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Abstract
Recently, Sidi [Sidi, A. (1995): Acceleration of convergence of (gen-

eralized) Fourier series by the d-transformation. Ann. Numer. Math. 2,
381–406] proposed a method for the convergence acceleration of certain
orthogonal expansions. The present contribution shows that it is possible
to extend the method proposed by Sidi to a wider class of problems by
simple means. The extended method is both simpler and also more effec-
tive. The theoretical basis for the latter method is analyzed. An example
is presented that shows that it is possible to obtain the same accuracy
using only half of the number of terms that are required in the method of
Sidi.
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1 Introduction

Trigonometric Fourier series and their generalizations occur in many branches
of applied mathematics. Especially in the case of slow convergence, their usage
can often be improved using nonlinear convergence acceleration methods. These
methods are often also able to sum such series in the case of divergence.

Sidi [1] has proposed a method for infinite series of the form

F (x) =
∞∑
n=0

[anφn(x) + bnψn(x)] , (1)
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where the function φn(x) and ψn(x) behave similarly to the sine and cosine
functions for large n. Examples are Fourier-Bessel, Legendre, and Chebyshev
series (compare also Table 1). This method will be described below in more
detail. Here, it suffices to say that the method essentially rewrites the given
problem series as a sum of certain complex series The value of each of these
complex series is then approximated separately by extrapolation using the d(m)

transformation of Levin and Sidi [2] with a suitable m. Finally, the problem
series is calculated as the sum of these approximate values. This approach will
be called the method of the attached series.

Let us remark here that, of course, it is possible to use nearly the same ap-
proach in combination with other sequence transformations instead of the d(m)

transformation as pointed out also in Ref. [1] for the ε algorithm [3] and the u
transformation of Levin [4]. The latter approach, for instance, will be called the
method of the attached series via the u transformation. This naming convention
then will be applied mutatis mutandis also to using other sequence transforma-
tions similarly. That such approaches yield also good results is demonstrated
in the case of trigonometric series in [5, 6] for the Levin transformation [4] and
the H transformation [7, 5, 8, 9].

As in the case of the d(m) transformation that produces reliable results in
the vicinity of singularities operating on sequence elements sR`

with R` = τ`
with τ > 1 [1], it it also possible to use a similar τ -fold frequency approach
in combination with other sequence transformations as has been demonstrated
recently [8, 9, 10, 6] for the case of the H transformation and the I transfor-
mation [5, 10] and will be shown in Sec. 6 also for the K transformation [11].
Then, results of similar quality as for the d(2) transformation are obtained near
singularities with less numerical effort. Numerical examples will be given below.

In a different approach for the treatment of trigonometric Fourier series
that is somewhat more complicated than the τ -fold frequency approach, Oleksy
[12] has shown that the use of a preprocessing transformation, followed by a
convergence acceleration of a number of related series, enhances the applicability
of the Levin transformation, the ε algorithm and the H transformation near
singularities enormously, similarly as the τ -fold frequency approach.

In Ref. [6], an extended method of the attached series was introduced that
works also for more complicated trigonometric Fourier series of the type

s =
∞∑
n=0

L∏
j=1

(
a(j)
n cos(nαj) + b(j)n sin(nαj)

)
(2)

that depend on several frequencies {αj}Lj=1, assuming that all the coefficients

a
(j)
n and b

(j)
n are adequate, where n dependent quantities like g(n) or λn are

called adequate if they are asymptotically of the form

qnnε
∞∑
j=0

ξjn
−j , (n→∞ , ξ0 6= 0) (3)
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for some complex nonzero q and ε. Let us remark that (finite) products of
adequate quantities are also adequate.

The basic idea is to rewrite the series as a sum of 4L power series with
adequate terms, for which then all the usual, highly developed nonlinear ex-
trapolation methods for power series may be applied separately. Such methods
are usually derived from model sequences or by iteration of simple transforma-
tions [13, 14, 15, 16] and can be used to accelerate convergent series and to sum
divergent ones.

It will be shown in the present contribution that such an extended method
of the attached series may also be used in the case of generalized Fourier series
of the form

s =
∞∑
n=0

L∏
j=1

(
a(j)
n φ(j)

n (x(j)) + b(j)n ψ(j)
n (x(j))

)
(4)

where the functions φ(j)
n (x) and ψ

(j)
n (x) generalize sine and cosine functions as

in the method of the attached series. This will be discussed in more detail in
Sec. 4.

