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EQUIVARIANT YAMABE PROBLEM AND HEBEY�VAUGONCONJECTUREFARID MADANI
Abstrat. In their study of the Yamabe problem in the presene of isometrygroup, E. Hebey and M. Vaugon announed a onjeture. This onjeture gen-eralizes T. Aubin's onjeture, whih has already been proven and is su�ientto solve the Yamabe problem. In this paper, we generalize Aubin's theoremand we prove the Hebey�Vaugon onjeture in some new ases.1. IntrodutionLet (M, g) be a ompat Riemannian manifold of dimension n ≥ 3. Denote by

I(M, g), C(M, g) and Rg the isometry group, the onformal transformations groupand the salar urvature, respetively. Let G be a subgroup of the isometry group
I(M, g). E. Hebey and M. Vaugon[5℄ onsidered the following problem:Hebey�Vaugon problem. Is there some G−invariant metri g0 whih minimizesthe funtional

J(g′) =

∫

M Rg′dv(g′)

(
∫

M dv(g′))
n−2

nwhere g′ belongs to the G−invariant onformal lass of metris g de�ned by:
[g]G := {g̃ = efg/f ∈ C∞(M), σ∗g̃ = g̃ ∀σ ∈ G}The positive answer would have two onsequenes. The �rst is that there exists an

I(M, g)−invariant metri g0 onformal to g suh that the salar urvature Rg0
isonstant. The seond is that the A. Lihnerowiz's onjeture [7℄, stated below, istrue. By the works of J. Lelong-Ferrand[6℄ and M. Obata[9℄, we know that if (M, g)is not onformal to (Sn, gcan) (the unit sphere endowed with its standard metri

gcan), then C(M, g) is ompat and there exists a onformal metri g′ to g suhthat I(M, g′) = C(M, g). This implies that the �rst onsequene is equivalent totheA. Lihnerowiz onjeture. For every ompat Riemannian manifold (M, g)whih is not onformal to the unit sphere Sn endowed with its standard metri, thereexists a metri g̃ onformal to g for whih I(M, g̃) = C(M, g), and the salar ur-vature Rg̃ is onstant.To suh metris orrespond funtions whih are neessarily solutions of the Yamabeequation. In other words, if g̃ = ψ
4

n−2 g, ψ is aG−invariant smooth positive funtionthen ψ satis�es
4(n− 1)

n− 2
∆gψ +Rgψ = Rg̃ψ

n+2

n−2 .1991 Mathematis Subjet Classi�ation. 53A30, 53C21, 35J20.Key words and phrases. Conformal metri; Isometry group; Salar urvature; Yamabeproblem. 1



2 FARID MADANIThe lassial Yamabe problem, whih onsists to �nd a onformal metri withonstant salar urvature on a ompat Riemannian manifold, is the partiularase of the problem above when G = {id}. Denote by OG(P ) the orbit of P ∈ Munder G, Wg the Weyl tensor assoiated to the manifold (M, g) and ωn the volumeof the unit sphere Sn. We de�ne the integer ω(P ) at the point P as
ω(P ) = inf{i ∈ N/‖∇iWg(P )‖ 6= 0} (ω(P ) = +∞ if ∀i ∈ N, ‖∇iWg(P )‖ = 0)Hebey�Vaugon onjeture. Let (M, g) be a ompat Riemannian manifold ofdimension n ≥ 3 and G be a subgroup of I(M, g). If (M, g) is not onformal to

(Sn, gcan) or if the ation of G has no �xed point, then the following inequalityholds(1) inf
g′∈[g]G

J(g′) < n(n− 1)ω2/n
n ( inf

Q∈M
cardOG(Q))2/nRemarks 1.1. (1) This onjeture is the generalization of the former T. Aubin'sonjeture [1℄ for the Yamabe problem orresponding to G = {id}, where theonstant in the right side of the inequality is equal to infg′∈[gcan] J(g′) for

