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Abstract

The algebraic K-theory spectrum KGL, the motivic Adams summand ML and

their connective covers have unique E∞-structures refining their naive multiplicative

structures in the motivic stable homotopy category. These results are deduced from

Γ-homology computations in motivic obstruction theory.

1 Introduction

Motivic homotopy theory intertwines classical algebraic geometry and stable algebraic

topology. In this paper we study obstruction theory for E∞-structures in the motivic

setup. An E∞-structure on a spectrum refers as usual to a ring structure which is

not just given up to homotopy, but where the homotopies encode a coherent homotopy

commutative multiplication. Many of the examples of motivic ring spectra begin life as

commutative monoids in the motivic stable homotopy category. We are interested in

the following questions: When can the multiplicative structure of a given commutative

monoid in the motivic stable homotopy category be refined to an E∞-ring spectrum?

And if such a refinement exists, is it unique? The questions of existence and uniqueness

of E∞-structures and their many ramifications have been studied extensively in topology.

The first motivic examples worked out in this paper are of K-theoretic interest.

The complex cobordism spectrum MU and its motivic analogue MGL have natural

E∞-structures. In the topological setup, Baker and Richter [1] have shown that the

complexK-theory spectrum KU, the Adams summand L and the realK-theory spectrum

KO admit unique E∞-structures. The results in [1] are approached via the obstruction

theory developed by Robinson in [11], where it is shown that existence and uniqueness

of E∞-structures are guaranteed provided certain Γ-cohomology groups vanish.
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In our approach we rely on analogous results in the motivic setup, see [12] for a

further generalization. We show that the relevant motivic Γ-cohomology groups vanish

in the case of the algebraic K-theory spectrum KGL (Theorem 2.6) and the motivic

Adams summand ML (see §4). The main ingredients in the proofs are new computations

of the Γ-homology complexes of KU and L, see Theorem 2.3 and Lemma 4.3, and the

Landweber base change formula for the motivic cooperations of KGL and ML. Our main

result for KGL can be formulated as follows:

Theorem: The algebraic K-theory spectrum KGL has a unique E∞-structure refining

its multiplication in the motivic stable homotopy category.

The existence of the E∞-structure on KGL was already known using the Bott inverted

model for algebraic K-theory, see [13], [15], [2], but the analogous result for ML is new.

The uniqueness part of the Theorem is new, and it rules out the existence of any exotic

E∞-structures on KGL. We note that related motivic E∞-structures have proven useful

in the recent constructions of Atiyah-Hirzebruch types of spectral sequences for motivic

twisted K-theory [14].

One may ask if the uniqueness of E∞-structures on KGL has any consequences for

the individual algebraic K-theory spectra of smooth schemes over a fixed base scheme.

If the base scheme is regular, consider the following presheaves of E∞-ring spectra. The

first one arises from evaluating the E∞-spectrum KGL on individual smooth schemes,

and the second one from a functorial construction of algebraic K-theory spectra, cf. [7].

It is natural to ask if these two presheaves are equivalent in some sense. If the second

presheaf is obtained from a motivic E∞-spectrum, then our uniqueness result would

answer this question in the affirmative. The K-theory presheaf has this property when

viewed as an A∞-object, see [8], but as an E∞-object this is still an open problem.

In topology, the Goerss-Hopkins-Miller obstruction theory [3] allows to gain control

over moduli spaces of E∞-structures. In favorable cases, such as for Lubin-Tate spectra,

the moduli spaces are K(π, 1)’s giving rise to actions of certain automorphism groups as

E∞-maps. A motivic analogue of this obstruction theory has not been worked out. One

reason for doing so is that having a homotopy ring structure on a spectrum is often not

sufficient in order to form homotopy fixed points under a group action. In Subsection 2.3

we note an interesting consequence concerning E∞-structures on hermitian K-theory.

In Section 3 we show that the connective cover kgl of the algebraicK-theory spectrum

has a unique E∞-structure, and ditto in Section 4 for the connective cover of the Adams

summand.
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2 Algebraic K-theory KGL

In this section we shall present the Γ-cohomology computation showing there is a unique

E∞-structure on the algebraic K-theory spectrum KGL. Throughout we work over some

noetherian base scheme of finite Krull dimension, which we omit from the notation.

There are two main ingredients which make this computation possible: First, the

Γ-homology computation of KU0KU over KU0 = Z, where KU is the complex K-theory

spectrum. Second, we employ base change for the motivic cooperations of algebraic

K-theory, as shown in our previous work [9].