2 Definitions and Basic Relations

First, we define the τ -fold-frequency method [8, 9, 10]. Consider a series s with
terms un and partial sums sn as given by

s =
∞∑
j=0

uj , sn =
n∑
j=0

uj . (5)

By combining τ consecutive terms, one obtains a new series with terms ǔj and
with partial sums šn = sτ n according to

s =
∞∑
j=0

ǔj , šn =
n∑
j=0

ǔj (6)

where

ǔ0 = u0 , ǔj =
τ∑
k=1

uτ(j−1)+k for j > 0 . (7)

Now, we will define some sequence transformations.
The Levin transformation [4] is defined by

L(n)
k (β, sn, ωn) =

k∑
j=0

(−1)j
(
k

j

)
(β + n+ j)k−1

(β + n+ k)k−1

sn+j

ωn+j

k∑
j=0

(−1)j
(
k

j

)
(β + n+ j)k−1

(β + n+ k)k−1

1
ωn+j

. (8)
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It can also be computed recursively [16]. Its u variant is defined by

u
(n)
k (β, sn) = L(n)

k (β, sn, (n+ β)4sn−1) (9)

where the4 denotes the forward difference operator with respect to the variable
n acting as

4f(n) = f(n+ 1)− f(n) , 4gn = gn+1 − gn . (10)

If the Levin transformation is applied to , and if the remainder estimates
ωn = (n + β/τ)(sτ n − s(τ n)−1) are used, then one obtains nothing but the
d(1) transformation [2] with R` = τ` for τ ∈ N. This holds because the latter is
given by the transformation (see [1, Eq. 4.12])

W (n)
ν =

4ν+1
[
(n+ β/τ)ν−1sτ n/(sτ n − s(τ n)−1)

]
4ν+1

[
(n+ β/τ)ν−1/(sτ n − s(τ n)−1)

] (11)

In fact, the identity

W
(n)
ν−1 = L(n)

ν (β/τ, sτ n, (n+ β/τ)(sτ n − sτ n−1)) (12)

holds. We remark that for τ 6= 1 this is not identical to the u variant of the
Levin transformation as applied to the partial sums {s0, sτ , s2τ , . . .} because
in the case of the u variant one would have to use the remainder estimates
ωn = (n+ β′)(sτ n − sτ (n−1)).

The iteratively defined J transformation that was first introduced in [5] and
was characterized in detail in a series of papers [14, 17, 15] also belongs to the
class of Levin-type transformations. It may be defined via

D
(0)
n = 1/ωn , N (0)

n = sn/ωn ,

D
(k+1)
n = (D(k)

n+1 −D(k)
n )/δ(k)n ,

N
(k+1)
n = (N (k)

n+1 −N (k)
n )/δ(k)n ,

N (k)
n /D(k)

n = J (k)
n ({sn}, {ωn}, {δ(k)n }) .

(13)

Here, and in the following, we assume that δ(k)n 6= 0 for all n and k, and that the
remainder estimates {ωn} are restricted by the conditions ωn 6= 0 and D(k)

n 6= 0
for all n and k. Compare also [14, Theorem 5].

The pJ transformation may be regarded as the special case of the J trans-
formation corresponding to

δ(k)n =
1(

n+ β + (p− 1)k
)
2

, (14)

where (a)b = Γ(a+ b)/Γ(a) denotes a Pochhammer symbol, that is,

pJ(k)
n (β, {sn}, {ωn}) = J (k)

n ({sn}, {ωn}, {1/(n+ β + (p− 1)k)2}) . (15)
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The H transformation is defined by the recursive scheme [7]

Z(0)
n = (n+ β)−1 sn/ωn , N (0)

n = (n+ β)−1/ωn ,

Z(k)
n = (n+ β)Z(k−1)

n + (n+ 2k + β)Z(k−1)
n+2

− 2 cos(α)(n+ k + β)Z(k−1)
n+1 ,

N (k)
n = (n+ β)N (k−1)

n + (n+ 2k + β)N (k−1)
n+2

− 2 cos(α)(n+ k + β)N (k−1)
n+1 ,

Z(k)
n

N (k)
n

= H(k)
n (α, β, {sn}, {ωn}) .

(16)

and is exact for model sequences of the form

sn = s+ ωn

eiαn
k−1∑
j=0

cj(n+ β)−j + e−iαn
k−1∑
j=0

dj(n+ β)−j

 (17)

with arbitrary coefficients cj and dj and remainder estimates ωn. A generalized
H transformation has also been introduced [8, 9].

The I transformation may be defined as [5, 10]

N(0)
n = sn/ωn , D(0)

n = 1/ωn ,
N(k+1)
n =

(
N(k)
n+2 − 2 cos(α) N(k)

n+1 + N(k)
n

)/
∆(k)
n ,

D(k+1)
n =

(
D(k)
n+2 − 2 cos(α) D(k)

n+1 + D(k)
n

)/
∆(k)
n ,

N(k)
n

D(k)
n

= I(k)
n (α, {sn}, {ωn}, {∆(k)

n }) .

