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Abstract

Multipolar expansions arise in many branches of the computational
sciences. They are an example of orthogonal expansions. We present
methods for the convergence acceleration of such expansions. As an
example, the computation of the electrostatic potential and its multi-
polar expansion is treated for the case of a two-center charge density of
exponential-type orbitals. This potential may also be considered as a
special molecular integral, namely as a three-center nuclear attraction
integral. It is shown that in this example, the extrapolation to the
limit of the corresponding expansions via suitable nonlinear sequence
transformations leads to a pronounced convergence acceleration.
Category: Methods Development
Keywords: Multipoles, electrostatic potential, spherical harmonics,
molecular integrals, extrapolation

1 Introduction

Multipole expansions and expansions in spherical harmonics are prominent
examples of orthogonal expansions and play an important role in the sci-
ences. Consequently, there is an immense literature regarding this topic. In
chemistry, such expansions are important
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e for the transitions between molecular states induced by an interaction
with electromagnetic radiation in the context of time-dependent per-
turbation theory [1], Chap. 16,

e for the description of NMR (Nuclear Magnetic Resonance) experiments
2],

e for the description of intermolecular interactions that are fundamental
for the classical description of many-body systems, for instance in terms
of induced multipole moments like polarizability [3], Chap. 15

e in particular for the computation of the electrostatic potential of molec-
ular charge distributions, e.g., by solving the Poisson equation [4], with
applications also in density functional programs (deMon),

e for the characterization of molecules by electrostatic multipole moments
(dipole, quadrupole, octupole and hexadecapole moments) where the
first non-vanishing multipole moment is independent of the choice of
the origin [5] that is in most cases chosen to be the center of mass of
the molecule

e for the determination of effective atomic charges (partial charges) [6],
7] for force-field, molecular mechanics and molecular modeling calcu-
lations by fits to the electrostatic potentials of molecules [8], [9], [10],
[11], [12], [13], [14] as an alternative to charges derived from popula-
tion analysis [15], [16], [17], [18] or also to empirical charges that are
derived on the basis of interaction energies and distances (CHARMm,
[19], [20]) or properties of fluids [21], [22], [23], [24], [25], [26], [27], [28],

e for determining effective atomic multipole moments, also for molecular
force-field calculation, where the effective forces between two molecules
are represented as a sum of electrostatic interactions of such distributed
atomic multipole moments of pairs of atoms [29], [30]

e in the Fast Multipole Method (FMM) of Greengard and Rokhlin [31],
132], [33], [34], [35], [36], [37], [38], [39], where the computational effort
— like in some other methods, compare the next item — scales linearly
with the number of atoms and which is currently used for molecular
dynamics calculation of macro molecules with a complete description
of long-range Coulomb interactions [40], [41], [42], [43] and will be part
of the new quantum chemistry program Q-Chem of Johnson, Gill and
Head-Gordon !,

!According to an E-mail message of W. Koch [kochw@argon.chem.TU-Berlin.DE,
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e in the Distributed Parallel Multipole Tree Algorithm (DPMTA) where
the computational effort also scales linearly with system size and that

also has been used in molecular dynamics simulations of macro molecules

2
)

e in tight-binding Hartree-Fock calculations of polymers [44],

e for the calculation of molecular integrals (mostly with exponential-type
basis functions) [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69],
[70], [71], [72], [73], [74], in particular in combination with addition
theorems and/or one-center expansions. [75], [76], [77], [78], [79], [80],
[81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94],
[95], [96], [97], [98], [99], [100], [101], [102],[103], [104], [105], [106], [107],
[108], [109], [110], [111], [112], [113], [114], [115], [116], [117]

These expansions can be regarded as generalized Fourier series. Since
such expansions often converge rather slowly, there is a need for methods to
accelerate the convergence. The basic approach is to transform the sequence
of partial sums of the series into a new sequence that converges faster, while
using only very simple arithmetics. As we will see, such methods can also
improve drastically the convergence even in cases where the original series
is already converging relatively fast. Such methods may even be used to
calculate a meaningful value of divergent series. The additional calculational
effort for the calculation of the sequence transformation is very low, and may
often be neglected in comparison to the calculation of the terms of the series.

Not many successful methods for the convergence acceleration of Fourier
series and orthogonal expansions are known. Some new methods have been
introduced recently by the author [118], [119], [120], [121], [122], [123], [124],
[125]. Methods for the convergence acceleration of expansions in orthogonal
polynomials will be discussed in Sec. 4.

