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Abstract – We investigate the photoconductivity of graphene within the relaxation time
approximation. In the presence of the inter-band transitions induced by the linearly polarized
light the photoconductivity turns out to be highly anisotropic due to the pseudospin selection rule
for Dirac-like carriers. The effect can be observed in clean undoped graphene samples and can be
utilized for light polarization detection.

Copyright c© EPLA, 2011

Introduction. – Graphene membranes are optically
transparent [1] as well as highly conductive [2] even at
room temperatures [3]. These two properties being incom-
patible with each other in conventional materials occur in
carbon monolayers quite naturally and make them very
promising for optoelectronical applications [4,5]. There is,
however, another unusual property of carriers in graphene
which makes this material even more interesting for opto-
electronics. The carriers in graphene display an additional
degree of freedom which is often dubbed as the pseudospin
but, in fact, is connected to the sublattice index and
has nothing to do with the real spin [6]. We show, that
the pseudospin manifests itself in the inter-band optical
absorption making the transition probability sensitive to
the pseudospin orientations in the initial and final states in
a way similar to the real spin selective rules for the inter-
band optical transitions in III-V semiconductors. Since the
pseudospin is textured in the momentum space, as shown
in fig. 1, graphene’s photoconductivity turns out to be
anisotropic in the case of the linearly polarised light. The
effect seems to be strong enough to find some applications
in graphene optoelectronics.
The model described below involves the optical excita-

tion of the valence electrons to the conduction band of
intrinsic (i.e., undoped) graphene. The idea is that the
effective Hamiltonian describing the interaction between
the electromagnetic wave and carriers in graphene inherits
the pseudospin-momentum entangled structure from the
low-energy kinetic term derived within the tight-binding
approach [6]. Assuming normal incidence of a linear
polarized electromagnetic wave one deduces an electron
generation rate which strongly depends on the relative
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orientation between the electron momentum and the linear
polarization plane, see fig. 1. As consequence, the photo-
conductivity is predicted to be anisotropic resulting in a
high on/off ratio as a function of the linear polarization
angle. We note that the photoconductivity in graphene has
been also theoretically investigated in recent works [7,8],
not analyzing its anisotropy. Moreover, the photoconduc-
tivity studied in this work should not be confused with
the photocurrents predicted [9–12] and measured [13–16]
in graphene. The photocurrent can be generated without
bias voltage applied, whereas the bias is necessary for the
photoconductivity measurements. The photoconductivity
and photocurrent anisotropy has been also found in the
materials [17–19] other than graphene.

Preliminaries. – The two-band effective Hamil-
tonian for π-system of graphene near half filling is
H0 = �vF (σxkx+σyky), where vF ≈ 106ms−1, k is the
electron momentum, and σx,y are the Pauli matrices.
The Pauli operator �σ represents the pseudospin orien-
tation which is depicted in fig. 1 for the eigenstates of
H0 given by Ψκk(x, y) =

1√
2
eikxx+ikyy(1, κeiθ)T , where

tan θ= ky/kx, and κ=± denotes the band index, and the
energy spectrum of H0 is Eκk = κ�vF k.
The interaction between the electromagnetic wave and

charge carriers is described by the Hamiltonian Hint =
evF
c
(σxAx+σyAy) and resembles the pseudospin struc-

ture. Assuming the normal incidence and linear polariza-
tion of the electromagnetic waveA=A0 exp(−iωt+ ikzz)
the golden-rule inter-band transition rate reads

I[fκk] =
∑
κ′

∫
d2k′L2

4π2
w(κ′k′, κk)(fκ′k′ − fκk), (1)
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Fig. 1: (Colour on-line) Graphene Hall bar sample irradiated
by linearly polarized electromagnetic wave described by vector
potential A. Applying a bias voltage leads to an electrical
current j which depends on the photo-induced carrier concen-
tration. The pseudospin orientation of the charge carriers
described by Dirac Hamiltonian with the cone-shaped disper-
sion law shown by arrows is entangled with the particle momen-
tum. The electrons in the valence band absorbing the photon
energy hν are excited to the conduction band producing the
photoconductivity response. The electron-hole excitation rate
is zero if the light is polarized along the pseudospins of the
excited particles. In contrast, the excitation rate is maximal
if the vector potential and pseudospin are perpendicular to
each other. Since the pseudospin orientation is coupled with
the particle’s momentum the resulting photoconductivity σph
depends on the angle between A and j as shown in the inset.
The absolute value of σph is estimated in fig. 2.

where fκk is the distribution function, and

w(κ′k′, κk) =
2π

�

4π2

L2
δ(kx− k′x)δ(ky − k′y)

(evF
c
|A|
)2

× [δ(Eκ′k′ −Eκk − �ω)+ δ(Eκ′k′ −Eκk + �ω)]
×1+κκ

′ cos(θ+ θ′− 2θpol)
2

(2)

is the transition probability. Here ω= 2πν is the radiation
frequency, and tan θpol =Ay/Ax is the linear polarization
angle. The length L plays a role of the sample size or
the laser spot diameter whichever is smaller. Equation (2)
describes the direct inter-band transitions and, thanks
to the momentum and energy conservation, naturally
includes δ-functions in the first two lines. Most important,
however, is the third line which depends on the difference
between the linear polarization angle θpol and direction
of carrier motion. This dependency disappears in the case
of the circular polarization and is crucial for the effect
considered below.