2.1 The Γ-homology of KU0KU over KU0

For a map A → B between commutative algebras we denote Robinson’s Γ-homology

complex by K̃(B|A) [11, Definition 4.1]. Recall that K̃(B|A) is a homological double

complex of B-modules concentrated in the first quadrant. The same construction can be

performed for maps between graded and bigraded algebras. In all cases we let K(B|A)

denote the total complex associated with the double complex K̃(B|A).

The Γ-cohomology

HΓ∗(KU0KU|KU0,−) = H∗RHomKU0KU(K(KU0KU|KU0),−)

has been computed for various coefficients in [1]. In what follows we require precise

information about the complex K(KU0KU|KU0), since it satisfies a motivic base change

property, cf. Lemma 2.4.

Lemma 2.1: Let X ∈ Ch≥0(Ab) be a non-negative chain complex of abelian groups.

The following are equivalent:

i) The canonical map X −→ X ⊗L
Z Q = X ⊗Z Q is a quasi isomorphism.

ii) For every prime p, there is a quasi isomorphism X ⊗L
Z Fp ≃ 0.

Proof. It is well known that X is formal [4, pg. 164], i.e. there is a quasi isomorphism

X ≃
⊕

n≥0

Hn(X)[n].

(For an abelian group A and integer n, we let A[n] denote the chain complex that

consists of A concentrated in degree n.) Hence for every prime p,

X ⊗L
Z Fp ≃

⊕

n≥0

(
Hn(X)[n] ⊗L

Z Fp

)
.
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By resolving Fp = (Z
·p

−→ Z) one finds an isomorphism

H∗(A[n] ⊗L
Z Fp) ∼= (A/pA)[n] ⊕A{p}[n+ 1]

for every abelian group A and integer n. Here A{p} is shorthand for {x ∈ A | px = 0}.

In summary, ii) holds if and only if the multiplication by p map

·p : H∗(X) −→ H∗(X)

is an isomorphism for every prime p. The latter is equivalent to i).

We shall use the previous lemma in order to study cotangent complexes introduced

by Illusie in [6]. Let R be a ring and set RQ := R⊗Z Q. Then there is a canonical map

τR : LR/Z // LR/Z ⊗L
Z Q ≃ LR/Z ⊗L

R RQ
≃

// LRQ/Q

of cotangent complexes in Ho(Ch≥0(Z)). The first quasi isomorphism is obvious, while

the second one is an instance of flat base change for cotangent complexes.

Lemma 2.2: The following are equivalent:

i) τR is a quasi isomorphism.

ii) For every prime p, there is a quasi isomorphism LR/Z ⊗L
Z Fp ≃ 0.

If the abelian group underlying R is torsion free, then i) and ii) are equivalent to

iii) For every prime p, L(R/pR)/Fp
≃ 0.

Proof. The equivalence of i) and ii) follows by applying Lemma 2.1 to X = LR/Z. If R

is torsion free, then it is flat as a Z-algebra. Hence, by flat base change, there exists a

quasi isomorphism

LR/Z ⊗L
Z Fp ≃ L(R/pR)/Fp

.

The following is our analogue for Robinson’s Γ-homology complex of the Baker-

Richter result [1, Theorem 5.1].

Theorem 2.3: i) Let R be a torsion free ring such that L(R/pR)/Fp
≃ 0 for every

prime p, e.g. assume that Fp → R/pR is ind-étale for all p. Then there is a quasi

isomorphism

K(R|Z) ≃ K(RQ|Q)

in the derived category of R-modules.
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ii) There is a quasi isomorphism

K(KU0KU|KU0) ≃ (KU0KU)Q[0]

in the derived category of KU0KU-modules.

Proof. i) The Atiyah-Hirzebruch spectral sequence noted in [10, Remark 2.3] takes

the form

E2
p,q = Hp(LR/Z ⊗L

Z Γq(Z[x]|Z)) ⇒ Hp+q(K(R|Z)).

Our assumptions on R and Lemma 2.2 imply that the E2-page is comprised of

Q-vector spaces. Hence so is the abutment, and there exists a quasi isomorphism

between complexes of R-modules

K(R|Z)
≃
→ K(R|Z) ⊗Z Q.

