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Abstract

The evaluation of functions of square matrices can be based on either
the Taylor series of the function, or on diagonalization techniques. In the
present contribution it is shown that suitable extrapolation techniques
enhance the efficiency of the Taylor series approach. As an important ex-
ample, the exponential of a matrix can be obtained via this method. The
exponential of matrices has to be calculated frequently in recursive meth-
ods for the solution of linear systems of ordinary differential equations, as
occur in the solution of evolution equations, and also in the solution of the
heat-conduction equation or the time-dependent Schrödinger equation af-
ter suitable discretization [Yung-Ya Lin and Lian-Pin Hwang, Computers
Chem. 16 (1992), 285]. Several extrapolation methods will be compared.
It is discussed whether these methods may also be useful for the extrap-
olation of vector sequences which occur for instance in iterative solutions
of nonlinear equations. Examples for the latter are for instance ab initio
SCF and MCSCF equations.

1

1Technical Report TC-NA-94-3, Institut fuer Physikalische und Theoretische Chemie, Uni-
versität Regensburg
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1 Introduction

Given are a general survey of convergence problems with a special emphasis to
matrix function problems, a general information on acceleration methods, and
an outline of the present contribution.

1.1 Convergence Problems for Vectors and Matrices

There are a number of chemistry-related problems where slowly convergent se-
quences of matrices and vectors turn up:

• Matrix functions computed via Taylor series

• Extrapolation of linear polymer calculations:
Problem: Get the Fock matrix

F (k) at wave number k ∈ (−π/a, π/a)

of the elementary cell of length a of the infinite system

– Cluster calculations:
Split the Fock matrix

Fn of the (2n+ 1)-monomer cluster into blocks Fn,ij

which contain Fock matrix elements between basis functions of the
i-th and the j-th monomer. Extrapolate the matrix

Fn(k) =

n∑
j=−n

exp(i j k a)Fn,0j , a: lattice constant, i2 = −1

(1)
at wave number k with respect to the number of monomers

F (k) = lim
n→∞

Fn(k) (2)

– Crystal orbital calculations:
Denote by

F (r)(k)

the Fock matrix at wavenumber k when Coulomb interactions be-
tween orbitals in unit cells within the distance r are taken into ac-
count. Extrapolate with respect to the range of the Coulomb inter-
action

F (k) = lim
r→∞

F (r)(k) (3)
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• Iterative solution of nonlinear equation systems:
These can often be regarded as fixpoint problems

x = F(x) (4)

to be solved via Picard iterations

x0 ,x1 = F(x0) , . . . ,xn+1 = F(xn) , . . . . (5)

Examples are

– SCF and MCSCF iterations

– Geometry optimizations

The basic approach taken here is to apply acceleration methods to speed up
the convergence.

1.2 Matrix Function Problems

• Solve evolution equations:
The solution of an homogeneous, linear evolution equation

d

d t
U(t) = K(t)U(t) , U(0) = U0 (6)

proceeds via a time-discretized method like

U(t+ ∆t) ≈ exp(K(t)∆t)U(t) = exp(A)U(t) (7)

and, thus, requires computation of the matrix exponential of

A = K(t)∆t . (8)

Examples are the following:

– The one-dimensional heat-conduction (= diffusion) equation (in suit-
able units)

∂

∂t
u(x, t) =

∂2

∂ x2
u(x, t) (9)

for

0 < x < 1 , t > 0 , u(0, t) = u(1, t) = 0 , u(x, 0) = u0(x) (10)

is solved via discretization according to

xj = j∆x , Uj(t) = u(xj , t) (11)
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and using a central difference approximation for the second deriva-
tive. One obtains

d

d t
Uj(t) ≈ (Uj+1(t)− 2Uj(t) + Uj−1(t))/(∆x)2 (12)

This of the form of Eq. 6 with a tridiagonal, time-independent matrix
K.

– Time-dependent Schrödinger equation

i h̄
∂

∂t
ψ(t) = Ĥ(t)ψ(t) (13)

after introduction of a basis expansion for the wavefunction which
entails a matrix representation of the Hamiltonian.

