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� for the transitions between molecular states induced by an interactionwith electromagnetic radiation in the context of time-dependent per-turbation theory [1], Chap. 16,� for the description of NMR (Nuclear Magnetic Resonance) experiments[2],� for the description of intermolecular interactions that are fundamentalfor the classical description of many-body systems, for instance in termsof induced multipole moments like polarizability [3], Chap. 15� in particular for the computation of the electrostatic potential of molec-ular charge distributions, e.g., by solving the Poisson equation [4], withapplications also in density functional programs (deMon),� for the characterization of molecules by electrostatic multipole moments(dipole, quadrupole, octupole and hexadecapole moments) where the�rst non-vanishing multipole moment is independent of the choice ofthe origin [5] that is in most cases chosen to be the center of mass ofthe molecule� for the determination of e�ective atomic charges (partial charges) [6],[7] for force-�eld, molecular mechanics and molecular modeling calcu-lations by �ts to the electrostatic potentials of molecules [8], [9], [10],[11], [12], [13], [14] as an alternative to charges derived from popula-tion analysis [15], [16], [17], [18] or also to empirical charges that arederived on the basis of interaction energies and distances (CHARMm,[19], [20]) or properties of uids [21], [22], [23], [24], [25], [26], [27], [28],� for determining e�ective atomic multipole moments, also for molecularforce-�eld calculation, where the e�ective forces between two moleculesare represented as a sum of electrostatic interactions of such distributedatomic multipole moments of pairs of atoms [29], [30]� in the Fast Multipole Method (FMM) of Greengard and Rokhlin [31],[32], [33], [34], [35], [36], [37], [38], [39], where the computational e�ort| like in some other methods, compare the next item | scales linearlywith the number of atoms and which is currently used for moleculardynamics calculation of macro molecules with a complete descriptionof long-range Coulomb interactions [40], [41], [42], [43] and will be partof the new quantum chemistry program Q-Chem of Johnson, Gill andHead-Gordon 1,1According to an E-mail message of W. Koch [kochw@argon.chem.TU-Berlin.DE,2



� in the Distributed Parallel Multipole Tree Algorithm (DPMTA) wherethe computational e�ort also scales linearly with system size and thatalso has been used in molecular dynamics simulations of macro molecules2,� in tight-binding Hartree-Fock calculations of polymers [44],� for the calculation of molecular integrals (mostly with exponential-typebasis functions) [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55],[56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69],[70], [71], [72], [73], [74], in particular in combination with additiontheorems and/or one-center expansions. [75], [76], [77], [78], [79], [80],[81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94],[95], [96], [97], [98], [99], [100], [101], [102],[103], [104], [105], [106], [107],[108], [109], [110], [111], [112], [113], [114], [115], [116], [117]These expansions can be regarded as generalized Fourier series. Sincesuch expansions often converge rather slowly, there is a need for methods toaccelerate the convergence. The basic approach is to transform the sequenceof partial sums of the series into a new sequence that converges faster, whileusing only very simple arithmetics. As we will see, such methods can alsoimprove drastically the convergence even in cases where the original seriesis already converging relatively fast. Such methods may even be used tocalculate a meaningful value of divergent series. The additional calculationale�ort for the calculation of the sequence transformation is very low, and mayoften be neglected in comparison to the calculation of the terms of the series.Not many successful methods for the convergence acceleration of Fourierseries and orthogonal expansions are known. Some new methods have beenintroduced recently by the author [118], [119], [120], [121], [122], [123], [124],[125]. Methods for the convergence acceleration of expansions in orthogonalpolynomials will be discussed in Sec. 4.We study here the convergence acceleration of a one-center multipoleexpansion in comparison to an expansion of the exact electrostatic potentialin spherical harmonics.An extension of the results to the convergence acceleration of distributedmultipole expansions where the electrostatic potential is represented by asum of truncated multipole expansions at various centers (mostly the atoms),can simply be obtained by separate convergence acceleration of each of theseexpansions and subsequent summation.Message-Id: <9505170906.AA28372@argon.chem.TU-Berlin.DE>, May 17, 1995] in theComputational Chemistry List.2Programmnamd, University of Illinois, http://www.ks.uiuc.edu:1250/Research/namd/.3



As a �rst step, we limit attention to expansions in Legendre polynomialsthat arise for rotationally symmetric problems. It is believed that moregeneral types of expansions can be treated similarly. This, however, is stillunder investigation.First, we will recall some basic facts on multipole expansions of electro-static potentials. Then, we go on to point out the connection to three-centernuclear attraction integrals. Before going on to a speci�c example, we discussmethods for convergence acceleration of such orthogonal expansions based onnonlinear sequence transformations. As a simple example, we treat a two-center density that could arise in molecular LCAO3 calculations. Numericaltests are presented that show that the extrapolated values obtained by usingthe nonlinear sequence transformation converge much faster than the origi-nal expansions, both for the multipole expansion of the potential, and for itsexact expansion in spherical harmonics.2 Multipole Expansion of the ElectrostaticPotentialFor the calculation of the electrostatic potential U of a charge density � onecan use the equation (in atomic units)U(~r) = Z �(~r0)j~r � ~r0j d3r0 (1)Inserting the Laplace expansion1j~r � ~r0j = 4�X̀m Y m` (~r=r)Y m�` (~r0=r0)2`+ 1 r<̀r`+1> (2)with the abbreviations r = j~rj, r0 = j~r0j, r< = min(r; r0) and r> = max(r; r0)and the complex spherical harmonics Y m` in the phase convention of Condonand Shortley [126] as de�ned in [127], p. 3, Eq. (1.2-1), and interchangingthe order of integration and summation yieldsU(~r) = 4�X̀m Y m` (~r=r)2`+ 1 Z �(~r0) r<̀r`+1> Y m�` (~r0=r0) d3r0 : (3)This can be interpreted as orthogonal expansion in the complete orthonormalsystem of spherical harmonics.3Linear Combination of Atomic Orbitals4



