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Abstract

We propose to map logarithmically converging sequences to linearly
converging sequences using interpolation. After this, convergence acceler-
ators for linear convergence become effective. The interpolation approach
works also if only relatively few members of the problem sequence are
known, contrary to several other approaches. The effectiveness of the ap-
proach is demonstrated for a particular example.
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1 Description of the Method

Many slowly convergent sequences {s, }nen satisfy the equation

nli_{rolo(sn+1 —8)/(sn—38)=p (1)
and are called linearly convergent if 0 < |p| < 1, and logarithmically convergent
for p = 1. In particular, logarithmically convergent sequences are slowly conver-
gent and notoriously difficult to extrapolate and so, there is quite a large litera-
ture on special methods to deal with this problem. A necessarily incomplete list
of references is [1-22]. More general references for extrapolation, convergence
acceleration, and summation of divergence are [4,9, 20, 21].

The reason for the problems with logarithmically convergent sequences is
that there is no single method that is able to provide convergence acceleration for
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all such sequences as shown by Delahaye and Germain-Bonne [5]. This implies
that a large variety of methods are required, although there are some methods
that seem to work for larger subsets of the set of logarithmically convergent
sequences [7,19].

For linearly convergent sequences, many methods are known to work [4,
8,10,20,23]. Thus, there have been attempts to use only linearly convergent
subsequences of the logarithmically convergent sequence [3,18]. In this way,
the usual convergence accelerators for linearly convergent sequences, like the €
algorithm [23], the Levin transformation [10], and the iterated version [4, 20, 21]
of the famous A? process [24] become applicable. The main problem of these
approaches is that usually a very large number of sequence elements is needed
in order to extract the linear subsequences. Here, we describe an alternative
method. For a further approach see [25].

For simplicity, we consider here only logarithmically convergent sequences
with s, —s = O((n+1)~%) with & > 0 for n — co. Also, we assume that only a
finite set of sequence elements s,, with 0 < n < N is available. Then, regarding
n as a continuous parameter, we define a mapping

Sn = 8m = Sf(m) » n=f(m)=c"-1, o>1 (2)
and obtain
i (St~ 8)/ (G — 8) = 0 =t . 3)

This equation holds also under the weaker condition
(Snt1—8)/(sn—8)~1—a/n as n— oo (4)

since this implies

on

In[(sgns1y—1 — 8)/(8n — 8)] ~ (—) Z 1/j~—-alnc as n— o (5)

j=n

where now one may put n = f(m) and use the identity f(m + 1) = o(f(m) +
1) — 1. Since 0 < |p| < 1, the “sequence” {3,,} would be linearly convergent.
There is, however, the problem that for integer n the values of m are in general
noninteger (with the possible exception of some special values of o and n). The
way out is to use noninteger values of n by computing an continous interpolating
function ¢ : [0, N] — C. The interpolation conditions are ¢(n) = s, for n =
1,...,N. We choose the desired range of m values as [0, M] and put o =
(N + 1)Y/M accordingly. Then, we may put 5, = ¢(f(m)) for integer m.
Obviously, this new sequence may be regarded as linearly convergent. Formally,
the limit s is unchanged if f is an bijective mapping of [0, c0) onto itself. The
M +1 sequence elements S, . .., Sy depend only on the s, ..., sy and the choice
of the interpolation scheme, and the former can now be input to a standard
convergence accelerator for linear convergence like the e algorithm to compute
an approximation of the limit s.



Table 1: Coeflicients of the rational interpolant
Dj 45
2.4156362287713252¢ + 23 1.2650340186680030¢ + 23
—6.9466187687642456¢ + 22  4.6197728641881184¢ + 22
1.7472782389930610e + 22  8.2730873509423696¢ + 21
—9.9302425597562704¢ + 20  9.5926044596699824¢ + 20
1.3495942609493410e + 20  8.0424150701645184¢ + 19
—3.7019467489948920e + 18  5.1624254245533744e + 18
2.5551801989536920¢ + 17  2.6199945009733000e + 17
—3.9506222548065600e + 15  1.0725800946057290¢ + 16
7.3970350942840384¢ + 13 3.5531621772820436¢ + 14
7.7882811808294000e + 11  9.6750555948722976e + 12
10 —8.6214475699912304e + 10 2.0510651146889728¢ + 11
11 1.8887209977950680e + 09  3.7648101375003456¢€ + 09
12 —2.0741676247961408¢e + 07 4.1591020534348688¢ + 07
13 1.2896941144609298¢ + 05 6.1092646461362344¢ + 05
14 —4.3922131631892304e + 02 2.2797801442194008e + 03
15 6.4544236191649008e — 01  3.7786526415900824¢ + 01

00 ~J O UL = W N~ O

Ne}

2 A Numerical Example

All calculations in this section were done using MAPLE V™ Release 3. As in-
terpolation scheme defining ¢, we used rational interpolation based on Thiele’s
interpolation formula involving reciprocal differences [26, Chap. 25, p. 881, Eq.
25.2.50]. The interpolating function was calculated in MAPLE V™ by procedure
thiele using an accuracy of 64 decimal digits in order to exclude numerical
instabilities in this step. All other MAPLE V™™ calculations were done with an
accuracy of 32 decimal digits.