• Computation of thermodynamic density matrices:

ρ = exp(−βĤ)/tr(exp(−βĤ)) (14)

After introduction of a matrix representation of the Hamiltonian, this
requires also the computation of the matrix exponential.

• Transformation to interaction representation:
This requires the computation of the matrix exponential

exp(−i/h̄ t Ĥ0) , Ĥ0: unperturbed Hamiltonian (15)

• Symmetrical orthogonalization:
This requires the computation of the inverse matrix square root of the
overlap matrix S.

1.3 Convergence Acceleration Methods in General

• The problem is to find a structure in the data 2 which allows to implement
some method to extract information on the limit of the slowly convergent
sequence under study. This structural information is often hidden in some
of the last digits of the data. The structural information is then used to
compute the limit faster, normally via a

• Sequence transformation:

sn =⇒ tn, {sn}∞n=0: original sequence, {tn}∞n=0: transformed sequence
(16)

The transformed sequence hopefully converges faster.

2A random sequence of data normally cannot be extrapolated.
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• Model sequences:
One way to find sequence transformations is to use model sequences for
which the limit can be obtained exactly from a few elements of the se-
quence:

σn = σ +mn(ci, xi)
T

=⇒
exact

σ = T
(k)
n (σn, . . . , σn+k|xi)

ci: coefficients
xi: further parameters

(17)

The model sequences depend on some coefficients and some further pa-
rameters. Application to the problem sequence yields a Sequence Trans-
formation

tn = T (k)
n (sn, . . . , sn+k|xi) (approximate) (18)

that accelerates problems close to the model:

sn ≈ σn (19)

If the dependence on the coefficients is linear, the model sequences span
a linear space. This is called the kernel of the sequence transformation T :
It is exact for all sequences in the kernel.

• Remainder Estimates:
A useful more general model is to factor the model remainder into a re-
mainder estimate and a correction factor according to

σn = σ + ωn · µn(ci, ξi)
↑ ↑

remainder estimate, 6= 0 correction factor
(20)

This allows to use for instance Levin’s remainder estimates 3

ωn = ∆sn−1 ; or ωn = n+ 1∆sn−1 (21)

which can be shown to be good estimates of the remainder

sn − lim
n→∞

sn (22)

up to a constant for large classes of sequences.

• Iterative transformations:
The idea is to use a simple sequence transformation iteratively

T (k)
n (sn) = T (0)

n (T (k−1)
n (sn)) (23)

3D. Levin, Int. J. Comput. Math. B 3 (1973) 371.
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• Divergent series, summation and analytic continuation:
There are a number of acceleration methods which can sum divergent
series. These are for instance powerseries outside its radius of conver-
gence. Another example is provided by the highly divergent perturbation
series of anharmonic oscillators 4 which is a (formal) powerseries in the
coupling constant. In the case of powerseries, most nonlinear sequence
transformations transform the sequence of partial sums (i.e., of polyno-
mial approximations) into a sequence of rational approximations which
provide an analytic continuation of the powerseries outside its radius of
convergence.

1.4 Outline

In Section 2, different approaches to evaluate functions of matrices are discussed
in Section 2.1. Two important examples of such functions that are studied are
the matrix exponential and the matrix square-root. The concept of pseudo
inverses for vectors and matrices is introduced. Application of this concept
to acceleration methods leads to the epsilon algorithms and the nonscalar J
transformation. As a further method, we discuss the DIIS method. We present
numerical results which show that acceleration methods can be applied to the
evaluation of matrix functions. Finally, there is a discussion which besides
the application of acceleration methods to matrix functions also addresses the
question whether these methods are to be expected to be applicable to iteration
sequences as well.

2 Matrix Functions

2.1 Methodology

There are two main approaches to matrix functions, i.e., to functions

f : A ∈ {N ×Nmatrices} −→ B = f(A) ∈ {N ×Nmatrices} (24)

that are sufficiently smooth (analytic, say). These approaches are the following:

• Spectral resolution:
If the given matrix has a spectral resolution in terms of eigenvalues and
projectors to corresponding eigenspaces, then B is defined to have the
same eigenspaces, and the corresponding eigenvalues are simply the given

4E. J. Weniger, J. Č́ıžek, and F. Vinette, Phys. Lett. A 156 (1991) 169. E. J. Weniger, J.
Č́ıžek, and F. Vinette, J. Math. Phys. 34 (1993) 571.