If the charge density vanishes outside of a sphere of radius a with centerat the origin and if r > a holds then r > r0 is satis�ed for all ~r0 for which�(~r0) 6= 0 holds, and the relationU(~r) = 4�X̀m r�`�1Y m` (~r=r)2`+ 1 Z �(~r0)r0`Y m�` (~r0=r0) d3r0 (4)follows.Introduction of the multipole momentsQm̀ = Z r0`Y m` (~r0=r0)�(~r0) d3r0 (5)allows to represent the potential by an in�nite series of the formU(~r) = UQ(~r) = 4�X̀m 1r`+1 Y m` (~r=r)2`+ 1 Qm�` (6)that is usually called the multipole expansion. In particular, for a chargedistribution �(~r) that is invariant under rotations with axis ~R, the multipolemoments have the form Qm�` = Y m�` (~R=R) q` ; (7)and the addition theorem4�2`+ 1Xm Y m` (~r=r)Y m�` (~R=R) = P` ~r � ~RrR ! (8)of the spherical harmonics yields an expansion in Legendre polynomials P`UQ(~r) = 1X̀=0 P` ~r � ~RrR ! q`r`+1 : (9)This form of the electrostatic potential is also implied by the fact that theLaplace equation r2U = 0 holds outside of a charge distribution. The onlysolutions of this equation for r ! 1 in spherical coordinates are linearcombinations of irregular solid harmonics Zm̀(~r) = r�`�1Y m` (~r=r) and thus,taking rotational symmetry around the direction ~R=R into account, onlylinear combinations of r�`�1P`(cos�) occur in the multipole expansion of Uwhere � is the angle between the position vector and the direction ~R=R.If the charge distribution does not have compact support in R3 , the abovemultipole expansions only hold approximately for large r = j~rj. In this case,the inequality r > r0 does not hold for all ~r0 for which �(~r0) 6= 0.5



The di�erence between the exact potential U and the multipole expansionUQ in Eq. (6) is given byU(~r)� UQ(~r) = 4�X̀m Y m` (~r=r)2`+ 1 Z �(~r0)� r<̀r`+1> � r0`r`+1�Y m�` (~r0=r0) d3r0 :(10)Because of r<̀r`+1> � r0`r`+1 = 0 for r0 � r (11)the di�erence U � UQ can also be represented asU(~r)� UQ(~r) = 4�X̀m Y m` (~r=r)2`+ 1 Zr0>r �(~r0)� r`r0`+1 � r0`r`+1�Y m�` (~r0=r0) d3r0 :(12)If �(~r) decays su�ciently rapidly for large arguments, the contributions withangular momentum quantum number ` to the di�erence U � UQ will go tozero for large r (unless they vanish anyway by symmetry). In the case of theexample �(~r) = exp(�r) with  > 0, only the term with ` = 0 survives theangular integration and one obtainsU(~r)�UQ(~r) = 4� Z 1r exp(�r0)� 1r0 � 1r� r02 dr0 = �4� exp(� r) (2 +  r)r 3 :(13)Hence, the di�erence U �UQ vanishes for large r exponentially in this simplemodel example.Note that the multipole expansion UQ for ~r 6= 0 is a solution of theLaplace equation r2UQ = 0. But the exact electrostatic potential U satis�esthe Poisson equation (atomic units)r2U(~r) = �4��(~r) : (14)This implies that also the di�erence U � UQ is a solution of this Poissonequation. A further consequence is that the multipole expansion can only bea good approximation to U where the charge density is small, i.e., for largedistances from the origin.An advantage of the multipole expansion is that the moments Qm̀ or q`,respectively, to a given charge distribution � can be computed once and forall, and then, the multipole approximation UQ(~r) of U(~r) can be computedvery easily for very many arguments ~r. The exact expansion (3) of U(~r) onthe other hand is more demanding computationally. It requires the calcula-tion of the integrals ~Zm̀(r) = Z �(~r0) r<̀r`+1> Y m` (~r0=r0) d3r0 ; (15)6



that depend also on the distance r to the expansions centre. If the chargedensity � is rotationally symmetric around the direction ~R, then in analogyto Eq. (7) we have ~Zm̀(r) = Y m` (~R=R) ~z`(r) ; (16)and hence, the expansion (3) simpli�es toU(~r) = 4�X̀m Y m` (~r=r)2`+ 1 Y m�` (~R=R) ~z`(r) = 1X̀=0 P` ~r � ~RrR ! ~z`(r) : (17)This corresponds to the cylindrical symmetry of the problem since only thecoordinates r and � with rR cos � = ~r � ~R enter. Thus, one obtains anexpansion in Legendre polynomials that may or may not converge rapidly.3 Three-center Nuclear Attraction IntegralsIn the context of a LCAO (Linear Combination of Atomic Orbitals) calcula-tion of the matrix elements of the molecular Hamilton operator, integrals ofthe form I[�j; �k](~r) = Z ��j(~r0)�k(~r0)j~r � ~r0j d3r0 (18)occur. Here, �j(~r) and �k(~r) are two spatial orbitals that are centered eachat an atom, i.e., functions R3 ! C , the so-called atomic orbitals that are alsocalled basis functions in the following, and the (spatial) molecular orbitals �(~r) are linear combinations of the form �(~r) =Xj cj;��j(~r) : (19)A basis function �j(~r) with center ~Rj can be written as�j(~r) = �j(~r � ~Rj) (20)where in quantum chemistry the �j factorize in a radial and an angularpart according to �j(~r) = �j(r)�j(�; �) For cartesian basis functions, theangular part is proportional to products of the form xaybzc, for spherical basisfunctions, it is given by spherical harmonics Y m` (�; �). The radial part hasthe form P (r) exp(��r� ), where P is a polynomial. Gaussian-type orbitals(GTO) correspond to � = 2, and exponential-type orbitals (ETO) correspondto � = 1. The simplest representatives of these two classes of basis functionsare the 1s GTO G(�;~r) = exp(��r2) (21)7