We study here the convergence acceleration of a one-center multipole
expansion in comparison to an expansion of the exact electrostatic potential
in spherical harmonics.

An extension of the results to the convergence acceleration of distributed
multipole expansions where the electrostatic potential is represented by a
sum of truncated multipole expansions at various centers (mostly the atoms),
can simply be obtained by separate convergence acceleration of each of these
expansions and subsequent summation.

Message-Id: <9505170906.A A28372@argon.chem.TU-Berlin.DE>, May 17, 1995] in the
Computational Chemistry List.
2Programm namd, University of Illinois, http://www.ks.uiuc.edu:1250/Research /namd /.
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As a first step, we limit attention to expansions in Legendre polynomials
that arise for rotationally symmetric problems. It is believed that more
general types of expansions can be treated similarly. This, however, is still
under investigation.

First, we will recall some basic facts on multipole expansions of electro-
static potentials. Then, we go on to point out the connection to three-center
nuclear attraction integrals. Before going on to a specific example, we discuss
methods for convergence acceleration of such orthogonal expansions based on
nonlinear sequence transformations. As a simple example, we treat a two-
center density that could arise in molecular LCAO? calculations. Numerical
tests are presented that show that the extrapolated values obtained by using
the nonlinear sequence transformation converge much faster than the origi-
nal expansions, both for the multipole expansion of the potential, and for its
exact expansion in spherical harmonics.

2 Multipole Expansion of the Electrostatic
Potential

For the calculation of the electrostatic potential U of a charge density p one
can use the equation (in atomic units)

L p(7") 3,0
U(7) —/ 7 d (1)

|7

Inserting the Laplace expansion

14
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with the abbreviations r = |F], ' = ||, r« = min(r, ") and r~ = max(r, ")
and the complex spherical harmonics Y;” in the phase convention of Condon
and Shortley [126] as defined in [127], p. 3, Eq. (1.2-1), and interchanging
the order of integration and summation yields

U(F) = dn Z %i/f / o(7) ;HY (7 1) &3 (3)

This can be interpreted as orthogonal expansion in the complete orthonormal
system of spherical harmonics.

3Linear Combination of Atomic Orbitals



If the charge density vanishes outside of a sphere of radius a with center
at the origin and if r > a holds then r > r’ is satisfied for all 7 for which
p(7") # 0 holds, and the relation

_» — Y, (r/r I\ O mk (A )] !
U(7) = 4 r“‘éT/l)/p(r)rng (7 /') dPr (4)

follows.
Introduction of the multipole moments

Qr = [ ) at 6)
allows to represent the potential by an infinite series of the form
. L ym(rr)
ur) = - ”Z o arrT O (6)

that is usually called the multipole expansion. In partlcular for a charge
distribution p(7) that is invariant under rotations with axis R, the multipole
moments have the form

Pr= Y (R/R) a, (7)

and the addition theorem

%HZYe (F/r)Y;™ (R R) = (;S) (8)

of the spherical harmonics yields an expansion in Legendre polynomials P,

Ua®) =3 P (;f) o )

£=0

This form of the electrostatic potential is also implied by the fact that the
Laplace equation V2U = 0 holds outside of a charge distribution. The only
solutions of this equation for r — oo in spherical coordinates are linear
combinations of irregular solid harmonics ZJ*(7) = r—*"1Y,™(7/r) and thus,
taking rotational symmetry around the direction ﬁ/ R into account, only
linear combinations of 7“1 Py(cos &) occur in the multipole expansion of U
where « is the angle between the position vector and the direction ]%/R

If the charge distribution does not have compact support in R*, the above
multipole expansions only hold approximately for large r = |7]. In this case,
the inequality r > ' does not hold for all 7 for which p() # 0.
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The difference between the exact potential U and the multipole expansion
Ug in Eq. (6) is given by

U(7) — Ug(7) = 4 Z ") [y L -y ) g
QT‘ m 2£+1 p\r ,r£>+1 r,nf-l-l Y/ r/r .

(10)
Because of
ri r't ,
ﬁ—mzo for r S’I" (11)
>

the difference U — Ug can also be represented as

ym(r/r) » rt r't N 33,

69~ Vo) =4 S T [0 i o 0

(12)

If p(7) decays sufficiently rapidly for large arguments, the contributions with

angular momentum quantum number £ to the difference U — Ug will go to

zero for large r (unless they vanish anyway by symmetry). In the case of the

example p(7) = exp(—~yr) with v > 0, only the term with ¢ = 0 survives the
angular integration and one obtains

U(F)_UQ(F) . \/Too eXp( ”y’l“) {rl _ %} r/2 dr' = _47Texp(—7:)7£2 +(Z;; .