7



function of the eigenvalue of A, i.e.,

A =

k∑
j=1

ajPj =⇒ f(A) =

k∑
j=1

f(aj)Pj (25)

• Taylor series:
The matrix function is given as a series of matrices according to the Taylor
series expansion of the function, i.e.,

f(z) =

∞∑
j=0

fj z
j =⇒ f(A) =

∞∑
j=0

fj A
j (26)

The spectral resolution technique requires the computation of the complete
spectrum of the matrix. This can be an enormous computational burden. Also,
this technique is limited to matrices which possess a spectral resolution.

On the other hand, in several cases, the Taylor series is only slowly conver-
gent and limited to its circle of convergence. Both (!) of these problems can be
solved by the use of suitable convergence acceleration schemes.

2.2 Matrix Exponential

The Taylor series is

exp(A) =

∞∑
j=0

Aj/j! . (27)

Its radius of convergence is infinite since the exponential function is analytic.
The partial sums

Sn =

n∑
j=0

Aj/j! (28)

are the input for the acceleration methods as described below.

2.3 Matrix Square-root

The Taylor series is

(id−A)−1/2 =

∞∑
j=0

(1/2)jA
j/j! . (29)

Here, a Pochhammer symbol

(a)j = a(a+ 1) · · · (a+ j − 1) , (a)0 = 1 (30)
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has been used. The radius of convergence of the Taylor series is 1 since the
nearest branchpoint of the square root has distance 1. The partial sums

Sn =

∞∑
j=0

(1/2)jA
j/j! . (31)

are the input for the acceleration methods as described below.

2.4 Pseudo Inverses

• Motivation:

– Scalar methods use inversion. Analog methods for vector and non-
square matrices require pseudo inverses.

– Scalar methods can be translated one to one to methods for square
matrices. But the computation of the inverse is too expensive.

• Pseudo Inverses for Vectors:

– Pseudo Inverse with respect to a scalar product

~v− =
~v

〈~v|~v〉
=⇒ 〈~v−|~v〉 = 1 (32)

– Pseudo Inverse with respect to some norm ‖(.)‖

~vI =
~v

‖~v‖2
=⇒ ‖~vI‖ = 1/‖~v‖ (33)

• Pseudo Inverses for Matrices:

– Left inverse of a m× n matrix A:

AL = (A+A)−1A+ =⇒ ALA = idn (34)

– Right inverse of a m× n matrix A:.

AR = A+(AA+)−1 =⇒ AAR = idm (35)

– Pseudo inverse of a m× n matrix A with respect to the trace norm

Atr =
A+

tr(A+A)
=⇒ tr(AAtr) = tr(AtrA) = 1 (36)

– Pseudo inverse of a m× n matrix A with respect to a matrix norm

ANo =
A+

‖A+A‖
=⇒ ‖ANoA‖ = 1 (37)

– Pseudo Inverse by Singular Value Decomposition
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3 Acceleration Methods

Many methods for scalar, vector and matrix sequences are known. 5 Here, we
do not treat methods for scalar sequences. Also, only some important methods
for vector and matrix sequences are given. We note that methods which are
taylored for vector problems can also be applied to matrix problems if one
regards each matrix as a vector where the elements of the vector are identical to
the matrix elements in some arbitrary but fixed order. However, it is probable
that this approach does not fully exploit the additional algebraic properties of
the matrices, such that methods taylored to matrices can well be advantageous.

3.1 The DIIS method

The Direct Inversion in the Iterative Subspace 6 method was introduced for
iteration sequences of vectors.

