$ isomer cuneane [24] (see \underline{G} in Scheme 2).

$$cp' = \eta^5 - c_5 H_4 Me$$

$$cp'' = \eta^5 - 1, 3 - tBu_2 c_5 H_3$$

X-ray crystallographically P-P distances from 2.185(4) to 2.254(4) Å have been found for 23 [24]

On the other hand, in $[(Cp"Nb)_2(\mu, \eta^{4:4}-As_8)](\underline{24})$ [25], synthesized from $[Cp"Nb(CO)_4]$ and As_4 in decalin (170°C,2h), the As_8 analogue of cyclooctatetraene (see \underline{F} in Scheme 2) has been coordinatively stabilized as a puckered, strongly distorted eight-membered ring, whose As-As bond lengths vary between 2.355(3) and 2.530(3) Å [25].

Theoretical studies [23] have shown that, contrary to widespread belief, the most stable isomer of P_8 is not cubic, but the "wedge" or "cradle" structure ("cuneane") found as a structural motif in Hittorf phosphorus.

2.7. E_{10} Ligands (E = P,As)

Up to now the largest \mathbf{E}_n units that have been coordinated to transition-metal complex fragments are \mathbf{P}_{10} and \mathbf{As}_{10} .

E=P, As

Scheme 3

Whereas P_{10} , synthesized by cothermolysis of $[CpCr(CO)_3]_2$, $Cp=\eta^5-C_5H_5$, and P_4 , in the paramagnetic complex $\underline{25}$ [26] forms a polycyclic Cr_5P_{10} skeleton (cf. Baudler's polyclic phosphanes [4]) E_{10} (E = P, As) can be formally derived from (CH)₁₀ dihydrofulvalene (see Scheme 3). Treatment of $[Cp"Rh(CO)_2]$ with E_4 at elevated temperature affords the tetranuclear complexes $\underline{26}$ (\underline{a} : M = P, \underline{b} : M = As) [27].

X-ray structure analyses show that in $\underline{25}$ the mean value of the P-P distances is 2.22 Å [26]. For $\underline{26a}$ P-P-bond lengths between 2.14 and 2.19 Å are found. It is of interest to note that in $\underline{26a}$ and $\underline{26b}$ (its X-ray structure is until now of low quality) the E-E bond at the "end" of both five-membered rings adds oxidatively (d(P...P)=2.62 Å) [27] with formation of d⁶ rhodium.

Acknowledgement. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support as well as Johnson Matthey for a generous loan of RhCl₂.

3. REFERENCES

- 1 O.J. Scherer, Angew. Chem. 102(1990) 1137; Angew. Chem.
 Int. Ed. Engl. 29 (1990) 1104.
- 2 R. Hoffmann, Angew. Chem. <u>94</u> (1982) 725; Angew. Chem. Int. Ed. Engl. <u>21</u> (1982) 711.
- 3 H.G. von Schnering and W. Hönle, Chem. Rev. 88 (1988) 243.
- 4 M. Baudler, Angew. Chem. <u>94</u> (1982) 520; Angew. Chem. Int. Ed. Engl. <u>21</u> (1982) 492; ibid. <u>97</u> 429 and <u>26</u> (1987) 419.
- 5 H.Slodzyk, unpublished results.
- 6 O.J. Scherer, J. Braun, P. Walther, G. Heckmann and G. Wolmershäuser, Angew. Chem. <u>103</u> (1991) 861; Angew. Chem. Int. Ed. Engl. 30 (1991) 852.
- 7 H. Sitzmann, unpublished results.
- 8 J. Braun, Thesis, University of Kaiserslautern, 1990.
- 9 J. R. Harper and A. L. Rheingold, J. Organomet. Chem. 390 (1990) C 36.

- 10 O.J. Scherer, C. Blath, G. Heckmann and G. Wolmershäuser, J. Organomet. Chem. 409 (1991) C 15.
- 11 O.J. Scherer, B. Werner, G. Heckmann and G. Wolmershäuser, Angew. Chem. 103 (1991) 562; Angew. Chem. Int. Ed. Engl. 30 (1991) 553.
- 12 M. Di Vaira, P. Stoppioni and M. Peruzzini, J. Chem. Soc. Dalton Trans. 1990, 109.
- 13 M. Di Vaira, D. Rovai and P. Stoppioni, Polyhedron 9 (1990) 2477.
- 14 O. J. Scherer, J. Vondung and G. Wolmershäuser, Angew. Chem. 101 (1989) 1395; Angew. Chem. Int. Ed. Engl. 28 (1989) 1355.
- 15 O. J. Scherer, J. Vondung and G. Wolmershäuser, J. Organomet. Chem. <u>376</u> (1989) C 35.
- 16 O. J. Scherer, R. Winter, G. Heckmann and G. Wolmershäuser, to be published.
- 17 For example: K. Wade, Adv. Inorg. Chem. Radiochem. <u>18</u> (1976) 1; D. M. P. Mingos, Acc. Chem. Res. <u>17</u> (1984) 311.
- 18 M. Scheer, E. Herrmann, J. Sieler and M. Oehme, Angew. Chem. 103 (1991) 1023.
- 19 D. Jung, M.-H. Whangbo and S. Alvarez, Inorg. Chem. <u>29</u> (1990) 2252.
- 20 M. Baudler and T. Etzbach, Angew. Chem. <u>103</u> (1991) 590; Angew. Chem. Int. Ed. Engl. <u>30</u> (1991) 580.
- 21 B. Rink, O. J. Scherer, G. Heckmann and G. Wolmershäuser, to be published.
- 22 O. J. Scherer, K. Pfeiffer, G. Heckmann and G. Wolmershäuser, J. Organomet. Chem., in press.
- 23 R. O. Jones and D. Hohl, J. Chem. Phys. 92 (1990) 6710.
- 24 M. E. Barr, B. R. Adams, R. R. Weller and L. F. Dahl, J. Am. Chem. Soc. <u>113</u> (1991) 3052.

- 25 O. J. Scherer, R. Winter, G. Heckmann and G. Wolmershäuser, Angew. Chem. <u>103</u> (1991) 860; Angew. Chem. Int. Ed. Engl. <u>30</u> (1991) 850.
- 26 L. Y. Goh, R. C. S. Wong and E. Sinn, J. Chem. Soc. Chem. Commun. 1990, 1484.
- 27 O. J. Scherer, B. Höbel, G. Heckmann and G. Wolmershäuser, to be published.