Moreover, by Lemma 2.4, there is a quasi isomorphism

K(R|Z) ⊗Z Q ≃ K(RQ|Q).

ii) According to [1, Theorem 3.1, Corollary 3.4, (a)] and the Hopf algebra isomorphism

Ast ≃ KU0KU [1, Proposition 6.1], the ring R := KU0KU satisfies the assumptions

of part i)1. Now since KU0
∼= Z,

K(KU0KU|KU0) ≃ K((KU0KU)Q|Q).

We have that (KU0KU)Q ≃ Q[w±1] [1, Theorem 3.2, (c)] is a smooth Q-algebra.

Hence, since Γ-cohomology agrees with André-Quillen cohomology over Q, there

are quasi isomorphisms

K(KU0KU|KU0) ≃ Ω1
Q[w±1]|Q[0] ≃ (KU0KU)Q[0].

2.2 The Γ-homology of KGL∗∗KGL over KGL∗∗

The strategy in what follows is to combine the computations for KU in §2.1 with motivic

Landweber exactness [9]. To this end we require the following general base change result,

which was also used in the proof of Theorem 2.3.

1This follows also easily from Landweber exactness of KU.
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Lemma 2.4: For a pushout of ordinary, graded or bigraded commutative algebras

A

��

// B

��

C // D

there are isomorphisms between complexes of D-modules

K(D|C) ∼= K(B|A) ⊗B D ∼= K(B|A) ⊗A C.

If B is flat over A, then K̃(B|A) is a first quadrant homological double complex of

flat B-modules; thus, in the derived category of D-modules there are quasi isomorphisms

K(D|C) ≃ K(B|A) ⊗L
B D ≃ K(B|A) ⊗L

A C.

Proof. Following the notation in [11, §4], let (B|A)⊗ denote the tensor algebra of B

over A. Then (B|A)⊗ ⊗A B has a natural Γ-module structure over B, cf. [11, §4]. Here

Γ denotes the category of finite based sets and basepoint preserving maps. It follows

that ((B|A)⊗ ⊗A B) ⊗B D is a Γ-module over D. Moreover, by base change for tensor

algebras, there exists an isomorphism of Γ-modules in D-modules

((B|A)⊗ ⊗A B) ⊗B D ∼= (D|C)⊗ ⊗C D.

Here we use that the Γ-module structure on (B|A)⊗ ⊗A M , for M a B-module, is given

as follows: For a map ϕ : [m] → [n] between finite pointed sets,

(B ⊗A B ⊗A · · · ⊗A B) ⊗A M → (B ⊗A B ⊗A · · · ⊗A B) ⊗A M

sends b1 ⊗ · · · ⊗ bm ⊗m to

(
∏

i∈ϕ−1(1)

bi) ⊗ · · · ⊗ (
∏

i∈ϕ−1(n)

bi) ⊗ ((
∏

i∈ϕ−1(0)

bi) ·m).

By convention, if ϕ−1(j) = ∅ then
∏

i∈ϕ−1(j) bi = 1. Robinson’s Ξ-construction yields

an isomorphism between double complexes of D-modules

K̃(D|C) = Ξ((D|C)⊗ ⊗C D) ∼= Ξ(((B|A)⊗ ⊗A B) ⊗B D).

Inspection of the Ξ-construction reveals there is an isomorphism

Ξ(((B|A)⊗ ⊗A B) ⊗B D) ∼= Ξ((B|A)⊗ ⊗A B) ⊗B D.

By definition, this double complex of D-modules is K̃(B|A) ⊗B D ∼= K̃(B|A) ⊗A C.

This proves the first assertion by comparing the corresponding total complexes. The

remaining claims follow easily.
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Next we recall the structure of the motivic cooperations of the algebraic K-theory

spectrum KGL. The algebras we shall consider are bigraded as follows: KU0
∼= Z in

bidegree (0, 0) and KU∗
∼= Z[β±1] with the Bott-element β in bidegree (2, 1). With these

conventions, there is a canonical bigraded map

KU∗ → KGL∗∗.

Lemma 2.5: There are pushouts of bigraded algebras

KU∗

��

ηL
// KU∗KU

��

KGL∗∗
ηL

// KGL∗∗KGL

KU0

��

(ηL)0
// KU0KU

��

KU∗
ηL

// KU∗KU

and a quasi isomorphism in the derived category of KGL∗∗KGL-modules

K(KGL∗∗KGL|KGL∗∗) ≃ K(KU0KU|KU0) ⊗
L
KU0KU KGL∗∗KGL.

