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Anisotropic photoconductivity in graphene.
Maxim Trushin and John Schliemann1

Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg,

Germany

(Dated: 6 April 2011)

We investigate the photoconductivity of graphene within the relaxation time approximation. In presence of
the inter-band transitions induced by the linearly polarized light the photoconductivity turns out to be highly
anisotropic due to the pseudospin selection rule for Dirac-like carriers. The effect can be observed in clean
undoped graphene samples and be utilized for light polarization detection.

I. INTRODUCTION

Graphene membranes are optically transparent1 as
well as highly conductive2 even at room temperatures3.
These two properties being incompatible with each other
in conventional materials occur in carbon monolayers
quite naturally and make them very promising for op-
toelectronical applications.4,5 There is, however, another

FIG. 1. Graphene Hall bar sample irradiated by linearly po-
larized electromagnetic wave described by vector potential
A. Applying a bias voltage leads to an electrical current j

which depends on the photo-induced carrier concentration.
The pseudospin orientation of the charge carriers described
by Dirac Hamiltonian with the cone-shaped dispersion law
shown by arrows is entangled with the particle momentum.
The electrons in the valence band absorbing the photon en-
ergy hν are excited to the conduction band producing the
photoconductivity response. The electron-hole excitation rate
is zero if the light is polarized along the pseudospins of the
excited particles. In contrast, the excitation rate is maximal
if the vector potential and pseudospin are perpendicular to
each other. Since the pseudospin orientation is coupled with
the particle’s momentum the resulting photoconductivity de-
pends on the angle between A and j as shown in the inset.

unusual property of carriers in graphene which makes this
material even more interesting for optoelectronics. The
carriers in graphene display an additional degree of free-
dom which is often dubbed the pseudospin but, in fact, is
connected to the sublattice index and has nothing to do
with the real spin.6 We show, that the pseudospin man-
ifests itself in the inter-band optical absorption making
the transition probability sensitive to the pseudospin ori-
entations in the initial and final states in a way similar
to the real spin selective rules for the inter-band opti-
cal transitions in III-V semiconductors. Since the pseu-
dospin is textured in the momentum space, as shown
in Fig. 1, graphene’s photoconductivity turns out to be
anisotropic in the case of the linearly polarized light. The
effect seems to be strong enough to find some applications
in graphene optoelectronics.

The model described below involves the optical exci-
tation of the valence electrons to the conduction band
of intrinsic (i.e. undoped) graphene. The idea is that
the effective Hamiltonian describing the interaction be-
tween the electromagnetic wave and carriers in graphene
inherits the pseudospin-momentum entangled structure
from the low energy kinetic term derived within the tight-
binding approach.6 Assuming normal incidence of a lin-
ear polarized electromagnetic wave one deduces an elec-
tron generation rate which strongly depends on the rel-
ative orientation between the electron momentum and
the linear polarization plane, see Fig. 1. As consequence,
the photoconductivity is predicted to be anisotropic re-
sulting in a high on/off ratio as a function of the linear
polarization angle. We note that the photoconductivity
in graphene has been also theoretically investigated in
recent works,7,8 not analyzing its anisotropy. Moreover,
the photoconductivity studied in this work should not be
confused with the photocurrents9–11 recently measured in
graphene.12–15 The photocurrent can be generated with-
out bias voltage applied, whereas the bias is necessary
for the photoconductivity measurements.

II. PRELIMINARIES

The two-band effective Hamiltonian for π-system of
graphene near half filling is H0 = h̄vF (σxkx + σyky),
where vF ≈ 106ms−1, k is the electron momentum, and
σx,y are the Pauli matrices. The Pauli operator ~σ rep-
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resents the pseudospin orientation which is depicted in
Fig. 1 for the eigenstates of H0 given by

Ψκk(x, y) =
1√
2
eikxx+ikyy

(

1
κeiθ

)

, (1)

where tan θ = ky/kx, and κ = ± denotes the band index,
The energy spectrum of H0 is Eκk = κh̄vF k.
The interaction between the electromagnetic wave and

the charge carriers is described by the Hamiltonian

Hint =
evF
c

(

0 Ax − iAy

Ax + iAy 0

)

