The role of Task3 potassium channels in the regulation of aldosterone secretion in the adrenal gland

vorgelegt von
David Pentón Ribas
aus La Habana, Cuba
im Jahr 2011
Das Promotionsgesuch wurde eingereicht am: 30.05.2011

Die Arbeit wurde angeleitet von: Prof. Dr. Richard Warth

Prüfungsausschuss:

Vorsitzender: Prof. Dr. Reinhard Wirth
1. Gutachter: Prof. Dr. Richard Warth
2. Gutachter: Prof. Dr. Karl Kunzelmann
3. Gutachter: Prof. Dr. Stephan Schneuwly
Ersatzperson: Prof. Dr. Hayo Castrop
About 10% of the patients suffering from arterial hypertension present abnormal production of aldosterone by the adrenal gland. Cell depolarization is a pivotal event in triggering aldosterone secretion in adrenal zona glomerulosa cells when stimulated by angiotensin II and hyperkalemia. These cells, which are strongly hyperpolarized under physiological conditions, have a unique potassium sensitivity conferred by the 2-pore domain potassium channels Task3, Task1 and Trek1. In mice, the deletion of either Task1 or both Task1 and Task3 genes lead to a phenotype which resembles human primary hyperaldosteronism. This study was aimed at investigating the particular contribution of Task3 potassium channels to the regulation of aldosterone production. The adrenal gland was identified as a primary organ of Task3 expression, where Task3-specific immunofluorescence was detected in zona glomerulosa cells. In male mice, the sex hormone testosterone promotes the expression of Task3 also in corticosterone-producing cells from zona fasciculata. The deletion of Task3 gene caused an impairment of the regulation of aldosterone secretion in vivo under high potassium diet. In ex vivo experiments using perifused adrenal gland tissue, small changes in the K⁺ dependence of aldosterone secretion were observed. Patch clamp analysis on adrenocortical primary cells of Task3 knockout (Task3⁻/⁻) animals showed a more depolarized membrane voltage, under resting conditions, when compared to wild type (Task3⁺/⁺) cells. The electrical properties and cytoplasmic Ca²⁺ responses to increasing extracellular K⁺ concentration were drastically changed in primary cultures from Task3⁻/⁻ adrenocortical cells. The stimulation of Task3⁻/⁻ adrenal primary cells with angiotensin II triggered a paradoxical hyperpolarization instead of the classical depolarization found in Task3⁺/⁺ cells. In adrenal gland slices from Task3⁻/⁻ animals the physiological regulation of cytosolic Ca²⁺ signaling appeared to be disturbed. The aldosterone/renin ratio was significantly higher in Task3⁻/⁻ animals when compared to Task3⁺/⁺ animals. This finding suggests that the disruption of Task3 leads to partial autonomy in the secretion of aldosterone by the adrenal gland. Altogether these data demonstrate that Task3 potassium channels are important for the normal regulation of aldosterone secretion in the adrenal glands. A defect in the function of these channels could have implications for human disorders linked to pathological production of aldosterone.
Zusammenfassung

Zusammenfassung

Fehlfunktion dieser Kanäle könnte entscheidend für Erkrankungen des Menschen sein, welche mit einer pathologischen Aldosteronproduktion einhergehen.
Table of contents

1 **Introduction** ... 3

1.1 Adrenal glands .. 3

1.1.1 Biosynthesis of aldosterone .. 4

1.2 Role of aldosterone in the regulation of blood pressure and extracellular fluid balance ... 6

1.3 Regulation of aldosterone secretion ... 7

1.3.1 The Renin-Angiotensin System (RAS).. 8

1.3.2 Cytoplasmic Ca²⁺ signal triggered by AngII in glomerulosa cells 9

1.3.3 Cytoplasmic Ca²⁺ signal triggered by hyperkalemia in glomerulosa cells ... 11

1.3.4 Regulation of [Ca²⁺]ᵢ increase .. 11

1.3.5 Integration of the intracellular pathways controlling the synthesis of aldosterone ... 12

1.4 Potassium channels and their function in the adrenal gland 13

1.5 K₂P channels .. 14

1.5.1 Task channels ... 17

1.5.2 The adrenal phenotype of Task1⁻⁻ and Task1⁻⁻/Task3⁻⁻ mouse models..... 17

2 **Objectives** .. 21

3 **Materials and Methods** ... 25

3.1 Mice .. 25

3.1.1 The Task3⁻⁻ knockout mouse model ... 25

3.1.2 General animal keeping and experimental conditions 26

3.1.3 Hormonal treatment and castration .. 27

3.2 Blood analysis .. 27

3.2.1 Aldosterone measurements .. 27

3.2.2 Plasma renin activity (PRA) .. 27

3.3 Immunofluorescence ... 28

3.4 Adrenal gland perifusion ... 28

3.5 Primary cell culture ... 29
Table of contents

3.6 Electrophysiology .. 30
3.7 Cytoplasmic Ca$^{2+}$ measurements ... 31
 3.7.1 Cytoplasmic Ca$^{2+}$ measurements in fresh adrenal slices ... 31
 3.7.2 Cytoplasmic Ca$^{2+}$ measurements in adrenocortical primary cells 32
3.8 Real-time polymerase chain reaction (real-time-PCR) ... 32
3.9 Statistics ... 33

4 Results .. 37
 4.1 Expression and localization of Task3 in the mouse adrenal gland 37
 4.1.1 Task3 mRNA expression in mouse tissues ... 37
 4.1.2 Task3 localization in the adrenal cortex ... 38
 4.1.3 Dynamics of Task3 expression in the adrenal cortex .. 38
 4.2 Expression and localization of aldosterone synthase in the adrenal cortex 40
 4.3 Contribution of Task3 K$^+$ channels to the K$^+$ sensitivity of adrenocortical cells and tissues ... 41
 4.3.1 Effect of [K$^+$]o on the membrane voltage and intracellular Ca$^{2+}$ signaling of adrenocortical primary cells .. 41
 4.3.2 Effect of [K$^+$]o on the cytoplasmic Ca$^{2+}$ signaling of glomerulosa cells in fresh adrenal slices ... 43
 4.3.3 Effect of [K$^+$]o on the aldosterone secretion of perifused adrenal tissue 44
 4.4 Contribution of Task3 K$^+$ channels to the response of adrenocortical cells and tissue upon AngII stimulation ... 45
 4.4.1 Impact of Task3 deletion on electrophysiological parameters of adrenocortical primary cells ... 46
 4.4.2 Effect of AngII on the cytoplasmic Ca$^{2+}$ signaling of glomerulosa cells in acute adrenal slices ... 47
 4.5 Phenotype of Task3$^{-/-}$ mice .. 48
 4.5.1 Effect of dietary K$^+$ on plasma aldosterone concentrations 49
 4.5.2 Effect of dietary Na$^+$ on plasma renin and aldosterone levels 49

5 Discussion ... 55
 5.1 Task3 expression and localization in the adrenal cortex is sex dependent 55
 5.2 Task3 channels contribute to the major K$^+$ current in adrenocortical cells and provide them with their unique K$^+$ sensibility .. 58
Table of contents

5.3 The cellular response to AngII is altered in adrenocortical slices and primary cells ... 60

5.4 The physiological regulation of aldosterone secretion fails in Task3^{−/−} mice 61

5.5 Future directions .. 62

6 References ... 65

7 Supplements .. 78

8 Acknowledgments ... 80
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin converting enzyme</td>
</tr>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropic hormone</td>
</tr>
<tr>
<td>AM</td>
<td>Acetoxy methyl ester</td>
</tr>
<tr>
<td>AngII</td>
<td>Angiotensin II</td>
</tr>
<tr>
<td>ANP</td>
<td>Atrial natriuretic peptide</td>
</tr>
<tr>
<td>AT1</td>
<td>Angiotensin II receptor type 1</td>
</tr>
<tr>
<td>au</td>
<td>arbitrary units</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>[Ca^{2+}]_i</td>
<td>Intracellular Ca^{2+} concentration</td>
</tr>
<tr>
<td>CaM</td>
<td>Calmodulin</td>
</tr>
<tr>
<td>CaMKs</td>
<td>Calmodulin-dependent kinases</td>
</tr>
<tr>
<td>CC0</td>
<td>Current clamp 0</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalovirus promoter</td>
</tr>
<tr>
<td>C-term</td>
<td>Carboxy terminus</td>
</tr>
<tr>
<td>Dab2</td>
<td>Disabled-2</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DT</td>
<td>Diphtheria toxin</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene glycol tetra acetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ENaC</td>
<td>Epithelial Na^+ channel</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ES</td>
<td>Embryonic stem</td>
</tr>
<tr>
<td>EST</td>
<td>Expressed sequence tags</td>
</tr>
<tr>
<td>Ex</td>
<td>Exon</td>
</tr>
<tr>
<td>GmbH</td>
<td>(in German) Gesellschaft mit beschränkter Haftung</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine-5’-triphosphate</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid</td>
</tr>
<tr>
<td>HUGO</td>
<td>Human Genome Organization</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP₃</td>
<td>Inositol 1,4,5-trisphosphate</td>
</tr>
<tr>
<td>IU</td>
<td>International units</td>
</tr>
<tr>
<td>IUP</td>
<td>International Union of Pharmacology</td>
</tr>
<tr>
<td>[K⁺]ₒ</td>
<td>Extracellular concentration of K⁺</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>K₂P</td>
<td>Two pore domains potassium channels</td>
</tr>
<tr>
<td>M</td>
<td>Mega or mol/l</td>
</tr>
<tr>
<td>m</td>
<td>Milli or metre or murine</td>
</tr>
<tr>
<td>MAPKs</td>
<td>Mitogen-activated protein kinases</td>
</tr>
<tr>
<td>MaxiK</td>
<td>Large conductance Ca²⁺ activated K⁺ channel</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>MR</td>
<td>Mineralocorticoid receptor</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>n</td>
<td>Nano, number</td>
</tr>
<tr>
<td>NCC</td>
<td>Na⁺/Cl⁻ co-transporter</td>
</tr>
<tr>
<td>NHE</td>
<td>Na⁺/H⁺ exchanger</td>
</tr>
<tr>
<td>NKCC2</td>
<td>Na⁺/K⁺/2Cl⁻ co-transporter isoform 2</td>
</tr>
<tr>
<td>OCT</td>
<td>Optimal cutting temperature</td>
</tr>
<tr>
<td>p</td>
<td>Pico</td>
</tr>
<tr>
<td>PA</td>
<td>Primary hyperaldosteronism</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>PKA</td>
<td>cAMP-dependent protein kinase A</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>PLC</td>
<td>Phospholipase C</td>
</tr>
<tr>
<td>PMCA</td>
<td>Plasma membrane Ca²⁺ ATPase</td>
</tr>
<tr>
<td>PRA</td>
<td>Plasma renin activity</td>
</tr>
<tr>
<td>RAS</td>
<td>Renin-Angiotensin System</td>
</tr>
<tr>
<td>RIA</td>
<td>Radioimmunoassay</td>
</tr>
<tr>
<td>ROMK</td>
<td>Renal outer medullary K⁺ channel (KCNJ1)</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcriptase or room temperature or real-time</td>
</tr>
<tr>
<td>SCP2</td>
<td>Sterol carrier protein-2</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
</tbody>
</table>
Abbreviations