Hence, the difference U — Ug vanishes for large r exponentially in this simple
model example.

Note that the multipole expansion Ug for 7 # 0 is a solution of the
Laplace equation V2Ug = 0. But the exact electrostatic potential U satisfies
the Poisson equation (atomic units)

VAU(7) = —4np(7) . (14)

This implies that also the difference U — Ug is a solution of this Poisson
equation. A further consequence is that the multipole expansion can only be
a good approximation to U where the charge density is small, i.e., for large
distances from the origin.

An advantage of the multipole expansion is that the moments @} or ¢y,
respectively, to a given charge distribution p can be computed once and for
all, and then, the multipole approximation Ug(7) of U(7) can be computed
very easily for very many arguments 7. The exact expansion (3) of U(7) on
the other hand is more demanding computationally. It requires the calcula-
tion of the integrals

Z0() = [ o) sy ) d (15

>
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that depend also on the distance r to the expansions centre. If the charge
density p is rotationally symmetric around the direction ﬁ, then in analogy
to Eq. (7) we have

Zp(r) = Y (R/R) Z(r) (16)

and hence, the expansion (3) simplifies to

—

V) = i 3 N R ) = 3P (R ) (). ()

m

This corresponds to the cylindrical symmetry of the problem since only the
coordinates r and # with rRcosf = 7 - R enter. Thus, one obtains an
expansion in Legendre polynomials that may or may not converge rapidly.

3 Three-center Nuclear Attraction Integrals

In the context of a LCAO (Linear Combination of Atomic Orbitals) calcula-
tion of the matrix elements of the molecular Hamilton operator, integrals of
the form

¢, di)(7) = / % d*r’ (18)

occur. Here, ¢;(7) and ¢, () are two spatial orbitals that are centered each
at an atom, i.e., functions R* — C, the so-called atomic orbitals that are also
called basis functions in the following, and the (spatial) molecular orbitals
o (7) are linear combinations of the form

Ya(r) = ch,aqﬁj(f’) : (19)

A basis function ¢;(7) with center R, can be written as
¢;(7) = x;(F — ;) (20)

where in quantum chemistry the yx; factorize in a radial and an angular
part according to x;(7) = p;(r)o;(f,¢) For cartesian basis functions, the
angular part is proportional to products of the form x%yz¢, for spherical basis
functions, it is given by spherical harmonics Y;"(6, ¢). The radial part has
the form P(r)exp(—ar™), where P is a polynomial. Gaussian-type orbitals
(GTO) correspond to 7 = 2, and exponential-type orbitals (ETO) correspond
to 7 = 1. The simplest representatives of these two classes of basis functions
are the 1s GTO

G(a,7) = exp(—ar?) (21)
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and the 1s ETO
e(a, ) = exp(—ar) . (22)

The latter is, up to a constant factor, on the one hand nothing but the special
case n = 1, £ = m = 0 of the most popular ETOs, the Slater-type Orbitals
(STO) (cp. [128] and [46], Eq. (2.1))

Xime(a, 7) = (ar)"™" exp(—ar) Y["(0,9) , (23)

and on the other hand it is identical to the most simple B function that are
defined by [46], Eq. (2.14)

1 o Ly m
D re(er) (an) Y (0. 6) (24)

Bva(aa ’F) =
and are the ETOs with the most simple Fourier transform. The latter are
tensorial generalizations of the reduced Bessel functions k, defined by [108],
p. 275, Eq. (3.1):

R 92\ 1/2
k,(z) = <—> 2" K, (2) (25)

™

in terms of the modified Bessel functions K, (z) of the second kind [129], p.
66.

The integrals I are called nuclear attraction integrals. They are examples
of the previously mentioned molecular integrals.

There are three center in the case of nuclear attraction integrals (the
origin, R}-, Ry in the case of I[p;, px](T)) that can, however, coincide. The
corresponding one- and two-center nuclear attraction integrals are usually
computationally much simpler than the three-center nuclear attraction inte-
grals. The latter are the topic of the present section.

Depending on the choice of basis functions, the calculation of nuclear
attraction integrals may be complicated or simple.