Proof. Here, ηL is a generic notation for the left unit of some flat Hopf-algebroid. The

first pushout is shown in [9, Proposition 9.1, (c)]. The second pushout is in [1]. Applying

Lemma 2.4 twice gives the claimed quasi isomorphism.

Next we compute the Γ-cohomology of the motivic cooperations of KGL.

Theorem 2.6: i) There is an isomorphism

HΓ∗,∗,∗(KGL∗∗KGL|KGL∗∗; KGL∗∗) ∼= H∗RHomZ(Q[0],KGL∗∗).

ii) For all s ≥ 2,

HΓs,∗,∗(KGL∗∗KGL|KGL∗∗; KGL∗∗) = 0.

Proof. i) By the definition of Γ-cohomology and the results in this Subsection there

are isomorphisms

HΓ∗,∗,∗(KGL∗∗KGL|KGL∗∗; KGL∗∗)

= H∗RHomKGL∗∗KGL(K(KGL∗∗KGL|KGL∗∗),KGL∗∗)
∼= H∗RHomKGL∗∗KGL(K(KU0KU|Z) ⊗L

KU0KU
KGL∗∗KGL,KGL∗∗)

∼= H∗RHomKU0KU(K(KU0KU|Z),KGL∗∗)
∼= H∗RHomKU0KU((KU0KU)Q[0],KGL∗∗)
∼= H∗RHomZ(Q[0],KGL∗∗).
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ii) This follows from i) since Z has global dimension 1.

Remark 2.7: It is an exercise to compute RHomZ(Q,−) for finitely generated abelian

groups. This explicates our Gamma-cohomology computation in degrees 0 and 1 for base

schemes with finitely generated algebraic K-groups, e.g. finite fields and number rings.

The computation RHomZ(Q,Z) ≃ Ẑ/Z[1] shows our results imply [1, Corollary 5.2].

The vanishing result Theorem 2.6, ii) together with the motivic analogues of the

results in [11, Theorem 5.6], as detailed in [12], conclude the proof of the Theorem for

KGL formulated in the Introduction.

2.3 A remark on hermitian K-theory KQ

In this short Subsection we discuss one instance in which the motivic obstruction theory

used here falls short of a putative motivic analogue of the obstruction theory of Goerss,

Hopkins and Miller [3]. By [9, Theorem 9.7, (ii), Remark 9.8, (iii)] we may realize the

stable Adams operation Ψ−1 on algebraic K-theory by a motivic ring spectrum map

Ψ−1 : KGL −→ KGL. (1)

In many cases of interest one expects that fib(ψ−1 − 1) represents Hermitian K-theory

KQ. A motivic version of the Goerss-Hopkins-Miller obstruction theory in [3] implies,

in combination with Theorem 2.6, that (1) can be modelled as an E∞-map. With this

result in hand, it would follow that KQ admits an E∞-structure.

It seems the obstruction theory we use is intrinsically unable to provide such results

by “computing” E∞-mapping spaces. However, there might be a more direct way of

showing that KQ has a unique E∞-structure, using the obstruction theory in this paper.

A first step would be to compute the motivic cooperations of KQ.

3 Connective algebraic K-theory kgl

We define the connective algebraic K-theory spectrum kgl as the effective part f0KGL of

KGL. Recall that the functor fi defined in [16] projects from the motivic stable homotopy

category to its ith effective part. Note that f0KGL is a commutative monoid in the

motivic stable homotopy category since projection to the effective part is a lax symmetric

monoidal functor (because it is right adjoint to a monoidal functor). For i ∈ Z there

exists a natural map fi+1KGL → fiKGL in the motivic stable homotopy category with
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cofiber the ith slice of KGL. With these definitions, KGL ∼= hocolim fiKGL (this is true

for any motivic spectrum, cf. [16, Lemma 4.2]). Bott periodicity for algebraic K-theory

implies that fi+1KGL ∼= Σ2,1fiKGL. This allows to recast the colimit as hocolimΣ2i,ikgl

with multiplication by the Bott element β in kgl−2,−1 ∼= KGL−2,−1 as the transition map

at each stage. We summarize these observations in a lemma.

Lemma 3.1: The algebraic K-theory spectrum KGL is isomorphic in the motivic stable

homotopy category to the Bott inverted connective algebraic K-theory spectrum kgl[β−1].

Theorem 3.2: The connective algebraic K-theory spectrum kgl has a unique E∞-

structure refining its multiplication in the motivic stable homotopy category.

