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Abstract. Let (V, g) and (W,h) be compact Riemannian manifolds of dimen-
sion at least 3. We derive a lower bound for the conformal Yamabe constant
of the product manifold (V × W, g + h) in terms of the conformal Yamabe

constants of (V, g) and (W,h).
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1. Introduction

1.1. The Yamabe functional, constant scalar curvature metrics, and Yam-
abe metrics. For a Riemannian manifold (M,G) we denote the scalar curvature
by sG, Laplace operator ∆G, volume form dvG. In general the dependence on the
Riemannian metric is denoted by the metric as a superscript.

For integers m ≥ 3 we set am := 4(m−1)
m−2 and pm := 2m

m−2 . Let C
∞
c (M) denote the

space of compactly supported smooth functions on M . For a Riemannian manifold
(M,G) of dimension m ≥ 3 we define the Yamabe functional by

FG(u) :=

∫
M

(
am|du|2G + sGu2

)
dvG(∫

M
|u|pm dvG

) 2
pm

,

where u ∈ C∞
c (M) does not vanish identically. The conformal Yamabe constant

µ(M,G) of (M,G) is defined by

µ(M,G) := inf
u∈C∞

c (M),u̸≡0
FG(u).

The conformal Yamabe constant is usually defined only for compact manifolds,
here we allow also non-compact manifolds in the definition. This will turn out
to be essential for studying surgery formulas for Yamabe invariants of compact
manifolds, see Subsection 3.2. Also notice that the conformal Yamabe constant for
non-compact manifolds has been studied for instance in [11] and [9].

For compact M one easily sees that limε→0 FG(
√
u2 + ε2) = FG(u), thus we

obtain

µ(M,G) = inf
u∈C∞

+ (M)
FG(u) > −∞,
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where C∞
+ (M) denotes the space of positive smooth functions. According to the res-

olution of the Yamabe problem [20, 4, 18], see for example [12] for a good overview
article, this infimum is always attained by a positive smooth function if M is a
compact manifold.

For a compact manifold M one also defines for any metric G the (normalized)
Einstein-Hilbert functional E as

E(G) :=

∫
M

sG dvG

volG(M)
m−2
m

.

These functionals are closely related to each other, namely if u > 0 and G̃ =
u4/(m−2)G, then

E(G̃) = FG(u).

¿From the discussion above it follows that the functional E always attains its in-
fimum in each conformal class [G]. Such minimizing metrics are called Yamabe

metrics. Obviously G̃ is a Yamabe metric if and only if λG̃ is a Yamabe metric
for any λ > 0. Thus any conformal class on a compact manifold carries a Yamabe

metric of volume 1. Yamabe metrics G̃ are stationary points of E , restricted to the
conformal class, and thus satisfy an Euler-Lagrange equation. This Euler-Lagrange

equation says precisely that the scalar curvature of G̃ is constant. One also sees that
µ(M,G) is positive if and only if [G] contains a metric of positive scalar curvature.

We denote the standard flat metric on Rm by ξm. On the sphere Sm ⊂ Rm+1

the standard round metric ρm is a Yamabe metric, and the whole orbit of ρm under
the action of the Möbius group Conf(Sm) = PSO(m + 1, 1) consists of Yamabe
metrics. Thus Sm := (Sm, ρm) carries a non-compact space of Yamabe metrics of
volume 1.

In contrast to this, there is only one metric of constant scalar curvature and of
volume 1 in the conformal class [G], if at least one of the following conditions is
satisfied.

• M is compact and µ(M,G) ≤ 0. The unicity then follows from the maxi-
mum principle.

• (M,G) is a connected compact Einstein manifold, and (M,G) is non-
isometric to (Sm, λρm) for any λ > 0. This case is one of Obata’s theorems
[13, Prop. 6.2].

• (M,G) is close in the C2,α-topology to such an Einstein metric, see [8,
Theorem C].

In particular in these cases there is exactly one Yamabe metric of volume 1, and
any metric of constant scalar curvature is a Yamabe metric. In [ρm] any metric
of constant scalar curvature κ is in the orbit of the Möbius group acting on λρm,
where κ = m(m−1)/λ. As a consequence, on the round sphere any constant scalar
curvature metric is a Yamabe metric as well.