In the case of GTOs the computation of the nuclear attraction integrals
is relatively simple since products of GTOs at two centers can be easily
represented by GTOs at a single center. This implies that for GTOs three-
center nuclear attraction integrals are easily expressed in terms of two-center
integrals.

In the case of ETOs the computation of three-center nuclear attraction
integrals is substantially more difficult. Using the Fourier transformation
method for such integrals with B functions, one can use a two-dimensional
integral representation in combination with numerical quadrature. [51], [52],
[55]. This contains, however, oscillating terms that limit the achievable ac-
curacy for large distances of the centers. Thus, there is a need for methods
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that work for large distances. One alternative is the use of expansions in
spherical harmonics or of multipole expansions.

The idea is relatively simple:

For real basis functions, the product p;;(7) = ¢;(7)¢x(7) can be regarded
as a charge density. The associated electrostatic potential then corresponds
exactly to the nuclear attraction integral I, as may be seen easily from a
comparison of Egs. (1) and (18).

Especially, the exact expansion (3) with respect to spherical harmonics
and the approximate multipole expansion (6) can be applied in this context
as well.

Recently, procedures of this kind have been studied, mainly by Ferndndez
Rico and coworkers [80], [81], [82], [83], [84], [85], [86], [87], [88] and by Jones
and coworkers [90], [91], [92], [93], [94], [95], [96], [97], [98], [99].

This work has been taken up by the group around Bouferguene and in
some papers [78], [79], these authors tried to apply convergence accelerators
to expansions that are analogous to Eq. (3) using mainly the e algorithm.

Since orthogonal expansions are involved it is to be expected that special
methods for this type of series are advantageous.

4 Extrapolation Methods for Orthogonal Ex-
pansions

For extrapolation of expansions in orthogonal polynomials of the form
o
s(x) =y ¢ Pi(x) (26)
5=0

with partial sums
sn(z) =Y ¢ Pi(x), (27)
=0

not many methods are known to work well. Besides the well-known ¢ algo-
rithm of Wynn and the d™) transformations [130], there are methods based
on the acceleration of related complex power series [121], [124], [125]. If
one does not like to work with complex arithmetics, one may use also the
so-called K transformation [120]. The K transformation may be regarded
as a generalization of the 7 transformation that has proved to be useful for
trigonometric Fourier series [119], [123]. Both transformations are obtained
by iteration of a simple transformation.
We sketch the main ideas that lead to the I transformation.



Consider the sequence of the partial sums s, to be extrapolated as given
in Eq. (27), and write it in terms of the limit s and a tail ¢,, as

o0

Sp =58+ 1y, th = — Z ¢ Pj(x) . (28)

j=n+1

By using the usual three-term recurrence relation of the orthogonal polyno-
mials P, (z) repeatedly, one may express the tail as

tn = an 41 (2) Pag1 (2) + B (7) Paya(2) (29)

One may express P, o(x) as linear combination of P, (z) and Q1 (z) with
x-dependent coefficients.

Remark This is always possible in the cases of interest, at least asymp-
totically for large n. For example, specializing to Legendre functions
P,(x) and @, () that satisfy the recurrence relation w,(z) = (2n +
)zw,(x)/(n+1) —nw, 1/(n+1) with the initial conditions Py(z) = 1,
Pi(z) =z, Qo(x) = log((1 +fv)/(1—~’v))/§, Q1(z) = 2Qo(x) —1, one has
the asymptotic relation[130] P, (cos 0)—i=Q,(cos #) = exp(inf)kn~"/? (1 4+ O(1/n))
T
for large n where k is a constant. An easy calculation then shows
P, 1(cosf) = (14 1/n)"Y?(cosf P,(cos ) + 2sinf Qn(cos ) /m)(1 +
O(1/n)) for large n.

Using this method, it is possible to rewrite the tails as

tn = A1 (#) Pag1(2) + Bnp1 (2)Qnya (2) (30)

Assuming that the leading behavior of A,(z) and B, (z) for large n is up to
constants ¢ and d given by remainder estimates w,, model sequences of the
form

=s+w ( P,(z) +dQn(z)) (31)
are obtained where the P,(z) = P,,1(z) and Q,(x) = Qns1(z) obey the
three-term recursion

Céo)vn + Cr(zl)vn-i-l + Cng)Un-l-? =0 (32)

where the coefficients Q(Lj) for j = 0,1,2 are x dependent. Rewriting this as

Sp— S ~

= cPy(z) +dQu(z) (33)

Wn
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and applying the recursion relation (32) to both sides of the equation, one
obtains

o Sn 75 CS)M 4 C;;)M =0. (34)
(.Un wn+1 wn—l—?

