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EQUIVARIANT YAMABE PROBLEM AND HEBEY-VAUGON
CONJECTURE

FARID MADANI

ABSTRACT. In their study of the Yamabe problem in the presence of isometry
group, E. Hebey and M. Vaugon announced a conjecture. This conjecture gen-
eralizes T. Aubin’s conjecture, which has already been proven and is sufficient
to solve the Yamabe problem. In this paper, we generalize Aubin’s theorem
and we prove the Hebey—Vaugon conjecture in some new cases.

1. INTRODUCTION

Let (M,g) be a compact Riemannian manifold of dimension n > 3. Denote by
I(M,g), C(M,g) and R, the isometry group, the conformal transformations group
and the scalar curvature, respectively. Let G be a subgroup of the isometry group
I(M, g). E. Hebey and M. Vaugon[i] considered the following problem:

HEBEY-VAUGON PROBLEM. Is there some G—invariant metric go which minimizes
the functional
o fM Rg/dv(g/)

n—2

(S du(@))

where g’ belongs to the G—invariant conformal class of metrics g defined by:
b1¢ ={g=e’g/f €C¥(M), 0*g=3 VoeG}

The positive answer would have two consequences. The first is that there exists an
I(M, g)—invariant metric go conformal to g such that the scalar curvature Ry, is
constant. The second is that the A. Lichnerowicz’s conjecture [7], stated below, is
true. By the works of J. Lelong-Ferrand[6] and M. Obata[9], we know that if (M, g)
is not conformal to (Sy, gean) (the unit sphere endowed with its standard metric
Jean), then C(M,g) is compact and there exists a conformal metric ¢’ to g such
that I(M,¢') = C(M,g). This implies that the first consequence is equivalent to
the

J(g")

A. LICHNEROWICZ CONJECTURE. For every compact Riemannian manifold (M, g)
which is not conformal to the unit sphere S,, endowed with its standard metric, there
exists a metric g conformal to g for which I(M,g§) = C(M,g), and the scalar cur-
vature Ry is constant.

To such metrics correspond functions which are necessarily solutions of the Yamabe
4
equation. In other words, if g = =2 g, ¢ is a G—invariant smooth positive function
then 1) satisfies
4(n—1) nt2
TAgw + Rg’l/) = Rg'l/)"*Z .
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The classical Yamabe problem, which consists to find a conformal metric with
constant scalar curvature on a compact Riemannian manifold, is the particular
case of the problem above when G = {id}. Denote by Og(P) the orbit of P € M
under G, W, the Weyl tensor associated to the manifold (M, g) and w,, the volume
of the unit sphere S,,. We define the integer w(P) at the point P as

w(P) = inf{i € N/||[VIW,(P)|| # 0} (w(P) = +00 if ¥i € N, ||V W, (P)|| = 0)

HEBEY—VAUGON CONJECTURE. Let (M, g) be a compact Riemannian manifold of
dimension n > 3 and G be a subgroup of I(M,g). If (M,g) is not conformal to
(Sn, Gean) or if the action of G has no fized point, then the following inequality
holds

1 inf J(¢') < n(n—1)w?"(inf cardO 2/n
) int_J(g') < nln~ De/"( juf cardOG(Q)
Remarks 1.1. (1) This conjecture is the generalization of the former T. Aubin’s

congecture [1] for the Yamabe problem corresponding to G = {id}, where the
constant in the right side of the inequality is equal to infy iy . 1J(g") for
Sn- In this case, the conjecture is completely proved.

(2) The inequality is obvious if inf ;¢ g0 J(g") is nonpositive, it is the case when
there exists a Yamabe metric with nonpositive scalar curvature.

(3) If for any Q@ € M, cardO¢(Q) = +oo then this conjecture is also obvious.

The only results known about this conjecture are given in the following theorem:

Theorem 1.1 (E. Hebey and M. Vaugon). Let (M, g) be a smooth compact Rie-
mannian manifold of dimension n > 3 and G be a subgroup of 1(M, g). We always
have :
inf  J(¢") < n(n—1)w?"( inf cardO 2/n
inf J(g') < nn — D/ juf card0c(Q)
and inequality (@) holds if one of the following items is satisfied.