However, in general, the functionals E|[G] and FG|C∞
+ (M) may have non-minimi-

zing stationary points. These stationary points are thus metrics of constant scalar
curvature which are not Yamabe metrics. The simplest such example, extensively
discussed by Schoen [19] for w = 1, is the metric G = ρv + λρw on Sv × Sw, v ≥ 2,
which has constant scalar curvature v(v−1)+w(w−1), but which is not a Yamabe
metric for sufficiently large λ. This is due to the fact that µ(M,G) ≤ µ(Sm), which
follows from a standard test function argument, whereas E(ρv + λρw) → ∞ as
λ → ∞ when v ≥ 2.

In conclusion, if (M,G) is an explicitly given compact manifold of constant
scalar curvature, the calculation of µ(M,G) is easy if either (M,G) is Einstein or
if µ(M,G) ≤ 0, but in general it can be a hard problem.
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εv,w w=3 w=4 w=5 w=6 w=7

v= 3 0.625 0.7072.. 0.7515.. 0.7817.. 0.8042..
4 0.7072.. 0.7777.. 0.8007.. 0.8367.. 0.8537..
5 0.7515.. 0.8007.. 0.8427.. 0.8631.. 0.8772..
6 0.7817.. 0.8367.. 0.8631.. 0.88 0.8921..
7 0.8042.. 0.8537.. 0.8772.. 0.8921.. 0.9027..

Figure 1. Values of εv,w

1.2. Product manifolds. We now consider Riemannian product manifolds, that
is for Riemannian manifolds (V, g) and (W,h) of dimensions v and w, we equip
M = V × W with the product metric G = g + h, or more generally G = g + λh
where λ > 0. We ask the following question.

Question. Suppose V and W are compact and equipped with Yamabe metrics g
and h. Let λ > 0. Is then g + λh also a Yamabe metric?

¿From the discussion on unicity above it follows that the answer is yes,

• if v, w ≥ 3, µ(V, g) ≤ 0 and µ(W,h) ≤ 0;
• or if v, w ≥ 3, µ(V, g) > 0 and µ(W,h) < 0 for λ > 0 small enough;
• or if (V, g) and (W,h) are both Einstein with 1

v s
g close to 1

λwsh.

If the answer to the above question is yes, then one deduces

µ(V ×W, g + λh) =

(
µ(V, g)

volg(V )2/v
+

µ(W,h)

volλh(W )2/w

)(
volg(V )volλh(W )

) 2
v+w

. (1)

On the other hand if g has positive scalar curvature, then E(g + λh) → ∞ for
λ → ∞, thus g+λh is not a Yamabe metric for large λ. This applies, in particular,
to the cases µ(V, g) > 0, v ≥ 3, or if (V, g) = (S2, ρ2).

1.3. An intuitive—but incorrect—argument in the positive case. Now we
assume v, w ≥ 3, µ(V, g) > 0, and µ(W,h) > 0. We already explained why g + λh
is not a Yamabe metric for large (and small) λ > 0, as a consequence Equation (1)
cannot be true for all λ > 0. Despite of this fact, assume for a moment that (1)
were true for all λ > 0. We then could minimize over λ, and we would obtain

inf
λ∈(0,∞)

µ(V ×W, g + λh) = (v + w)

(
µ(V, g)

v

) v
v+w

(
µ(W,h)

w

) w
v+w

(2)

1.4. Main result. Although the naive derivation of formula (2) used incorrect
assumptions, our main result, Theorem 2.3 will tell us that the formula itself is
correct up to a factor

εv,w =
av+w

avv/(v+w)aww/(v+w)
< 1.

assuming the mild condition (4).
More precisely, we assume that V and W are compact manifolds of dimension

at least 3, with Yamabe metrics g and h of positive conformal Yamabe constant.
In particular, condition (4) is satisfied. Then Theorem 2.3 implies

εv,w ≤
infλ∈(0,∞) µ(V ×W, g + λh)

(v + w)
(

µ(V,g)
v

) v
v+w

(
µ(W,h)

w

) w
v+w

≤ 1.