SERCA Sarco/endoplasmic Ca\(^{2+}\) ATPase
SGK1 Serum and Glucocorticoid inducible Kinase isoform 1
StAR Steroidogenic acute regulatory protein
STIM Stromal interaction molecules
TALK TWIK-related alkaline pH activated K\(^{+}\) channel
Task TWIK-related acid-sensitive K\(^{+}\) channel
Task1\(^{-/-}\) Task1 knockout mouse
Task1\(^{-/-}\)/Task3\(^{-/-}\) Task1 and Task3 double knockout mouse
Task3\(^{-/-}\) Task3 knockout mouse
Task3\(^{+/+}\) Wild type mouse (genetic background of Task3\(^{-/-}\))
THIK Tandem pore domains halothane-inhibited K\(^{+}\) channel
TK Thymidine kinase
TMS Transmembrane segment
TRAAK TWIK-related arachidonic acid-stimulated K\(^{+}\) channel
TREK TWIK related K\(^{+}\) channel
TRESK Twik-related spinal cord K\(^{+}\) channel
TRP 4 Transient receptor potential protein 4
TWIK Tandem of P domains in a weak inwardly rectifying K\(^{+}\) channel
V Volt, voltage,
V\(_{c}\) Voltage clamp
V\(_{m}\) membrane voltage
WNK With no lysine (K) kinase
ZF Zona fasciculata
ZG Zona glomerulosa
ZR Zona reticularis
ZX Zona X
1. Introduction
1 Introduction

Hypertension is a major risk factor in the development of cardiovascular diseases. Approximately 26% of the adult population worldwide had hypertension in 2000 and by 2025 it is predicted that 29% will be affected (1). Although idiopathic hypertension, the term used for unknown causes of this condition, accounts for the majority of the cases, about 1 in 10 hypertensive patients present adrenal primary hyperaldosteronism (PA) (2-4). PA was first described by J Conn in 1955 and has been recently redefined as “a group of disorders in which aldosterone production is inappropriately high, relatively autonomous from the renin-angiotensin system (RAS), and nonsuppressible by sodium loading” (5). The inappropriate production of aldosterone can cause sodium retention, suppression of plasma renin and increased potassium excretion, which when prolonged can lead to hypokalemia. Aldosterone is produced in the adrenal glands and its secretion is stimulated by high plasma potassium concentrations (hyperkalemia) and angiotensin II (AngII) under normal conditions.

1.1 Adrenal glands

The circulating mineralocorticoid aldosterone is primarily produced in the adrenal glands, although the brain (6) and the heart (7) have also been reported to produce it to some extent. In humans, the adrenal glands are situated on top of each kidney, encapsulated and surrounded by adipose tissue. They are comprised of two morphological well differentiated regions that are at the same time two functionally distinct organs: the adrenal medulla and the adrenal cortex. The medulla, derived from neural crest cells, is mainly formed by chromaffin cells and is responsible for the synthesis of the catecholamines adrenalin and noradrenalin. On the other hand, the cortex -which derives from the cells of the intermediate mesoderm- comprises three concentrically distributed zones secreting different steroid hormones: androgens are secreted in the zona reticularis; glucocorticoids (mainly cortisol in humans and corticosterone in mice) in the zona fasciculata and the mineralocorticoid aldosterone in the zona glomerulosa (Figure 1.1). Due to the lack of expression of 17α-hydroxylase, mice and rats do not have the zona reticularis found in humans and other mammals; thus they do not secrete adrenal androgens (8). The innermost layer of the adult mice adrenal cortex is called zona X and its function is not fully clear (9).
Introduction

Figure 1.1. Section of the mouse adrenal gland where cortex and medulla are distinguishable (left panel). At a higher magnification (right panel) the red staining corresponds to the specific marker of *zona glomerulosa* (ZG) aldosterone synthase. ZF, ZX and C are zona fasciculata, zona X and capsule respectively. Scale bars correspond to 50 µm.

In humans and rodents, functional zonation relies in part on the specific expression of two cytochrome P450 isozymes termed 11β-hydroxylase (the product of the gene CYP11B1) and aldosterone synthase (the product of the gene CYP11B2). These enzymes catalyze the final steps in the biosynthesis of cortisol in humans (or corticosterone in mice) and aldosterone, respectively. Thus, *zona glomerulosa* cells specifically express aldosterone synthase, whereas in *zona fasciculata* cells 11β-hydroxylase is present.

1.1.1 Biosynthesis of aldosterone

As steroid producing cells do not store hormones, the rate of hormone secretion depends fundamentally on their *de novo* synthesis. Cholesterol, the precursor of steroids hormones, may be either synthesized intracellularly from acetyl-coenzyme A or taken up from plasma lipoproteins through receptor mediated endocytosis. In steroid producing cells it can then be stored directly into cytoplasmic lipid droplets or converted to free cholesterol and used for hormone synthesis. A schematic overview of the aldosterone biosynthetic pathway is shown in Figure 1.2.
Introduction

Figure 1.2. Schematic overview of the aldosterone biosynthetic pathway. Red arrows indicate enzymatic activities. The transport of free cholesterol from cytoplasmic lipid droplets to the outer mitochondrial membrane is accomplished by the sterol carrier protein-2 (SCP2) (10). After the translocation of cholesterol from the outer to the inner mitochondrial membrane by the steroidogenic acute regulatory (StAR) protein; the conversion from cholesterol to pregnenolone -catalyzed by the cholesterol side chain-cleaving enzyme (the gene product of CYP11A1)- takes place. Pregnenolone then exits the mitochondria and is converted to progesterone by the 3β-hydroxysteroid dehydrogenase (3β-HSD mainly isoform II in humans and isoforms I and VI in mice (11; 12)) in the endoplasmic reticulum. Progesterone is then further hydroxylated in the position 21 to form 11-deoxycorticosterone, a step catalyzed by the gene product of CYP21A. The aldosterone synthase (CYP11B2), at the matrix side of the inner mitochondrial membrane, catalyzes the hydroxylation and 18 oxidation of 11-deoxicorticosterone, yielding aldosterone.

Aldosterone biosynthesis can be divided into two phases depending on the temporal distance to the stimulus. Thus, acute regulation (minutes to hours after the stimulus) relies on the movement of cholesterol into the mitochondria mediated by the increased activity and expression of StAR, and probably also by upregulation of aldosterone synthase levels (13). On the other hand, during chronic stimulation (hours to days) aldosterone production is primarily controlled by the expression of the aldosterone synthase.
1.2 Role of aldosterone in the regulation of blood pressure and extracellular fluid balance

In the kidney, aldosterone is crucial for Na\(^+\) and K\(^+\) homeostasis by acting on the principal and intercalated cells of the aldosterone-sensitive distal nephron (which comprises the distal convoluted tubule, the connecting tubule and the cortical collecting duct). Aldosterone stimulates transepithelial Na\(^+\) transport together with K\(^+\) excretion in the kidney by mechanisms such as:

- Transcriptional upregulation and post-transcriptional activation of the amiloride sensitive epithelial Na\(^+\) channel (ENaC) in the apical membrane (14-16).
- Induction of the basolateral Na\(^+\)/K\(^+\)-ATPase activity (17; 18).
- Plasma membrane expression of KCNJ1 (ROMK) K\(^+\) channels in the apical membrane (19; 20).
- Activation of Na\(^+\)/H\(^+\) exchanger in the basolateral membrane (21).

The movement of electrolytes from the lumen of the tubular system into the extracellular compartment is accompanied by water, so as to maintain the osmotic balance. Therefore, aldosterone regulation of salt and water homeostasis ultimately also regulates plasma volume and consequently blood pressure.