(1) The action of G on M is free

(2) 3<dimM <11

(3) There exists a point P with minimal orbit (finite) under G such that w(P) >
(n—6)/2 or w(P) € {0,1,2}.

The case w = 3 was studied by A. Rauzy (private communications).

In this prove we prove the following results:

Main theorem. The Hebey—Vaugon conjecture holds if there exists a point P € M
with minimal orbit (finite) for which w(P) < 15 or if the degree of the leading part
of Ry is greater or equal to w(P) + 1, in the neighborhood of this point P.

Corollary 1.1. Hebey—Vaugon conjecture holds for every smooth compact Rie-
mannian manifold (M, g) of dimension n € [3,37].

To prove the main theorem, we need to construct a G—invariant test function ¢
such that

I (¢) < n(n — 1)w?/™( Qié% cardOg(Q))?/™

Thus, all the difficulties are in the construction of a such function. For some cases,
we can use the test functions constructed by T. Aubin [I] and R. Schoen [I0] in
the case of Yamabe problem. They have been already proven by E. Hebey and



EQUIVARIANT YAMABE PROBLEM AND HEBEY-VAUGON CONJECTURE 3

M. Vaugon [5]. But the item B presented in Theorem [l uses test functions dif-
ferent than T. Aubin and R. Schoen ones.

We multiply T. Aubin’s test function u. p by a function as follows:

(2) =(Q) = (1 =12 f(€) Jue, p(Q)
g anQ e TLT% .
()  uep(Q) = (m) B (m) if Q € Bp(9)
0 if Q € M — Bp(J)

for all Q € M, where r = d(Q, P) is the distance between P and Q. (r,&%) is a
geodesic coordinates system in the neighborhood of P and Bp(4) is the geodesic ball
of center P with radius ¢ fixed sufficiently small. f is a function depending only on &,
chosen such that |, Sy fdo = 0. Without loss of generality, we suppose that in the

coordinates system (r,&7) we have det g = 1 + o(r™) for m >> 1. In fact, E. Hebey
and M. Vaugon proved that there exists § € [g]® for which det§ = 1 + o(r™) and
infy cge J(g') does not depend on the conformal G—invariant metric.

2. COMPUTATION OF [, Rgp2dv

Let be
b o/ ’ b b
Ia(E):/O mdt and Ia:i%Ia(E)
then 1297 1(g) =loge™t 4+ O(1). If 2a — b > 1 then I’(¢) = I? + O(e2*~"~!) and by
integration by parts, we establish the following relationships :
b—1 _ b—1 ,_ 2a—b—3 4(n —2)In+L
4 Ib _ b—2 _ Ib 2 _ b n _
@ L 2a—b—11¢ 2q —2 271 20 —2 b (In=2)(n=2)/n "
Using the inequality (@ — b)? > a® — 3a”~'b for 0 < b < a, we have for 3 > 2,
0<a<(n—-2)(B-1)—n

(5) /M r”‘ufﬂpdv = wn,1]&t’;§5/260‘+"7ﬂ("72)/2 +0(e"?)

This integral appears frequently in the following computations, and it allows us to
neglect the constant term in the expression of u., when we choose § sufficiently
small and ¢ smaller than §.

Denote by I, the Yamabe functional defined for all ¢» € H'(M) by

©) 1,() = ( [ Wik % / ngde) ol

where N = 2n/(n — 2) and V, is the gradient of the metric g.

The second integral of the functional I, with the scalar curvature term needs a
special consideration. Let p(P) be an integer defined as follows : |[VgR4(P)| =0
for all |3| < u(P) and there exists v € N*(P) such that |V, R,(P)| # 0 then

Ry(Q) = Fe O(r)+1)

where R = r#(P) > 181=n Vs Ry(P)EP is a homogeneous polynomial of degree pu(P),
the 0 are multi-indices.

For simplicity, we drop the letter P in w(P) and p(P).