(2)

and resembles the pseudospin structure. Assuming the
normal incidence and linear polarization of the electro-
magnetic wave A = A0 exp(−iωt+ ikzz) the golden-rule
inter-band transition rate reads

Iκk =
∑

κ′

∫

d2k′L2

4π2
w(κ′k′, κk)(fκ′k′ − fκk), (3)

where fκk is the distribution function, and

w(κ′k′, κk) =
2π

h̄

4π2

L2
δ(kx − k′x)δ(ky − k′y)

(evF
c

|A|
)2

× [δ(Eκ′k′ − Eκk − h̄ω) + δ(Eκ′k′ − Eκk + h̄ω)]

×1 + κκ′ cos(θ + θ′ − 2θpol)

2
(4)

is the transition probability. Here ω = 2πν is the ra-
diation frequency, and tan θpol = Ay/Ax is the linear
polarization angle. The length L plays a role of the sam-
ple size or the laser spot diameter whichever is smaller.
Eq. (4) describes the direct inter-band transitions and,
thanks to the momentum and energy conservation, nat-
urally includes δ-functions in the first two lines. Most
important, however, is the third line which depends on
the difference between the linear polarization angle θpol
and direction of carrier motion. This dependency disap-
pears in the case of the circular polarization and is crucial
for the effect considered below.

III. PHOTOCONDUCTIVITY WITHIN THE

RELAXATION TIME APPROXIMATION

In the following we focus on the electron transport, i.e.
κ = +, and the carriers are excited from the valence to
conduction band, as shown in Fig. 1. To describe the
recombination process we introduce the inelastic relax-
ation time τi which corresponds to the life time of the
optically excited states. The steady state distribution

function f
(1)
+k is then obtained by balancing the genera-

tion rate (3) and the relaxation rate f
(1)
+k/τi and reads

f
(1)
+k =

2πτi
h̄

(evF
c

|A|
)2

δ(E−k − E+k + h̄ω)

×
[

f
(0)
−k − f

(0)
+k

]

sin2(θ − θpol). (5)

We naturally assume that the initial state is the equilib-
rium one described by the Fermi-Dirac distribution func-

tion f
(0)
±k . There is no electrical current in the steady

state described by the distribution function (5).
The momentum relaxation is assumed to be due to the

elastic scattering of carriers on impurities. The average
momentum h̄∆k which the electrons gain due to the ex-
ternal electric field E can be estimated as h̄∆k = eEτe,
where τe is the elastic momentum relaxation time. For
small electric field (linear response) the non-equilibrium

term f
(2)
+k can be obtained by expanding the steady-state

function f
(1)
+(k−∆k) with respect to small ∆k in up to lin-

ear order in E. Recalling h̄v = −∂∆kE+(k−∆k)|∆k=0, the
non-equilibrium distribution function for photo-excited

electrons f
(2)
+k can be written as

f
(2)
+k = −eEvτe

∂f
(1)
+k

∂E+k

, v = vF

(

cos θ
sin θ

)

. (6)

Eq. (6) is valid if and only if τi ≫ τe, i. e. optically
excited states live much longer than the average time
between two subsequent elastic scattering events. This is
actually the case in graphene.4,5

The current density due to the photo-excited electrons

can be written as jph = e
∫

d2k
4π2vf

(2)
+k . This integral can

be formulated in polar coordinates with the subsequent
substitution ε = E+k. The integral over ε reads

∫

dεε
∂

∂ε

[

δ(h̄ω − 2ε)(f
(0)
−ε − f

(0)
+ε )

]

= −1

2
[f

(0)
−ε − f

(0)
+ε ]ε= h̄ω

2

, (7)

and the integration over θ is trivial. The photoconduc-
tivity for a given valley/spin channel is then given by

σph = Aph

(

2− cos(2θpol) − sin(2θpol)
− sin(2θpol) 2 + cos(2θpol)

)

(8)

with the amplitude Aph being

Aph =
e2

16h̄3 τeτi

(evF
c

|A|
)2

(f0
−ε − f0

+ε)|ε= h̄ω
2

. (9)

Diagonalizing the matrix (8), the photoconductivity

σ
‖
ph = Aph parallel to the light polarization plane

turns out to be 3 times smaller than the perpendicu-
lar one σ⊥

ph = 3Aph, i.e. the photoconductivity is highly
anisotropic. Thus, changing the linear polarization an-
gle from 0 to 2π one can observe two minima (and two
maxima) in the current flow, as depicted in the inset of
Fig. 1. These double extrema are a key signature of the
effect predicted.