and the 1s ETO e(�;~r) = exp(��r) : (22)The latter is, up to a constant factor, on the one hand nothing but the specialcase n = 1, ` = m = 0 of the most popular ETOs, the Slater-type Orbitals(STO) (cp. [128] and [46], Eq. (2.1))�mn;`(�;~r) = (� r)n�1 exp(��r)Y m` (�; �) ; (23)and on the other hand it is identical to the most simple B function that arede�ned by [46], Eq. (2.14)Bmn;`(�;~r) = 12n+`(n+ `)!) k̂n�1=2(�r) (�r)` Y m` (�; �) (24)and are the ETOs with the most simple Fourier transform. The latter aretensorial generalizations of the reduced Bessel functions k̂� de�ned by [108],p. 275, Eq. (3.1): k̂�(z) = � 2��1=2 z�K�(z) (25)in terms of the modi�ed Bessel functions K�(z) of the second kind [129], p.66. The integrals I are called nuclear attraction integrals. They are examplesof the previously mentioned molecular integrals.There are three center in the case of nuclear attraction integrals (theorigin, ~Rj, ~Rk in the case of I[�j; �k](~r)) that can, however, coincide. Thecorresponding one- and two-center nuclear attraction integrals are usuallycomputationally much simpler than the three-center nuclear attraction inte-grals. The latter are the topic of the present section.Depending on the choice of basis functions, the calculation of nuclearattraction integrals may be complicated or simple.In the case of GTOs the computation of the nuclear attraction integralsis relatively simple since products of GTOs at two centers can be easilyrepresented by GTOs at a single center. This implies that for GTOs three-center nuclear attraction integrals are easily expressed in terms of two-centerintegrals.In the case of ETOs the computation of three-center nuclear attractionintegrals is substantially more di�cult. Using the Fourier transformationmethod for such integrals with B functions, one can use a two-dimensionalintegral representation in combination with numerical quadrature. [51], [52],[55]. This contains, however, oscillating terms that limit the achievable ac-curacy for large distances of the centers. Thus, there is a need for methods8



that work for large distances. One alternative is the use of expansions inspherical harmonics or of multipole expansions.The idea is relatively simple:For real basis functions, the product �jk(~r) = �j(~r)�k(~r) can be regardedas a charge density. The associated electrostatic potential then correspondsexactly to the nuclear attraction integral I, as may be seen easily from acomparison of Eqs. (1) and (18).Especially, the exact expansion (3) with respect to spherical harmonicsand the approximate multipole expansion (6) can be applied in this contextas well.Recently, procedures of this kind have been studied, mainly by Fern�andezRico and coworkers [80], [81], [82], [83], [84], [85], [86], [87], [88] and by Jonesand coworkers [90], [91], [92], [93], [94], [95], [96], [97], [98], [99].This work has been taken up by the group around Bouferguene and insome papers [78], [79], these authors tried to apply convergence acceleratorsto expansions that are analogous to Eq. (3) using mainly the � algorithm.Since orthogonal expansions are involved it is to be expected that specialmethods for this type of series are advantageous.4 Extrapolation Methods for Orthogonal Ex-pansionsFor extrapolation of expansions in orthogonal polynomials of the forms(x) = 1Xj=0 cj Pj(x) (26)with partial sums sn(x) = nXj=0 cj Pj(x) ; (27)not many methods are known to work well. Besides the well-known � algo-rithm of Wynn and the d(m) transformations [130], there are methods basedon the acceleration of related complex power series [121], [124], [125]. Ifone does not like to work with complex arithmetics, one may use also theso-called K transformation [120]. The K transformation may be regardedas a generalization of the I transformation that has proved to be useful fortrigonometric Fourier series [119], [123]. Both transformations are obtainedby iteration of a simple transformation.We sketch the main ideas that lead to the K transformation.9



Consider the sequence of the partial sums sn to be extrapolated as givenin Eq. (27), and write it in terms of the limit s and a tail tn assn = s+ tn ; tn = � 1Xj=n+1 cj Pj(x) : (28)By using the usual three-term recurrence relation of the orthogonal polyno-mials Pn(x) repeatedly, one may express the tail astn = �n+1(x)Pn+1(x) + �n+1(x)Pn+2(x) (29)One may express Pn+2(x) as linear combination of Pn+1(x) and Qn+1(x) withx-dependent coe�cients.Remark This is always possible in the cases of interest, at least asymp-totically for large n. For example, specializing to Legendre functionsPn(x) and Qn(x) that satisfy the recurrence relation wn+1(x) = (2n +1)xwn(x)=(n+1)�nwn�1=(n+1) with the initial conditions P0(x) = 1,P1(x) = x, Q0(x) = log((1+x)=(1�x))=2, Q1(x) = xQ0(x)�1, one hasthe asymptotic relation[130] Pn(cos �)�i 2�Qn(cos �) = exp(in�)kn�1=2 (1 +O(1=n))for large n where k is a constant. An easy calculation then showsPn+1(cos �) = (1 + 1=n)�1=2(cos � Pn(cos �) + 2 sin � Qn(cos �)=�)(1 +O(1=n)) for large n.Using this method, it is possible to rewrite the tails astn = An+1(x)Pn+1(x) +Bn+1(x)Qn+1(x) (30)Assuming that the leading behavior of An(x) and Bn(x) for large n is up toconstants c and d given by remainder estimates !n, model sequences of theform sn = s+ !n (c ~Pn(x) + d ~Qn(x)) (31)are obtained where the ~Pn(x) = Pn+1(x) and ~Qn(x) = Qn+1(x) obey thethree-term recursion �(0)n vn + �(1)n vn+1 + �(2)n vn+2 = 0 (32)where the coe�cients �(j)n for j = 0; 1; 2 are x dependent. Rewriting this assn � s!n = c ~Pn(x) + d ~Qn(x) (33)10



and applying the recursion relation (32) to both sides of the equation, oneobtains �(0)n sn � s!n + �(1)n sn+1 � s!n+1 + �(2)n sn+2 � s!n+2 = 0 : (34)This may be solved for s. Then, we obtains = �(0)n sn!n + �(1)n sn+1!n+1 + �(2)n sn+2!n+2�(0)n 1!n + �(1)n 1!n+1 + �(2)n 1!n+2 ; (35)i.e., we can calculate the exact limit s for model sequences of the form (31).If a given sequence sn di�ers from this model, one cannot expect to calculatethe limit exactly by this simple formula, but applying it is expected to yield asequence of approximations that is closer to the limit if the problem sequenceis \close" to the model. Thus, one obtains a sequence transformation givenby the expression s(1)n = �(0)n sn!n + �(1)n sn+1!n+1 + �(2)n sn+2!n+2�(0)n 1!n + �(1)n 1!n+1 + �(2)n 1!n+2 : (36)We say that this transformation is exact for model sequences of the form (31)since it allows to calculate the exact limit s for such model sequences. This isthe simple sequence transformation mentioned above that is to be iterated.Iteration leads to the recursive schemeN(0)n = sn=!n ; D(0)n = 1=!n ;N(k+1)n = ��(0)n+kN(k)n + �(1)n+k N(k)n+1 + �(2)n+kN(k)n+2�. �(k)n ;D(k+1)n = ��(0)n+kD(k)n + �(1)n+kD(k)n+1 + �(2)n+kD(k)n+2�. �(k)n ;K(k)n (f�(k)n g; f�(j)n g; fsng; f!ng) = N(k)n =D(k)n (37)
that de�nes the K transformation. Here, the �(k)n are auxiliary quantities.This transformation is a nonlinear sequence transformation, if the !n dependon the sn.We make the important observation that in each step of the iterationnumbered by k, a new sequence of remainder estimates is used accordingto !(k)n = 1=D(k)n , and that the lower index of the recursion coe�cients �(j)nis shifted by k. Note that the remainder estimates !(k)n depend only on theoriginal remainder estimates !n = !(0)n and the auxiliary quantities �(k)n . Note11