This may be solved for s. Then, we obtain

cO5n e Sntl  -(2) Sns2

5 — Wln Wnl-i—l wnl-i-Q : (35)
C(O)— + C(l)— + C(Z)
n Wy, n Wnt1 n Wnto

i.e., we can calculate the exact limit s for model sequences of the form (31).
If a given sequence s,, differs from this model, one cannot expect to calculate
the limit exactly by this simple formula, but applying it is expected to yield a
sequence of approximations that is closer to the limit if the problem sequence
is “close” to the model. Thus, one obtains a sequence transformation given
by the expression

cOZn e Sntl  (2) It

s = —= ot iz (36)
C(O)— + C(l) + C(Z)
n Wy, n Wt n Wnt2

We say that this transformation is exact for model sequences of the form (31)

since it allows to calculate the exact limit s for such model sequences. This is

the simple sequence transformation mentioned above that is to be iterated.
[teration leads to the recursive scheme

k k
(44— (GOND 4+ ¢ N, + CNG,) /60
49 = (G + 0D+ (DL, ) /68

K0P} ACY, s} {wa}) = NP /DY

O =

that defines the IC transformation. Here, the 5 are auxiliary quantities.
This transformation is a nonlinear sequence transformation, if the w,, depend
on the s,.

We make the important observation that in each step of the iteration
numbered by k, a new sequence of remainder estimates is used accordin
to wi =1 /Df(zk), and that the lower index of the recursion coefficients Q(Zj
is shifted by k. Note that the remainder estimates wiP depend only on the

original remainder estimates w,, = w,(lo) and the auxiliary quantities 5nk). Note
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that the recursion relations for the numerators and denominators are nothing
but the application of the three-term recurrence relation for P, (z) (up to a
scaling inducing by the 6,(lk)). Thus, the sequence transformation eliminates
approximately contributions of orthogonal functions P,(z) (and @,(x)) for
successive higher values of n.

We specialize to the case of expansions in Legendre polynomials. Here,
the input sequence s, of partial sums (27) is transformed into a new sequence

(s} — {50} = {KI"0D (100}, (09}, {sn} {wn D} (38)

with %(LO) =n-+2, 77(11) = —(2n+5)z and 77(12) = n + 3. The latter correspond
to the three-recurrence relation for P, .. By [z] we denote the integer part
of x.

The transformed sequence converges normally much faster than the orig-
inal one if the coefficients ¢; in (26) do not oscillate itself, and also consid-
erably faster than the estimates obtained using the e algorithm. [120] For
further information on the extrapolation of orthogonal expansions see also
[131], [121].

If the maximal value of n is 2N, i.e., if only partial sum up to son are
available, then s,y is a polynomial of degree 2N in z. In this case, the
transformed quantities s, = K[(]N)({éﬁlk)}, {%(Zj)}, {sn},{wn})} are a rational

function in x of the form

r pZN(x)
N = qn () (39)

where poy(z) is a polynomial of degree 2N and ¢gy(x) is a polynomial of

degree N. For instance, for 65 = 1/(n+1), w, = ¢,, and N =2 we have

sy = —%(:}54 cacicscy+ (=196 ¢ czeq + 492 ¢4 ¢y c® — 300 ¢y ¢y c3%) 2
+ (—cr1eaczeqs — 196 ¢y escqco+ 328 cycr? ey — 180 ¢y cp e3) 12 + (
114 ¢y cgeqco — 164 ¢q¢p co® + 328 ¢h ¢y ¢ co + 180 ¢y 9 37
—120¢2 903 — 114 ¢42 ¢4 c4)x + 60 ¢q 22 c3 — 120 ¢1 ¢y 3
— 114 ¢y ez3eq¢0)cp /(98 22 eq e e
+ (=164 cyc1 990 — BT eaczeqcy) x4+ 6¢qcacgey +60cq oy
+ 57 ¢1e3¢4¢0)

and
35 3

S4=—c x4+§c P+ (=c —gc)x2+(c —§c)x+c —lc +-c
4 g 4 23 22 4 4 1 23 0 22 84'
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If the evaluation of the expansion at many values of x is required, then it
pays to compute the coefficients of numerator and denominator polynomial
once and for all from the known coefficients c¢;, and then, the additional
numerical effort in comparison to the term-wise summation of the expansion
is the additional evaluation of a polynomial of degree N. As we will see, the
resulting expression s;, is much more accurate than soy. For instance, s is
often 1000fold more accurate than sy.