Actions of aldosterone can be classified as genomic (of major importance) or non-genomic (of minor importance), depending on the receptor and the signal transduction mechanism involved. The genomic action is mediated by the binding of the hormone to the mineralocorticoid receptor (MR) located in the cytosol. Non-genomic actions seem to be mediated both by the MR and probably by a plasma membrane-associated receptor (15; 16; 22).

Most of the genomic actions of aldosterone on epithelial cells are mediated by the serum and glucocorticoid inducible kinase isoform 1 (SGK1) (14; 23; 24). Non-genomic effects appear to be mediated by second messengers such as cyclic adenosine monophosphate (cAMP), intracellular Ca\(^{2+}\) concentrations ([Ca\(^{2+}\)]\(_i\)) and inositol 1,4,5-trisphosphate (IP\(_3\)) production (22; 25-27). The participation and modulation of protein kinases is also common in these pathways (27-30).
Figure 1.3 summarizes the effects of aldosterone in the aldosterone-sensitive distal nephron.

Figure 1.3. Simplified scheme of the effects of aldosterone in the aldosterone-sensitive distal nephron involved in Na⁺ reabsorption and K⁺ excretion. Acronyms are: MR, Mineralocorticoid receptor; Aldo, aldosterone; NHE, Na⁺/H⁺ exchanger; SGK1, Serum and Glucocorticoid inducible Kinase isoform 1; ENaC, Epithelial Na⁺ channel; ROMK, Renal outer medullary K⁺ channel (KCNJ1). Action of aldosterone on the NHE seems to be mediated by PKC and independent from SGK1 (21; 31; 32). Apical expression of the large conductance Ca²⁺ activated K⁺ channel (MaxiK) is also increased in the cortical collecting duct of animals subjected to a rich K⁺ diet (30). However, it seems that aldosterone is not directly involved in this mechanism (33).

Recently a novel type of kinases named “with no Lysine” (WNK) has shed light on many actions of aldosterone in the aldosterone-sensitive distal nephron. Hence, WNKs have been found to be involved in the regulation of ROMK, ENaC, the Na⁺/K⁺/2Cl⁻ cotransporter isoform 2 (NKCC2), and Na⁺/Cl⁻ cotransporter (NCC) (34-37).

Besides its action on the kidney and the regulation of plasma volume, aldosterone also targets other organs involved in the regulation of blood pressure. For instance, in the vascular system, aldosterone produces vasoconstriction and promotes endothelial cell stiffness (38; 39) while in the central nervous system it regulates blood pressure probably via changes in salt appetite (15; 40; 41). Aldosterone has also been found to participate in the hypertension-related remodeling of the heart, promoting vascular and myocardial fibrosis (42; 43).

1.3 Regulation of aldosterone secretion

Due to its importance in the maintenance of blood pressure and fluid balance, it is not surprising that aldosterone secretion is tightly controlled by several factors and involves various cellular pathways. Many factors have been described to modulate aldosterone
secretion in glomerulosa cells (44). The most relevant are angiotensin II, hyperkalemia and ACTH as stimuli and atrial natriuretic peptide (ANP) as an inhibitor.

1.3.1 The Renin-Angiotensin System (RAS)

Renin is an aspartyl-protease produced as an enzymatically inactive precursor in the juxtaglomerular cells of the afferent arterioles of the kidney. Various events such as the reduction of extracellular fluid volume, the fall of renal perfusion pressure, the acute activation of sympathetic outflow to the kidney, the release of catecholamines and Na\(^+\) deficiency may induce the release of renin, which is in turn the rate limiting step of the activation of the RAS. Once renin has been released and activated, it cleaves angiotensinogen (constitutively produced by the liver) and releases the decapeptide angiotensin I (AngI). AngI is then further modified by the carboxypeptidase angiotensin converting enzyme (ACE) to produce the octapeptide AngII - the physiologically active component of the system. Further cleavage of AngII by aminopeptidases A and N produces AngIII (Ang 2-8) and AngIV (Ang 3-8). AngII also controls its own production by inhibiting the production of renin on the juxtaglomerular cells, thus creating a negative feedback loop (Figure 1.4).

![Figure 1.4. Overview of the renin-angiotensin system. For further details see text.](image-url)
AngII further exerts its action by binding to AngII receptors (AT) 1 and 2, members of the large family of G-coupled seven-transmembrane spanning receptors. Most of the classical actions of AngII related to cardiovascular effects are elicited by its specific binding to the AT1 receptor (45-47). Among others, these include:

- Intense vasoconstriction (48),
- Stimulation of adrenal aldosterone secretion (13; 44; 49-55), (see section 1.3.2),
- Ionotropic and chronotropic effects on cardyomyocytes (56),
- Release of catecholamines from the adrenal medulla (57),
- Modulation of drinking behavior and salt appetite (58),
- Na⁺ reabsorption (46),
- Cell proliferation (59),

Interestingly, both renin expression and AngII secretion also occur in glomerulosa cells of the adrenal gland, 20-25% of which release AngII (44). Chromaffin cells distributed throughout the whole cortex have been described to express renin and to present AngII secretory granules. (44) This intra-adrenal RAS has been suggested to amplify the effect of the systemic RAS.

Most of all, increase of aldosterone secretion may be attributed to the increased activity of the RAS and/or increased plasma levels of K⁺. However, under conditions of severe loss of Na⁺ or fluid, ACTH is also secreted and synergizes with AngII or K⁺ in the stimulation of glomerulosa cells. On the other hand, ANP secretion is increased in response to Na⁺ and/or water loading and inhibits aldosterone production.

1.3.2 Cytoplasmic Ca²⁺ signal triggered by AngII in glomerulosa cells

In zona glomerulosa cells, AngII binds to the AT1 subtype receptors present in the plasma membrane (60). The subtype q of the heterotrimeric G protein (Gq) coupled to AT1 mediates the activation of phospholipase C (PLC) (61). PLC is also activated by
high \([\text{Ca}^{2+}]\) (62), and its enzymatic activity yields inositol 1,4,5-trisphosphate (IP\(_3\)) and diacylglycerol (DAG). IP\(_3\) then binds to the IP\(_3\) gated Ca\(^{2+}\) channels in the endoplasmic reticulum (ER), thus allowing the release of Ca\(^{2+}\) to the cytoplasm. This Ca\(^{2+}\) signal is concentration dependent and ranges from an oscillatory activity upon application of pM concentrations of AngII to a typical peak-plateau pattern in response to nM concentrations of the agonist (63).

A sustained cytoplasmic Ca\(^{2+}\) signaling is achieved in part due to the store release of this divalent cation, as well as its influx from the extracellular compartment. Binding of AngII to the AT1 receptor depolarizes glomerulosa cells and therefore activates the T-type voltage-sensitive Ca\(^{2+}\) channels present in the plasma membrane (64). As a result, Ca\(^{2+}\) enters the cell where the concentrations are 10 000 times lower compared to the extracellular compartment. It is clear then that the maintenance of the membrane voltage \((V_m)\) is a crucial step for the cytoplasmic Ca\(^{2+}\) signaling triggered by AngII. Under basal conditions, the \(V_m\) of glomerulosa cells is close to that predicted by the Nernst equation for a cell which is only permeable to K\(^+\) (65; 66), thus the voltage activated Ca\(^{2+}\) channels are inactive. This strikingly high K\(^+\) conductance is only possible due to the presence of two-pore domains “leakage” K\(^+\) (K\(_2\)P) channels Task1 (KCNK3), Task3 (KCNK9) and Trek1 (KCNK2) (65; 67-70). The reduction of the permeability to K\(^+\) would shift the membrane voltage from the very negative values close to the K\(^+\) equilibrium potential (-90mV) towards the more positive equilibrium potentials of Ca\(^{2+}\) and Na\(^+\) (123 mV and 67 mV, respectively). The depolarization triggered by AngII is achieved by the inhibition of K\(^+\) leakage channels. The precise molecular mechanism of this inhibition is still controversially discussed (68; 70-72).

It has been also shown that AngII augments T-type Ca\(^{2+}\) currents in a GTP-dependent manner in bovine glomerulosa cells (73). Although L-type Ca\(^{2+}\) channels are also expressed in zona glomerulosa cells; several evidences suggested an inhibition of these channels by physiological concentrations of AngII (74-76).

The third major action of AngII on increasing \([\text{Ca}^{2+}]\) is its effect on the store-operated Ca\(^{2+}\) influx. Ca\(^{2+}\) store depletion in rat and bovine glomerulosa cells promotes aldosterone production (77; 78). The family of the transient receptor potential proteins (Trp) has also been proposed to be involved in this mechanism (79-81). Both the mRNA and protein products of Trp 4 have been detected in the adrenal cortex (82). However, further studies are needed in this field since there are no reports in
glomerulosa cells regarding the recently discovered constituents of the store operated calcium influx: the ER Ca$^{2+}$ sensor stromal interaction molecules (STIM); and the plasma membrane channels Orai (83).

1.3.3 Cytoplasmic Ca$^{2+}$ signal triggered by hyperkalemia in glomerulosa cells

As mentioned before, glomerulosa cells are hyperpolarized under basal conditions due to the presence of K$_{\text{v}}$P leakage channels, which provide them with a unique K$^+$ sensitivity (67). Changes in extracellular K$^+$ concentrations ([K$^+$]$_o$) will thus shift the resting membrane voltage to more positive values (depolarizing the cell) when [K$^+$]$_o$ increases, or hyperpolarizing the cell when it decreases.