By E. Hebey and M. Vaugon [5] results:
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Lemma 2.1. u > w, gij = §;; + O(r*™?) and ]S(T)Rg = O(r?**2) which implies
that fS(r) Rdo = 0 when p < 2w + 2

j denotes the average. Then

/ Rg@gd’l} = / Rgug Pd’U — 2/ fug PRgrw-‘er,U + / f2u§ PRgT2w+4d’U
M M ’ M ’ o )

(7) _ €2w+4wn_1/s( )T—Qw—QRng,I’,’rZi-gw-‘rl(E)_

2L () / rf(€)Rda(€) + 0(e"?)
5(r)

Moreover T. Aubin [2] proved that:
Theorem 2.1. If u > w + 1 then there exists C(n,w) > 0 such that

/ Rdo = C(n,u})(ng)“’""1R(P)7’2‘”+2 + o(r?t2)
Sn—1(r)

(—Ay)“ L R(P) is negative. Then I,(uc p) < #u}/n

n—1-

From now until the end of this section, we make the assumption that u = w. Now,
we recall some results obtained by T. Aubin in his papers [3, ]:

R is homogeneous polynomial of degree w then Ag R is homogeneous of degree w —2
and

AcR=7r"%(AR—w(n+w—2)R)
where A¢ is the Euclidean Laplacian and A; is the Laplacian on the sphere S, _;.
AgflR is homogeneous of degree w — 2k + 2 and

k
AER =172(As — nid) AR R = 72k H(AS —vid)R
p=1

with

(8) vp = (w—2k+2)(n+w—2k)

The sequence of integers (vx){1<k<[w/2)} i decreasing. It will play the role of the
eigenvalues of the Laplacian on the sphere S, _;. It is known that the eigenvalues
of the geometric Laplacian are non-negative and increasing. Our vy are in the

opposite order.
We know by T. Aubin’s paper [2] that AE;’/Q]R =0 and fS(T) Rdo = 0, then

q = min{k € N/AER = 0}

is well defined and r~“R € @i_, Ex, with Ej the eigenspace associated to the
positive eigenvalues vy, of the Laplacian Ag on the sphere S,,_1. If j # k, then Ej,
is orthogonal to Ej, for the standard scalar product in H7(S,_1). Moreover, since
f Rdo = 0 there exist ¢, € Ej (eigenfunctions of A,) such that

q q
(9) R:r‘”ASZ@k :T“’Zchpk

k=1 k=1
According to Lemma Il we can split the metric g in the following way:

(10) g=E+h
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where & is the Euclidean metric and h is a symmetric 2-tensor defined in our
geodesic coordinates system by
(11) hij = 7’w+2§ij + T2(w+2)gij + ilij and hi = hyp =0

where g, g and h are symmetric 2-tensors defined on the sphere S,,_;. We denote
by s the standard metric on the sphere, V, A are the associated gradient and
Laplacian on S,_1. By straightforward computations, Aubin [3] proved that:

Lemma 2.2. ) )
R =V"Yg;;v° and
/ Rdo = [B/2 = C/4— (1+w/2)*Q]r*“ ) 4 o(r*HD)
Sn—1(r)
where B = [(V'§"*V gipdo, C = [ (V'g/*V,gjrdo and Q = [, Gijg’do
For further details refer to [§].

The integrals @), B and C' are given in terms of the tensor g. Our goal is to compute
them using the eigenfunctions ¢y above. Let us define

1
(n—2)(vy +1—n)
and a;; such that g;; = a;; + b;; then, according to (@), we check that

M=

bij = [(n — 1)Vijon + viprsij]

el
Il
—

(12) R=Ry,=V"bjr* and R, =Va;r* =0
If gij = a;; then R =R, =0 and y > w + 1. By Theorem EZII

/ Rdo = / R,do <0
Sn—1(r) Sn_1(r)

/ Rdo = Rydo = [By/2 — Cy/4 — (14 w/2)?Qp]r?@TY 4 o(r2wHD)
Sn— 1(7‘) Sn— I(T)

where By, Cy and @, are the same integrals defined in Lemma 22 when the con-
sidered tensor g;; = b;;. We compute them in terms of ¢y,

y - e n—1 Kl Vi y
= b;;67do = 214
Qb /nl J o HQZykn+1/Snl<Pka

Sn— k=1

q _
—(n—1)Qp+ Z Vk/f%da
Zyk/gakdo

To find these expressions, we used several times the identity V* bij =>4 Vjier
and Stokes formula (more details are given in [3, ] and [8]). In the general case,
we deduce that