that the recursion relations for the numerators and denominators are nothingbut the application of the three-term recurrence relation for Pn+k(x) (up to ascaling inducing by the �(k)n ). Thus, the sequence transformation eliminatesapproximately contributions of orthogonal functions Pn(x) (and Qn(x)) forsuccessive higher values of n.We specialize to the case of expansions in Legendre polynomials. Here,the input sequence sn of partial sums (27) is transformed into a new sequencefsng �! fs0ng = fK([[n=2]])n�2[[n=2]](f�(k)n g; f(j)n g; fsng; f!ng)g (38)with (0)n = n+2, (1)n = �(2n+5)x and (2)n = n+3. The latter correspondto the three-recurrence relation for Pn+1. By [[x]] we denote the integer partof x.The transformed sequence converges normally much faster than the orig-inal one if the coe�cients cj in (26) do not oscillate itself, and also consid-erably faster than the estimates obtained using the � algorithm. [120] Forfurther information on the extrapolation of orthogonal expansions see also[131], [121].If the maximal value of n is 2N , i.e., if only partial sum up to s2N areavailable, then s2N is a polynomial of degree 2N in x. In this case, thetransformed quantities s02N = K(N)0 (f�(k)n g; f(j)n g; fsng; f!ng)g are a rationalfunction in x of the form s02N = p2N(x)qN (x) (39)where p2N (x) is a polynomial of degree 2N and qN(x) is a polynomial ofdegree N . For instance, for �(k)n = 1=(n+ 1), !n = cn, and N = 2 we haves04 = �12(x4 c4 c1 c3 c2 + (�196 c12 c3 c4 + 492 c4 c1 c22 � 300 c1 c2 c32) x3+ (�c1 c2 c3 c4 � 196 c1 c3 c4 c0 + 328 c4 c12 c2 � 180 c1 c22 c3) x2 + (114 c2 c3 c4 c0 � 164 c4 c1 c22 + 328 c4 c1 c2 c0 + 180 c1 c2 c32� 120 c12 c2 c3 � 114 c12 c3 c4)x+ 60 c1 c22 c3 � 120 c1 c2 c3 c0� 114 c1 c3 c4 c0)c0.(98 x2 c4 c1 c3 c0+ (�164 c4 c1 c2 c0 � 57 c2 c3 c4 c0) x+ 6 c1 c2 c3 c4 + 60 c1 c2 c3 c0+ 57 c1 c3 c4 c0)ands4 = 358 c4 x4 + 52 c3 x3 + (32 c2 � 154 c4) x2 + (c1 � 32 c3) x+ c0 � 12 c2 + 38 c4 :12



If the evaluation of the expansion at many values of x is required, then itpays to compute the coe�cients of numerator and denominator polynomialonce and for all from the known coe�cients cj, and then, the additionalnumerical e�ort in comparison to the term-wise summation of the expansionis the additional evaluation of a polynomial of degree N . As we will see, theresulting expression s02N is much more accurate than s2N . For instance, s04 isoften 1000fold more accurate than s4.Although this approach of �xing the maximum value of n throughout isvery cost-e�ective, it has some disadvantages: The accuracy is not uniform,ie., not the same for all angles. Further, as seen from the explicit expressionfor s04, there are some values of x = cos � for which the denominator poly-nomial vanishes. These angles may easily be identi�ed in advance. In thevicinity of these angles either the explicit summation or linear convergence[132], [133] acceleration may be used. Then, however, convergence is muchslower usually. Thus, a hybrid algorithm would have to be designed. Alter-natively, by using the whole sequence of the s0n as computed via the recursivescheme de�ning the K transformation, one can stop the calculation when thedi�erence between consecutive approximations lies below a threshold. Thismethod will result in more uniform approximations. Also, for nonlinear con-vergence accelerators, one may use progressive forms and particular rules toavoid the rare cases that the denominators vanish (cp. [131], and [134] andreferences therein). Alternatively, the simple device to replace an acciden-tally vanishing denominator by a small number near the smallest oatingpoint number and simply to go on with the recursive algorithm, has provento work surprisingly well. [135] The latter approach can also be implementedin the programs for the K transformation that were used in the present work.We further remark that in the vicinity of the singularities of the Legendreseries the convergence of the original series may become exceedingly slow (likeO(1=n�) for small �). In this case, convergence acceleration is especiallydesirable. Straightforward application of nonlinear convergence acceleratorsis not the best way to evaluate the sum of the orthogonal series. Instead,it is much better to use the ��fold frequency approach. (� : "tau") Thisis essentially the application of a convergence acceleration method to thesequence fs�ng1n=0 = fs0; s� ; s2� ; : : :g for some suitable integer � > 1. In thecase of the K transformation, this produces approximations�sn = K([[n=2]])n�2[[n=2]](f�(k)n g; f(j)n g; fs� ng; f�!ng) (40)using (0)n = n + 2, (1)n = �(2n + 5) x� , and (2)n = n + 3 corresponding tothe three-term recurrence relation of Legendre polynomials at the argumentx� = cos(� arccos(x)) : (41)13