Note that εv,w → 1 for v, w → ∞. See Figure 1 for some values of εv,w.
The main theorem also applies to many non-compact manifolds, see Theorem 2.3.
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1.5. Further comments on related literature. Our main motivation to study
Yamabe constants of products is the application sketched in Subsection 3.2.

Fundamental results on Yamabe constants on products have been found in the
interesting article [1] where it is, in particular, shown that the conformal Yamabe
constant of the product V × Rw is a lower bound for σ(V × W ). This article
also emphasized the importance of the question under which conditions a functions
u ∈ C∞(V × W ) minimizing E is a function of only one of the factors. If V
is compact and of constant scalar curvature 1, it was shown that the conformal
Yamabe constant of manifolds V ×Rw is up to a constant the inverse of an optimal
constant in a Gagliardo-Nirenberg type estimate.

In related research Petean [15] derived a lower bound for the conformal Yamabe
constant of product manifolds V ×R, where V is compact of positive Ricci curvature.
If additionally we require V to be Einstein, any minimizer u ∈ C∞(V × R) of E
only depends on R. As a corollary Petean obtained lower bounds for the smooth
Yamabe invariant σ(V × S1) in this case.

This result of Petean contrasts nicely to Theorem 2.3. Whereas Petean’s result
requires that one of the factor is 1-dimensional, our Theorem 2.3 requires both
factors to be of dimension at least 3.

In [17] an explicit lower bound for µ(S2×R2, ρ2+ξ2) is obtained: µ(S2×R2, ρ2+
ξ2) ≥ 0.68 · Y (S4). A similar, but weaker result was obtained in [14].

Several recent publications study multiplicity phenomena on products Sv ×W
equipped with product metric of the standard metric on Sv with a metric of constant
scalar curvature s > 0 on W . Explicit lower bounds for the number of metrics of
constant scalar curvature 1 in the conformal class [g0] are derived, and these bounds
grow linearly in

√
s. The case v = 1 was studied in [7, 6], the general case then

treated in [16]. In the recent preprint [10] isoparametric hypersurfaces are used in
order to obtain new metrics of constant scalar curvature in the conformal class of
products of riemannian manifolds, e.g. the conformal class of (S3 × S3, ρ3 + λρ3).

1.6. Structure of the present article. In Section 2 we derive the main tech-
niques and the main result of the article. We use mixed Lp,q-spaces in order to
obtain a lower bound of the conformal Yamabe constants in the case that both
factors have dimension at least 3. We start with a proof of an iterated Hölder
inequality in Subsection 2.1 which is well-adapted for the proof of our product
formula in Subsection 2.3 which is the main result of the article.

In Section 3 we discuss applications. In Subsection 3.1 we find an estimate
for the smooth Yamabe invariant of product manifolds. Subsection 3.2 explains
our original motivation for the subject, which is to find better estimates for the
constants appearing in the surgery formula in [2]. In Subsection 3.3 we define a
stable Yamabe invariant and show that a similar surgery formula as in the unstable
situation holds true.

Acknowledgements. We want to thank the organizers of the Conference “Con-
tributions in Differential Geometry – a round table in occasion of the 65th birthday
of Lionel Bérard Bergery, 2010”, in particular thanks to A. Besse, A. Altomani, T.
Krantz and M.-A. Lawn. During that conference we found central ingredients for
the present article.

B. Ammann was partially supported by DFG Sachbeihilfe AM 144/2-1. E. Hum-
bert was partially supported by ANR-10-BLAN 0105.

2. Yamabe constants of product metrics
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2.1. Iterated Hölder inequality for product manifolds. Let (V, g) and (W,h)
be Riemannian manifolds of dimensions v := dimV and w := dimW . We set

(M,G) := (V ×W, g + h),

so that m := dimM = v + w. We do not assume that the manifolds are complete.
The first result we will need is a kind of iterated Hölder inequality for (M,G) :=
(V ×W, g + h).

Lemma 2.1. For any function u ∈ C∞
c (M) we have(∫

M

|u|pm dvG
) 2

pm

≤

(∫
V

(∫
W

|u|pw dvh
) 2

pw

dvg

) w
m
(∫

V

(∫
W

|u|2 dvh
) pv

2

dvg

) v−2
m

.