(18)

The I transformation is a generalization of the transformation

n(0)
n = sn/ωn ,d

(0)
n = 1/ωn,

n(k+1)
n = (n+ β)γ

(
n

(k)
n+2 − 2 cos(α) n

(k)
n+1 + n(k)

n

)
,

d(k+1)
n = (n+ β)γ

(
d

(k)
n+2 − 2 cos(α) d

(k)
n+1 + d(k)

n

)
,

n
(k)
n

d
(k)
n

= i(k)n (α, β, γ, {sn}, {ωn})

(19)

as seen by substituting ∆(k)
n = (n + β)−γ . The transformation (19) was intro-

duced in [5] and there, it was called the h transformation. The K transformation
is a generalization of the I transformation given by [11]

N(0)
n = sn/ωn , D(0)

n = 1/ωn ,
N(k+1)
n =

(
ζ
(0)
n+kN(k)

n + ζ
(1)
n+k N(k)

n+1 + ζ
(2)
n+kN(k)

n+2

)/
δ(k)n ,

D(k+1)
n =

(
ζ
(0)
n+kD(k)

n + ζ
(1)
n+k D(k)

n+1 + ζ
(2)
n+kD(k)

n+2

)/
δ(k)n ,

N(k)
n

D(k)
n

= K(k)
n ({δ(k)n }, {ζ(j)

n }, {sn}, {ωn}) .

(20)
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Here, the ζ’s are the coefficients of the three-term recurrence relation

ζ(0)
n vn + ζ(1)

n vn+1 + ζ(2)
n vn+2 = 0 (21)

of some system of orthogonal polynomials. The K transformation may be ob-
tained by iterating the simple transformation

s(1)n =
ζ(0)
n

sn
ωn

+ ζ(1)
n

sn+1

ωn+1
+ ζ(2)

n

sn+2

ωn+2

ζ(0)
n

1
ωn

+ ζ(1)
n

1
ωn+1

+ ζ(2)
n

1
ωn+2

(22)

that is exact for model sequences of the form

sn = s+ ωn (c Pn + dQn) , (23)

with coefficients c and d and where Pn and Qn are two linearly independent
solutions of the recurrence relation (21).

Now, some sets of sequences are defined.
A sequence {un}∞n=0 is called nonvanishing if un 6= 0 for all n. The set of all

nonvanishing sequences is denoted as V.
A sequence {un}∞n=0 is called (q, ε)-adequate if it possesses the asymptotic

expansion for large n of the form

un ∼ qn nε
∞∑
j=0

νjn
−j (24)

with q 6= 0 and ν0 6= 0 and complex ε. In this case, the sequence {νj}∞j=0 is
called the coefficient sequence of {un}. The set of all (q, ε)-adequate sequences
is denoted as A(q, ε).

Lemma 1 If {un} ∈ A(q, ε) with coefficient sequence {νj} and {u′n} ∈ A(q′, ε′)
with coefficient sequence {ν′j} then {un u′n} ∈ A(qq′, ε + ε′) with coefficient se-
quence

{
∑
a+b=j

νaν
′
b}∞j=0 .

Proof: This follows from the result [18, p.125]

vnv
′
n ∼

∞∑
j=0

 ∑
a+b=j

νaν
′
b

n−j (25)

for asymptotic expansions

vn ∼
∞∑
j=0

νjn
−j (26)

and

v′n ∼
∞∑
j=0

ν′jn
−j (27)
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on putting vn = unq
−nn−ε and v′n = u′nq

′−nn−ε
′
.

Induction leads to the following corollary:

Corollary 1 If {u(k)
n }∞n=0 ∈ A(q(k), ε(k)) with coeffifient sequences {ν(k)

j }∞j=0

for k = 1, 2, . . . , L then{
L∏
k=1

u(k)
n

}
∈ A

(
L∏
k=1

q(k),

L∑
k=1

ε(k)

)

with coefficient sequence  ∑
a1+···+aL=j

L∏
k=1

ν(k)
ak


∞

j=0

.

These results will be used later.

3 The method of Sidi

Sidi [1] has proposed a method for infinite series of the form

F (x) =
∞∑
n=0

[anφn(x) + bnψn(x)] , (28)

where the function φn(x) and ψn(x) are assumed to satisfy

ρ±n (x) = φn(x)± iψn(x) = exp(± inωx)g±n (x) , (29)

where ω is some fixed real parameter, and

g±n (x) ∼ nγ
∞∑
j=0

δ±j (x)n−j as n→∞ (30)

for some fixed γ that can be complex, and δ±0 (x) 6= 0. Thus, {ρ±n (x)} ∈
A(exp(± iωx, γ) and {g±n (x)} ∈ A(1, γ). This class of series comprises many
types of generalized Fourier series that arise in practical applications [1]. Exam-
ples are summarized in the Tab. 1 where Tn and Un denote Chebychev polyno-
mials of the first and second kind, Pn and Qn denote Legendre polynomials and
associated Legendre functions of order zero of the second kind, each of degree
n, while Jν and Yν denote Bessel functions of order ν of the first and second
kind, respectively, and

λn ∼ n
∞∑
j=0

αjn
−j , (n→∞, α0 > 0) , (31)

and thus, {λn} ∈ A(1, 1).
The method consists of the following steps [1]:
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Table 1: Examples of generalized Fourier series
Type φn(x) ψn(x) ω γ

Classical cos(nωx) sin(nωx) ω 0
“Nonclassical” cos(λnx) sin(λnx) α0 0
Chebyshev Tn(cosx) sinxUn−1(cosx) 1 0
Legendre Pn(cosx) −(2/π)Qn(cosx) 1 −1/2
Bessel Jν(λnx) Yν(λnx) α0 −1/2

Step 1 Define

A±(x) =
∞∑
n=0

anρ
±(x) , B±(x) =

∞∑
n=0

bnρ
±(x) (32)

and observe that

Fφ(x) =
∞∑
n=0

anφ(x) =
1
2

[A+(x) +A−(x)] ,

Fψ(x) =
∞∑
n=0

bnψ(x) =
1
2i

[B+(x)−B−(x)] ,

F (x) = Fφ(x) + Fψ(x) .