Hyperkalemia, one of the strongest secretagogues of aldosterone, depolarizes glomerulosa cells, which in turn activates the T-type voltage gated Ca$^{2+}$ channels and increases [Ca$^{2+}$]. This effect of K$^+$ upon Ca$^{2+}$ is nonoscillating and long lasting (44). Under supraphysiological [K$^+$]$_o$ concentrations, L-type Ca$^{2+}$ channels can also be activated (64; 84).

1.3.4 Regulation of [Ca$^{2+}$]$_i$ increase

[Ca$^{2+}$]$_i$ increase elicited by aldosterone secretagogues must be regulated in order to prevent overreaction of the stimulated cell and to prepare it for consequent stimulations. [Ca$^{2+}$]$_i$ can be regulated through several mechanisms:

- Inhibition of L-type voltage gated Ca$^{2+}$ channels by Ang II in order to prevent Ca$^{2+}$ overloading (75).

- The plasma membrane Ca$^{2+}$ ATPase (PMCA) and the SERCA remove Ca$^{2+}$ by transporting it actively either to the extracellular compartment or into the endoplasmic reticulum respectively.

- The Na$^+$/Ca$^{2+}$ antiporter present in the plasma membrane exchanges three Na$^+$ for one Ca$^{2+}$ allowing net Ca$^{2+}$ efflux.
1.3.5 Integration of the intracellular pathways controlling the synthesis of aldosterone

The signaling pathways involved in [Ca^{2+}]_i increase upon stimulation by AngII and hyperkalemia are summarized in Figure 1.5.

Figure 1.5. Schematic representation of cytoplasmic Ca^{2+} increase elicited by AngII (red arrows) and hyperkalemia (black arrows). Acronyms used are: AngII, angiotensin II; AT1, AT1 type receptor of angiotensin II; G_q, alfa subunit of the heterotrimeric G protein subtype q. β and γ represent the other two subunits; PLC-β, beta-subunit of the phospholipase C enzyme; DAG, diacylglycerol; IP_3, inositol 1,4,5-trisphosphate; ER, Endoplasmic reticulum; T, T-type voltage gated Ca^{2+} channels; TRP, transient receptor potential protein 4. Adapted from Bandulik, S. et al., 2010 (85).

A cascade of events is triggered upon [Ca^{2+}]_i increase. This includes the activation of protein kinase C (PKC) as well as the mitogen-activated protein kinases (MAPKs) ERK1 and ERK2, ultimately resulting in the expression of StAR (13; 86). In turn, the activation of these MAPKs depresses DAX-1, a transcription factor known to inhibit the SF-1 dependent transcription of StAR. The activity of StAR also requires phosphorylation which can be accomplished either by protein kinase A (PKA) (activated during ACTH stimulation of steroidogenesis) or by PKC (87).

Increased [Ca^{2+}]_i is also followed by the activation of the Ca^{2+} binding protein calmodulin (CaM) which then activates CaM kinases (CaMKs) I and/or IV (13; 88). The phosphorylation of the transcription factors ATF-1, Nurr1 and CREB by CaMKs induces the activation of the CYP11B2 promoter (13).
The activation of CaMKII in bovine glomerulosa cells has been associated with a reduction of the activation threshold of T-type voltage activated Ca\(^{2+}\) channels (89). This mechanism serves as positive feedback and could be involved in the amplification of the signal generated after small changes of [K\(^+\)]\(_o\).

1.4 Potassium channels and their function in the adrenal gland

Potassium channels are components of a diverse and ubiquitous family of membrane proteins present in both excitable and non-excitable cells. Members of this superfamily play critical roles in cellular signaling processes such as regulating neurotransmitter release, heart rate, hormone secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction and cell volume regulation (90). A large number of genetic mutations in K\(^+\) channels linked to human diseases have been described in the past years, highlighting the importance of these molecular entities.(91-94)

Until now 78 pore-forming K\(^+\) subunits have been described in humans (for detailed information and further links refer to: http://www.genenames.org/genefamily/kcn.php) comprising four major K\(^+\) channels subfamilies namely: voltage-gated, inwardly rectifying, calcium dependent and two pore domains K\(^+\) channels (95).

Recently, an exhaustive list of the expression of K\(^+\) channels in the human adrenal cortex has been published (91). Moreover, some of them have been found to be related to pathological conditions in both animal models and humans (Table 1.1).
Table 1.1. Expression of potassium channels in the adrenal glands\(^a\). Modified from Bandulik, S. et al., 2010 (85).

<table>
<thead>
<tr>
<th>Channel</th>
<th>Adrenal expression</th>
<th>Species</th>
<th>Function</th>
<th>Pathophysiology</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task1</td>
<td>ZG > ZF > ZR; (mouse), EST, PCR, in situ hybridization, Human Gene 1.0 ST array</td>
<td>Rat mouse Human</td>
<td>Resting membrane potential, part of acid- and AngII-sensitive current</td>
<td>Altered expression pattern of aldosterone synthase, hyperaldosteronism (sex-dependent) in Task1(^{-/-}) mice</td>
<td>(65; 66; 70; 91)</td>
</tr>
<tr>
<td>Task2</td>
<td>ZR (own unpublished data), PCR, Human Gene 1.0 ST array</td>
<td>Mouse Human</td>
<td>Unknown</td>
<td>Unknown</td>
<td>(68; 91)</td>
</tr>
<tr>
<td>Task3</td>
<td>ZG specific expression. PCR, in situ hybridization, Human Gene 1.0 ST array</td>
<td>Rat mouse Human</td>
<td>Probably heterodimers with Task1, resting membrane potential</td>
<td>Primary hyperaldosteronism in adult male Task1(^{-/-})/Task3(^{-/-}) mice</td>
<td>(65; 68; 91; 96; 97)</td>
</tr>
<tr>
<td>Task4</td>
<td>Cloned from adrenal cDNA, Human Gene 1.0 ST array</td>
<td>Human</td>
<td>Unknown</td>
<td>Unknown</td>
<td>(91; 98)</td>
</tr>
<tr>
<td>Task5</td>
<td>Northemblot, PCR, Human Gene 1.0 ST array</td>
<td>Human</td>
<td>Unknown</td>
<td>Unknown, inactive, cytosolic Expression</td>
<td>(91; 99)</td>
</tr>
<tr>
<td>Trek1</td>
<td>Adrenal cortex (in situ hybridization, PCR), ESTs, Human Gene 1.0 ST array</td>
<td>Bovine human Mouse</td>
<td>Inhibition of Trek1 current by Ang II and ACTH, induced expression by ACTH</td>
<td>Unknown</td>
<td>(91; 100-104)</td>
</tr>
<tr>
<td>KvLQT1 / IsK (KCNQ1 / KCNE1)</td>
<td>PCR, EST, Human Gene 1.0 ST array</td>
<td>Mouse Human</td>
<td>Repolarization of membrane potential</td>
<td>Increased aldosterone secretion under hyperkalemia in KCNE1(^{-/-}) mice</td>
<td>(91; 105; 106)</td>
</tr>
<tr>
<td>MaxiK (KCNMA1 / KCNMB1)</td>
<td>PCR, ESTs, Human Gene 1.0 ST array</td>
<td>Mouse Human</td>
<td>K(^+) conductance stimulated by ANP leading to reduced aldosterone secretion</td>
<td>Hyperaldosteronism in KCNMA1(^{-/-}) mice. Controversial phenotype of KCNMB1(^{-/-}) mice</td>
<td>(84; 91; 107; 108)</td>
</tr>
<tr>
<td>Kir3.4 (KCNJ5)</td>
<td>ZG specific expression (Immunohistochemistry), ESTs, Human Gene 1.0 ST array</td>
<td>Human</td>
<td>Functional relevance is controversial</td>
<td>Mutations found in APAs and familial non-glucocorticoid-remediable aldosteronism.</td>
<td>(91; 109-111)</td>
</tr>
</tbody>
</table>

1.5 K\(_2\)P channels

In 1996 Lesage and co-workers cloned and described the first member of the mammalian K\(_2\)P potassium channel subfamily called TWIK (tandem of pore domains in a weak inwardly rectifying K\(^+\) channel, now called TWIK-1) (112). Until now 15 members of the K\(_2\)P family have been described and subdivided into 6 subfamilies (TWIK, TREK, TASK, TALK, THIK and TRESK) on the basis of sequence similarity and
functional resemblance (Figure 1.6. A). As indicated by their name, the characteristic molecular topology of the K$_2$P channels is the presence of two pore forming domains per molecule (Figure 1.6. B), in contrast to the other K$^+$ channel families characterized by one pore forming domain per subunit (113). K$_2$P subunits dimerize to constitute the functional K$^+$ selectivity filter containing four pore loop domains, a structure characteristic of all known K$^+$ channels.

Figure 1.6. A. Phylogenetic tree of the known members of the human K$_2$P family classified into 6 subfamilies. The genes that have not produced functional channels are shown in grey. Both the conventional (TWIK, tandem of P domains in a weak inwardly rectifying K$^+$ channel; THIK,
Introduction

Tandem pore domains halothane-inhibited K⁺ channel; TREK, TWIK-related K⁺ channel; TRAAK, TWIK-related arachidonic acid-stimulated K⁺ channel; TASK, TWIK-related acid-stimulated K⁺ channel; TALK, TWIK-related alkaline pH activated K⁺ channel; TRESK, TWIK-related spinal cord K⁺ channel) and the systematic (The Human Genome Organization (HUGO) uses KCNK designation and The International Union of Pharmacology (IUP) replaces the KCNK by a K₂P prefix) names are indicated. Reproduced from Bayliss, D.A. and Barret, P.Q. 2008 (113) B: Schematic transmembrane topology of human K₂P channels. TMS: transmembrane segment. Reproduced from Enyedi, P. and Czirják, G. 2010 (95).