Sn. In this ase, the onjeture is ompletely proved.(2) The inequality is obvious if infg′∈[g]G J(g′) is nonpositive, it is the ase whenthere exists a Yamabe metri with nonpositive salar urvature.(3) If for any Q ∈M , cardOG(Q) = +∞ then this onjeture is also obvious.The only results known about this onjeture are given in the following theorem:Theorem 1.1 (E. Hebey and M. Vaugon). Let (M, g) be a smooth ompat Rie-mannian manifold of dimension n ≥ 3 and G be a subgroup of I(M, g). We alwayshave :
inf

g′∈[g]G
J(g′) ≤ n(n− 1)ω2/n

n ( inf
Q∈M

cardOG(Q))2/nand inequality (1) holds if one of the following items is satis�ed.(1) The ation of G on M is free(2) 3 ≤ dimM ≤ 11(3) There exists a point P with minimal orbit (�nite) under G suh that ω(P ) >
(n− 6)/2 or ω(P ) ∈ {0, 1, 2}.The ase ω = 3 was studied by A. Rauzy (private ommuniations).In this prove we prove the following results:Main theorem. The Hebey�Vaugon onjeture holds if there exists a point P ∈Mwith minimal orbit (�nite) for whih ω(P ) ≤ 15 or if the degree of the leading partof Rg is greater or equal to ω(P ) + 1, in the neighborhood of this point P .Corollary 1.1. Hebey�Vaugon onjeture holds for every smooth ompat Rie-mannian manifold (M, g) of dimension n ∈ [3, 37].To prove the main theorem, we need to onstrut a G−invariant test funtion φsuh that

Ig(φ) < n(n− 1)ω2/n
n ( inf

Q∈M
cardOG(Q))2/nThus, all the di�ulties are in the onstrution of a suh funtion. For some ases,we an use the test funtions onstruted by T. Aubin [1℄ and R. Shoen [10℄ inthe ase of Yamabe problem. They have been already proven by E. Hebey and



EQUIVARIANT YAMABE PROBLEM AND HEBEY�VAUGON CONJECTURE 3M. Vaugon [5℄. But the item 3, presented in Theorem 1.1, uses test funtions dif-ferent than T. Aubin and R. Shoen ones.We multiply T. Aubin's test funtion uε,P by a funtion as follows:(2) ϕε(Q) = (1 − rω+2f(ξ))uε,P (Q)(3) uε,P (Q) =











(

ε

r2 + ε2

)

n−2

2

−
(

ε

δ2 + ε2

)

n−2

2 if Q ∈ BP (δ)

0 if Q ∈M −BP (δ)for all Q ∈ M , where r = d(Q,P ) is the distane between P and Q. (r, ξj) is ageodesi oordinates system in the neighborhood of P and BP (δ) is the geodesi ballof enter P with radius δ �xed su�iently small. f is a funtion depending only on ξ,hosen suh that ∫

Sn−1
fdσ = 0. Without loss of generality, we suppose that in theoordinates system (r, ξj) we have det g = 1 + o(rm) for m≫ 1. In fat, E. Hebeyand M. Vaugon proved that there exists g̃ ∈ [g]G for whih det g̃ = 1 + o(rm) and

infg′∈[g]G J(g′) does not depend on the onformal G−invariant metri.2. Computation of ∫

M
Rgϕ

2
εdvLet be

Ib
a(ε) =

∫ δ/ε

0

tb

(1 + t2)a
dt and Ib

a = lim
ε→0

Ib
a(ε)then I2a−1

a (ε) = log ε−1 +O(1). If 2a− b > 1 then Ib
a(ε) = Ib

a +O(ε2a−b−1) and byintegration by parts, we establish the following relationships :(4) Ib
a =

b− 1

2a− b− 1
Ib−2
a =

b− 1

2a− 2
Ib−2
a−1 =

2a− b− 3

2a− 2
Ib
a−1,

4(n− 2)In+1
n

(In−2
n )(n−2)/n

= nUsing the inequality (a − b)β ≥ aβ − βaβ−1b for 0 < b < a, we have for β ≥ 2,
0 ≤ α < (n− 2)(β − 1) − n(5) ∫