• Ansatz: The true vector of parameters as function of m members of an
(iteration) sequence

~p =

m∑
i=1

ci~pi (38)

• Calculation of the coefficients by Least-Squares. The residual vector

∆~p =

m∑
i=1

ci∆~pi (39)

has to approximate zero:

‖
m∑
i=1

ci∆~pi‖2 = min , ∆~pi = ~pi+1 − ~pi (40)

yields matrix equation
B11 B12 . . . B1m −1
B21 B22 . . . B2m −1
...

...
. . .

...
...

Bm1 Bm2 . . . Bmm −1
−1 −1 . . . −1 0




c1
c2
...
cm
λ

 =


0
0
...
0
−1

 (41)

with

Bij = 〈∆~pi|∆~pj〉 , λ: Lagrange multiplier for
∑
ci = 1

5See C. Brezinski und M. Redivo Zaglia, Extrapolation methods. Theory and Practice,
North-Holland, Amsterdam, 1991.

6P. Pulay, Chem. Phys. Lett. 73 (1980) 393.
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• Compute new estimate for solution with calculated coefficients.

• Experience: Choose m = 6− 8.

3.2 Epsilon algorithms

• VECTOR EPSILON ALGORITHM:
Wynn’s 7 direct translation of the scalar epsilon algorithm via Pseudo
Inverse:

~ε
(n)
−1 = 0, ~ε

(n)
0 = ~Sn

~ε
(n)
k+1 = ~ε

(n+1)
k−1 +

[
~ε

(n+1)
k − ~ε (n)

k

]− (42)

• TOPOLOGICAL EPSILON ALGORITHM 8:
Choose a suitable vector ~y and define

~ε
(n)
−1 = 0, ~ε

(n)
0 = ~Sn

~ε
(n)
2k+1 = ~ε

(n+1)
2k−1 +

~y

(~y,~ε
(n+1)
2k − ~ε (n)

2k )

~ε
(n)
2k+2 = ~ε

(n+1)
2k +

~ε
(n+1)
2k − ~ε (n)

2k

(~ε
(n+1)
2k+1 − ~ε

(n)
2k+1,~ε

(n+1)
2k − ~ε (n)

2k )

(43)

with
(~a,~b) =

∑
aibi.

• For both algorithms are the

~ε
(n)
2k+1

only auxiliary quantities.

• Both algorithms are exact for sequences of the form

~Sn+1 = A~Sn +~b with matrix A (44)

or of the form
k∑

i=0

ai(~Sn+i − ~S) = 0 (45)

with
ak 6= 0 , a0 + · · ·+ ak 6= 0 .

Then one has
~ε

(0)
2k = ~S . (46)

7P. Wynn, Math. Comput. 16 (1962) 301.
8C. Brezinski, Calcolo 12 (1975) 205.
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• Both algorithms can be used to accelerate Conjugate-Gradient methods.
9

3.3 Nonscalar J Transformation

The J transformation 10 :
is based on the idea to use simple transformations with kernel

Sn = S + Ωn(c0 + c1Rn) (47)

iteratively and to choose the remainder estimates for each stage of the iteration
differently. This has been studied in great detail in the technical report TC-
NA-94-1. 11

• A variant with matrix inverse for N ×N matrices

S..,Ω.., R..

is given by

S
(0)
n = Sn; Ω

(0)
n = Ωn;

S
(k+1)
n = S

(k)
n − Ω

(k)
n [∆Ω

(k)
n ]−1∆S

(k)
n ;

Ω
(k+1)
n = −Ω

(k)
n [∆Ω

(k)
n ]−1Ω

(k)
n+1∆R

(k)
n .

(48)

• A variant with left inverses for

M ×N matrices S.., M ×K matrices Ωn and numbers R..

is given by

S
(0)
n = Sn; Ω

(0)
n = Ωn;

S
(k+1)
n = S

(k)
n − Ω

(k)
n ([∆Ω

(k)
n ]L∆S

(k)
n );

Ω
(k+1)
n = −Ω

(k)
n ([∆Ω

(k)
n ]LΩ

(k)
n+1)∆R

(k)
n .