K₂P channels are widely expressed in human tissues (114) where they give rise to background K⁺ currents (95; 113). They exhibit very weak voltage dependence and a weakly rectifying current-voltage relationship, remaining open at negative membrane potentials (95). In addition, K₂P channels are regulated by a variety of physicochemical factors, endogenous neurochemicals, signaling pathways and clinically relevant drugs. It is thus not surprising that differential expression of K₂P subunits can provide cells with a rich modulatory potential (95).

The K₂P channel Trek1 has been identified as a key factor in the regulation of aldosterone and cortisol secretion in bovine adrenal cortex and in the human cell line NCI H295R (69). It is thought to be one of the major K⁺ channels controlling the membrane potential in zona glomerulosa and zona fasciculata bovine cells -where Trek1 currents are inhibited by ACTH and AngII- (100; 101; 115). Although Trek1 is highly expressed in both human (91), and mouse adrenal cortex (85), up to now its relevance for the adrenal gland function in these two species has not yet been investigated at a functional level. As pointed out previously, there are important differences regarding the production of steroids among different species: i) in bovine (as well as in swine) cells, the synthesis of aldosterone and cortisol is carried out by only one enzyme (116), whereas in rodents and humans two different enzymes take part in this functions; ii) Task channels dominate the potassium conductance of glomerulosa cells of mice (65; 66) and rats (68), where Trek channels appear to be less important.
1.5.1 Task channels

The Task group comprises the acid pH sensitive members of the K₂P channels family Task1, Task3 and Task5. Although Task5 cannot be functionally expressed, it was classified into the Task group based in the amino acid (aa) sequence similarity.

Task1 gene is located at position 2p23 of the human chromosome 2 and encodes a 43.5 kDa protein with 394 aa. On the other hand, Task3 is located at position 8q24.3 of the human chromosome 8 and encodes a 42.3 kDa protein with 372 aa. In mouse Task1 and Task3 genes are located on chromosomes 5 and 15 respectively and encode slightly larger proteins with 409 aa (45 kDa) and 402 aa (44.9 kDa), respectively.

Task1 and Task3 exhibit a high sequence similarity (see Figure 1.6. A) and therefore are closely related at the molecular level: they are both extremely sensitive to variations of extracellular pH in the physiological range (Task1 is more sensitive in the physiological pH range than Task3), inhibited by acidification (97; 117-119) and activated by the volatile anaesthetics halothane and isoflurane (120; 121). Moreover, Task1 and Task3 are the only subunits among the K₂P family that have been reported to form heterodimers in vitro (97) and in vivo (122). On the other hand, Task3 is selectively inhibited by Zn²⁺ (123) and is the only member of the K₂P channels that is genetically imprinted in humans and mouse; i.e. the maternal allele is preferentially expressed (124-126).

In addition to the central nervous system, the adrenal cortex is a primary site of Task channels expression (113). In mice Task1 is expressed in zona glomerulosa and zona fasciculata cells whereas Task3 mRNA has been found to be predominantly expressed in zona glomerulosa cells (65; 66; 85).

1.5.2 The adrenal phenotype of Task1⁻/⁻ and Task1⁻/⁻/Task3⁻/⁻ mouse models

Knockout animal models have been widely used to study the contribution of given genes to a particular physiological process. In the last years the importance of Task channels for aldosterone secretion in vivo has been addressed using such models (65; 66; 85; 127).
In 2008 Heitzmann and co-workers (66) reported a severe adrenal phenotype in adult Task1−/− animals. Surprisingly, only female knockout animals exhibited a striking hyperaldosteronism linked to hypertension, while male animals showed no adrenal phenotype. The hyperaldosteronism was independent of Na⁺ and K⁺ intake and appeared despite the hypokalemia and low plasma renin activity present in female knockouts, and was therefore considered as primary hyperaldosteronism. An analysis of the localization of aldosterone synthase within the adrenal cortex revealed that this loss of the physiological control of the aldosterone secretion was due to an ectopic localization of this enzyme. In female knockout animals, aldosterone synthase was expressed in zona fasciculata cells instead of the normal glomerulosa localization (Figure 1.7). Remarkably, the hyperaldosteronism was remediable by treating the animals with the synthetic glucocorticoid dexamethasone, pointing to an ACTH-dependent regulation of aldosterone secretion in these mice. In this regard, these mice could provide a model of the glucocorticoid remediable hyperaldosteronism also present in humans. However, the problem underlying this disease is different in most of the patients, where an unequal crossing over between the CYP11B1 (coding the 11β-hydroxylase enzyme, responsible for the production of cortisol) and CYP11B2 genes is causative for this disorder. The genes of CYP11B1 and CYP11B2 are 95% identical and in close proximity in chromosome 8. Thus, in the human glucocorticoid remediable hyperaldosteronism, the 5’ regulatory region of the CYP11B1 gene is fused to the coding region of CYP11B2 and therefore the transcription of the CYP11B2 gene is now controlled by ACTH (128).

Figure 1.7. Effect of Task1 invalidation on adrenocortical zonation. Immunofluorescence of: aldosterone synthase (green) and the zona glomerulosa specific marker Disabled-2 (Dab2), red) (129). Left panel: adrenal cortex of a female wild type mouse; right panel: adrenal cortex of a female Task1−/− mouse. Adapted from Bandulik, S. et al., 2010. (85).
A more recent paper (85) provided additional evidences indicating that the abnormal zonation of Task1-/- mice was due to an ectopic expression of aldosterone synthase rather than to wrongly localized glomerulosa cells. As presented in Figure 1.7, zona glomerulosa cells expressing the specific marker Dab2 did not express aldosterone synthase. These data suggests that regulatory mechanisms controlling aldosterone secretion in Task1-/- glomerulosa cells are still preserved. The elevated plasma aldosterone concentration induces a negative feedback in glomerulosa cells where aldosterone production is switched off.

The invalidation of the Task1 channel also highlighted its importance for the development of the adrenal cortex and the dynamics of adrenocortical zonation. Heitzmann and co-workers observed that aldosterone synthase in both, female and male Task1-/- mice, was abnormally localized before puberty, and became normal only in adult male mice. Gender and age differences in the adrenocortical zonation of aldosterone synthase raised the question whether sex hormones regulate the underlying compensatory mechanisms in adult male animals. Indeed, aldosterone synthase dezonation could be recapitulated in castrated male mice. Moreover, it was also possible to recover the normal zonation pattern in female mice after testosterone treatment.

Regarding the electrophysiological properties of adrenocortical primary cells, Task1-/- cells were depolarized by about 7 mV under control conditions when compared to Task1+/+ cells. However, upon addition of AngII or after extracellular acidification the cells further depolarized, indicating the presence of other acid sensitive K+ channel, possibly Task3 homodimers.

This work clearly demonstrated the crucial importance of Task1 K+ channels in the regulation of zonation and biochemical properties of the adrenal cortex. However, the nature of other channels or factors (under the transcriptional control of testosterone), underlying the compensatory mechanism in male Task1-/- is still unknown.

Another milestone for the understanding of the role of K2P channels for aldosterone secretion in mice was published by Davies and co-workers only few months later (65), on Task1-/-/Task3-/- double knockout mice. Surprisingly aldosterone synthase appeared to be normally localized in adult males Task1-/-/Task3-/-, while females were not included in this study.
Introduction

Using freshly prepared adrenal slices for patch clamp measurements, the authors observed that zona glomerulosa cells from Task1^{−/−}/Task3^{−/−} mice were depolarized by about 20 mV. This result, together with the absence of pH inhibitable and halothane activatable K⁺ currents unequivocally led to the conclusion that Task1 and Task3 channels conduct a background K⁺ current in zona glomerulosa cells.

Similarly to Task1^{−/−} female mice, increased production of aldosterone was observed in male Task1^{−/−}/Task3^{−/−} when compared to wild type animals and despite the low plasma concentrations of renin. This phenotype was independent of the salt intake and therefore classified as primary hyperaldosteronism. As expected, these mice were also hypertensive. Interestingly, the production of aldosterone in Task1^{−/−}/Task3^{−/−} mice was increased by low Na⁺ diet and reduced by the administration of the AT1 receptor blocker candesartan. Nevertheless aldosterone levels remained higher than in wild type mice. Altogether these results suggest that in mice lacking both, Task1 and Task3 K⁺ channels, aldosterone levels are still under the regulation of AngII, at least to some extent.
2 Objectives

Although in recent years our comprehension of the molecular mechanisms involved in the regulation of aldosterone secretion has improved, we are still far from thoroughly understanding this important physiological process. The control of the membrane voltage in aldosterone producing cells by K_2P channels has been identified as a pivotal factor in this complex scenario. Therefore, the present work was aimed at investigating the particular contribution of the K_2P channel Task3 to the regulation of aldosterone secretion.

Towards this general goal the following specific objectives were postulated:

1. To investigate the expression and localization of Task3 in the mouse adrenal gland.
2. To evaluate the contribution of Task3 to the K^+ sensibility of adrenocortical cells and tissues.
3. To study the impact of the deletion of Task3 on the response of adrenocortical cells and tissues to angiotensin II.
4. To investigate the impact of the deletion of Task3 on the regulation of the aldosterone secretion in vivo.
3. Materials and Methods
Materials and Methods

All the reagents were purchased from Sigma, (Taufkirchen, Germany) or Merck (Darmstadt, Germany) unless otherwise stated.