Although this approach of fixing the maximum value of n throughout is
very cost-effective, it has some disadvantages: The accuracy is not uniform,
ie., not the same for all angles. Further, as seen from the explicit expression
for s/, there are some values of © = cos@ for which the denominator poly-
nomial vanishes. These angles may easily be identified in advance. In the
vicinity of these angles either the explicit summation or linear convergence
[132], [133] acceleration may be used. Then, however, convergence is much
slower usually. Thus, a hybrid algorithm would have to be designed. Alter-
natively, by using the whole sequence of the s/, as computed via the recursive
scheme defining the IC transformation, one can stop the calculation when the
difference between consecutive approximations lies below a threshold. This
method will result in more uniform approximations. Also, for nonlinear con-
vergence accelerators, one may use progressive forms and particular rules to
avoid the rare cases that the denominators vanish (cp. [131], and [134] and
references therein). Alternatively, the simple device to replace an acciden-
tally vanishing denominator by a small number near the smallest floating
point number and simply to go on with the recursive algorithm, has proven
to work surprisingly well. [135] The latter approach can also be implemented
in the programs for the K transformation that were used in the present work.

We further remark that in the vicinity of the singularities of the Legendre
series the convergence of the original series may become exceedingly slow (like
O(1/n®) for small «). In this case, convergence acceleration is especially
desirable. Straightforward application of nonlinear convergence accelerators
is not the best way to evaluate the sum of the orthogonal series. Instead,
it is much better to use the 7—fold frequency approach. (7: ”"tau”) This
is essentially the application of a convergence acceleration method to the
sequence {s;,}22, = {so, Sr, Sor, ...} for some suitable integer 7 > 1. In the
case of the K transformation, this produces approximations

T n/2 ] T
Sn = K;[—é[l)p]]({égk)}a {f}/?(L])}J {S'rn}a { wn}) (40)
using 7,(10) =n+2, 7,(11) = —(2n + 5) z,, and 7,(12) = n + 3 corresponding to

the three-term recurrence relation of Legendre polynomials at the argument

x, = cos(T arccos(x)) . (41)
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One may choose the remainder estimated in this approach for instance as
"Wy = Cmp, 1.e., as suitable coefficients of the Legendre series. For further
details of the 7—fold frequency approach, the interested reader is referred to
the literature [121], [122], [123], [124], [125]. We are not going to use this
approach in the following for simplicity.

5 A Simple Example

We study as a simple example a charge density

p() = exp(—ar) exp(—B|7 — R)) (42)

corresponding to a two-center product of 1s-ETOs. For the electrostatic
potential of this density, we have

exp(—ar’) exp(— 7" — R)

— d3 !
v 7 —
Y, (7/r) rt
— 4 4 < Ym* li
W%: 20+ 1 /rljl (/r)

x exp(—ar') exp(—g|7 —R‘|)d3 '

:472 24(:_/{)/ ZLY’"*( /r") exp(—ar’)

’ITL

m Zn (7 /'Y (R/R)

0
<aﬂ> Iél+1/2(ﬁr<)Ké’+1/2(ﬁr>) d3 /

with 7. = min(+’, R) and v}, = max(r', R). Here, the addition theorem [117],
[78]

0 1 Her172(A1) Keyr2(Ap)]

exp(=Ay/12 + p2 — 2rpcosf) = Z (2041) Py(cos ) ——
o

(44)
of the exponential function was used that holds for » < p. Further, the
addition theorem (8) of the spherical harmonics was used. Now, the or-
thonormality of the spherical harmonics yields

> 13/2 T£< /
ZPZ( R/’I“R) i r mexp(—ar)

5 ” (45)
<aﬂ> Ié+1/2(57“<)Ké+1/2(57">)
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The remaining radial integral can be computed with the help of Maple. This
approach avoids rounding errors that can easily spoil the calculation of the
integral [78]. We note that the result is of the form (17), with

00 0
—4m 372 <

9,
Zo(r) = VR ) o exp(—ar’) (%) Tor1/2(Bri) Kepap(Bri) dr'.