(33)

Step 2 Apply the d(m) transformation of Levin and Sidi [2] with a suitable m
to approximate the four series A±(x) und B±(x).

Step 3 Use the results of Step 2 in combination with (33) to approximate F (x).

We will call this method the method of the attached series or, more precisely,
the method of the attached series via the d(m) transformation. In case of real
functions φn and ψn it suffices to extrapolate only the two series A+(x) and
B+(x) because in this case the series A−(x) and B−(x) can be obtained from
A+(x) and B+(x) by complex conjugation.

4 The extended method of the attached series

We consider for j = 1, . . . , L complex functions of the form

ρ(j,±)
n (x) = φ(j)

n (x)± iψ(j)
n (x) = exp(± inω(j)x)g(j,±)

n (x) , (34)

where ω(j) is some fixed real parameter, and

g(j,±)
n (x) ∼ nε(j)

∞∑
m=0

δ(j,±)
m (x)n−m as n→∞ (35)
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for some fixed ε(j) that can be complex. Substituting

φ(j)
n (x(j)) =

1
2

[ρ(j,+)
n (x(j)) + ρ(j,−)

n (x(j))] ,

ψ(j)
n (x(j)) =

1
2i

[ρ(j,+)
n (x(j))− ρ(j,−)

n (x(j))] (36)

into Eq. (4) and putting

c(1,j)n = c(3,j)n = a(j)
n /2

c(2,j)n = −c(4,j)n = b(j)n /(2 i )

χ(1,j)
n = χ(2,j)

n = ρ(j,+)
n (x(j))

χ(3,j)
n = χ(4,j)

n = ρ(j,−)
n (x(j))

we obtain

s =
4∑

µ1=1

· · ·
4∑

µL=1

∞∑
n=0

c(µ1,1)
n · · · c(µL,L)

n χ(µ1,1)
n · · ·χ(µL,L)

n . (37)

Thus, the series s can be represented as a sum of 4L infinite series with terms
that are products of functions ρ(j,±)

n (x(j)) and suitable coefficients a(j)
n and b(j)n .

As a consequence of Eqs. (34) and (35), each of these series can (asymptotically)
be regarded as power series in some variable exp( i (±ω(1)x(1) + · · ·±ω(L)x(L))).
Such series will be called attached series. A further consequence is that if the
coefficients a(j)

n and b
(j)
n are adequate, then the coefficients

pn = c(µ1,1)
n · · · c(µL,L)

n h(µ1,1)
n · · ·h(µL,L)

n (38)

of the power series are also adequate. Here, h(1,j)
n = h

(2,j)
n = g

(j,+)
n (x(j)), and

h
(3,j)
n = h

(4,j)
n = g

(j,−)
n (x(j)).

Each of these power series can then be extrapolated with the usual methods
for power series. If an extrapolation method M is used, we call the resulting
the extended method of the attached series via M. Whether the method M is
accelerative or not, depends on both the method and the nature of the problem
that is determined by the asymptotic behavior of the coefficients and the position
of singularities of the function to be calculated.

Before we discuss examples of such methods, let us note that series of the
form

s =
∞∑
n=0

An

L∏
j=1

θ(j)n (39)

with θ(j)n ∈ {φ(j)
n (x(j)), ψ(j)

n (x(j))} are special cases of Eq. (4). If the coefficients
An are adequate, then the extended method of the attached series can be sim-
plified because in this case, the computation of 2L attached series suffice. To
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see this, one only has to rewrite the product of the θ(j)n as a linear combina-
tion of 2L terms where each term is a product of L suitable factors ρ(j,±)

n (x(j)).
Also, savings in the number of attached series to be computed are possible if
the coefficients of the original series are real. This will be demonstrated for an
example below.

We now come back to the question of suitable extrapolation methods for the
extended method of the attached series.

One of these methods is the Levin transformation. In combination with
the τ -fold-frequency method, the convergence and stability results of Sidi [1,
Theorems 4.3, 4.4] hold. This will be analyzed later in more detail.

Alternatively, one could use also the pJ transformations for p = 1, 2, 3 that
are a special cases of the J transformation and have proven to be powerful
convergence accelerators for linearly and logarithmically convergent sequences
and series and that may also be used as summation methods for alternating
divergent series[14, 15]. Regarding stability, they behave similarly to the Levin
transformation and may also be combined with the τ -fold frequency approach
as shown in [19].

As a further method that could be used in the extended method of the
attached series, we mention the well-known ε algorithm [3].

