HLA-DR2 and Sleep Onset REM Periods in Depression

To the Editor:

Virtually all patients with narcolepsy/cataplexy are HLA-DR2 positive, in contrast to an approximately 25% incidence of this human leukocyte antigen (HLA) in the general population (cf. Honda and Juji 1988). Given the close association between narcolepsy and HLA-DR2 on the one hand, and the most typical sleep alteration, i.e., sleep onset rapid eye movement (REMs) periods (SOREMPS) in narcoleptic patients on the other (Vogel 1960), the question arises as to whether there is a direct link between DR2 and certain features of sleep structure. The aim of the present study was, therefore, to look for HLA-DR2 incidence in depression, an illness that shares—even though less regularly—the feature of shortened REM latency with narcolepsy (Coble et al 1981).

Recently Montplaisir et al (1990) failed to show an increased occurrence of HLA-DR2 in unipolar depression, as against Riemann et al. (1988), who in a pilot study, reported 4 of 7 patients with a major depressive disorder and at least one SOREMPS during night sleep to be HLA-DR2 positive. A possible explanation for these conflicting results could be a depression-independent impact of HLA-DR2 on sleep structure. We, therefore, examined the frequency of HLA-DR2 in a larger sample of depressed patients, restricting our post hoc examination to those depressives who displayed SOREMPS in standard night polysomnography and, thereby, share this typical sleep alteration with narcoleptics.

Sixteen patients (8 men and 8 women) with a major depressive disorder/endogenous subtype (Research Diagnostic Criteria, RDC) (Spitzer et al 1978) were investigated, all giving informed consent. The mean age (± SD) was 47.3 ± 7.5 years. Thirteen of the patients under investigation displayed a SOREMPS (REM sleep latency after first epoch S2 sleep <15 min) at least once during night sleep recordings, whereas the other 3 patients exhibited REM latencies of 18, 21, and 23 min.

On the average, one or two nights of baseline sleep were recorded for each patient, applying standard night somnopolygraphy (EEG, EMG, EOG). Patients were free of any psychoactive medication at least 1 week prior to sleep recordings; urinary drug monitoring was carried out regularly. Sleep recordings and analysis were carried out according to the guidelines proposed by Rechtschaffen and Kales (1968). The following sleep parameters were determined: sleep period time (SPT); sleep onset latency (min, defined as the time interval between sleep onset and REM start); sleep efficiency (%); and the percentages for REM and slow wave sleep (S3 + S4), both based on SPT. HLA-typing was determined by duplicate serological testing and by restriction fragment length polymorphism (RFLP) analysis (cf. Geisler and Albert 1989).

Concerning our target variable, mean REM latency (± SD) was 10.6 ± 6.4 min. Analysis of the other sleep parameters revealed a low sleep efficiency (72.1% ± 20.1%), a rather long sleep onset latency (27.8 min ± 18.5 min), a normal amount of SREM sleep (23.6% ± 9.7%), and a low percentage of slowwave sleep (6.8 ± 6.7% SPT). HLA typing revealed an incidence of HLA-DR2 of 25% (or 4 of 16 patients under investigation).

In our subgroup of depressed patients, showing at least one SOREMPS during polygraphic sleep re-
Correspondence

BIOL PSYCHIATRY
1990;28:1011-1013

According, the incidence of HLA-DR2 was only 25%.
This observation strongly underlines the findings of
Montplaisir et al (1990) that the frequency of HLA-
DR2 in depressed patients in general is not different
from that found in normal controls. Furthermore, our
results clearly refute the assumption of a direct im-
munogenetic association between abbreviated REM-
sleep latency (including SOREMPs) and HLA-DR2.
Finally, the present results are in agreement with
previous findings showing that REM latency in nor-
mal subjects does not correlate with the HLA-DR2
haplotype (Schulz et al 1987).

From this evidence we conclude that the presence
of HLA-DR2 and an increased propensity toward SO-
REMPs are two independent features. This suggests
that HLA-DR2 may be instead associated with cat-
aplexy, a pathophysiological event that is peculiar
to narcolepsy (Guilleminault 1976), and that has never
been reported for depressives or other subjects with
shortened REM latency.

References

Coble RA, Kupfer DJ, Shaw DH (1981): Distribution of
REM latency in depression. Biol Psychiatry 16:453–
466.

In Horne JA (ed), Sleep ’88. Stuttgart, New York: Gustav
Fischer, pp 117–122.

Guilleminault C (1976): Cataplexy. In Guilleminault C, De-
ment WC, Passouant P (eds), Narcolepsy. New York:

p 208.

Montplaisir J, Poirier G, De Montigny C (1990): HLA an-
tigens in depression and hypersomnia. Biol Psychiatry
27:664–666.

Rechtschaffen A, Kales A (1968): A manual of standardized
terminology, techniques and scoring for sleep stages of
human subjects. Washington, DC: Department of Health,
Education and Welfare.

Riemann D, Berger M, Teuber J, Usadel KH (1988): HLA-
DR2 and sleep onset REM periods in endogenous

and rapid-eye-movement sleep latency: Failure to rep-
litate. Lancet i:627.

Spitzer RL, Endicott JE, Robins E (1978): Research Di-
gnostic Criteria: Rationale and reliability. Arch Gen
Psychiatry 35:77–82.

Vogel G (1960): Studies in the psychophysiology of dreams:
III. The dream of narcolepsy. Arch Gen Psychiatry 3:421–
428.

W. Schreiber
H. Schulz2
C.J. Lauer
P. Geisler1
T. Pollmacher1
S. Scholz4
J.C. Krieg1
M. Wiegand1
D. Riemann1,5
H.E. Emrich1
E.D. Alberi

1Max-Planck-Institute of Psychiatry, Kraepelinstr. 10,
D-8000 Muenchen 40, FRG
2Free University (FU) of Berlin, D-1000 Berlin 19
3Regional Hospital, D-8400 Regensburg, FRG
4University of Munich, D-8000 Muenchen 2, FRG
5Central Institute of Mental Health, D-6800 Mann-
heim 1, FRG