One may choose the remainder estimated in this approach for instance as�!n = c�n, i.e., as suitable coe�cients of the Legendre series. For furtherdetails of the ��fold frequency approach, the interested reader is referred tothe literature [121], [122], [123], [124], [125]. We are not going to use thisapproach in the following for simplicity.5 A Simple ExampleWe study as a simple example a charge density�(~r) = exp(��r) exp(��j~r � ~Rj) (42)corresponding to a two-center product of 1s-ETOs. For the electrostaticpotential of this density, we haveU(~r) = Z exp(��r0) exp(��j~r0 � ~Rj)j~r � ~r0j d3r0= 4�X̀m Y m` (~r=r)2`+ 1 Z r<̀rl+1> Y m�` (~r0=r0)� exp(��r0) exp(��j~r0 � ~Rj) d3r0= 4�X̀m Y m` (~r=r)2`+ 1 Z r<̀r`+1> Y m�` (~r0=r0) exp(��r0)� �4�pr0R X̀0m0 Y m0`0 (~r0=r0)Y m0�`0 (~R=R)� � @@�� I`0+1=2(�r0<)K`0+1=2(�r0>) d3r0
(43)

with r0< = min(r0; R) and r0> = max(r0; R). Here, the addition theorem [117],[78]exp(��pr2 + �2 � 2r� cos �) = � 1X̀=0 (2`+1)P`(cos �) 1pr� @@� [I`+1=2(�r)K`+1=2(��)](44)of the exponential function was used that holds for r < �. Further, theaddition theorem (8) of the spherical harmonics was used. Now, the or-thonormality of the spherical harmonics yieldsU(~r) = �4�pR 1X̀=0 P` �~r � ~R=(rR)�Z 10 r03=2 r<̀r`+1> exp(��r0)� � @@�� I`+1=2(�r0<)K`+1=2(�r0>) dr0 : (45)14



The remaining radial integral can be computed with the help of Maple. Thisapproach avoids rounding errors that can easily spoil the calculation of theintegral [78]. We note that the result is of the form (17), with~z`(r) = �4�pR Z 10 r03=2 r<̀r`+1> exp(��r0)� @@�� I`+1=2(�r0<)K`+1=2(�r0>) dr0 :(46)Analogously, one obtains for the multipole expansion of this charge densityan equation of the form (9),UQ(~r) = �4�pR 1X̀=0 P` �~r � ~R=(rR)�Z 10 r03=2 r0`r`+1 exp(��r0)� � @@�� [I`+1=2(�r0<)K`+1=2(�r0>)] dr0 ; (47)and for the multipole moments followsq` = �4�pR Z 10 r03=2+` exp(��r0)� @@�� [I`+1=2(�r0<)K`+1=2(�r0>)] dr0 (48)which can also be computed advantageously with Maple.6 Numerical TestsWe study the charge density �(~r) = �(x; y; z) of Eq. (42) in the last sectionfor � = 3=10, � = 1 and ~R = 2~ez, where ~ez is the unit vector in z direction.It is rotationally symmetric around the z axis. This density is also plottedin http://www.chemie.uni-regensburg.de/ECCC/4/rho.ps as a function of xand z for y = 0.The corresponding electrostatic potential is also rotationally symmetricaround the z axis, a function of z andpx2 + y2 only or, equivalently, only ofr =px2 + y2 + z2 and � with cos � = z=r. This is also valid for the multipoleexpansion (47) and the exact expansion (45) in spherical harmonics.6.1 Multipole ExpansionThe multipole moments q` are displayed in Tab. 1. They grow relatively fastwith `.In Tabs. 2-5 we display for various combinations of r and � the partialsums s` = X̀j=0 Pj (cos �) qjrj+1 (49)15



and the transformed valuess0̀ = K([[`=2]])`�2[[`=2]](f(`+ 1)�1g; f(j)` g; fs`g; fq`=r`+1g)g (50)with (0)` = `+2, (1)` = �(2`+5) cos � and (2)` = `+3 corresponding to therecursion of the Legendre polynomials P`+1(cos �). These values are roundedand can not display more than 16 exact decimal digits. The de�nition Eq.(37) of the K transformation is used. Also displayed is for both sequencess` and s0̀ the number of exact digits. This is de�ned as the negative decadiclogarithm of the relative error as indicated also in the table headers.Also, we display in Figures 1, 2, and 3 graphically the performance ofthe acceleration method for the multipole expansion using partial sums s` upto ` = 20. Plotted are the achievable number of exact digits without (Fig.1) and with acceleration (Fig. 1), and the gain, i.e., the additional digitsachieved using the acceleration method, as a function of r and x = cos(�).For simplicity, the � -fold frequency approach was not used, and hence theperformance is better for larger distances from the singularity at r = andx = 1.From these tables and �gures, one observes a clear increase of the accuracyby using the extrapolation method. Already for smaller values of `, there isa drastic reduction of the error. A gain of three and more digits is typicaland corresponds to a reduction of the error by a factor of 1000 or more.Let us remark that the additional numerical e�ort for the extrapolationis very low in comparison to the evaluation of the multipole moments.6.2 Exact Expansion in spherical harmonicsIn Tabs. 6-8 we plot for various combinations of r and � the partial sumss` = X̀j=0 Pj (cos �) ~zj(r) (51)of the exact expansion (45) and the transformed valuess0̀ = K([[`=2]])`�2[[`=2]](f(`+ 1)�1g; f(j)` g; fs`g; f~z`(r)g)g (52)with (0)` = ` + 2, (1)` = �(2` + 5) cos � and (2)` = ` + 3 correspondingto the recursion of the Legendre polynomials P`+1(cos �). As in the case ofthe multipole expansion the values are rounded to 16 decimal digits. Thede�nition Eq. (37) of the K transformation is used. Also, we plot for bothsequences s` and s0̀ the corresponding number of exact digits. As before, this16