The lemma is actually a special case of the Hölder inequality for mixed Lp,q-
spaces. See [5] for further information on such spaces.

Proof. By the Hölder inequality we have∫
W

|u|pm dvh ≤
(∫

W

|u|pw dvh
) w−2

m−2
(∫

W

|u|2 dvh
) v

m−2

.

We integrate this inequality over (V, g), and use the following Hölder inequality∫
V

αβ dvg ≤
(∫

V

|α|
m−2
w dvg

) w
m−2

(∫
V

|β|
m−2
v−2 dvg

) v−2
m−2

with

α :=

(∫
W

|u|pw dvh
) w−2

m−2

and β :=

(∫
W

|u|2 dvh
) v

m−2

.

This proves Lemma 2.1 �

2.2. A Lemma about integration and derivation. Second we need a Lemma
concerning the interchange of derivation and taking (partial) L2-norm.

Lemma 2.2. Let u ∈ C∞
c (M), u ̸≡ 0, and set

γ :=

(∫
W

u2 dvh
) 1

2

.

Then ∫
V

|dγ|2g dvg ≤
∫
M

|du|2g dvG. (3)

Proof. Take any vector field X on M tangent to V . One has g-almost everywhere
(except on the boundary of γ−1(0))

|Xγ|2 ≤

 ∫
W

uXudvh(∫
W

u2 dvh
) 1

2

2

≤
∫
W

(Xu)2 dvh,

where we used the Cauchy-Schwartz inequality∫
W

uXudvh ≤
(∫

W

(Xu)2 dvh
) 1

2
(∫

W

u2 dvh
) 1

2

.

Integrating over V , we deduce that∫
V

|Xγ|2 dvg ≤
∫
M

|Xu|2 dvG.

Since this holds for any X tangent to V , inequality (3) follows. �
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2.3. Conformal Yamabe constant of product metrics. We now state and
prove our main theorem. It will turn out that the following modified invariant
is convenient when studying products of Riemannian manifolds with non-negative
Yamabe constant. If µ(M,G) ≥ 0 we set

ν(M,G) :=

(
µ(M,G)

mam

)m

.

Theorem 2.3. Let (V, g) and (W,h) be Riemannian manifolds of dimensions
v, w ≥ 3. Assume that µ(V, g), µ(W,h) ≥ 0 and that

sg + sh

am
≥ sg

av
+

sh

aw
. (4)

Then,

µ(M,G) ≥ mam
(vav)

v
m (waw)

w
m
µ(V, g)

v
mµ(W,h)

w
m ,

or, equivalently,
ν(M,G) ≥ ν(V, g)ν(W,h).

Note that we do not assume that the manifolds are complete.

Proof. Take any non-negative function u ∈ C∞
c (M) normalized by∫

M

|u|pm dvG = 1. (5)

We then have
1

am
FG(u) =

∫
M

(
|du|2G +

sG

am
u2

)
dvG.

Using |du|2G = |du|2g + |du|2h and sG = sg + sh together with (4) we obtain

1

am
FG(u) ≥

∫
M

(
|du|2g +

sg

av
u2

)
dvG +

∫
V

∫
W

(
|du|2h +

sh

aw
u2

)
dvh dvg. (6)

We set γ :=
(∫

W
u2 dvh

) 1
2 . For the first term here, Lemma 2.2 and the definition

of µ(V, g) imply that∫
M

(
|du|2g +

sg

av
u2

)
dvG ≥

∫
V

(
|dγ|2g +

sg

av
γ2

)
dvg

≥ 1

av
µ(V, g)

(∫
V

γpv dvg
) 2

pv

=
1

av
µ(V, g)

(∫
V

(∫
W

|u|2 dvh
) pv

2

dvg

) v−2
v

.