(49)

• A variant with pseudoinverse with respect to the trace norm for

M ×N matrices S..,Ω.. and numbers R..

is given by

S
(0)
n = Sn; Ω

(0)
n = Ωn;

S
(k+1)
n = S

(k)
n+1 − Ω

(k)
n+1tr([∆Ω

(k)
n ]tr∆S

(k)
n );

Ω
(k+1)
n = −Ω

(k)
n+1tr([∆Ω

(k)
n ]trΩ

(k)
n )∆R

(k)
n .

(50)

This variant with

R
(k)
n = 1/(n+ 1) and Ωn = ∆Sn

is used exclusively in the following.

9N. Aboun, Thèse 3ème cycle, Université de Paris VI, 1985. N. Rahmani-Gasmi, Thèse
3ème cycle, Université de Paris VI, 1985.

10H. H. H. Homeier, Int. J. Quantum Chem. 45 (1993) 545.
11H. H. H. Homeier, Numer. Algo., in press.
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4 Test Results

Treated is the matrix exponential for the matrices

A =

 −0.001 −0.2 −0.3
−0.4 −0.5 −0.6
−0.7 −0.8 −0.9

 (51)

B =


1 1 1 1 1

0.1 0.1 0.1 0.1 0.1
−5 −5 −5 −5 −5
0.3 0.3 0.3 0.3 0.3
0.01 0.01 0.01 0.01 0.01

 (52)

C =

 1 2 3
4 5 6
7 8 9

 (53)

Plotted as table entries are the number of exact digits (i.e., the negative decadic
logarithm of the error norm) for each method. The accuracy of term-by-term
summation is compared to acceleration results.

Table 1: Matrix Exponential: Definitions

N : Total number of sequence elements used
n : Number of applications of the acceleration method

AN :

N−1∑
j=0

Aj

j!

BN :

N−1∑
j=0

Bj

j!

CN :

N−1∑
j=0

Cj

j!

In Table 1, the definitions of various quantities occurring in the other tables
are collected. In particular, it should be noted that the application of the
acceleration methods was not always started with the first partial sum that was
available, but instead a later partial sum was regarded as the 0th element of
the sequence to be transformed. In such a way one may study the influence
of the first few terms of the sequence which may be not well described by the
remainder estimates. The latter are asymptotic in character.

In Table 2, the DIIS method is used as acceleration method. The data show
that it is a moderately efficient method, but only if two criteria are met: It has
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Table 2: Matrix Exponential: DIIS Method

N=n+3 AN DIIS

4 0.9 0.9
5 1.4 0.9
6 1.9 2.8
7 2.5 3.4
8 3.2 3.6
9 4.0 4.1

10 4.8 3.6
11 5.6 4.0
12 6.5 4.2

N=n+10 AN DIIS

11 5.6 5.6
12 6.5 5.6
13 7.4 8.6
14 8.3 8.5
15 9.3 10.2
16 10.3 9.3
17 11.3 10.0
18 12.4 11.3
19 13.4 12.4

N=n+8 BN DIIS

9 0.7 0.7
10 1.2 0.7
11 1.7 2.9
12 2.2 2.4
13 2.7 1.7
14 3.3 2.7
15 3.9 3.5
16 4.6 2.4
17 5.2 3.1

N=n+16 BN DIIS

16 4.6 2.9
17 5.2 5.2
18 5.9 5.2
19 6.7 8.1
20 7.4 8.8
21 8.2 7.6
22 9.0 8.4
23 9.8 8.1
24 10.6 9.0

N=n+30 CN DIIS

31 3.2 3.2
32 3.5 3.2
33 3.8 4.8
34 4.2 5.2
35 4.5 5.4
36 4.9 5.5
37 5.2 6.1
38 5.6 6.0
39 6.0 5.9

N=n+40 CN DIIS

41 6.8 6.8
42 7.2 6.8
43 7.7 8.9
44 8.1 8.9
45 8.6 9.6
46 9.0 8.7
47 9.5 9.4
48 10.0 9.6
49 10.5 9.1
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Table 3: Matrix Exponential: Epsilon Algorithms