number is de�ned as the negative decadic logarithm of the relative error asindicated also in the table headers.Comparison of Tabs. 2 with 6, 3 with 7 and 4 with 8, that have beencomputed for the same point, respectively, reveals that the converged extrap-olated values di�er considerably. This means that in this way the di�erenceU � UQ can be evaluated.Let us remark that also in this case the additional numerical e�ort for theextrapolation is very low in comparison to the evaluation of the coe�cientsof the orthogonal expansion.In summary, it can be stated that the acceleration of the expansion inLegendre polynomials via the K transformation leads to pronounced errorreduction, as well in the case of the multipole expansion as well as in thecase of the exact computation of the electrostatic potential. Put anotherway, for achieving a certain accuracy, considerably less multipole momentsor expansion coe�cients, respectively, are necessary if a problem adaptedextrapolation method as the K transformation is used.7 TablesFor detailed explanations of the meaning of the displayed data see Sec. 6.8 FiguresFor detailed explanations of the meaning of the displayed data see Sec. 6.References[1] F. Schwabl. Quantenmechanik. Springer-Verlag, Berlin, 1988.[2] T. R. J. Dinesen and B. C. Sanctuary. Relaxation of anisotropicallyoriented I=3/2 nuclei in the multipole basis. Evolution of the secondrank tensor in the double quantum �ltered NMR experiment. J. Chem.Phys., 101(9):7372{7380, 1994.[3] W. Kutzelnigg. Einf�uhrung in die Theoretische Chemie., volume 2: DieChemische Bindung. VCH Verlagsgesellschaft, Weinheim, 2 edition,1994.[4] A. M. K�oster, C. K�olle, and K. Jug. Approximation of molecular elec-trostatic potentials. J. Chem. Phys., 99:1224{1229, 1993.17
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Table 1: Multipole Moments q`` q` ` q`0 9.6145542836957232�100 15 5.6126132139082320�1041 1.5111468162060430�101 16 1.0526398832720890�1052 2.4972140819932912�101 17 1.9791327162842600�1053 4.2508094215318600�101 18 3.7295814285560472�1054 7.3829280479536656�101 19 7.0429819898685744�1055 1.3014160081924070�102 20 1.3325858332275628�1066 2.3205220342856620�102 21 2.5258921378457704�1067 4.1759801415517728�102 22 4.7958001073652480�1068 7.5724460859402144�102 23 9.1198033217610032�1069 1.3819758024471442�103 24 1.7367785134246278�10710 2.5360253549353620�103 25 3.3120638623127288�10711 4.6760909010975208�103 26 6.3243038872318152�10712 8.6583940808828048�103 27 1.2090777865352850�10813 1.6092055362945430�104 28 2.3141623269443344�10814 3.0007868261207612�104 29 4.4340905859803936�108[5] A. Buckingham. Basic theory of intermolecular forces: Applicationsto small molecules. In B. Pullman, editor, Intermolecular Interactions:From Diatomics to Biopolymers, pages 1{67. Wiley, 1978.[6] J. W. Storer, D. J. Giesen, C. J. Cramer, and D. G. Truhlar. Class IVcharge models: A new semiempirical approach in quantum chemistry.J. Comput.-Aid. Mol. Des., 9:87{110, 1995.http://wucmd.wustl.edu/jcamd/278/paper.html.[7] D. E. Williams. Net Atomic Charge and Multipole Models for the AbInitio Molecular Electric Potential. In Boyd and Lipkowitz [136], pages219{271.[8] C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman. A well-behaved electrostatic potential based method using charge-restraintsfor deriving charges: The RESP model. J. Phys. Chem., 97:10269{10280, 1993.[9] J. P. Bowen and N. L. Allinger. Molecular Mechanics: The Art andScience of Parameterization. In Boyd and Lipkowitz [136], pages 81{97.19



Table 2: K transformation of the multipole expansion for r = 4 and � = 60degree` s` s0̀ � lg j1� s`=sj � lg j1� s0̀=sj11 2.7418043436441288 2.7418396451187988 4.9 8.513 2.7418444420453968 2.7418396360933220 5.8 9.815 2.7418400997161048 2.7418396365510044 6.8 11.317 2.7418393319135280 2.7418396365368780 7.0 13.219 2.7418396810712432 2.7418396365366408 7.8 13.621 2.7418396408021740 2.7418396365367192 8.8 14.623 2.7418396335310588 2.7418396365367116 9.0 125 2.7418396369949232 2.7418396365367116 9.8 1[10] W. D. Cornell, P. Cieplak, C. I. Bayly, and P. A. Kollman. Applicationof RESP charges to calculation conformational energies, hydrogen bondenergies, and free energies of solvation. J. Am. Chem. Soc., 115:9620{9631, 1993.[11] U. Dinur and A. T. Hagler. New Approaches to Empirical Force Fields.In Boyd and Lipkowitz [136], pages 99{164.[12] J. Maple, M.-J. Hwang, T. Stock�sch, U. Dinur, M. Waldman, C. Ewig,and A. Hagler. Derivation of class II force �elds. I. Methodology andquantum force �eld for the alkyl functional group and alkane molecules.J. Comp. Chem., 15(2):162{182, 1994.[13] C. A. Reynolds, J. W. Essex, and W. G. Richards. Atomic charges forvariable molecular conformations. J. Amer. Chem. Soc., 114(23):9075{9079, 1992.[14] D. Woon. Accurate modeling of intermolecular forces: a systematicM�ller-Plesset study of the argon dimer using correlation consistentbasis sets. Chem. Phys. Lett., 204(1,2):29{35, 1993.[15] S. M. Bachrach. Population Analysis and Electron Densities fromQuantum Mechanics. In D. B. Boyd and K. B. Lipkowitz, editors,Reviews in Computational Chemistry, volume 5, pages 171{227. VCHPublishers, New York, 1994.[16] I. Mayer. Charge, bond order and valence in the ab initio SCF theory.Chem. Phys. Lett., 97:270{274, 1983.20



Table 3: K transformation of the multipole expansion for r = 4 and � = 2degree` s` s0̀ � lg j1� s`=sj � lg j1� s0̀=sj5 4.0055910661641912 4.0310298596769504 2.2 6.07 4.0258375726969488 4.0310259627927432 2.9 8.19 4.0299452870267560 4.0310259342473168 3.6 10.311 4.0307974518518776 4.0310259340256136 4.2 12.513 4.0309770827258808 4.0310259340268592 4.9 14.215 4.0310154000570728 4.0310259340268832 5.6 117 4.0310236476902344 4.0310259340268832 6.2 119 4.0310254353074664 4.0310259340268832 6.9 1Table 4: K transformation of the multipole expansion for r = 12 and � = 2degree` s` s0̀ � lg j1� s`=sj � lg j1� s0̀=sj2 0.9205147491201462 0.9229094827555278 2.6 5.14 0.9228521264440244 0.9229028304339108 4.3 9.76 0.9229017067530020 0.9229028306219438 5.9 11.58 0.9229028050126544 0.9229028306190520 7.6 110 0.9229028300243444 0.9229028306190520 9.2 1[17] I. Mayer. Comment: Comment on the quantum theory of valence andbonding: Choosing between alternative de�nitions. Chem. Phys. Lett.,110:440{444, 1984.[18] I. Mayer. The LCAO representation of the �rst order density matrixin non-orthogonal basis sets: A note. J. Mol. Struct. (Theochem),255:1{7, 1992.[19] F. Momany and R. Rone. Validation of the general purpose QUANTA3.2/CHARMm force �eld. J. Comp. Chem., 13(7):888{900, 1992.[20] F. Momany, R. Rone, H. Kunz, R. F. Frey, S. Q. Newton, andL. Schafer. Geometry optimization, energetics, and solvation studieson four and �ve membered cyclic and disul�de bridged peptides, usingthe programs QUANTA3.3/CHARMm22. J. Mol. Struct. (Theochem),286:1{18, 1993. 21