If gij = bij then

Cy=—(

Lemma 2.3. If p =w and g;; = a;; + b;;, where b;; is defined above,

(13) /Rda = /R + Rydo < [By/2 — Cp/4 — (1 +w/2)?Qp)r2 TV 4 o(r2@+D)

Sn—1(r) Sn—1(r)

(14) Bb/Q—Cb/4—(1+w/2)2Qb:Zuk/ ido
k=1 Sn-1
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with

(=3 (=1’ +n-1)w+2)’
(15) Uk<4(n—2) An—2)(v —n+1) >Vk

uy is obtained using the expressions of Q, By, and Cj, above.

3. GENERALIZATION OF T. AUBIN’S THEOREM

Theorem 3.1. If there exists P € M such that w(P) < (n—6)/2 then there exists
f e C>(S,_1) with vanishing mean integral such that

n(n — 2 n
Iy(pe) < %wiél

The case w = 0 of the this theorem has already been proven by T. Aubin [I]. He
also proved the theorem when > w + 1 (see Theorem TJ).

From now until the end of this paper, we drop the letter P in w(P) and p(P).

Proof. If ;1 > w + 1 then the inequality holds by Theorem Il So we suppose that
¢ = w until the end of the proof. We start by computing the first integral of the
Yamabe functional (@) with ¢ = .. Using formula [V ,¢.|? = (9,¢:)*+r 2| Vsp:|?,
we obtain:

b
/ |Vg<,08|2dv:/ |ngE,P|2d’U+/ [GT(T(‘”+2)UE7P)]2T"_1dr/f2d0+
M M 0 Sn—1

é
/ ug,PT”+2w+1dr/|Vf|2do
0 Sn—1

The substitution ¢ = r/e gives

(16) /M |Vgg0€|2dv =(n— 2)2wn,11f;+1(€) + €2w+4{/s |Vf|2d01721‘i'5"+1(5)+

n—1

J R O R R O]
Sn—1

For ||¢.| %, we need to compute the Taylor expansion of :

Q) = [1 - N T

Using the fact that fS . fdo (&) =0 and formula (@), we conclude that

PO () 4 o2 ul

)
N(N -1 ~
ledf = [ 14 FEG 206 4 o2 o)
0 n—1
= wn—ﬂ,?_l + WEQ(w-i-Q)/deo_Isw-i—nﬁ-B +0(€2w+4)
Sn—l

then
(A7) lp:lly® = (wna Iy~ )N {1

o (N . 1)52(w+2) / f2dgl72lw+n+3/(wn71[sfl)} + 0(€2w+4)
Sn-1

By Eqgs ([d), (), [@ and the relationship @), if n > 2w + 6 then :
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-2 n —1\—
Iy(pe) = %wi/_l + (W [P YN A2t 2wdd
(n— Q)Wn—l] —20w-2 n—2 / P 2
— r Y “R,do — f(©)Rdo + [ |Vf|*do+
{ 4(TL — 1) S(T) g 2(TL — 1) Sn_1 Sn_1

nn—20°—(w+2>*n*+n+2) [ ., »
B (n—1)(n—2) /snflda}JrO(E ™

If n = 2w + 6 then

_9 .
Iy(pe) = %wi/_l + (wnfﬂsfl)*?/Nstr‘l loge ™1 x

(n—2)wnp—1 o9 . n-=2 _
{74(71 D /S(T)r R,do 72(717 0 [qn{(f)Rda+

/ IV f2do + (w +2)? / f2da} + O(e?* 1)
Sn—1 Sn-1

For further details refer to [g].