As example, we apply the interpolation approach to the sequence (=problem
sequence)

sn=In(a(n+1)(n+1)"*+Inrn+1)/(n+1), a=27/4, (6)

that has the limit s = 0. The maximal values of n and m are chosen as N =
M = 30, whence o ~ 1.121. We have for n — oo

(541 = 8)/ (50 — ) = Su41/80 ~ 1 = 1/n + (In(n)n) " . (7)

Hence, « = 1 and p = 1/0 ~ 0.8918. As interpolant ¢(n), the rational inter-

polant
15 . 15 }
p(n) = p n]/ij nl (8)
j=0 j=0

with (rounded) coefficients p; and ¢; displayed in Table 1 is obtained. The
noninteger n values corresponding to integer m are plotted in Table 2.



Table 2: Noninteger n values

n=f(m)| m n= f(m)
0.1212747863558303 | 16  5.2429937964118392
0.2572571465173129 | 17  6.0001115352924576
0.4097307383555408 | 18  6.8490485662020336
0.5806955324688557 | 19 7.8009402541647200
0.7723940454626317 | 20  8.8682724032189696
0.9873407546644578 | 21  10.0650450306204896
1.2283550801026244 | 22 11.4069560027266320
1.4985983663669992 | 23 12.9116069412834896
1.8016153494371840 | 24 14.5987341009539296
10 2.1413806523913928 | 25 16.4904672464685248
11 2.5223509198724976 | 26 18.6116199250476384
12 2.9495232751502968 | 27 20.9900149415495360
13 3.4285008665515280 | 28 23.6568493055474688
14 3.9655663630191744 | 29 26.6471034372856352
15 4.5677643628300224 | 30 30.0000000000000000

@OO\]@U‘%OO[\DHS

For the extrapolation, the € algorithm that is defined by the recursive scheme
23]

i(:;l) :0<’+1> " ) ) (9)
€1 = €1 T 1/[% — € ]

was chosen as implemented in the MAPLE V™ procedure eps in the share library
(numerics/trans). Note that the e algorithm computes the Shanks transforms
er(Sn) as defined in [20,27] according to

e = exlsn) (10)
and the elements eg,z)ﬂ = 1/ex(sp+1 — Sn) are only auxiliary quantities.
The extrapolation results using the € algorithm on 3¢, ..., s are displayed

in Table 3. In the second and third column, the absolute errors of the inter-
polation transformed sequence elements s,,,, and of the approximation obtained
by extrapolation using sequence elements up to the very same s, are displayed
side by side. In this way, the rather dramatic convergence acceleration obtained
using the interpolation approach is demonstrated clearly.

For comparison purposes, we also display in Table 3 in the fifth column the
results of applying the u transform of Levin [10,20] to the original sequence
given in the fourth column. The u transform may be defined as

Z (-1 (f) (B+n+j)k—2— Snts

Sn4j — Sn+j—1

Zk: (-1 <I;> (B+n+j)k2 1

Sp4j — Sn4j—1




Table 3: Extrapolation results

ul” (1, 50) — |

C Be—sl___ lepGo)—s| ___ lse—s|

10 3.657288¢ — 01 6.659871e — 07 2.179909¢ — 01 3.654954e — 01
12 3.480963e — 01 1.022220e — 09 1.973039¢ — 01 3.280363e — 01
14 3.227984e — 01 1.508087e¢ — 11 1.805367e¢ — 01 1.216766e — 01
16 2.933784e — 01 2.111858e — 14 1.666596e — 01 6.842084e — 03
18 2.625058¢ — 01 2.148373e — 15 1.549705¢ — 01 7.160873¢ — 04
20 2.319892e¢ — 01 8.466160e — 18 1.449773e — 01 7.831881e — 04
22 2.029716e — 01 6.738586e — 19 1.363258e — 01 6.414774e — 04
24 1.761162e — 01 3.716722¢ — 21 1.287550e — 01 5.301551e — 04
26 1.517530e — 01 3.246768e¢ — 23 1.220680e — 01 4.446611e — 04
28 1.299864e — 01 1.035807e — 25 1.161137e — 01 3.777645e — 04
30 1.107738e — 01 4.124996e — 26 1.107738e¢ — 01 3.245145¢ — 04

and is implemented as a variant in the MAPLE V™™™ procedure lev in the share
library (numerics/trans). The w transform is one of the rather successful
nonlinear accelerators for logarithmic convergence [19]. In this example, it is
seen to be far inferior to the interpolation approach in combination with the €
algorithm. Direct extrapolation (s & p(c0) = p15/q15 ~ 0.017) is inferior, too.

We conclude that there are logarithmically convergent sequences where the
interpolation approach can produce good results and is superior to other ap-
proaches. Tt is not to be expected, however, that the details of the approach (use
of the nonlinear mapping f as in Eq. (2), Thiele interpolation, € algorithm) will
be optimal for all logarithmically convergent sequences. But we remark, that
the basic approach can easily be varied by using different nonlinear mappings,
interpolation schemes, and other convergence accelerators. This is regarded as
a promising future work.
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