Table 5: K transformation of the multipole expansion for r = 3 and � = 45degree` s` s0̀ � lg j1� s`=sj � lg j1� s0̀=sj14 4.3489633745055632 4.3493388832962536 4.1 8.416 4.3492565069391536 4.3493388972986296 4.7 9.518 4.3493913460628168 4.3493388992014864 4.9 10.020 4.3493504034221608 4.3493388987593184 5.6 11.122 4.3493312030632704 4.3493388987929736 5.8 12.624 4.3493372120197552 4.3493388987948584 6.4 12.826 4.3493400696609064 4.3493388987940592 6.6 13.728 4.3493391551806856 4.3493388987941480 7.2 1[21] H. Carlson, T. Nguyen, M. Orozco, and W. Jorgensen. Accuracy offree energies of hydration for organic molecules from 6-31g(d)- derivedpartial charges. J. Comput. Chem., 14:1240{1249, 1993.[22] M. E. Davis. The inducible multipole solvation model: A new modelfor solvation e�ects on solute electrostatics. J. Chem. Phys., 100:5149{5159, 1994.[23] M. E. Davis. Erratum: The inducible multipole solvation model: Anew model for solvation e�ects on solute electrostatics. J. Chem. Phys.,101:3414(E), 1994.[24] E. Du�y, D. Severance, and W. Jorgensen. Urea: Potential functions,logP, and free energy of hydration. Isr. J. Chem., 33:323{330, 1993.[25] W. L. Jorgensen and J. Gao. Cis-trans energy di�erence for the peptidebond in the gas phase and in aqueous solution. J. Am. Chem. Soc.,110:4212{4216, 1988.[26] W. L. Jorgensen, J. Madura, and C. Swenson. Optimized intermolec-ular potential functions for liquid hydrocarbons. J. Am. Chem. Soc.,106:6638{6646, 1984.[27] W. L. Jorgensen and D. Severance. Aromatic-aromatic interactions:Free energy pro�les for the benzene dimer in water, chloroform, andliquid benzene. J. Am. Chem. Soc., 112:4768{4774, 1990.22



Table 6: K transformation of the expansion in spherical harmonics for r = 4and � = 60 degree` s` s0̀ � lg j1� s`=sj � lg j1� s0̀=sj5 2.6360864318669988 2.6377072675101864 3.2 5.26 2.6374837369057832 2.6377515327293168 4.0 5.07 2.6378518176502576 2.6377253830860056 4.3 6.08 2.6378042659979908 2.6377219784704452 4.5 6.49 2.6377350134378020 2.6377230006666316 5.3 8.610 2.6377151544952184 2.6377230256403856 5.5 8.211 2.6377179511190400 2.6377230015625168 5.7 8.712 2.6377222605455336 2.6377230070377540 6.5 10.913 2.6377235638641044 2.6377230071786740 6.7 10.214 2.6377233701261704 2.6377230069889060 6.9 11.115 2.6377230603586148 2.6377230070087064 7.7 12.716 2.6377229633254132 2.6377230070085216 7.8 12.817 2.6377229782819236 2.6377230070080356 8.0 13.518 2.6377230028127904 2.6377230070081392 8.8 14.219 2.6377230106880184 2.6377230070081228 8.9 120 2.6377230094424720 2.6377230070081228 9.0 1[28] W. L. Jorgensen and J. Tirado-Rives. The OPLS potential functionsfor proteins. Energy minimizations for crystals of cyclic peptides andCrambin. J. Am. Chem. Soc., 110:1657{1666, 1988.[29] W. A. Sokalski and A. Sawaryn. Correlated molecular and cumulativeatomic multipole moments. J. Chem. Phys., 87:526{534, 1987.[30] A. J. Stone and M. Alderton. Distributed multipole analysis. Methodsand applications. Mol. Phys., 56:1047{1064, 1985.[31] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole al-gorithm for particle simulations. SIAM J. Sci. Statist. Comput., 9:669{686, 1988.[32] L. Greengard. The Rapid Evaluation of Potential Fields in ParticleSystems. MIT Press, Cambridge, Mass., 1988.23



Table 7: K transformation of the expansion in spherical harmonics for r = 4and � = 2 degree` s` s0̀ � lg j1� s`=sj � lg j1� s0̀=sj10 4.5865590596837048 4.5866525846910224 4.7 6.412 4.5866776132666136 4.5866544475900856 5.3 7.714 4.5866762505499168 4.5866543754774488 5.3 8.516 4.5866652462194176 4.5866543587750376 5.6 9.418 4.5866588085511440 4.5866543606914784 6.0 10.820 4.5866559736808440 4.5866543607829960 6.5 11.422 4.5866548859890528 4.5866543607630656 6.9 13.124 4.5866545102511760 4.5866543607625712 7.5 13.526 4.5866543942048184 4.5866543607627224 8.1 15.328 4.5866543637663352 4.5866543607627240 9.2 15.5[33] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.J. Comput. Phys., 73:325{348, 1987.[34] L. Greengard and V. Rokhlin. Rapid evaluation of potential �elds inthree dimensions. In C. Anderson and C. Greengard, editors, VortexMethods, volume 1360 of Lecture Notes in Mathematics, pages 121{141.Springer-Verlag, Berlin, 1988.[35] V. Rokhlin. Rapid solution of integral equations of classical potentialtheory. J. Comput. Phys., 60:187{207, 1985.[36] H. G. Petersen, D. Soelvason, J. W. Perram, and E. R. Smith. Thevery fast multipole method. J. Chem. Phys., 101(10):8870{8876, 1994.[37] J. M. Perez-Jorda and W. Yang. A concise rede�nition of the solidspherical harmonics and its use in fast multipole methods. J. Chem.Phys., in press.[38] H. Y. Wang and R. LeSar. An e�cient fast multipole algorithm basedon an expansion in the solid harmonics. J. Chem. Phys., 104(11):4173{4179, 1996.[39] C. A. White and M. Head-Gordon. Derivation and e�cient implemen-tation of the fast multipole method. J. Chem. Phys., 101(8):6593{6605,1994. 24