(7)

For the second term we have∫
V

∫
W

(
|du|2h +

sh

aw
u2

)
dvh dvg ≥ 1

aw
µ(W,h)

∫
V

(∫
W

upw dvh
) 2

pw

dvg (8)

by the definition of µ(W,h). Plugging (7) and (8) in (6) we get

FG(u) ≥ am
av

µ(V, g)

(∫
V

(∫
W

|u|2 dvh
) pv

2

dvg

) v−2
v

+
am
aw

µ(W,h)

∫
V

(∫
W

upw dvh
) 2

pw

dvg

(9)

Set
r := mamν(V, g)

1
m ν(W,h)

1
m
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For a, b > 0 we compute

ra
v−2
m b

w
m = r

((
ν(V, g)w

ν(W,h)v

) 1
m2

a
v−2
m

)((
ν(W,h)v

ν(V, g)w

) 1
m2

b
w
m

)

≤ r

[
v

m

(
ν(V, g)

w
v

ν(W,h)

) 1
m

a
v−2
v +

w

m

(
ν(W,h)

v
w

ν(V, g)

) 1
m

b

]

= mamν(V, g)
1
m ν(W,h)

1
m

v

m

(
ν(V, g)

w
v

ν(W,h)

) 1
m

a
v−2
v

+mamν(V, g)
1
m ν(W,h)

1
m
w

m

(
ν(W,h)

v
w

ν(V, g)

) 1
m

b

= amvν(V, g)
1
v a

v−2
v + amwν(W,h)

1
w b

=
am
av

µ(V, g)a
v−2
v +

am
aw

µ(W,h)b

where we in the second line used Young’s inequality

cd ≤ v

m
c

m
v +

w

m
d

m
w ,

which is valid for any c, d ≥ 0. Using the above in (9) with

a :=

∫
V

(∫
W

|u|2 dvh
) pv

2

dvg and b :=

∫
V

(∫
W

|u|pw dvh
) 2

pw

dvg,

we get

FG(u) ≥ r

(∫
V

(∫
W

|u|2 dvh
) pv

2

dvg

) v−2
m
(∫

V

(∫
W

|u|pw dvh
) 2

pw

dvg

) w
m

.

Using Lemma 2.1 and Relation (5) we deduce

FG(u) ≥ r = mamν(V, g)
1
m ν(W,h)

1
m =

mam
(vav)

v
m (waw)

w
m
µ(V, g)

v
mµ(W,h)

w
m .

Since this holds for all u, Theorem 2.3 follows. �

3. Applications

3.1. The smooth Yamabe invariant of product manifolds. Let M be a com-
pact manifold of dimension m ≥ 3. Then its smooth Yamabe invariant is defined
as

σ(M) := supµ(M,G)

where the supremum runs over all Riemannian metrics G on M . This invariant of
differentiable manifolds has the property that σ(M) ≤ σ(S) for allM and σ(M) > 0
if and only if M admits a metric with positive scalar curvature.

From Theorem 2.3 we obtain the following corollary.

Corollary 3.1. Let V,W be compact manifolds of dimensions v, w ≥ 3. Assume
σ(V ) ≥ 0. Then

σ(V ×W ) ≥ mam
(vav)

v
m (waw)

w
m
σ(V )

v
mσ(Sw)

w
m ,

where m = v + w.
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Proof. We first consider the case σ(V ) > 0. In [1, Theorem 1.1] it is proven that

lim
t→∞

µ(V ×W, g + t2h) = µ(V × Rw, g + ξw)

if g is a metric on V with positive scalar curvature and h is any metric on W . Since
av ≥ am we see that (4) holds, so Theorem 2.3 together with µ(Rw, ξw) = µ(Sw, ρw)
imply the corollary if σ(V ) > 0.

In the case σ(V ) = 0 there is a sequence of metrics gi on V such that volgi(V ) = 1,
µ(V, gi) ≤ 0, and µ(V, gi) → 0 as i → ∞. From the solution of the Yamabe problem
we can assume that all gi have constant scalar curvature sgi = µ(V, gi). Choose
εi > 0 such that εi → 0 and ε−w

i µ(V, gi) → 0 for i → ∞. For a metric h on W with

constant scalar curvature sh, the metricGi := εwi gi+ε−v
i h has volGi(V×W ) = 1 and

constant scalar curvature ε−w
i µ(V, gi)+εvi s

h → 0. It follows that µ(V ×W,Gi) → 0
and thus σ(V ×W ) ≥ 0. �

3.2. Surgery formulas. Assume that M is a compact m-dimensional manifold,

and that i : Sk ×Bm−k → M is an embedding. We define

N := (M \ i(Sk ×Bm−k) ∪∂ (Bk+1 × Sn−k−1)

where ∪∂ means that we identify x ∈ Sk × Sm−k−1 = ∂(Bk+1 × Sm−k−1) with
i(x) ∈ ∂i(Sk×Bm−k). After a smoothing procedure N is again a compact manifold
without boundary, and we say that N is obtained from M by m-dimensional surgery
along i.