Proof. The connective cover functor f0 preserves E∞-structures [5]. Thus the existence

of an E∞-structure on kgl is ensured. We note that inverting the Bott element can

be refined to the level of motivic E∞-ring spectra by the methods employed in [13].

Thus, by Lemma 3.1, starting out with any two E∞-structures on kgl produces two E∞-

structures on KGL, which coincide by the uniqueness result for E∞-structures on KGL .

Applying f0 recovers the two given E∞-structures on kgl: If X is E∞ with ϕ : X ≃ kgl as

ring spectra, then there is a canonical E∞-map X → X[β′−1], where β′ is the image of

the Bott element under ϕ. Since X is an effective motivic spectrum, this map factors as

an E∞-map X → f0(X[β′−1]). By construction of kgl the latter map is an equivalence.

This shows the two given E∞-structures on kgl coincide.

4 The motivic Adams summands ML and ml

Let BP denote the Brown-Peterson spectrum for a fixed prime number p. Then the

coefficient ring KU(p)∗ of the p-localized complex K-theory spectrum is a BP∗-module

via the ring map BP∗ → MU(p)∗ which classifies the p-typicalization of the formal group

law over MU(p)∗. The MU(p)∗-algebra structure on KU(p)∗ is induced from the natural

orientation MU → KU. With this BP∗-module structure, KU(p)∗ splits into a direct sum

of the Σ2iL∗ for 0 ≤ i ≤ p− 2, where L is the Adams summand of KU(p). Thus motivic

Landweber exactness [9] over the motivic Brown-Peterson spectrum MBP produces a

splitting of motivic spectra

KGL(p) =

p−2∨

i=0

Σ2i,iML.

We refer to ML as the motivic Adams summand of algebraic K-theory.
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Since L∗ is an BP∗-algebra and there are no nontrivial phantom maps from any smash

power of ML to ML, which follows from [9, Remark 9.8, (ii)] since ML is a retract of

KGL(p), we deduce that the corresponding ring homology theory induces a commutative

monoid structure on ML in the motivic stable homotopy category.

We define the connective motivic Adams summand ml to be f0ML. It is also a

commutative monoid in the motivic homotopy category.

Theorem 4.1: The motivic Adams summand ML has a unique E∞-structure refining

its multiplication in the motivic stable homotopy category. The same result holds for the

connective motivic Adams summand ml.

The construction of ML as a motivic Landweber exact spectrum makes the following

result evident on account of the proof of Lemma 2.5.

Lemma 4.2: There exist pushout squares of bigraded algebras

L∗

��

ηL
// L∗L

��

ML∗∗
ηL

// ML∗∗ML

L0

��

(ηL)0
// L0L

��

L∗
ηL

// L∗L

and a quasi isomorphism in the derived category of ML∗∗ML-modules

K(ML∗∗ML|ML∗∗) ≃ K(L0L|L0) ⊗
L
L0L ML∗∗ML.

Next we show the analog of Theorem 2.3, ii) for the motivic Adams summand.

Lemma 4.3: In the derived category of L0L-modules, there is a quasi isomorphism

K(L0L|L0) ≃ (L0L)Q[0].

Proof. In the notation of [1, Proposition 6.1] there is an isomorphism between Hopf

algebras L0L ∼= ζAst
(p). Recall that ζAst

(p) is a free Z(p)-module on a countable basis and
ζAst

(p)/p
ζAst

(p) is a formally étale Fp-algebra [1, Theorem 3.3(c), Corollary 4.2]. Applying

Theorem 2.3, i) to R = L0L and using that (L0L)Q ≃ Q[v±1] by Landweber exactness,

where v = wp−1 and (KU0KU)Q ∼= Q[w±1], we find

K(L0L|L0) ≃ Ω1
Q[v±1]|Q[0] ≃ (L0L)Q[0].
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Lemmas 4.2 and 4.3 imply there is a quasi isomorphism

HΓ∗,∗,∗(ML∗∗ML|ML∗∗; ML∗∗) ≃ H∗RHomZ(Q[0],ML∗∗).

Thus the part of Theorem 4.1 dealing with ML follows, since for all s ≥ 2,

HΓs,∗,∗(ML∗∗ML|ML∗∗; ML∗∗) = 0. (2)

The assertion about ml follows by the exact same type of argument as for kgl. The

periodicity operator in this case is v1 ∈ ml2(1−p),1−p = ML2(1−p),1−p.
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