M

rαuβ
ε,P dv = ωn−1I

α+n−1
(n−2)β/2ε

α+n−β(n−2)/2 +O(εn−2)This integral appears frequently in the following omputations, and it allows us toneglet the onstant term in the expression of uε, when we hoose δ su�ientlysmall and ε smaller than δ.Denote by Ig the Yamabe funtional de�ned for all ψ ∈ H1(M) by(6) Ig(ψ) =

(
∫

M

|∇gψ|2dv +
(n− 2)

4(n− 1)

∫

M

Rgψ
2dv

)

‖ψ‖−2
Nwhere N = 2n/(n− 2) and ∇g is the gradient of the metri g.The seond integral of the funtional Ig with the salar urvature term needs aspeial onsideration. Let µ(P ) be an integer de�ned as follows : |∇βRg(P )| = 0for all |β| < µ(P ) and there exists γ ∈ N

µ(P ) suh that |∇γRg(P )| 6= 0 then
Rg(Q) = R̄+O(rµ(P )+1)where R̄ = rµ(P )

∑

|β|=µ ∇βRg(P )ξβ is a homogeneous polynomial of degree µ(P ),the β are multi-indies.For simpliity, we drop the letter P in ω(P ) and µ(P ).By E. Hebey and M. Vaugon [5℄ results:



4 FARID MADANILemma 2.1. µ ≥ ω, gij = δij + O(rω+2) and ¯∫
S(r)Rg = O(r2ω+2) whih impliesthat ∫

S(r)
R̄dσ = 0 when µ < 2ω + 2

¯∫ denotes the average. Then
∫

M

Rgϕ
2
εdv =

∫

M

Rgu
2
ε,P dv − 2

∫

M

fu2
ε,PRgr

ω+2dv +

∫

M

f2u2
ε,PRgr

2ω+4dv

= ε2ω+4ωn−1

¯∫

S(r)

r−2ω−2RgdσI
n+2ω+1
n−2 (ε)−

2εω+µ+4Iω+µ+n+1
n−2 (ε)ωn−1

¯∫

S(r)

r−µf(ξ)R̄dσ(ξ) +O(εn−2)

(7)Moreover T. Aubin [2℄ proved that:Theorem 2.1. If µ ≥ ω + 1 then there exists C(n, ω) > 0 suh that
¯∫

Sn−1(r)

Rdσ = C(n, ω)(−∆g)
ω+1R(P )r2ω+2 + o(r2ω+2)

(−∆g)
ω+1R(P ) is negative. Then Ig(uε,P ) < n(n−2)

4 ω
2/n
n−1.From now until the end of this setion, we make the assumption that µ = ω. Now,we reall some results obtained by T. Aubin in his papers [3, 4℄:

R̄ is homogeneous polynomial of degree ω then ∆ER̄ is homogeneous of degree ω−2and
∆ER̄ = r−2(∆sR̄− ω(n+ ω − 2)R̄)where ∆E is the Eulidean Laplaian and ∆s is the Laplaian on the sphere Sn−1.