IV. DISCUSSION AND CONCLUSION

Let us discuss the conditions necessary to observe
the anisotropic photoconductivity given by Eq. (8) and
shown in Fig. 1.
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First of all, the chemical potential µ in graphene should
be smaller than one-half of the excitation energy h̄ω/2 en-
abling direct excitations from the valence band. Assum-
ing THz radiation, as used in the work by Karch et al.,16

we arrive at the maximum µ less than 10meV. Thus, the
unintentional doping in graphene samples used before16

should be reduced by almost of two orders of magnitude.

The temperature can also affect the effect even if the
sample is perfectly neutral by reducing the photoconduc-
tivity by a factor of the order of h̄ω/2T at zero chemical
potential. Thus, room temperature T = 25meV seems
to be somewhat to high for observing a sufficient signal
at a radiation frequency of 1 THz. Moreover, the relax-
ation times τe and τi assumed to be constant so far, will
in fact also be temperature-dependent. However, one can
facilitate the measurement by increasing the overall mul-
tiplier proportional to the radiation power, possibly by
means of a high power pulsed NH3 laser.17

In contrast to the photocurrents due to photon
drag11,15,16 the above effect is due to the pseudospin-
selective inter-band transitions. The momentum transfer
from photons to carriers is not important, and the ef-
fect should be observable even at normal incidence of
light. The predicted anisotropy is strongest for linearly
polarized light source, whereas for circular polarization
the transition probability (4) does not depend on the
direction of carrier motion, and the photoconductivity
anisotropy does not occur. An elliptically polarized light
source interpolates between these extreme cases. More-
over, the vanishing anisotropy in the case of circular po-
larization can be used to separate the effect in question
from the other photocurrent contributions.9–16

As already stated, the eigenvalues of the photoconduc-
tivity tensor are predicted to differ by a factor of 3. in
order to estimate the overall magnitude of the photocon-
ductivity compared to other conduction mechanisms, let
us compare the residual carrier concentration due to the
unintentional doping with the one induced by the inter-
band excitation. The former varies from 1011 cm−2 for
low mobility flakes on SiO2 to 108 cm−2 for suspended
samples after annealing.19 The latter can be estimated
as nph = τi/(L

2τph) where τph relates to the total photo-

excitation rate as 1/τph =
∫

d2kL2

2π2 I+k. On the other
hand h̄ω/τph can also be seen as the radiation energy
absorption rate which is nothing else than the absorbed
radiation power Wa. Note, that Wa relates to the inci-
dent radiation power Wi as Wa/Wi = 0.023 for a single
layer graphene membrane.1,18

To be specific we assume that the photoconductiv-
ity is generated by a CH3OH laser16 with wavelength
118µm (i.e. h̄ω = 10.5meV) and Wi ≃ 20mW, and
the sample itself is a suspended graphene membrane of
the macroscopic size larger than the laser spot diame-
ter of about 1mm. Assuming τi ≃ 1 ps4,5 we arrive at
nph ∼ 2 · 107 cm−2 for L2 ≃ 1mm2. This values are
comparable to the residual carrier concentration for sus-
pended samples,19 thus, the conductivity change in the

irradiated graphene should be observable.
The effect proposed above relies on the pseudospin tex-

ture shown in Fig. 1. This texture remains stable as long
as the low energy one-particle Hamiltonian H0 holds. At
least from a theoretical point of view, the pseudospin
texture can be altered by electron-electron interactions
which may be important in extremely clean samples.20

This is the only fundamental obstacle for the photocon-
ductivity anisotropy observation which we can see so far.
To conclude, we predict strong anisotropy of the pho-

toconductivity in graphene is presence of the linearly po-
larized light. To observe the effect, we suggest to use
undoped suspended graphene samples which allow the
laser beam to excite the substantial number of photo-
carriers from the valence band. The cleaner samples are
expected to demonstrate the better results. They can be
used as transparent detectors for the polarization of the
light passing through.
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