5 Theoretical Results

We consider only series of the form (39). In order to find out whether the
Levin transformation can be applied profitably to the attached series, we have
to investigate whether the terms are adequate. For this end, we need some
preliminary results.

An immediate consequence of Corollary 1 is the following corollary:

Corollary 2 If {An} ∈ A(q, ε) with coefficient sequence {αj} and if

ρ(m,km)
n (x) = exp(km inω(m)x)gkm

n (x) , (40)

with {gkm
n (x)} ∈ A(1, ε(m)) with coefficient sequence {δ(m,km)

j (x)}∞j=0 and km ∈
{+,−} for m = 1, . . . , L, then{

An

L∏
m=1

ρ(m,km)
n (x(m))

}∞
n=0

∈ A(qQ(~k), E) (41)

10



with coefficient sequence {Ξj(~k)}∞j=0 where ~k = (k1, . . . , kL) ∈ {+,−}L, and

Q(~k) = exp( i
L∑

m=1

kmω
(m)x(m))

E = ε+
L∑

m=1

ε(m)

Ξj(~k) =
∑
a+b=j

αa∆b(~k)

∆j(~k) =
∑

a1+···+aL=j

L∏
m=1

δ(m,km)
am

(x(m))

(42)

Lemma 2 Suppose ~k, An, ρ(m,km)
n (x), Q(~k), and E are given as in Corollary

2. Assume

θ(m)
n = β(m,+)ρ(m,+)

n (x(m)) + β(m,−)ρ(m,−)
n (x(m)) (43)

with constants β(m,±). Define

sN =
N∑
n=0

An

L∏
m=1

θ(m)
n .

Then

sN =
∑

~k∈{+,−}L

L∏
m=1

β(m,km)PN (~k) (44)

where PN (~k) are partial sums

PN (~k) =
N∑
n=0

pn(~k) (45)

of attached series with terms that are given by

pn(~k) = An

L∏
m=1

ρ(m,km)
n (x(m)) (46)

and satisfy
{pn(~k)}∞n=0 ∈ A(qQ(~k), E) .

Proof: This follows from Corollary 2 once Eq. (44) is established. But equation
(44) follows from

L∏
m=1

∑
km∈{+,−}

β(m,km)ρ(m,km)
n (x(m)) =

∑
~k∈{+,−}L

L∏
m=1

β(m,km)ρ(m,km)
n (x(m))

by multiplication with An, summation over n from 0 to N , and interchanging
the order of summation.
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Theorem 1 Let {An} ∈ A(q, ε), ρ(m,±)
n (x), PN (~k), pn(~k), Q(~k), and E be

defined as in Lemma 2. Suppose |q| ≤ 1 and assume that qQ(~k) 6= 1 for all
~k ∈ {+,−}L. Then, for all ~k ∈ {+,−}L, the asymptotic expansion

PN (~k) ∼ P (~k) + pN (~k)
∞∑
j=0

ξj(~k)N−j (47)

with ξ0(~k) 6= 0 holds for large N , whether limN→∞ PN (~k) exists or not. If this
limit exists, it equals P (~k), otherwise P (~k) is the antilimit that can be obtained
from

P (~k) = lim
z→1−

∞∑
j=0

pj(~k)zj .

Proof: This is a direct consequence of Lemma 2 and a result of Sidi [1, Theorem
4.2].

Theorem 2 Using the notations of Theorem 1, assume that for each ~k ∈
{+,−}L

pn(~k) = [qQ(~k)]n nσ(~k) w~k(n)

where σ(~k) is a nonnegative integer and w~k(n) is a Laplace transform given by

w~k(n) =
∫ ∞

0

exp(−n t)f~k(t) dt

such that f~k(t) is continuous in a neighborhood of 0 except possibly at 0, and
satisfies ∫ ∞

0

exp(−t)|f~k(t)| dt <∞

and

f~k(t) ∼
∞∑
a=0

µa(~k)tη(~k)+a−1

with µ0(~k) 6= 0 and <(η(~k)) > 0. Further, assume that

qQ(~k) 6∈ [1,∞)

in the complex plane. Then Eq. (47) holds with

P (~k) = p0(~k) +
∫ ∞

0

f~k(t)

[(
z
d

dz

)σ(~k)
z

1− z

]
z=qQ(~k) exp(−t)

dt

whether limN→∞ PN (~k) exists or not. Here, P (~k) is the limit or antilimit of
{PN (~k)}∞N=0 and is analytic in the qQ(~k)-plane cut along [1,∞).
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Proof: This is a direct consequence of Lemma 2 and a result of Sidi [1, Theorem
4.1].

Now, we use these results to derive a theorem regarding the convergence of
the extended method of the attached series.