3.1 Mice

3.1.1 The Task3−/− knockout mouse model

The Task3−/− knockout mouse was generated by Guyon and co-workers as described previously (130). The following description was modified from their published study: briefly, the Task3 gene locus was targeted for homologous recombination in 129/Sv embryonic stem cells. The vector was designed to allow cre-mediated deletion (131) of exon 2, which encodes pore domains P1 and P2, the transmembrane domains M2-M4 as well as the cytoplasmic C-term of Task3 (for details refer to Figure 1.6 B). Primers were designed to amplify three contiguous DNA fragments of 6.6 kb (long arm), 1 kb (containing exon 2), and 2.9 kb (short arm) from 129/Sv genomic DNA (Figure 3.1).

![Schematic strategy of inactivation of Task3 gene](image)

Figure 3.1. Schematic strategy of inactivation of Task3 gene. Open triangles represent loxP sequences. For further details see text. Reproduced from Guyon, A. et al., 2009 (130).

PCR products were subcloned into a modified pBluescript (Stratagene) containing a neomycin (neo) resistance cassette for positive selection, as well as thymidine kinase (TK) and diphtheria toxin (DT) genes to select against random incorporations. LoxP sites were added flanking the second exon and the neomycin resistance cassette for further gene inactivation by excision using the cre recombinase. After linearization, the targeting vector...
was transfected by electroporation into embryonic stem (ES) cells by Genoway Company. DNA extracted from colonies resistant to the antibiotic G418 (resistance conferred by the neo gene) was analyzed by PCR using a 5' primer overlapping the sequence junction between the loxP sequence and the 5' end of the short arm and a 3' primer external to the targeted sequence. A positive clone was further characterized by Southern blot analysis using probes corresponding to 5' and 3' sequences flanking the targeted regions to ensure integrity of the targeted locus. Genoway Company also performed blastocyst injection. Chimeric animals were identified by coat color and crossed to C57BL/6J mice. Tail DNA was analyzed by PCR to select progeny bearing the floxed allele, which was then crossed to a mouse strain expressing the cre-recombinase under the cytomegalovirus promoter (CMV-cre). Exon 2 excision in offspring was assessed by PCR using primers flanking this region.

Task3^{−/−} mice were backcrossed for at least 10 generations into the C57Bl/6 genetic background. All the mice used in this work were aged between 12 and 48 weeks (unless otherwise mentioned) and age matched for each experiment. Wild type mice (hereafter designated Task3^{+/+}) were from the C57BL/6 inbreed strain (The Jackson Laboratory, Maine, USA).

3.1.2 General animal keeping and experimental conditions

Animals were maintained on a normal diet (chow, R03T-25; SAFE, 0.75% K⁺, 0.27% Na⁺) with free access to food and water. The experimental protocols were approved by the local councils for animal care and were conducted according to the German and French law for animal care.

For the experiments mice were fed with high (3%) or low (<0.05%) K⁺ diet (INRA, France or Ssniff Spezialdiäten GmbH, Soest, Germany). Alternatively, high K⁺ diet was attempted by adding 200 mM KCl and 12% sucrose in the drinking water. Rich (4% NaCl) or low (<0.03% NaCl) Na⁺ diets (Ssniff Spezialdiäten GmbH, Soest, Germany) were also used. For all protocols, animals were subjected to the special diet condition for at least 1 week before the measurements.

Mouse anaesthesia was carried as follows; animals were subject to 2.5-3 % (Task3^{−/−} animals display reduced sensitivity to volatile anaesthetics) of isoflurane (Baxter Deutschland GmbH, Unterschleißheim, Germany) administered with a vaporizer (MFI Führ...
3.1.3 Hormonal treatment and castration

Five weeks old Task3+/+ male mice were anesthetized as described in section 3.1.2 and castrated via scrotal incision. Five weeks after castration, mice were injected once a day during 6 days with 1 µg of testosterone propionate (Sigma-Aldrich, Steinheim, Germany) per g of body weight at the beginning of the treatment. Testosterone was administered subcutaneously, dissolved in sesame oil (0.5 mg/mL). Mice included in the vehicle treated group were injected with an equivalent volume of sesame oil.

Prior to adrenal glands fixation by perfusion for immunofluorescence (see section 3.3), the left renal artery and vein were clamped and the left adrenal gland was removed for cDNA preparation and real time-PCR.

Female mice followed the same treatment as castrated male mice.

3.2 Blood analysis

Blood was collected into heparin-treated capillary tubes from facial vein after lancet prick. Alternatively blood was collected from the orbital sinus from previously anesthetized mice. Samples were centrifuged and plasma was frozen and kept at -20°C.

3.2.1 Aldosterone measurements

Aldosterone was measured either by using a solid-phase 125I Radioimmunoassay (RIA) kit (Immunotech, Marseille, France) or enzyme-linked immunosorbent assay (ELISA) kit (Diagnostic Biochem Canada Inc, Ontario, Canada) according to manufacturer instructions. Both methods exhibit low cross reactivity to other endogenous steroids.

3.2.2 Plasma renin activity (PRA)

For the measurement of the PRA, blood samples were taken from a facial vein and incubated for 1.5 h at 37°C with plasma of bilaterally nephrectomized male rats as renin substrate. The production of AngI (ng/ml/h) was measured by 125I RIA (Byk and DiaSorin Diagnostics, Germany) to determine the PRA.
3.3 Immunofluorescence

After incision of the *vena cava inferior*, anesthetized mice were sacrificed by removal of the blood by perfusion with 10 ml of 0.9% NaCl solution supplemented with 10 IU/ml of heparin (Heparin-Natrium-25000, Ratiopharm GmbH, Ulm, Germany). Next, mice were perfused with 45 ml of fixation solution I (EGTA 1 mM; K$_2$HPO$_4$ 15 mM; MgCl$_2$ 2 mM; NaCl 90 mM; Paraformaldehyde (PFA) 3%; Sucrose 100 mM, pH 7.4). All the solutions were administered through a polyethylene catheter inserted into the abdominal aorta, at a constant flow rate of 10 ml/min assured with a roller pump (Ismatec SA, Glattbrugg, Switzerland). Adrenal glands were then harvested, and placed in chilled fixation solution II (the same composition as fixation solution I but with 17% Sucrose and 1% PFA instead). After 30 min of incubation, adrenals were frozen into -40°C cold methyl butane and kept at -80°C until further handling.

Adrenals were embedded in Optimal Cutting Temperature (OCT)-Compound (Sakura Finetek Germany GmbH, Staufen, Germany) and sliced into 5 µm thick sections using a Cryostat CM3050 S (Leica, Wetzlar, Germany). Sections were placed on Poly-lysine slides (Kindler, Freiburg, Germany). For unmasking of epitopes, the sections were incubated in 0.1% SDS dissolved in PBS (KH$_2$PO$_4$ 1.8 mM; Na$_2$HPO$_4$ 10.3 mM; NaCl 137 mM; pH 7.4) for 5 min. After washing with PBS, the samples were incubated with a polyclonal anti aldosterone synthase antibody (132) (kindly provided by Dr. Celso Gomez Sanchez) raised either in rabbit or sheep; or a polyclonal rabbit anti-Task3 antibody (Alomone Labs, Jerusalem, Israel) overnight at 4°C. Antibody incubation was performed in PBS supplemented with 0.04% of Triton-X100 and 0.5% bovine serum albumin (BSA). After removal of unbound primary antibody by washing with PBS, Cy2 donkey anti-rabbit or Cy2 donkey anti-sheep (Dianova, Hamburg, Germany) or Alexa Fluor 555 donkey anti-rabbit IgG (H+L) (Invitrogen, Germany) were used as secondary antibodies. The sections were then examined with a filter wheel-based imaging system (Universal Imaging Corporation, Downingtown, PA, USA) mounted on an inverted microscope (Axiovert 200M; Carl Zeiss, Heidelberg, Germany) equipped with filters 31001 FITC and 31002 TRITC (Chroma Technology Corporation, Vermont, USA).

3.4 Adrenal gland perifusion

Adult Task3$^{+/+}$ and Task3$^{-/-}$ mice were anesthetized as previously described and both adrenal glands were removed. Adrenals were then cut into four pieces and incubated at
37°C in a Pasteur pipette containing Sephadex G50 (Sigma-Aldrich, Munich, Germany) embedded in control solution (each 100 ml of control solution contains: 46.9 ml of DMEM Low Glucose 31885 (Gibco, Darmstadt, Germany) and 53.1 ml of Krebs-HEPES solution (75 NaCl, 1.8 CaCl₂, 0.8 MgSO₄, 25 NaHCO₃, 1 Na₂HPO₄, 20 HEPES in mM) with a final K⁺ concentration of 2.5 mM. D-Glucose; BSA and NaCl were added to obtain a final concentration of 1.5 mg/ml; 0.1 mg/ml and 135.5 mM respectively (0.85 ml of 1M NaCl solution for control buffer). For higher K⁺ concentrations NaCl was replaced by KCl as necessary. The different solutions were pre-gazed with medical carbogen (5% CO₂ and 95% O₂) and applied at a constant flow rate of 0.15 ml/min and collected every 10 min for aldosterone measurements.