∆k−1
E R̄ is homogeneous of degree ω − 2k + 2 and

∆k
ER̄ = r−2(∆s − νkid)∆k−1

E R̄ = r−2k
k

∏

p=1

(∆S − νpid)R̄with(8) νk = (ω − 2k + 2)(n+ ω − 2k)The sequene of integers (νk){1≤k≤[ω/2]} is dereasing. It will play the role of theeigenvalues of the Laplaian on the sphere Sn−1. It is known that the eigenvaluesof the geometri Laplaian are non-negative and inreasing. Our νk are in theopposite order.We know by T. Aubin's paper [2℄ that ∆
[ω/2]
E R̄ = 0 and ∫

S(r)
R̄dσ = 0, then

q = min{k ∈ N/∆k
ER̄ = 0}is well de�ned and r−ωR̄ ∈

⊕q
k=1 Ek, with Ek the eigenspae assoiated to thepositive eigenvalues νk of the Laplaian ∆s on the sphere Sn−1. If j 6= k, then Ekis orthogonal to Ej , for the standard salar produt in H2

1 (Sn−1). Moreover, sine
∫

R̄dσ = 0 there exist ϕk ∈ Ek (eigenfuntions of ∆s) suh that(9) R̄ = rω∆s

q
∑

k=1

ϕk = rω

q
∑

k=1

νkϕkAording to Lemma 2.1, we an split the metri g in the following way:(10) g = E + h



EQUIVARIANT YAMABE PROBLEM AND HEBEY�VAUGON CONJECTURE 5where E is the Eulidean metri and h is a symmetri 2-tensor de�ned in ourgeodesi oordinates system by(11) hij = rω+2ḡij + r2(ω+2)ĝij + h̃ij and hir = hrr = 0where ḡ, ĝ and h̃ are symmetri 2-tensors de�ned on the sphere Sn−1. We denoteby s the standard metri on the sphere, ∇, ∆ are the assoiated gradient andLaplaian on Sn−1. By straightforward omputations, Aubin [3℄ proved that:Lemma 2.2.
R̄ = ∇ij ḡijr

ω and
¯∫

Sn−1(r)

Rdσ = [B/2 − C/4 − (1 + ω/2)2Q]r2(ω+1) + o(r2(ω+1))where B = ¯∫
Sn−1
∇iḡjk∇j ḡikdσ, C = ¯∫

Sn−1
∇iḡjk∇iḡjkdσ and Q = ¯∫

Sn−1
ḡij ḡ

ijdσFor further details refer to [8℄.The integrals Q, B and C are given in terms of the tensor ḡ. Our goal is to omputethem using the eigenfuntions ϕk above. Let us de�ne
bij =

q
∑

k=1

1

(n− 2)(νk + 1 − n)
[(n− 1)∇ijϕk + νkϕksij ]and aij suh that ḡij = aij + bij then, aording to (9), we hek that(12) R̄ = R̄b = ∇ijbijr

ω and R̄a = ∇ijaijr
ω = 0If ḡij = aij then R̄ = R̄a = 0 and µ ≥ ω + 1. By Theorem 2.1

¯∫

Sn−1(r)

Rdσ =
¯∫

Sn−1(r)

Radσ < 0If ḡij = bij then
¯∫

Sn−1(r)

Rdσ =
¯∫

Sn−1(r)

Rbdσ = [Bb/2 − Cb/4 − (1 + ω/2)2Qb]r
2(ω+1) + o(r2(ω+1))where Bb, Cb and Qb are the same integrals de�ned in Lemma 2.2 when the on-sidered tensor ḡij = bij . We ompute them in terms of ϕk

Qb =
¯∫

Sn−1

b̄ij b̄
ijdσ =

n− 1

n− 2

q
∑

k=1

νk

νk − n+ 1

¯∫

Sn−1

ϕ2
kdσ

Bb = −(n− 1)Qb +

q
∑

k=1

νk

¯∫

Sn−1

ϕ2
kdσ

Cb = −(n− 1)Qb +
n− 1

n− 2

q
∑

k=1

νk

¯∫

Sn−1

ϕ2
kdσTo �nd these expressions, we used several times the identity ∇ibij = −

∑q
k=1 ∇jϕkand Stokes formula (more details are given in [3, 4℄ and [8℄). In the general ase,we dedue thatLemma 2.3. If µ = ω and ḡij = aij + bij , where bij is de�ned above,(13) ¯∫

Sn−1(r)