Table 8: K transformation of the expansion in spherical harmonics for r = 12and � = 2 degree` s` s0̀ � lg j1� s`=sj � lg j1� s0̀=sj2 0.9205059009697086 0.9228996042830154 2.6 5.13 0.9225472237960400 0.9228930830704692 3.4 6.04 0.9228417168669332 0.9228922656178376 4.3 8.25 0.9228847832640386 0.9228922593965848 5.1 9.86 0.9228911451439840 0.9228922591923836 5.9 10.37 0.9228920922347056 0.9228922592384774 6.7 11.48 0.9228922340878756 0.9228922592424316 7.6 12.69 0.9228922554386146 0.9228922592422232 8.4 13.610 0.9228922586651554 0.9228922592421988 9.2 15.011 0.9228922591544072 0.9228922592421998 10.0 15.712 0.9228922592288100 0.9228922592421998 10.8 16.0[40] J. A. Board, Jr., J. W. Causey, J. F. Leathrum, Jr., A. Windemuth,and K. Schulten. Accelerated molecular dynamics simulation with theparallel fast multipole algorithm. Chem. Phys. Lett., 198:89{94, 1992.[41] A. Windemuth. Advanced algorithms for molecular dynamics simula-tion: The program PMD. In T. G. Mattson, editor, Parallel Computingin Computational Chemistry. ACS Books, 1995.[42] A. Windemuth and K. Schulten. Molecular dynamics on the Connec-tion Machine. Molec. Simul., 5:353{361, 1991.[43] R. Zhou and B. J. Berne. A new molecular dynamics method com-bining the reference system propagator algorithm with a fast multipolemethod for simulating proteins and other complex systems. J. Chem.Phys., 103(21):9444{9459, 1995.[44] J. Delhalle, L. Piela, J.-L. Br�edas, and J.-M. Andr�e. Multipole ex-pansion in tight-binding Hartree-Fock calculations for in�nite modelpolymers. Phys. Rev. B, 22:6254 { 6267, 1980.[45] R. A. Bonham, J. L. Peacher, , and H. L. Cox, Jr. On the calculation ofmulticenter two-electron repulsion integrals involving Slater functions.J. Chem. Phys., 40:3083{3086, 1964.25



Gain

-1

-0.5

0

0.5

1
2

3
4

5
6

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

\cos(\theta)

r

Digits

Figure 3: Gain (eps-�le6)[46] E. Filter and E. O. Steinborn. Extremely compact formulas for molec-ular one-electron integrals and Coulomb integrals over Slater-typeatomic orbitals. Phys. Rev. A, 18:1 { 11, 1978.[47] M. Geller. Two-center integrals over solid spherical harmonics. J.Chem. Phys, 39:84{89, 1963.[48] J. Grotendorst and E. O. Steinborn. The Fourier transform of a two-center product of exponential-type functions and its e�cient evalua-tion. J. Comput. Phys., 61:195 { 217, 1985.[49] J. Grotendorst and E. O. Steinborn. Numerical evaluation of molecu-lar one- and two-center multicenter integrals with exponential-type or-bitals via the Fourier-transform method. Phys. Rev. A, 38:3857{3876,1988.[50] J. Grotendorst, E. J. Weniger, and E. O. Steinborn. E�cient evaluationof in�nite-series representations for overlap, two-center nuclear attrac-tion and Coulomb integrals using nonlinear convergence accelerators.Phys. Rev. A, 33:3706 { 3726, 1986.26



[51] H. H. H. Homeier. Integraltransformationsmethoden und Quadra-turverfahren f�ur Molek�ulintegrale mit B-Funktionen, volume 121 ofTheorie und Forschung. S. Roderer Verlag, Regensburg, 1990. Also:Doctoral dissertation, Universit�at Regensburg.URL: http://www.chemie.uni-regensburg.de/pub/preprint/preprint.html#Homeier90phd.[52] H. H. H. Homeier and E. O. Steinborn. Improved quadrature meth-ods for three{center nuclear attraction integrals with exponential{typebasis functions. Int. J. Quantum Chem., 39:625{645, 1991.[53] H. H. H. Homeier and E. O. Steinborn. Improved quadrature methodsfor the Fourier transform of a two{center product of exponential{typebasis functions. Int. J. Quantum Chem., 41:399{411, 1992.[54] H. H. H. Homeier and E. O. Steinborn. On the evaluation of overlap in-tegrals with exponential{type basis functions. Int. J. Quantum Chem.,42:761{778, 1992.[55] H. H. H. Homeier and E. O. Steinborn. Programs for the evaluationof nuclear attraction integrals with B functions. Comput. Phys. Com-mun., 77:135{151, 1993.[56] H. H. H. Homeier and E. O. Steinborn. Some properties of the couplingcoe�cients of real spherical harmonics and their relation to Gaunt coef-�cients. J. Mol. Struct. (THEOCHEM), 368:31{37, 1996. Proceedingsof the 2nd Electronic Computational Chemistry Conference.http://www.chemie.uni-regensburg.de/ECCC/2/paper.17/index.html.[57] H. H. H. Homeier, E. J. Weniger, and E. O. Steinborn. Programs forthe evaluation of overlap integrals with B functions. Comput. Phys.Commun., 72:269{287, 1992.[58] R. L�opez and G. Ram��rez. Calculation of two-center exchange integralswith STOs using M�obius transformations. Int. J. Quantum Chem.,49:11{19, 1994.[59] K. O-Ohata and K. Ruedenberg. Two-center Coulomb integrals be-tween atomic orbitals. J. Math. Phys., 7:547{559, 1966.[60] F. P. Prosser and C. H. Blanchard. On the evaluation of two-centerintegrals. J. Chem. Phys., 36:1112, 1962.[61] M. A. Rashid. Simple expressions for radial functions appearing in theexpansions of Ym1`1 (r)Fm2`2 (r) and r2nYm1`1 (r)Fm2`2 (r). J. Math. Phys.,27:549{551, 1986. 27
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