Theorem 3 Suppose ~k, An, q, ε, ρ(m,km)
n (x), Q(~k), Ξj(~k) and E are given as in

Corollary 2. Let sN be defined by Eq. (44) with PN (~k) and pn(~k) as in Eqs. (45)
and (46) such that {pn(~k)}∞n=0 ∈ A(qQ(~k), E) with coefficient sequence {Ξj(~k)}.
Define for some α > 0

W (j)
ν (~k) =

4ν+1
[
(τj + α)ν−1Pτ j(~k)/pτj(~k)

]
4ν+1

[
(τj + α)ν−1/pτj(~k)

] (48)

Assume |q| ≤ 1 and qQ(~k) 6= 1 or that the additional assumptions of Theorem
2 are satisfied such that Eq. (47) holds, or equivalently

PN (~k) ∼ P (~k) + pN (~k)
∞∑
j=0

ξ̃j(~k)(N + α)−j (49)

with ξ̃0(~k) = ξ0(~k) 6= 0, and also qτQ(~k)τ 6= 1, for all ~k ∈ {+,−}L. Define

s =
∑

~k∈{+,−}L

L∏
m=1

β(m,km)P (~k) (50)

and

s′n =
∑

~k∈{+,−}L

L∏
m=1

β(m,km)W (n)
ν (~k) . (51)

Then, whether the limits limN→∞ PN (~k) and limN→∞ sN exist or not, we have

s′N − s ∼ NE−2ν−1qτN
∑

~k∈{+,−}L

L∏
m=1

β(m,km)Q(~k)τN (Kν(~k) +O(1/N))/Nµ(~k)

(52)
where µ(~k) is the smallest nonnegative integer such that ξ̃ν+µ(~k)(~k) 6= 0 and

Kν(~k) = Ξ0(~k)ξ̃ν+µ(~k)(~k)(µ(~k) + 1)ν+1τ
E−ν−µ(~k)

[
qτQ(~k)τ

qτQ(~k)τ − 1

]ν+1

(53)

This may be compared to

sτ(N+ν+1)−s ∼ [τ(N+ν+1)]Eqτ(N+ν+1)
∑

~k∈{+,−}L

L∏
m=1

β(m,km)Q(~k)τ(N+ν+1)(Ξ0(~k)+O(1/N)).

(54)
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If for sufficiently large N we have

∑
~k∈{+,−}L

L∏
m=1

β(m,km)Q(~k)τ(N+ν+1)Ξ0(~k) 6= 0 ,

then on putting µ = min~k µ(~k) the asymptotical relation

sN − s
sτ(N+ν+1)−s

∼ CN−(2ν+1+µ) (55)

holds for some constant C.

In particular, this means that this method provides stable convergence ac-
celeration if for each attached series the terms tn have the asymptotic expansion

tn ∼ ζnnσ
∞∑
j=0

ejn
−j , (n→∞ , e0 6= 0 , ζ ∈ C \ {1} , σ ∈ C) (56)

and, if |ζ| > 1, additionally ζ 6∈ [1,∞) and also tn = ζnnpw(n) holds, where p
is a nonnegative integer and w(n) is a Laplace transform

w(n) =
∫ ∞

0

exp(−nt)φ(t) dt (57)

such that φ(t) is continuous in a neighborhood of 0 except possibly at 0, and
satisfies ∫ ∞

0

e−nt |φ(t)| dt <∞ ; φ(t) ∼
∞∑
j=0

µjt
η+j−1

(t→ 0+ , µ0 6= 0 , <η > 0) .
(58)

The quantity τ ∈ N then should be chosen in such a way that ζτ is sufficiently
different from 1.

6 A Numerical Example

We treat the expansion

s = G(θ, α) =
∞∑
j=0

cos((j + 1/2)α)Pj(cos θ)

=
{

[2(cosα− cos θ)]−1/2 für 0 ≤ α < θ < π
0 für 0 < θ < α ≤ π

(59)

with a singularity at α = θ and with partial sums given by

sn =
n∑
j=0

cos((j + 1/2)α) .Pj(cos θ) (60)
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This example was also treated by Sidi [1, Tabs. 6, 7]. There, machine precision
was about 33 decimal digits. Here, we use MAPLE VTM Release 3 with Digits=32
whence a direct comparison of the results is possible.

Direct acceleration of the real series can be done using the d(4) transforma-
tion, while in the above described method of Sidi, there are two possibilities:
One may regard the series as Fourier series

G(α) =
∞∑
j=0

fj cos((j + 1/2)α) (61)

with coefficients fj = Pj(cos θ) and then, one has to accelerate the attached
series

F± =
∞∑
j=0

fj exp(±i(j + 1/2)α) (62)

with partial sums

Fn,± =
n∑
j=0

fj exp(±i(j + 1/2)α) (63)

either via the d(2)-Transformation or via the K transformation in combination
with the τ -fold frequency approach, producing approximations

K(τ)
n,± = <

(
K([[n/2]])
n−2[[n/2]]({(n+ 1)−1}, {γ(j)

n }, {Fτ n,±}, {ω(τ)
n })

)
(64)

using γ(0)
n = n+ 2, γ(1)

n = −(2n+ 5)xτ , and γ
(2)
n = n+ 3 corresponding to the

(shifted) three-term recurrence relation [20, p. 736]

(n+ 2)Pn+2(x)− (2n+ 3)xPn+1(x) + (n+ 1)Pn(x) = 0 (65)

of Legendre polynomials at the argument

xτ = cos(τθ) (66)

and remainder estimates ω(τ)
n = (nτ + 1)ν exp(±i(nτ + 1/2)α). The parameter

ν ∈ {0, 1} defines two variants of the K transformation, analogous to t and u
variants of the Levin transformation.