Let Is be the functional defined for a function f on the sphere S,_;, with zero
mean integral , by

Is(f) = /S An—1)(n = 2)|VfP = [4n(n — 2)* — 4(w + 2)*(n* + n +2)| f*+

—2(n—2)?fRdo
This implies that if n > 2w + 6
(18) I ( ) TL(TL - 2) 2/n wi/—nlls——i_;w+152w+4 ~
=—w
ST T = e - 2) PN

{(n -2 / o R IS} o)

and if n = 2w + 6

2/n pn42w+1 _2w+4 -1
-2 n o w I € loge
(19) L(pe) = M2 20 Coilasd X
4 4(n—1)(n—2)(Iy~H2/N

(=27 [ 7 Rydo 4 15()) 40

Notice that if k # j then Is(ox + ¢;) = Is(vk) + Is(p;). Indeed, ¢y and ¢; are
orthogonal for the standard scalar product in HZ(S,,—1).

Is(ervrpr) = {dkci —2(n— 2)20k}u,3/ ido
Sn—1

—94
:—7(71 a ) yi/s go%da

where
(n—2)°

di =4[(n—1)(n—2)vx —n(n —2)* + (w+2)°(n* + n+2)] and ¢, = i
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Using (®), we can check easily that dj is positive for any 1 < k < [w/2]. Now, let
us consider f =Y 1 cxvirpr. Then

and by Lemma

- q . -
-2
=2 [ R 1st9) < St 202 = P2 [ gtao o)
T 1 n—1
The following lemma implies that I;(¢s) < @wié " O

Lemma 3.1. For any k < q < [w/2] the following inequality holds
(n —2)?
dy,
Proof. Recall the expression of vy given in ). The sequence (Uy) defined by
up _ (n=2)°

Vg dy,

U — Vi <0

Ui := (g — n+ 1)di{(n —2) vk}

is polynomial decreasing in v, when v, > 0. In fact, Uy = P(vx) with P the
decreasing polynomial in R, defined by

Px)=[n-1)(n—-2)z—n(n—2)*+ (w+2)*(n*+n +2)]x
[(n=3)(z—n+1)—(n—1)" = (n—(w+2)"] - (n—2)°@@" — (n - 1)z)
The derivative of P is
P(z) = —2(n—2)x — 2n(n — 2)* + 2(n? — 3n — 2)(w + 2)?
By assumption w + 2 < (n — 2)/2 then P is decreasing in R;. Hence
U = P(vk) < P(Vwy2) = Uu)2
for all kK < w/2. Tt easy to check that u,,/, is negative so Uy < U, /2 < 0. O

4. PROOF OF THE MAIN THEOREM

By Remarks [Tl we consider only the positive case (i.e., infycgc J(g') > 0) and
the case when there exists P € M such that

O¢(P) ={Pi}1<i<m, m = cardOg(P) = ang/[ cardOg(Q), w < n—6 and P, = P
== €

Let ¢, ; be a function defined as follows:

(20) Pei(Q) = (1 =12 £i(€)Jue, p, (Q)

where r; = d(Q, P;), the function u. p, is defined as in (@) and f; is defined by:

(21) fi(Q) = ery “Vg Rpy (expp Q.+, expp! Q)

expp, is the exponential map. In a geodesic coordinates system {r, &/} with origin
P, induced by the exponential map

q
f1 = CT_wR = CZ VDK
k=1

where R, ¢, and vy, are defined in Section Bl Thus the functions f; are defined on
the sphere S,,_1. The choice of the constant ¢ is important.
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Lemma 4.1. Suppose that w < (n —6)/2. If w € [3,15] or if degR > w + 1 then
there ezists c € R such that the corresponding functions ¢. ; satisfy :

1
(22) 1,($ei) < gl — 22"

Remarks 4.1. (1) We proved inequality of this lemma for any w < (n—6)/2,
using test function . (see Theorem [Z1]). We notice that the difference
between . and Oc ; is on the construction of the corresponding functions f
and f; respectively. From ¢.,; we define a G—invariant function (see proof
of the main theorem below), this property is not possible with the function
Pe-

(2) Forw = 16 and n sufficiently big, we can check that for any ¢ € R, inequality

&2 is false.
Proof. 1. If degR > w + 1, then by Theorem 21
-2
It is sufficient to take ¢ = 0, hence ¢, ; = u. p,.