The perifusion setup can be schematized as follows:

![Figure 3.2. Schematic representation of the adrenal gland perifusion setup.](image)

3.5 Primary cell culture

During isoflurane anesthesia, adult male Task3⁺/⁺ and Task3⁻/⁻ mice were perfused (see section 3.3 for details) with a collagenase-containing (0.5 mg/ml collagenase II (Biochrome, Berlin, Germany) and 0.5 mg/ml collagenase IV (Sigma-Aldrich, Munich, Germany)) Ringer-
type solution (see section 3.6 for details). Adrenal glands were harvested, cut into small pieces, and digested for another 10 min at 37°C. Single cells and cell clusters were seeded on culture dishes (Falcon, Heidelberg, Germany) in DMEM/F-12 (1:1) (Gibco, Darmstadt, Germany) supplemented with: 2% heat inactivated fetal calf serum (Gibco, Darmstadt, Germany), 8% heat inactivated horse serum (Gibco, Darmstadt, Germany), 0.1 mM ascorbic acid (Sigma-Aldrich, Munich, Germany), 1 µM (+)-α-Tocopherol (Sigma-Aldrich, Munich, Germany), 1 µg/ml human insulin solution (Sigma-Aldrich, Munich, Germany) and 0.5% Penicillin/Streptomycin (Gibco, Darmstadt, Germany). Cells were used for patch-clamp or calcium measurements experiments 16–24 h after seeding. Steroidogenic cells were identified by the presence of lipid droplets in the cytoplasm.

3.6 Electrophysiology

Whole-cell recordings were performed on primary cells using an EPC-10 amplifier (Heka, Lambrecht, Pfalz, Germany) coupled to a personal computer and a Powerlab Data Acquisition System (ADInstruments GmbH, Spechbach, Germany). The software PatchMaster v2x50 was used for pulse generation and data acquisition whereas the LabChartPro v7 was used for additional data acquisition. Patch pipettes (8-12) MΩ were used for the recordings. The patch pipette solution contained (in mM) 95 K-gluconate, 30 KCl, 4.8 Na₂HPO₄, 1.2 NaH₂PO₄, 5 glucose, 2.38 MgCl₂, 0.726 CaCl₂, 1 EGTA, 3 ATP, pH 7.2. The extracellular Ringer-type control solution contained (in mM) 142.5 NaCl, 0.4 NaH₂PO₄, 1.6 Na₂HPO₄, 5 glucose, 1 MgCl₂, 1.3 CaCl₂, 5 HEPES, 2.5 KCl, pH 7.4. All the experiments were performed at room temperature (RT).

The clamping protocol can be schematized as follows:
Figure 3.3. Schematic representation of the voltage clamp protocol applied. Voltage clamps ranging from -120 to 30 mV were applied every 2 seconds. Each clamp cycle was followed by 10 sec under current clamp 0 (CC0) condition to allow the measurement of the membrane voltage (whole cell mode).

3.7 Cytoplasmic Ca²⁺ measurements

3.7.1 Cytoplasmic Ca²⁺ measurements in fresh adrenal slices.

For cytoplasmic Ca²⁺ measurements in adrenal slices, adrenal glands from adult male mice were harvested during isoflurane anesthesia. Adrenals were then immediately placed in chilled storage solution containing (in mM) 26 NaHCO₃, 116.5 NaCl, 1.25 NaH₂PO₄, 10 Glucose, 2 MgCl₂, 1 CaCl₂, 2.5 KCl, pre-gazed with medical carbogen. After removal of surrounding fat tissue, the glands were embedded in 2% Biozym Plaque GP low melting agarose (Biozym, Hessisch Oldendorf, Germany) dissolved in storage solution at 37°C. After cooling down on ice, blocks of agarose containing the glands were cut into 150 µm thick slices using a vibratome VT 1200 S.(Leica, Wetzlar, Germany). Slices were kept for a maximum of 5 h in storage solution gazed with carbogen.

The slices were loaded with 2.5 µM Fluo-4 AM Ca²⁺ sensitive dye in the presence of 1X Power Load permeabilizing reagent (Invitrogen, Germany). The loading was performed in a Ringer type buffer containing (in mM) 5 HEPES, 138.9 NaCl, 1.6 Na₂HPO₄, 5.4 NaH₂PO₄, 10 Glucose, 1 MgCl₂, 1.3 CaCl₂, 3.6 KCl, pH 7.4. Loading periods of 40 min in an O₂ rich and humid atmosphere at room temperature were used. Slices were then rinsed for another 40 min in storage solution.

Emitted fluorescence was measured at 520 nm after 495 nm excitation (filter set 44 from Carl Zeiss, Jena, Germany), using a Lambda DG-4 illumination system (Sutter Instrument...
Company, Ca. USA). An up-right microscope (Zeiss Examiner A1) equipped with a WN-Achroplan 40X water immersion objective (Carl Zeiss, Jena, Germany) was used for the measurements. The microscope was coupled to an Axiocam Mrm camera (Carl Zeiss, Jena, Germany). The images were continuously acquired each 0.5 seconds using the software Axiovision release 4.8.2 (Carl Zeiss, Jena, Germany). All measurements were performed at room temperature in the Ringer-type buffer gazed with O₂.

After acquisition of time laps experiments, the signal intensity emitted by single cells was measured using the Axiovision software. The initial intensity of the cells was drastically influenced by dye loading; therefore the signals measured during the experiment were normalized to the initial value. The Ca²⁺ sensitive dye Fluo-4 AM is prone to photobleaching and this phenomenon was observed during the experiments. Consequently, a baseline was subtracted from the fluorescence signal of the cells.

3.7.2 Cytoplasmic Ca²⁺ measurements in adrenocortical primary cells

For cytoplasmic Ca²⁺ measurements of adrenocortical primary cells, cells were loaded with 5 µM of Fura-2 AM in the presence of 1X Power Load permeabilizing reagent (Molecular Probes, Darmstadt, Germany). Cells were kept at room temperature in a Ringer-type solution previously described in section 3.7.1. Fluorescence was measured at 510 nm (filter set 21HE from Carl Zeiss, Jena, Germany) following excitation at 340 and 380nm. For this purpose, the setup described in the section 3.7.1 was used and images were continuously acquired (1 image/s). The ratio 340/380 was used as an indicator of the changes in [Ca²⁺].

3.8 Real-time polymerase chain reaction (real time-PCR)

Adrenal gland total RNA was isolated using RNeasy micro kit (Qiagen, Hilden, Germany) and reverse transcribed into cDNA using M-MLV reverse transcriptase (Promega, Mannheim, Germany). With Task3-specific primers (sense primer: ACATCAGCTCCGATGACTACC; antisense primer: CAGGTGCAGCATGTCCATA; annealing temperature 57°C, 50 cycles) real time-PCR was performed using SYBR green (Qiagen, Hilden, Germany). Beta-actin was used as a house-keeper gene (sense primer: CCA CCG ATC CAC ACA GAG TAC TT; antisense primer: GAC AGG ATG CAG AAG GAG ATT ACT G; annealing temperature 56°C, 40 cycles) in a LightCycler 480 machine (Roche, Basel, Switzerland).
3.9 Statistics

Data are shown in mean values ± standard error of the mean (SEM); "n" stands for the number of observations. Paired as well as unpaired Student's t-tests were used accordingly. For multiple comparisons, one way ANOVA was used. A p-value of 0.05 was accepted to indicate statistical significance.
4. Results
4 Results

4.1 Expression and localization of Task3 in the mouse adrenal gland

The adrenal gland has been described as an organ with very strong expression levels of Task1 and Task3 channels (65). Interestingly, differences between genders have been found regarding the mRNA levels of Task3 in male and female mice (66). The following set of experiments aimed to investigate the expression of Task3 in the adrenal gland as well as its localization in the adrenal cortex.

4.1.1 Task3 mRNA expression in mouse tissues

Task3 mRNA expression in different mouse tissues was addressed by real time-PCR using specific primers (Figure 4.1).

![Figure 4.1](image)

Figure 4.1. Expression of Task3 mRNA in different mouse tissues (n=3 mice) normalized to beta actin mRNA levels. Data obtained by InesTegtmeier and included with permission.

As shown in Figure 4.1, the adrenal gland is the primary site of Task3 expression in the mouse relatively to other tissues. Beside the adrenals, only tissues from the central nervous system express significant amounts of Task3 mRNA.
4.1.2 Task3 localization in the adrenal cortex

The specific localization of Task3 within the adrenals was investigated at the protein level through immunofluorescence (Figure 4.2).

![Figure 4.2](image.png)

Figure 4.2. Localization of Task3 protein in the adrenal cortex. Task3 (green) localization was addressed in the adrenal glands of female (♀ Task3+/+ n=5) and male (♂ Task3+/+ n=5) wild type mice by immunofluorescence. Typical sections are depicted. The specificity of the used antibody was tested by staining the adrenal glands of male Task3 knockout mice (♂ Task3-/- n=3). In the figure, ZG: zona glomerulosa; ZF: zona fasciculata. The bar corresponds to 50 µm.

Task3 staining was found in the adrenal cortex of both genders. Task3 positive cells in the adrenal cortex exhibited strong membrane staining. Zona glomerulosa cells, organized in their typical “rosetta” structure beneath the capsule, were stained regardless of the gender. In male mice, Task3 expression was also found in zona fasciculata cells typically arranged in radial columns (middle panel). The specificity of the antibody was confirmed in samples from Task3-/- male mice (right panel).