N=n+0 AN Top. ε

1 0.3 0.3
3 0.5 1.2
5 1.4 2.7
7 2.5 4.3
9 4.0 6.8

11 5.6 8.0
13 7.4 10.9
15 9.3 12.7
17 11.3 15.2

N=n+1 AN Vector ε

3 0.5 0.5
5 1.4 2.2
7 2.5 4.1
9 4.0 6.2

11 5.6 8.4
13 7.4 10.7

N=n+0 BN Top. ε

3 -0.5 0.6
5 -0.4 1.4
7 0.0 2.5
9 0.7 3.9

11 1.7 5.4
13 2.7 7.0
15 3.9 8.8
17 5.2 10.7
19 6.7 12.8
21 8.2 14.8

N=n+0 BN Vector ε

1 0.1 0.1
3 -0.5 0.6
5 -0.4 1.4
7 0.0 2.5
9 0.7 3.9

11 1.7 5.4
13 2.7 7.0
15 3.9 8.8
17 5.2 10.7

N=n+0 CN Top. ε Vector ε

31 3.2 3.2 4.1
33 3.8 6.4 5.4
35 4.5 6.1 6.3
37 5.2 6.9 7.3
39 6.0 8.6 8.7
41 6.8 9.4 —
49 10.5 13.2 —
51 11.5 14.2 —
53 12.5 13.8 —

N=n+30 CN Top. ε Vector ε

33 3.8 4.8 4.8
35 4.5 6.2 6.2
37 5.2 7.7 7.7
39 6.0 9.1 9.1
41 6.8 10.6 10.6
43 7.7 12.1 —
45 8.6 13.8 —
47 9.5 13.9 —
49 10.5 13.8 —
51 11.5 13.8 —
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Table 4: Matrix Exponential: Vector J Transformation

N=n+0 AN Vector J
1 0.3 0.3
3 0.5 2.1
5 1.4 4.3
7 2.5 6.9
9 4.0 9.7

11 5.6 12.6
13 7.4 15.5
15 9.3 15.1
17 11.3 15.2
19 13.4 15.2

N=n+0 BN Vector J
1 0.1 0.1
3 -0.5 1.0
5 -0.4 2.4
7 0.0 4.1
9 0.7 6.2

11 1.7 8.5
13 2.7 11.0
15 3.9 13.6
17 5.2 15.3
19 6.7 15.4

N=n+0 CN Vector J
11 0.0 -0.6
13 0.1 1.2
15 0.2 3.4
17 0.4 4.8
19 0.6 6.7
21 0.9 8.7
23 1.2 10.6
25 1.6 13.0
27 2.1 13.1
29 2.6 12.6

N=n+30 CN Vector J
31 3.2 3.2
33 3.8 5.3
35 4.5 6.5
37 5.2 7.9
39 6.0 9.5
41 6.8 11.3
43 7.7 13.1
45 8.6 15.0
47 9.5 15.3
49 10.5 15.2
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to be applied close to the domain where the series itself is already starting to
converge more rapidly, and no more than a few terms of the sequence should
be used. Otherwise, it can well be that DIIS-transformed sequence converges
slower than the problem sequence.

From the data presented in Table 3 it is clear that the nonscalar epsilon
algorithms are more powerful than the DIIS method for the cases studied. The
topological and the vector epsilon algorithm perform rather similarly. However,
with the vector epsilon algorithm it is some times not possible to go to higher
values of n due to program restrictions. This is indicated by a hyphen in the
tables.

The data presented in Table 4 indicate in comparison with those of Tables
2 and 3 that for the cases studied the vector version of the J transformation is
the most successful acceleration method.

5 Discussion

The results indicate that nonlinear convergence acceleration enhances the flex-
ibility and efficiency of the Taylor series approach to the evaluation of matrix
functions.

As regards the acceleration of fixed point iterations, some work still has to
be done. However, it should be noted that there is a theorem due to ???? that
the vector epsilon algorithm gives quadratic convergence 12 near a fixed point
if 1 is not an eigenvalue of the Jacobian of the iteration function. This result
indicates that nonlinear convergence acceleration methods might provide a new
way for solving convergence problems in fixed point iterations which are not
untypical for chemical problems as discussed in the introduction.

12Without any derivative evaluations!
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