Photoconductivity within the relaxation time
approximation. – In the following we focus on the
electron transport, i.e., κ=+, and the carriers are excited
from the valence to conduction band, as shown in fig. 1.
To describe the recombination process we introduce the
inelastic relaxation time τi which corresponds to the life
time of the optically excited states. The steady-state

distribution function f
(1)
+k is then obtained by balancing

the generation rate (1) and the relaxation rate f
(1)
+k/τi and

reads

f
(1)
+k =

2πτi
�

(evF
c
|A|
)2
δ(E−k −E+k + �ω)

×
[
f
(0)
−k − f (0)+k

]
sin2(θ− θpol). (3)

We naturally assume that the initial state is the equilib-
rium one described by the Fermi-Dirac distribution func-

tion f
(0)
±k . There is no electrical current in the steady state

described by the distribution function (3).
The momentum relaxation is assumed to be due to the

elastic scattering of carriers on impurities. The average
momentum �∆k which the electrons gain due to the
external electric field E can be estimated as �∆k= eEτe,
where τe is the elastic momentum relaxation time. For
small electric field (linear response) the non-equilibrium

term f
(2)
+k can be obtained by expanding the steady-state

function f
(1)
+(k−∆k) with respect to small ∆k in up to linear

order in E. Recalling �v=−∂∆kE+(k−∆k)|∆k=0, the non-
equilibrium distribution function for photo-excited

electrons f
(2)
+k can be written as

f
(2)
+k =−eEvτe

∂f
(1)
+k

∂E+k
, v= vF

(
cos θ
sin θ

)
. (4)

Equation (4) is valid if and only if τi� τe, i.e., optically
excited states live much longer than the average time
between two subsequent elastic scattering events. This is
actually the case in graphene [4,5].
The current density due to the photo-excited electrons

can be written as jph = e
∫
d2k
4π2vf

(2)
+k . This integral can

be calculated in polar coordinates with the subsequent
substitution ε=E+k and reads∫
dεε
∂

∂ε

[
δ(�ω− 2ε)(f (0)−ε − f (0)+ε )

]
=−1
2
[f
(0)
−ε − f (0)+ε ]ε= �ω2 .

(5)

The photoconductivity for a given valley/spin channel is
then given by

σph =Aph

(
2− cos(2θpol) − sin(2θpol)
− sin(2θpol) 2+ cos(2θpol)

)
(6)

with the amplitude Aph being

Aph =
e2

16�3
τeτi

(evF
c
|A|
)2
(f
(0)
−ε − f (0)+ε )|ε= �ω2 . (7)
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Rigorous analysis based on the Boltzmann equation writ-
ten within the relaxation time approximation suggests the
same expression for σph but both τi and τe must be substi-
tuted by the total relaxation time τ−1 = τ−1e + τ

−1
i + · · · .

The effect of anisotropy predicted here does not depend on
τ anyway. Indeed, diagonalizing the matrix (6), the photo-

conductivity σ
‖
ph =Aph parallel to the light polarization

plane turns out to be 3 times smaller than the perpendic-
ular one σ⊥ph = 3Aph, i.e., the photoconductivity is highly
anisotropic, but the anisotropy itself is independent of τ ’s.
Thus, changing the linear polarization angle from 0 to 2π
one can observe two minima (and two maxima) in the
current flow, as depicted in the inset of fig. 1. These double
extrema are a key signature of the effect predicted.

Discussion and conclusion. – Let us discuss the
conditions necessary to observe the anisotropic photo-
conductivity given by eq. (6) and shown in fig. 1. As it
is clear from the analysis given in the previous section
the relative anisotropy does not depend on the relaxation
times because the relaxation processes reduce the over-
all photoconductivity, not only its anisotropic part. The
physical reason why the anisotropy does not vanish due
to the momentum relaxation is the very fact that the
anisotropic non-equilibrium distribution relaxes as fast as
its isotropic contribution does. We believe therefore that
the anisotropy can be detected easily as long as the photo-
conductivity response is large itself.
To observe the photoconductivity the chemical potential
µ in graphene should be smaller than one-half of the
excitation energy �ω/2 enabling direct excitations from
the valence band. Assuming THz radiation, as used in
the work by Karch et al. [20], we arrive at the maximum
µ less than 10meV. Thus, the unintentional doping in
graphene samples used before [20] should be reduced by
almost of two orders of magnitude. The temperature can
also affect the effect even if the sample is perfectly neutral
by reducing the photoconductivity by a factor of the
order of �ω/2T at zero chemical potential. Thus, room
temperature T = 25meV seems to be somewhat to high
for observing a sufficient signal at a radiation frequency of
1THz. Moreover, the relaxation times τe and τi assumed
to be constant so far, will in fact also be temperature-
dependent. However, one can facilitate the measurement
by increasing the overall multiplier proportional to the
radiation power, possibly by means of a high power pulsed
NH3 laser [21].
In contrast to the photocurrents due to photon