Alternatively, one may regard the series as an expansion in Legendre poly-
nomials

G(θ) =
∞∑
j=0

aj Pj(cos θ) (67)

coefficients aj = cos((j + 1/2)α) and then, one has to accelerate the attached
series

A±(θ) =
∞∑
j=0

aj(Pj(cos θ)∓ i
2
π
Qj(cos θ)) (68)
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with partial sums

A±n (θ) =
n∑
j=0

aj(Pj(cos θ)∓ i
2
π
Qj(cos θ)) (69)

either via the d(2) transformation, or via the H transformation, or via the I
transformation. In combination with the τ -fold frequency approach, this pro-
duces the approximations

H(τ)
n,± = <

(
H([[n/2]])
n−2[[n/2]](τ α, 1, {A

±
τn(θ)}, {ω(τ)

n })
)

(70)

and
I(τ)
n,± = <

(
i
([[n/2]])
n−2[[n/2]](τ α, 1, 2, {A

±
τn(θ)}, {ω(τ)

n })
)

(71)

with remainder estimates ω(τ)
n = (nτ + 1)(Pnτ (cos θ)∓ i 2

πQnτ (cos θ)).
In both cases, one can approximately halve the number of coefficients that

are required to achieve a certain accuracy when using the d(2) transformation in
comparison to using the d(4) transformation on the real series. Using the H, I,
and K transformations, one obtains in this present example even better results
as shown below.

In the newly introduced extended method of the attached series, one may
represent the series (59) as sum s = p1 + p2 + p3 + p4 of the four series

p1 =
∞∑
j=0

1
4

exp(i(j + 1/2)α) ρ+
j (θ) ,

p2 =
∞∑
j=0

1
4

exp(−i(j + 1/2)α) ρ−j (θ) ,

p3 =
∞∑
j=0

1
4

exp(i(j + 1/2)α) ρ−j (θ) ,

p4 =
∞∑
j=0

1
4

exp(−i(j + 1/2)α) ρ+
j (θ) ,

(72)

with
ρ±j (θ) = Pj(cos θ)∓ i(2/π)Qj(cos θ) . (73)

Since the coefficients and the arguments α and θ are real, it may be observed
that p2 = p∗1 and p4 = p∗3 such that the extrapolation of only two attached series
suffices.

As discussed above, for the extrapolation of the attached series, one may
use for instance the Levin transformation. In the vicinity of the singularity,
one may additionally use the τ -fold frequency approach. Then, one obtains
approximations

P
(τ)
n,j = L(0)

n (1, [pj,τn]|n=0, [(τn+ 1)(pj,τn − pj,(τn)−1)]|n=0) (74)
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to pj that are based on using the n-th partial sums pj,n. This variant of the
Levin transformation corresponds to the d(1) transformation with Rl = τ l as
noted above. The value τ = 1 corresponds to using the original frequency. For
the original series, the approximate results G(τ)

n = P
(τ)
n,1 + P

(τ)
n,2 + P

(τ)
n,3 + P

(τ)
n,4 or

equivalently, G(τ)
n = 2<(P (τ)

n,1 + P
(τ)
n,3 ) are obtained.

We treat two different pairs (α, θ) of arguments. In each case, the number
of exact digits defined as negative decadic logarithms of the relative errors are
displayed for a number of methods as a functions of the number of terms of the
original series. The results of the following methods are compared in Table 2
and Table 3, respectively: In the column L, the results for the extended method
of the attached series via the Levin transformation, ie., for the approximations
G

(τ)
n are presented. In the column H, the results for the method of the attached

series via the H transformation, ie., for the approximations H(τ)
n,± are presented.

In the column I, the results for the method of the attached series via the I
transformation, ie., for the approximations I(τ)

n,± are presented. In the column
Ku, the results for the method of the attached series via the K transformation
with ν = 1, ie., for the approximations K(τ)

n,± with ν = 1 are presented. In
the column Kt, the results for the method of the attached series via the K
transformation with ν = 0, ie., for the approximations K(τ)

n,± with ν = 0 are
presented.

In the first case, we put α = π/6 and θ = 2π/3. This corresponds to
a relatively large distance from the singularity at α = θ. The corresponding
results are given in Table 2. It is seen that the newly proposed method produces
the best results and reaches nearly machine precision (i.e., 32 decimal digits)
for about 30 terms (see column L). The H, I, and K transformation reach
approximately the same accuracy using 10 to 15 terms more.

The new method approximately yields one additional exact digit per ad-
ditional term of the series. The ratio ”number of digits/number of terms” is
approximately 1. The method proposed by Sidi on the basis of the d(2) trans-
formation is considerably less efficient, and the corresponding ratio is approxi-
mately 1/2. [1, Tab. 6] A saving of about half the terms results when the new
method is used. The d(4) transformation on the real series is much worse since
its corresponding ratio is approximately 1/4.