In [2, Corollary 1.4] we found the following result.

Theorem 3.2. Let N be obtained from M via surgery of dimension k ∈ {0, 1, . . . ,m−
3}, then there is a constant Λm,k > 0 with

σ(N) ≥ min{σ(M),Λm,k}.

Furthermore, for k = 0 this statement is true for Λm,0 = ∞.

It is helpful to consider how the constant Λm,k was obtained in [2] in the case
k ≥ 1. We showed that Theorem 3.2 holds for a constant Λm,k satisfying

Λm,k ≥ min
{
Λ
(1)
m,k,Λ

(2)
m,k

}
.

We will not recall the definition Λ
(1)
m,k and Λ

(2)
m,k here in detail, as it is not needed,

but we will explain some relevant facts for Λ
(1)
m,k and Λ

(2)
m,k.

For c ∈ [0, 1] let Hk+1
c be the simply connected (k + 1)-dimensional complete

Riemannian manifold of constant sectional curvature −c2, for c = 0 it is Rk+1 and
for c > 0 it is hyperbolic space rescaled by a factor c−2. One defines

Λ
(0)
m,k := inf

c∈[0,1]
µ(Hk+1

c × Sn−k−1).

It was shown in [2, Corollary 1.4] that Λ
(1)
m,k ≥ Λ

(0)
m,k for k ∈ {1, . . . ,m − 3}.

Furthermore Λ
(2)
m,k ≥ Λ

(1)
m,k will be shown in our publication [3] provided that k+3 ≤

m ≤ 5 or k + 4 ≤ m. Thus Theorem 3.2 holds for Λm,k := Λ
(0)
m,k if k + 3 ≤ m ≤ 5

or k + 4 ≤ m.
Thus in many cases we have obtained, using Corollary 3.1, an explicit number

Λm,k for which Theorem 3.2 holds.

Corollary 3.3. If 2 ≤ k ≤ m− 4, then Theorem 3.2 holds for

Λm,k =
mam

((k + 1)ak+1)
k+1
m ((m− k − 1)am−k−1)

m−k−1
m

σ(Sk+1)
k+1
m σ(Sm−k−1)

m−k−1
m .
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It follows for example: If M is an m-dimensional compact manifold, obtained
from Sm by performing successive surgeries of dimension k, 0 ≤ k ≤ m− 4, k ̸= 1,
then σ(M) ≥ Λm, where Λ6 = 54.779, Λ7 = 74.504, Λ8 = 92.242, Λ9 = 109.426,
etc.

3.3. A stable Yamabe invariant. In this section we will define and discuss a
“stabilized” Yamabe invariant, obtained by letting the dimension go to infinity
for a given compact Riemannian manifold by multiplying with Ricci-flat manifolds
of increasing dimension. Very optimistically, such a stabilization could be related
to the linear eigenvalue problem obtained by formally letting the dimension tend
to infinity in the Yamabe problem. The stable invariant can also be viewed as a
quantitative refinement of the property that a given manifold admit stably positive
scalar curvature.

For a compact manifold M with σ(M) ≥ 0 we define

Σ(M) :=

(
σ(M)

mam

)m

,

then

Σ(M) = sup ν(M,G)

where the supremum runs over all Riemannian metrics G on M . The conclusion of
Corollary 3.1 can be formulated as

Σ(V ×W ) ≥ Σ(V )Σ(Sw). (10)

Let (B, β) be a compact Ricci-flat manifold of dimension b. We could for example
choose B to be the 1-dimensional circle S1, or an 8-dimensional Bott manifold
equipped with a metric with holonomy Spin(7). From (10) we then get

Σ(Sv+bi)

Σ(Sbi)
≥ Σ(V ×Bi)

