next up previous extra.gif
Next: About this document ... Up: Performance of the Effective-characteristic-polynomial Previous: 6. Figures

Bibliography

1
K. Dietz, C. Schmidt, M. Warken, and B. A. Heß.
A comparative study of standard and non-standard mean-field theories for the energy, the first and the second moments of Be and LiH.
J. Phys. B: At. Mol. Opt. Phys., 25:1705-1718, 1992.

2
K. Dietz, C. Schmidt, M. Warken, and B. A. Heß.
On the acceleration of many-body perturbation theory: I. General theory.
J. Phys. B: At. Mol. Opt. Phys., 26:1885-1896, 1993.

3
K. Dietz, C. Schmidt, M. Warken, and B. A. Heß.
On the acceleration of many-body perturbation theory: II. Benchmark checks for small systems.
J. Phys. B: At. Mol. Opt. Phys., 26:1897-1914, 1993.

4
K. Dietz, C. Schmidt, M. Warken, and B. A. Heß.
The acceleration of convergence of many-body perturbation theory: unlinked-graph shift in Møller-Plesset perturbation theory.
Chem. Phys. Lett., 207(2,3):281-286, 1993.

5
K. Dietz, C. Schmidt, M. Warken, and B. A. Heß.
Systematic construction of efficient many-body perturbation series.
J. Chem. Phys., 100(10):7421-7428, 1994.

6
K. Dietz, C. Schmidt, M. Warken, and B. A. Heß.
Explicit construction of convergent MBPT for the 1$ \Delta$ state of C2 and the H2 ground state at large bond distance.
Chem. Phys. Lett., 220(6):397-404, 1994.

7
H. H. H. Homeier.
Extrapolationsverfahren für Zahlen-, Vektor- und Matrizenfolgen und ihre Anwendung in der Theoretischen und Physikalischen Chemie.
Habilitation thesis (in German), Universität Regensburg, 1996.

URL: http://www.chemie.uni-regensburg.de/pub/preprint/preprint.html#Homeier96Hab.

8
H. H. H. Homeier.
Correlation energy estimators based on Møller-Plesset perturbation theory.
J. Mol. Struct. (Theochem), 366:161-171, 1996.

9
H. H. H. Homeier.
The size-extensivity of correlation energy estimators based on effective characteristic polynomials.
J. Mol. Struct. (Theochem), 419:29-31, 1997.
Proceedings of the 3rd Electronic Computational Chemistry Conference.

10
C. Schmidt, M. Warken, and N. C. Handy.
The Feenberg series. An alternative to the Møller-Plesset series.
Chem. Phys. Lett., 211(2,3):272-281, 1993.

11
E. Feenberg.
Invariance property of the Brillouin-Wigner perturbation series.
Phys. Rev., 103(4):1116-1119, 1956.

12
P. Goldhammer and E. Feenberg.
Refinement of the Brillouin-Wigner perturbation method.
Phys. Rev., 101(4):1233-1234, 1956.

13
G. A. Baker, Jr.
The theory and application of the Padé approximant method.
Adv. Theor. Phys., 1:1-58, 1965.

14
G. A. Baker, Jr. and P. Graves-Morris.
Padé approximants.
Cambridge U.P., Cambridge (GB), second edition, 1996.

15
P. Bracken.
Interpolant Polynomials in Quantum Mechanics and Study of the One Dimensional Hubbard Model.
PhD thesis, University of Waterloo, 1994.

16
P. Bracken and J. \textrm{\v{C\/}}í\textrm{\v{z\/}}ek.
Construction of interpolant polynomials for approximating eigenvalues of a Hamiltonian which is dependent on a coupling constant.
Phys. Lett. A, 194:337-342, 1994.

17
P. Bracken and J. \textrm{\v{C\/}}í\textrm{\v{z\/}}ek.
Investigation of the $ \mbox{${}^1$E${}_{2g}^{-}$}$ states in cyclic polyenes.
Int. J. Quantum Chem., 53:467-471, 1995.

18
P. Bracken and J. \textrm{\v{C\/}}í\textrm{\v{z\/}}ek.
Interpolant polynomial technique applied to the PPP Model. I. Asymptotics for excited states of cyclic polyenes in the finite cyclic Hubbard model.
Int. J. Quantum Chem., 57:1019-1032, 1996.

19
J. \textrm{\v{C\/}}í\textrm{\v{z\/}}ek and P. Bracken.
Interpolant polynomial technique applied to the PPP model. II. Testing the interpolant technique on the Hubbard model.
Int. J. Quantum Chem., 57:1033-1048, 1996.

20
J. \textrm{\v{C\/}}í\textrm{\v{z\/}}ek, E. J. Weniger, P. Bracken, and V. \textrm{\v{S\/}}pirko.
Effective characteristic polynomials and two-point Padé approximants as summation techniques for the strongly divergent perturbation expansions of the ground state energies of anharmonic oscillators.
Phys. Rev. E, 53:2925-2939, 1996.

21
J. W. Downing, J. Michl, J. \textrm{\v{C\/}}í\textrm{\v{z\/}}ek, and J. Paldus.
Multidimensional interpolation by polynomial roots.
Chem. Phys. Lett., 67:377-380, 1979.

22
M. Takahashi, P. Bracken, J. \textrm{\v{C\/}}í\textrm{\v{z\/}}ek, and J. Paldus.
Perturbation expansion of the ground state energy for the one-dimensional cyclic Hubbard system in the Hückel limit.
Int. J. Quantum Chem., 53:457-466, 1995.

23
J. A. Pople, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. Wong, J. Andres, E. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. Defrees, J. Baker, J. Stewart, M. Head-Gordon, and C. Gonzalez.
Gaussian 94, Revision B.3.
Gaussian, Inc., Pittsburgh PA, U.S.A., 1995.

24
In the single point calculations with different basis sets some basis sets were used which are not included in Gaussian 94. These Additional Basis sets (see: EMSL Gaussian Basis Set Order Form) were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller, Karen Schuchardt, or Don Jones for further information.

25
A. Hurley.
Introduction to the Electron Theory of Small Molecules.
Academic Press, London, 1976.

26
Numerical Analysis Group, NAG Central Office, Oxford, Great Britain.
The NAG Library, Mark 15, 1991.

27
Waterloo Maple Inc., Waterloo, Ontario, Canada.
MapleV Release 4, 1996.

28
The calculations were done using a reparametrized worksheet of H. Meißner (private communication).

29
G. Herzberg.
Spectra of Diatomic Molecules.
Van Nostrand Reinhold, New York NY, U.S.A., 1950.

30
K. Huber and G. Herzberg.
Constants of diatomic molecules.
In W. Mallard and P. Linstrom, editors, NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, U.S.A., 1998.
(See http://webbook.nist.gov, data prepared by J.W. Gallagher and R.D. Johnson, III).

next up previous extra.gif
Next: About this document ... Up: Performance of the Effective-characteristic-polynomial Previous: 6. Figures
Herbert H. H. Homeier (herbert.homeier@na-net.ornl.gov)