In the second case, we put α = 6π/10 and θ = 2π/3. This is already rather
close to the singularity at α = θ. A value of τ = 10 is thus chosen that also
allows direct comparison to the results of Sidi with Rl = 10l [1, Tab. 7]. The
corresponding results are displayed in Table 3. The original series converges very
slowly and yields less than two exact decimal digits using 301 terms. The overall
results are rather similar to the case treated in Table 2. The extended method of
the attached series using the Levin transformation for the τ -fold frequency series
needs slightly less than 30 terms of the latter series, corresponding to about 280
terms of the original series. The d(4) transformation on the real series is worst,
the method of the attached series works worst with the d(2) transformation that
requires about 700 terms to reach 30 decimal digit accuracy, while the other
transformations require between about 350 to 400 terms to reach this accuracy.
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Table 2: Number of exact digits (α = π/6, θ = 2π/3, τ = 1)

Terms L H I Ku Kt d(4) [1, Tab. 6] d(2) [1, Tab. 6]

10 9.8 6.7 5.4 5.7 6.5 2.5
18 17.6 13.5 10.8 11.7 11.9 5.8
20 19.3 14.9 13.0 13.3 13.2 2.5
26 25.4 20.9 16.6 16.7 18.5 8.8
30 29.3 23.2 19.6 20.0 20.0
32 29.7 25.5 21.6 21.2 21.3
34 30.1 26.7 22.8 22.2 22.8 13.6
36 30.1 28.2 24.4 23.4 24.5 4.9
38 29.7 29.2 25.9 24.8 26.0
40 29.8 29.8 27.2 26.4 26.9
42 30.3 29.6 28.2 28.9 28.1 16.5
44 29.2 29.6 29.5 29.2 29.5
46 29.0 29.4 31.0 30.3 30.7
48 28.9 29.3 29.5 31.0 31.0
50 29.3 29.6 29.9 31.8 30.6 19.5
52 29.2 29.2 29.6 31.1 30.8 10.1
58 28.0 29.4 30.1 32.0 31.1 22.9
66 27.8 29.3 29.3 30.6 31.1 26.7
68 27.3 28.6 28.7 30.6 30.9 15.6
74 27.1 28.2 28.8 30.5 31.3 29.7
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Table 3: Number of exact digits (α = 6π/10, θ = 2π/3, τ = 10)

Terms L H I Ku Kt d(4) [1, Tab. 7] d(2) [1, Tab. 7]

161 18.1 11.9 14.0 10.3 12.4
162 7.6
164 4.7
241 27.3 19.7 20.8 18.2 18.0
242 12.0
271 31.2 22.6 23.7 19.6 20.1
281 31.2 23.3 24.3 20.7 20.9
301 29.9 25.3 26.4 21.8 22.5
321 30.3 27.1 28.0 23.2 24.1
322 16.4
324 7.2
341 30.1 28.2 29.6 25.0 25.3
361 30.9 29.5 30.9 26.0 27.8
381 30.3 29.9 30.2 28.5 28.2
401 30.9 30.3 30.0 29.0 29.9
402 18.2
481 30.2 29.7 29.6 30.7 31.1
482 21.0
484 9.7
561 29.4 29.1 30.4 32.0 30.6
562 23.8
641 28.6 29.6 30.9 30.5
642 27.0
644 11.5
721 27.8 27.6 30.9 30.6
722 30.0
801 27.2 27.2 30.9 32.0
802 32.2
804 14.2
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For the extended method of the attached series using the Levin transforma-
tion the ratio ”number of digits/number of terms” is about 0.11. The method
of Sidi, i.e. using the method of the attached series via the d(2) transformation
is considerably less efficient also in this case, the corresponding ratio is about
0.04. Thus, for a given accuracy, the new method uses only about 35-40% of
the terms as required by the method of Sidi, i.e. savings of 60-65% are possible.

For the treated orthogonal expansion (59), one may conclude that the ex-
tended method of attached series via the Levin transformation, suitably com-
bined with the τ -fold frequency approach requires about half of the terms in
comparison with the method of the attached series via the d(2) transformation
while this method is more effective when combined with the H, I and K trans-
formation. But even then, the extended method is superior. We remark that
it is to be expected that the relative performance of the accelerators for the
method of the attached series will vary with the example that is considered.

Again, we remark that besides the Levin transformation there are further
methods that can be combined with the extended method of the attached series
and hence, it is neither claimed nor probable that the Levin transformation is
always superior to the other accelerators like the ε algorithm or the pJ trans-
formation in this context.

Thus, the possibility to use other accelerators in place of the d(2) transforma-
tion in the method of the attached series and in place of the d(1) transformation
with R` = τ` in the extended method exists, and it should be regarded as a
valuable addition to the toolbox of numerical methods.

In summary, one may say that the extended method of the attached series,
suitably combined with a τ -fold frequency approach is a powerful method for
the convergence acceleration of a class of complicated orthogonal expansions
depending on several frequencies with adequate coefficients.
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