Rdσ =
¯∫

Sn−1(r)

Ra +Rbdσ ≤ [Bb/2− Cb/4 − (1 + ω/2)2Qb]r
2(ω+1) + o(r2(ω+1))and(14) Bb/2 − Cb/4 − (1 + ω/2)2Qb =

q
∑

k=1

uk

¯∫

Sn−1

ϕ2
kdσ



6 FARID MADANIwith(15) uk =

(

n− 3

4(n− 2)
− (n− 1)2 + (n− 1)(ω + 2)2

4(n− 2)(νk − n+ 1)

)

νk

uk is obtained using the expressions of Qb, Bb and Cb above.3. Generalization of T. Aubin's theoremTheorem 3.1. If there exists P ∈M suh that ω(P ) ≤ (n− 6)/2 then there exists
f ∈ C∞(Sn−1) with vanishing mean integral suh that

Ig(ϕε) <
n(n− 2)

4
ω

2/n
n−1The ase ω = 0 of the this theorem has already been proven by T. Aubin [1℄. Healso proved the theorem when µ ≥ ω + 1 (see Theorem 2.1).From now until the end of this paper, we drop the letter P in ω(P ) and µ(P ).Proof. If µ ≥ ω + 1 then the inequality holds by Theorem 2.1. So we suppose that

µ = ω until the end of the proof. We start by omputing the �rst integral of theYamabe funtional (6) with ψ = ϕε. Using formula |∇gϕε|2 = (∂rϕε)
2+r−2|∇sϕε|2,we obtain:

∫

M

|∇gϕε|2dv =

∫

M

|∇guε,P |2dv +

∫ δ

0

[∂r(r
(ω+2)uε,P )]2rn−1dr

∫

Sn−1

f2dσ+

∫ δ

0

u2
ε,P r

n+2ω+1dr

∫

Sn−1

|∇f |2dσThe substitution t = r/ε gives(16) ∫

M

|∇gϕε|2dv = (n− 2)2ωn−1I
n+1
n (ε) + ε2ω+4

{
∫

Sn−1

|∇f |2dσI2ω+n+1
n−2 (ε)+

∫

Sn−1

f2dσ[(ω−n+4)2I2ω+n+5
n (ε)+2(ω+2)(ω−n+4)I2ω+n+3

n (ε)+(ω+2)2I2ω+n+1
n (ε)]

}For ‖ϕε‖−2
N , we need to ompute the Taylor expansion of :
ϕN

ε (Q) = [1 −Nrω+2f(ξ) +
N(N − 1)

2
r2ω+4f2(ξ) + o(r2ω+4)]uN

ε,PUsing the fat that ∫

Sn−1
fdσ(ξ) = 0 and formula (5), we onlude that

‖ϕε‖N
N =

∫ δ

0

∫

Sn−1

[1 +
N(N − 1)

2
r2(ω+2)f2(ξ) + o(r2ω+4)]rn−1uN

ε,P drdσ(ξ)

= ωn−1I
n−1
n +

N(N − 1)

2
ε2(ω+2)

∫

Sn−1

f2dσI2ω+n+3
n + o(ε2ω+4)then(17) ‖ϕε‖−2

N = (ωn−1I
n−1
n )−2/N

{

1

− (N − 1)ε2(ω+2)

∫

Sn−1

f2dσI2ω+n+3
n /(ωn−1I

n−1
n )

}

+ o(ε2ω+4)By Eqs (16), (17), (7) and the relationship (4), if n > 2ω + 6 then :



EQUIVARIANT YAMABE PROBLEM AND HEBEY�VAUGON CONJECTURE 7
Ig(ϕε) =

n(n− 2)

4
ω

2/n
n−1 + (ωn−1I

n−1
n )−2/N In+2ω+1

n−2 ε2ω+4×
{

(n− 2)ωn−1

4(n− 1)

¯∫

S(r)

r−2ω−2Rgdσ − n− 2

2(n− 1)