(46)
Analogously, one obtains for the multipole expansion of this charge density
an equation of the form (9),

/4

R —4:7T > o5 = > ! r !
Ug(F) = ﬁZPg (r-R/(rR)) /0 r3/2r4+1 exp(—ar’)
=0

! (47)
< () U o) K]
and for the multipole moments follows
—4r [

9
w=g [, T ewizar) <%> Tes1p (Bric) Kegap(Br4)] e’ (48)

which can also be computed advantageously with Maple.

6 Numerical Tests

We study the charge density p(7) = p(z,y, z) of Eq. (42) in the last section
for « = 3/10, 3 =1 and R= 2¢,, where €, is the unit vector in z direction.
It is rotationally symmetric around the z axis. This density is also plotted
in http://www.chemie.uni-regensburg.de/ECCC/4/rho.ps as a function of x
and z for y = 0.

The corresponding electrostatic potential is also rotationally symmetric
around the z axis, a function of z and y/x? 4 y? only or, equivalently, only of
r = /22 + y? + 2% and 0 with cos @ = z/r. This is also valid for the multipole
expansion (47) and the exact expansion (45) in spherical harmonics.

6.1 Multipole Expansion

The multipole moments ¢, are displayed in Tab. 1. They grow relatively fast
with /.

In Tabs. 2-5 we display for various combinations of r and # the partial
sums

0
q .
Sp = Z P; (cos ) —rjil (49)
=0
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and the transformed values
sp = KDDL ({0 + 171, 0), {sed {ae/r 1)} (50)

with %go) =(+2, vél) = —(2¢+5) cosf and 'Yz@ = (+ 3 corresponding to the
recursion of the Legendre polynomials Py, (cosf). These values are rounded
and can not display more than 16 exact decimal digits. The definition Eq.
(37) of the K transformation is used. Also displayed is for both sequences
s¢ and s; the number of exact digits. This is defined as the negative decadic
logarithm of the relative error as indicated also in the table headers.

Also, we display in Figures 1, 2, and 3 graphically the performance of
the acceleration method for the multipole expansion using partial sums s, up
to £ = 20. Plotted are the achievable number of exact digits without (Fig.
1) and with acceleration (Fig. 1), and the gain, i.e., the additional digits
achieved using the acceleration method, as a function of r and z = cos(0).
For simplicity, the 7-fold frequency approach was not used, and hence the
performance is better for larger distances from the singularity at » = and
r=1.

From these tables and figures, one observes a clear increase of the accuracy
by using the extrapolation method. Already for smaller values of 7, there is
a drastic reduction of the error. A gain of three and more digits is typical
and corresponds to a reduction of the error by a factor of 1000 or more.

Let us remark that the additional numerical effort for the extrapolation
is very low in comparison to the evaluation of the multipole moments.

6.2 Exact Expansion in spherical harmonics

In Tabs. 6-8 we plot for various combinations of r and # the partial sums

Sp = ij (cos B) (r) (51)

of the exact expansion (45) and the transformed values

sp = K ({0 + D)7 1), (seh ()} (52)

with %go) ={+2, %1) = —(2¢ + 5)cosf and %@ = ( + 3 corresponding
to the recursion of the Legendre polynomials Py, (cos#). As in the case of
the multipole expansion the values are rounded to 16 decimal digits. The
definition Eq. (37) of the K transformation is used. Also, we plot for both
sequences s, and sj the corresponding number of exact digits. As before, this
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number is defined as the negative decadic logarithm of the relative error as
indicated also in the table headers.

Comparison of Tabs. 2 with 6, 3 with 7 and 4 with 8, that have been
computed for the same point, respectively, reveals that the converged extrap-
olated values differ considerably. This means that in this way the difference
U — Ug can be evaluated.

Let us remark that also in this case the additional numerical effort for the
extrapolation is very low in comparison to the evaluation of the coefficients
of the orthogonal expansion.

In summary, it can be stated that the acceleration of the expansion in
Legendre polynomials via the K transformation leads to pronounced error
reduction, as well in the case of the multipole expansion as well as in the
case of the exact computation of the electrostatic potential. Put another
way, for achieving a certain accuracy, considerably less multipole moments
or expansion coefficients, respectively, are necessary if a problem adapted
extrapolation method as the K transformation is used.

7 Tables

For detailed explanations of the meaning of the displayed data see Sec. 6.

8 Figures

For detailed explanations of the meaning of the displayed data see Sec. 6.
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