Ig (uE,P«;) <

2. If degR = w. Using estimates given in the proof of Theorem Bl (see (IX), [@J)),
it is sufficient to show that there exists ¢ € R such that

(23) Is(f1)+ (n — 2)2/ r 2 2R,do, < 0
S(r)
We keep the notations used in the proof of Theorem Bl Thus

q
Is(f1) = ZIS(cykcpk) = {dk02 —2(n— 2)20}1/,3/ @ido
k=1

Sn—1

_ q _
and / T*Q‘”*QRgdo,« = uk/ @ido
S(T) ; Snfl

To prove inequality (23)), it is sufficient to prove that

dp 2 Uk
%k 2 (n_9 _ o)k
2(n—2)c (n Je+ (n )2u£<0

The left side of the inequality above is a second degree polynomial with variable c,
his discriminant is:

(25) Ap=(n—-2)?2-

(24) VE < ¢

diug,

2
Vi

Using Lemma Bl we deduce that for any & < ¢, Ax > 0. Hence, the polynomial
above admits two different roots denoted z; < yi and given by

(n—2)%—(n—2)VAx (n —2)%+ (n —2)vVAx
’ Yk =
dk dk
Inequality 4)) holds if and only if
q

(26) ﬂ (T, yx) # D

k=1

T =

The sequence (d)r<[w 2] decreases. It is easy to check that

[f

(27) Vk <5< 2] xp < Yj

Hence intersection (Z8) is not empty if

(28) Vk<j<[z]  w<wm



10 FARID MADANI

We also check that if w is even, u, /o < 0, which implies x, /o < 0.

1. If w = 3 then ¢ = 1, intersection above is not empty. It is sufficient to take
c=(x1+y2)/2.
1. If w =4 then k € {1,2}, 22 < 0 (because uz < 0) and 0 < z1 < y2. Hence
intersection |x1, y1[N]x2, y2[ is not empty.
1it. If 5 <w < 15, it is sufficient to prove (28) which is equivalent to prove that

(29) Vk<j<[5] (n=2)(d; — di)+di/B; +dy/Br >0

Notice that Ay given by [£3) is a rational fraction in n. By straightforward
computations, we check that there exists reel numbers ay, by, ex, hx and
sk which depend on k and w such that

hk + Sk
-2 vp+1—n

(30) A = akn2 +bpn + e + "

(31) VAL > Var(n+ 5)

Inequality (Z9) holds if we use &II).
The expressions of the reel numbers above are known explicitly (we used
the software Maple to compute them, see [8]). For simplicity, we omit to
give these expressions.

O

Proof of the main theorem. The orbit of P under the action of G is supposed
to be minimal (i.e. cardO¢(P) = infgen cardOg(Q)). Without loss of generality,
we suppose that 3 < w < (n—6)/2, because if w > (n —6)/2 or w < 2, we conclude
using Theorem [Tl From functions ¢, ; defined by (20), we define the function ¢,

as follows:
¢E = Z Sba,i
k=1

¢e is G—invariant. In fact, for any o € G, such that o(P;) = P;
Ue,p; = Ue,p; 00 and f; = fjoo
fi are defined by (EIl), we deduce that
Pei = Pe,j OO0

The support of @¢; is included in the ball Bp,(d). We choose § sufficiently small
such that for all integers i # j in [1,m], intersection Bp, (d) N Bp,(§) = @. Thus

Iy(¢:) = (cardOg (P))* "Iy ()
By Lemma BTl we conclude that

n(n —2 n "
Iy (¢e) < %wiél(cardOG(P))Q/
Tt remains to notice that if § = ¢2/ ™" g then

~ n—1 n n
J(g) = 4mlg(¢6) <n(n— 1)w,2/_1(cardOg(P))2/
where ¢ is sufficiently smaller than §. O

Proof of the Corollary [l Suppose that the orbit of P under the action of G
is minimal (otherwise the conjecture is obvious).

If w =w(P) > [(n — 6)/2], we conclude using Theorem [l

If w < [(n—6)/2] <15, we conclude using main theorem. O
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