∫

Sn−1

f(ξ)R̄dσ +

∫

Sn−1

|∇f |2dσ+

− n(n− 2)2 − (ω + 2)2(n2 + n+ 2)

(n− 1)(n− 2)

∫

Sn−1

f2dσ

}

+ o(ε2ω+4)If n = 2ω + 6 then
Ig(ϕε) =

n(n− 2)

4
ω

2/n
n−1 + (ωn−1I

n−1
n )−2/Nε2ω+4 log ε−1×

{

(n− 2)ωn−1

4(n− 1)

¯∫

S(r)

r−2ω−2Rgdσ − n− 2

2(n− 1)

∫

Sn−1

f(ξ)R̄dσ+

∫

Sn−1

|∇f |2dσ + (ω + 2)2
∫

Sn−1

f2dσ

}

+O(ε2ω+4)For further details refer to [8℄.Let IS be the funtional de�ned for a funtion f on the sphere Sn−1, with zeromean integral , by
IS(f) =

¯∫

Sn−1

4(n− 1)(n− 2)|∇f |2 − [4n(n− 2)2 − 4(ω + 2)2(n2 + n+ 2)]f2+

− 2(n− 2)2fR̄dσThis implies that if n > 2ω + 6(18) Ig(ϕε) =
n(n− 2)

4
ω

2/n
n−1 +

ω
2/n
n−1I

n+2ω+1
n−2 ε2ω+4

4(n− 1)(n− 2)(In−1
n )2/N

×

{(n− 2)2
¯∫

S(r)

r−2ω−2Rgdσ + IS(f)} + o(ε2ω+4)and if n = 2ω + 6(19) Ig(ϕε) =
n(n− 2)

4
ω

2/n
n−1 +

ω
2/n
n−1I

n+2ω+1
n−2 ε2ω+4 log ε−1

4(n− 1)(n− 2)(In−1
n )2/N

×

{(n− 2)2
¯∫

S(r)

r−2ω−2Rgdσ + IS(f)} +O(ε2ω+4)Notie that if k 6= j then IS(ϕk + ϕj) = IS(ϕk) + IS(ϕj). Indeed, ϕk and ϕj areorthogonal for the standard salar produt in H2
1 (Sn−1).

IS(ckνkϕk) =
{

dkc
2
k − 2(n− 2)2ck

}

ν2
k

¯∫

Sn−1

ϕ2
kdσ

= − (n− 2)4

dk
ν2

k

¯∫

Sn−1

ϕ2
kdσwhere

dk = 4[(n− 1)(n− 2)νk − n(n− 2)2 + (ω + 2)2(n2 + n+ 2)] and ck =
(n− 2)2

dk



8 FARID MADANIUsing (8), we an hek easily that dk is positive for any 1 ≤ k ≤ [ω/2]. Now, letus onsider f =
∑q

1 ckνkϕk. Then
IS(f) = −

q
∑

1

(n− 2)4

dk
ν2

k

¯∫

Sn−1

ϕ2
kdσand by Lemma 2.3

(n− 2)2
¯∫

S(r)

r−2ω−2Rgdσ + IS(f) ≤
q

∑

1

(uk(n− 2)2 − (n− 2)4

dk
ν2

k)
¯∫

Sn−1

ϕ2
kdσ + o(1)The following lemma implies that Ig(ϕε) <

n(n−2)
4 ω

2/n
n−1 �Lemma 3.1. For any k ≤ q ≤ [ω/2] the following inequality holds

uk − (n− 2)2

dk
ν2

k < 0Proof. Reall the expression of νk given in (8). The sequene (Uk) de�ned by
Uk := (νk − n+ 1)dk{(n− 2)

uk

νk
− (n− 2)3

dk
νk}is polynomial dereasing in νk when νk ≥ 0. In fat, Uk = P (νk) with P thedereasing polynomial in R+, de�ned by