drag [11,16,20] the above effect is due to the pseudospin-
selective inter-band transitions. The momentum transfer
from photons to carriers is not important, and the
effect should be observable even at normal incidence of
light. The predicted anisotropy is strongest for linearly
polarized light source, whereas for circular polarization
the transition probability (2) does not depend on the
direction of carrier motion, and the photoconductivity
anisotropy does not occur. An elliptically polarized

light source interpolates between these extreme cases.
Moreover, the vanishing anisotropy in the case of circular
polarization can be used to separate the effect in question
from the other photocurrent contributions [13–16,20].
It is also interesting that the anisotropy predicted [12]

and observed [22] recently in the photocurrent through
graphene pn-junctions seems to have the same origin as
the one predicted here. There is, however, π/2 off-set
in the photocurrent vs. polarisation angle dependency as
compared with the one shown in fig. 1. This is probably
because “the resulting photocurrent comes mainly from
electrons moving nearly parallel to the barrier” [12], and
in order to maximize the concentration of such electrons
the polarization plane must be set perpendicular to the
pn-junction, i.e., along the photocurrent flow. One can
reproduce this π/2 off-set also within our model by taking
into account the dependence on k of the angle θ appearing
in eq. (3) in the driving term of the Boltzmann equation.
As already stated, the eigenvalues of the photoconduc-

tivity tensor are predicted to differ by a factor of 3. In
order to estimate the overall magnitude of the photocon-
ductivity compared to other conduction mechanisms, let
us compare the residual carrier concentration due to the
unintentional doping with the one induced by the inter-
band excitation. The former varies from 1011 cm−2 for
low mobility flakes on SiO2 to 10

8 cm−2 for suspended
samples after annealing [23]. The latter can be estimated
as nph = τi/(L

2τph), where τph relates to the total photo-

excitation rate as 1/τph =
∫
d2kL2

2π2 I[f+k]. On the other
hand, �ω/τph can also be seen as the radiation energy
absorption rate which is nothing else than the absorbed
radiation power Wa. Note, that Wa relates to the incident
radiation power Wi as Wa/Wi = πα (where α= e

2/(�c)
is the fine structure constant) for a single layer graphene
membrane [1,24]. Thus, nph at finite temperature T �= 0
can be estimated as

nph = 0.023
Wiτi

L2�ω
(f
(0)
−ε − f (0)+ε )|ε= �ω2 . (8)

To be specific we assume that the photoconductiv-
ity is generated by a CH3OH laser [20] with wavelength
118µm (i.e., �ω= 10.5meV) and Wi � 20mW, and the
sample itself is a suspended graphene membrane of the
macroscopic size slightly larger than the laser spot diam-
eter of about 1mm. Assuming τi � 1 ps [4,5] we arrive at
nph ∼ 2 · 107 cm−2 for L2 � 1mm2 and T = 0. This values
are comparable to the residual carrier concentration for
suspended samples, [23] thus, the conductivity change in
the irradiated graphene should be observable. Note, that
nph can be substantially increased by utilizing smaller
samples and focusing the laser beam to a smaller spot.
This requires a smaller radiation wave length (i.e., a higher
laser frequency) to avoid diffraction effects. The results are
summarized in fig. 2.
The effect proposed above relies on the pseudospin

texture shown in fig. 1. This texture remains stable
as long as the low-energy one-particle Hamiltonian H0
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Fig. 2: The concentration of photo-induced carriers nph as a
function of temperature at different radiation frequency and
sample size. (The latter is assumed to be roughly equal to
the laser spot diameter and, therefore, has to be substantially
larger than the radiation wavelength to avoid diffraction
effects.) The photoconductivity can be estimated as σph =
eµnph, where µ is the mobility of carriers. The incident
radiation powerWi and relaxation time τi are 10mW and 1 ps,
respectively.

holds. At least from a theoretical point of view, the
pseudospin texture can be altered by electron-electron
interactions which may be important in extremely clean
samples [25]. This is the only fundamental obstacle for the
photoconductivity anisotropy observation which we can
see so far.
To conclude, we predict strong anisotropy of the photo-

conductivity in graphene in the presence of the linearly
polarized light. To observe the effect, we suggest to use
undoped suspended graphene samples which allow the
laser beam to excite the substantial number of photo-
carriers from the valence band. The cleaner samples are
expected to demonstrate the better results. They can be
used as transparent detectors for the polarisation of the
light passing through.
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