Σ(Sbi)
≥ Σ(V ), (11)

where the upper bound comes from Σ(V × Bi) ≤ Σ(Sv+bi). We define the stable
Yamabe invariant of V as the limit superior of the middle term,

Σ(V ) := lim sup
i→∞

Σ(V ×Bi)

Σ(Sbi)

To see that the stable Yamabe invariant is finite we need to study the upper
bound in (11), and the function v 7→ Σ(Sv). We have

σ(Sv) = v(v − 1)ω2/v
v , ωv =

2π
v+1
2

Γ
(
v+1
2

) ,
where ωv is the volume of Sv, so

Σ(Sv) = 4π

(
π(v − 2)

4

)v
1

Γ
(
v+1
2

)2 .
Stirling’s formula tells us that

Γ(z) =

√
2π

z

(z
e

)z (
1 +O

(
1

z

))
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and therefore

Σ(Sv) = 4π

(
π(v − 2)

4

)v
v + 1

4π

(
2e

v + 1

)v+1(
1 +O

(
1

v

))
= 2e

(πe
2

)v (1− 2/v)v

(1 + 1/v)v

(
1 +O

(
1

v

))
= 2e−2

(πe
2

)v (
1 +O

(
1

v

))
.

We see that

lim
i→∞

Σ(Sv+bi)

Σ(Sbi)
= lim

i→∞

(πe
2

)v (
1 +O

(
1

bi

))
=
(πe

2

)v
,

so from (11) we get the following bound on the stable Yamabe invariant(πe
2

)v
≥ Σ(V ) ≥ Σ(V ).

We conclude that the stable invariant is a non-trivial invariant.
The stable Yamabe invariant is not strictly speaking a stable invariant in the

sense that it gives the same value for V and V × Bi. These values are however
related by a simple identity, as we will see next. Taking the limit superior as
j → ∞ in

Σ(V ×Bi ×Bj)

Σ(Sbj)
=

Σ(V ×Bi+j)

Σ(Sbi+bj)

Σ(Sbi+bj)

Σ(Sbj)

we conclude

Σ(V ×Bi) = Σ(V )
(πe

2

)bi
and further

Σ(V ) ≥ Σ(V ×Bi)
(πe

2

)−bi

(12)

for all i ≥ 0.
The next simple proposition tells us that positivity of Σ(V ) is equivalent to V

having stably metrics of positive scalar curvature.

Proposition 3.4. Let V be a compact manifold. The following three statements
are equivalent.

(a) Σ(V ) > 0.
(b) There is i0 > 0 such that V ×Bi0 admits a positive scalar curvature metric.
(c) There is a i0 > 0 such that V × Bi admits a positive scalar curvature metric

for all i ≥ i0.

Proof. The implications (a) ⇒ (b) and (b) ⇔ (c) are easy to show. The implication
(b) ⇒ (a) is a consequence of (12). �

We also obtain a stable version of Theorem 3.2 for surgeries of codimension at
least 4. A similar result holds for surgeries of codimension 3, but with a less explicit
constant.

Theorem 3.5. Assume that N is obtained from the compact m-dimensional man-
ifold M by surgery of dimension k, where 0 ≤ k ≤ m− 4, then

Σ(N) ≥ min

{
Σ(M),Σ(Sm),

(πe
2

)k+1

Σ(Sm−k−1)

}
.
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Proof. The manifold N after surgery is obtained by a connected sum of M and Sm

along embeddings of a k-dimensional sphere with trivial normal bundle. Similarly
N × Bi is obtained by a connected sum of M × Bi and Sm × Bi by a connected
sum along embeddings of Sk × Bi with trivial normal bundle. Thus [2, Theorem
1.3] together with Corollary 3.3 tells us that

Σ(N ×Bi) ≥ min

{
Σ(M ×Bi),Σ(Sm ×Bi),

(
Λm+bi,k+bi

(m+ bi)am+bi

)m+bi
}

≥ min{Σ(M ×Bi),Σ(Sm ×Bi),Σ(Sk+bi+1)Σ(Sm−k−1)}

and this yields the statement of the theorem. �

For the smooth Yamabe invariant the value of the sphere is a universal upper
bound. One can ask if the same holds for the stable invariant, is Σ(M) ≤ Σ(Sm)
for all M?
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