P (x) = [(n− 1)(n− 2)x− n(n− 2)2 + (ω + 2)2(n2 + n+ 2)]×
[(n− 3)(x− n+ 1) − (n− 1)2 − (n− 1)(ω + 2)2] − (n− 2)3(x2 − (n− 1)x)The derivative of P is

P ′(x) = −2(n− 2)x− 2n(n− 2)3 + 2(n2 − 3n− 2)(ω + 2)2By assumption ω + 2 ≤ (n− 2)/2 then P is dereasing in R+. Hene
Uk = P (νk) ≤ P (νω/2) = Uω/2for all k ≤ ω/2. It easy to hek that uω/2 is negative so Uk ≤ Uω/2 < 0. �4. Proof of the main theoremBy Remarks 1.1, we onsider only the positive ase (i.e., infg′∈[g]G J(g′) > 0) andthe ase when there exists P ∈M suh that

OG(P ) = {Pi}1≤i≤m, m = cardOG(P ) = inf
Q∈M

cardOG(Q), ω ≤ n− 6

2
and P1 = PLet ϕ̃ε,i be a funtion de�ned as follows:(20) ϕ̃ε,i(Q) = (1 − rω+2

i fi(ξ))uε,Pi
(Q)where ri = d(Q,Pi), the funtion uε,Pi

is de�ned as in (3) and fi is de�ned by:(21) fi(Q) = cr−ω
i ∇ω

gR(Pi)(exp−1
Pi
Q, · · · , exp−1

Pi
Q)

expPi
is the exponential map. In a geodesi oordinates system {r, ξj} with origin

P , indued by the exponential map
f1 = cr−ωR̄ = c

q
∑

k=1

νkϕkwhere R̄, ϕk and νk are de�ned in Setion 2. Thus the funtions fi are de�ned onthe sphere Sn−1. The hoie of the onstant c is important.



EQUIVARIANT YAMABE PROBLEM AND HEBEY�VAUGON CONJECTURE 9Lemma 4.1. Suppose that ω ≤ (n − 6)/2. If ω ∈ [3, 15] or if degR̄ ≥ ω + 1 thenthere exists c ∈ R suh that the orresponding funtions ϕ̃ε,i satisfy :(22) Ig(ϕ̃ε,i) <
1

4
n(n− 2)ω2/n

nRemarks 4.1. (1) We proved inequality of this lemma for any ω ≤ (n− 6)/2,using test funtion ϕε (see Theorem 3.1). We notie that the di�erenebetween ϕε and ϕ̃ε,i is on the onstrution of the orresponding funtions fand fi respetively. From ϕ̃ε,i we de�ne a G−invariant funtion (see proofof the main theorem below), this property is not possible with the funtion
ϕε.(2) For ω = 16 and n su�iently big, we an hek that for any c ∈ R, inequality(22) is false.Proof. 1. If degR̄ ≥ ω + 1, then by Theorem 2.1

Ig(uε,Pi
) <

n(n− 2)

4
ω2/n

nIt is su�ient to take c = 0, hene ϕ̃ε,i = uε,Pi
.2. If degR̄ = ω. Using estimates given in the proof of Theorem 3.1 (see (18), (19)),it is su�ient to show that there exists c ∈ R suh that(23) IS(f1) + (n− 2)2

¯∫

S(r)

r−2ω−2Rgdσr < 0We keep the notations used in the proof of Theorem 3.1. Thus
IS(f1) =

q
∑

k=1

IS(cνkϕk) =
{

dkc
2 − 2(n− 2)2c

}

ν2
k

¯∫

Sn−1

ϕ2
kdσand ¯∫

S(r)

r−2ω−2Rgdσr =

q
∑

k=1

uk

¯∫

Sn−1

ϕ2
kdσTo prove inequality (23), it is su�ient to prove that(24) ∀k ≤ q

dk

2(n− 2)
c2 − (n− 2)c+ (n− 2)

uk

2ν2
k

< 0The left side of the inequality above is a seond degree polynomial with variable c,his disriminant is:(25) ∆k = (n− 2)2 − dkuk

ν2
kUsing Lemma 3.1, we dedue that for any k ≤ q, ∆k > 0. Hene, the polynomialabove admits two di�erent roots denoted xk < yk and given by

xk =
(n− 2)2 − (n− 2)

√
∆k

dk
, yk =

(n− 2)2 + (n− 2)
√

∆k

dkInequality (24) holds if and only if(26) q
⋂

k=1

(xk, yk) 6= ∅The sequene (dk)k≤[ω/2] dereases. It is easy to hek that(27) ∀k < j ≤ [
ω

2
] xk < yjHene intersetion (26) is not empty if(28) ∀k < j ≤ [

ω

2
] xj < yk



10 FARID MADANIWe also hek that if ω is even, uω/2 < 0, whih implies xω/2 < 0.
i. If ω = 3 then q = 1, intersetion above is not empty. It is su�ient to take
c = (x1 + y2)/2.

ii. If ω = 4 then k ∈ {1, 2}, x2 < 0 (beause u2 < 0) and 0 < x1 < y2. Heneintersetion ]x1, y1[∩]x2, y2[ is not empty.
iii. If 5 ≤ ω ≤ 15, it is su�ient to prove (28) whih is equivalent to prove that(29) ∀k < j ≤ [

ω

2
] (n− 2)(dj − dk) + dk

√

∆j + dj

√

∆k > 0Notie that ∆k given by (25) is a rational fration in n. By straightforwardomputations, we hek that there exists reel numbers ak, bk, ek, hk and
sk whih depend on k and ω suh that

∆k = akn
2 + bkn+ ek +

hk

n− 2
+

sk

νk + 1 − n
(30)

√

∆k >
√
ak(n+

bk
2ak

)(31) Inequality (29) holds if we use (31).The expressions of the reel numbers above are known expliitly (we usedthe software Maple to ompute them, see [8℄). For simpliity, we omit togive these expressions.
�Proof of the main theorem. The orbit of P under the ation of G is supposedto be minimal (i.e. cardOG(P ) = infQ∈M cardOG(Q)). Without loss of generality,we suppose that 3 ≤ ω ≤ (n− 6)/2, beause if ω > (n− 6)/2 or ω ≤ 2, we onludeusing Theorem 1.1. From funtions ϕ̃ε,i de�ned by (20), we de�ne the funtion φεas follows:

φε =

m
∑

k=1

ϕ̃ε,i

φε is G−invariant. In fat, for any σ ∈ G, suh that σ(Pi) = Pj

uε,Pi
= uε,Pj

◦ σ and fi = fj ◦ σ
fi are de�ned by (21), we dedue that

ϕ̃ε,i = ϕ̃ε,j ◦ σThe support of ϕ̃ε,i is inluded in the ball BPi
(δ). We hoose δ su�iently smallsuh that for all integers i 6= j in [1,m], intersetion BPj

(δ) ∩BPi
(δ) = ∅. Thus

Ig(φε) = (cardOG(P ))2/nIg(ϕε)By Lemma 4.1, we onlude that
Ig(φε) <

n(n− 2)

4
ω

2/n
n−1(cardOG(P ))2/nIt remains to notie that if g̃ = φ

4/(n−2)
ε g then

J(g̃) = 4
n− 1

n− 2
Ig(φε) < n(n− 1)ω

2/n
n−1(cardOG(P ))2/nwhere ε is su�iently smaller than δ. �Proof of the Corollary 1.1. Suppose that the orbit of P under the ation of Gis minimal (otherwise the onjeture is obvious).If ω = ω(P ) > [(n− 6)/2], we onlude using Theorem 1.1.If ω ≤ [(n− 6)/2] ≤ 15, we onlude using main theorem. �
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