4.1.3 Dynamics of Task3 expression in the adrenal cortex

To test whether the sex dependent localization of Task3 was caused by male sex hormones, wild type male mice were castrated and adrenal slices prepared for immunofluorescence. Task3 localization was compared between animals treated with
the vehicle (n=6) and those treated with testosterone propionate (n=6) (Figure 4.3 A). Sham operated animals (n=3) were used as control.

Conversely, female mice were treated with vehicle (n=3) or testosterone propionate (n=3) and the expression of Task3 was then investigated by immunofluorescence (Figure 4.3B).

Figure 4.3. Effects of castration and testosterone treatment on the adrenal expression and localization of Task3. Typical sections are shown. A: Task3 Immunofluorescence (green) was assessed in male mice. Animals were sham operated and treated with vehicle (♂ sham) or castrated and treated with vehicle (♂ cast) or with testosterone propionate (♂ cast+test). B: Task3 Immunofluorescence (green) in adrenal glands of female mice treated with testosterone
propionate (♀ test) or vehicle (♀ vehicle). In both A and B panels ZG: zona glomerulosa; ZF: zona fasciculata and the scale bar correspond to 50 µm. C: Expression of Task3 mRNA in the adrenals of wild type female mice (female) (n=7); male mice sham operated and treated with vehicle (male sham) (n=8); male animals castrated and treated with vehicle (castr) (n=6); male animals castrated and treated with testosterone propionate (castr+test) (n=6). Values are expressed in percentage. The 100% corresponds to the expression of Task3 in the sham operated males. Asterisks indicate statistically significant differences (p ≤ 0.05). The real time-PCR data was contributed by Dr. Sascha Bandulik and included with permission.

Remarkably, the expression of Task3 was drastically changed in male mice after castration. In these animals, the expression of Task3 was abolished in zona fasciculata and only remained in zona glomerulosa cells (Figure 4.3. A middle panel). On the other hand, in sham operated male mice, the localization of Task3 was as in non-treated male animals, exhibiting a strong membrane staining in both zona glomerulosa and zona fasciculata cells (Figure 4.3. A left panel). Impressively, treatment of castrated mice with testosterone propionate partially recovers the expression of Task3 in deeper cells belonging to zona fasciculata (Figure 4.3. A right panel). A similar effect of testosterone was observed in female mice, where the normal localization of Task3 is mainly in zona glomerulosa cells (Figure 4.3. B left panel). Following treatment with testosterone propionate, a deeper expression within the zona fasciculata was detected in females (Figure 4.3. B right panel). These results were corroborated by the analysis of Task3 mRNA expression using real time-PCR (Figure 4.3. C).

4.2 Expression and localization of aldosterone synthase in the adrenal cortex

Task1 invalidation causes an inappropriate localization of the aldosterone synthase in the adrenal gland of adult female mice (66). Therefore, we addressed the question whether a similar defect occurs as a consequence of Task3 deletion. The localization of the aldosterone synthase in the adrenal cortex was investigated through immunofluorescence (Figure 4.4).
As shown in the figure 4.4, aldosterone expression and localization was conserved after Task3 deletion.

4.3 Contribution of Task3 K⁺ channels to the K⁺ sensitivity of adrenocortical cells and tissues

Task channels set the background K⁺ conductance and are therefore crucial for the maintenance of membrane voltage in glomerulosa cells. The following set of experiments was aimed at investigating the impact of Task3 deletion on the K⁺ sensitivity of adrenocortical primary cells and freshly isolated adrenocortical tissue. To this end, *in vitro*, as well as *ex vivo* approaches were used.

4.3.1 Effect of [K⁺]₀ on the membrane voltage and intracellular Ca²⁺ signaling of adrenocortical primary cells

The patch clamp technique was used to investigate the effects of Task3 deletion on the membrane potential of adrenocortical primary cells (Figure 4.5). Different [K⁺]₀ were used to explore the potassium sensitivity of these cells.
Figure 4.5. Effect of \([K^+]_o\) on the membrane voltage \((V_m)\) of adrenocortical cells from Task3\(^{+/+}\) (n=5-9) and Task3\(^{--}\) (n=9-13) male mice.

Task3\(^{+/+}\) cells were hyperpolarized at a \([K^+]_o\) of 2.5 mM (-87.0 ± 1.42 mV; n=16) compared to Task3\(^{--}\) cells (-47.82 ± 2.77 mV; n=19). In Task3\(^{+/+}\) cells, the \(V_m\) followed the changes in \([K^+]_o\), acting like a \([K^+]_o\) sensitive electrode. On the other hand, in Task3\(^{--}\) cells the \(V_m\) was barely affected after changes of the \([K^+]_o\).

Additionally, another approach was used to assess, the \(K^+\) sensitivity of adrenocortical primary cells by investigating the \([Ca^{2+}]_i\) response following increase in \([K^+]_o\) using Fura-2 fluorescence (Figure 4.6).

Figure 4.6. Effect of 7.6 mM \([K^+]_o\) on the \([Ca^{2+}]_i\) of adrenocortical cells from Task3\(^{+/+}\) (n=7) and Task3\(^{--}\) (n=6) male mice. Mean values ± SEM of the Fura-2 ratio 340/380 are represented in arbitrary units (au).
As expected, after subjecting Task3+/+ cells to supraphysiological [K+]\textsubscript{o}, the [Ca2+]\textsubscript{i} increased in a sustained way due to Ca2+ influx. In contrast, in Task3−/− cells only a slight increase in [Ca2+]\textsubscript{i} was observed. It is worth noting that cells from both genotypes have a similar [Ca2+]\textsubscript{i} under non stimulated conditions.

4.3.2 Effect of [K+]\textsubscript{o} on the cytoplasmic Ca2+ signaling of glomerulosa cells in fresh adrenal slices

The identification of glomerulosa cells in a mixed primary adrenocortical culture is a complex issue, since they represent a minority of the steroid producing cells in the adrenal cortex. Moreover, it is well known that cells in primary culture are prone to de-differentiation, which include changes in their morphological and functional characteristics. To overcome this, we developed an acute adrenal preparation which allowed us the unequivocally identification of zona glomerulosa cells, and the measurement of [Ca2+]\textsubscript{i} in a more physiological scenario. Fresh adrenal slices from Task3+/+ (n=3 slices/2 mice) and Task3−/− (n=9 slices/2 mice) mice were loaded with the Ca2+ sensitive dye Fluo-4 AM. The changes in the [Ca2+]\textsubscript{i} were measured upon stimulation with [K+]\textsubscript{o} of 7.6 mM (Figure 4.7), being 2.5 mM the [K+]\textsubscript{o} under control conditions.

![Figure 4.7](image)

Figure 4.7. Measurement of [Ca2+]\textsubscript{i} in acute adrenal slices from Task3+/+ and Task3−/− mice after stimulation with [K+]\textsubscript{o}=7.6 mM. Typical traces corresponding to Task3+/+ (A) and Task3−/− (B) cells are shown. Traces representing mean values ± SEM of at least 3 independent experiments of Task3+/+ and Task3−/− adrenal slices are shown in C and D respectively. au: arbitrary units.
Results

The increase observed in the [Ca²⁺] was larger in Task3⁺/⁻ than in Task3⁻/⁻ cells, confirming the observations already made in adrenocortical primary cells.

One of the most striking findings was that glomerulosa cells from Task3⁻/⁻ slices showed an increased spontaneous Ca²⁺ activity compared to Task3⁺/⁺ cells. As it is evident in Figure 4.7 B, even without any stimulation, some of the Task3⁻/⁻ cells exhibit bursting Ca²⁺ activity which was less frequently observed in Task3⁺/⁺ cells (this was also evident in another series of experiments shown in Figure 4.10). This activity results in an increased scattering of the baseline obtained in Task3⁻/⁻ slices (Figure 4.7 D) when compared to Task3⁺/⁺ ones (Figure 4.7A).

4.3.3 Effect of [K⁺]₀ on the aldosterone secretion of perifused adrenal tissue

Membrane depolarization followed by an increase of the [Ca²⁺]ᵢ are primary events in glomerulosa cells when stimulated by hyperkalemia. We then investigated the impact of the deletion of Task3 potassium channels for the aldosterone secretion by the adrenal glands. To this end, we developed a device which allowed an ex vivo stimulation of adrenal tissue with different [K⁺]₀ followed by sequential measurement of the aldosterone secretion. Through this approach, the stimulation takes place in a scenario closely resembling the in vivo conditions. At the same time potential compensatory mechanisms present in the whole animal are circumvented.

After equilibrating the tissue for 1.5 h with a solution containing 2.3 mM of K⁺, stepwise increases in [K⁺]₀ were applied to stimulate the aldosterone production in freshly harvested adrenals from male and female Task3⁺/⁺ and Task3⁻/⁻ mice (Figure 4.8).
Results

Figure 4.8. Aldosterone secretion by ex vivo perifused adrenal glands from Task3^{+/+} (n=5 ♂ and 6 ♀) and Task3^{-/−} (n=5 ♂ and 8 ♀) mice. Mean values ± SEM of the aldosterone secreted by one adrenal in one minute are shown.

Notably, adrenal glands from females secrete more aldosterone than those from male animals, probably due to their larger size (133). Regardless of the gender, there were no major differences between Task3^{+/+} and Task3^{-/−} glands concerning the aldosterone secretion in response to increase of [K^+]_o. The most remarkable difference between genotypes was that Task3^{-/−} adrenals were more sensitive to stimulation with 3.8 mM of [K^+]_o than Task3^{+/+} ones, which could indicate a modified “tuning” of the secretory response.

4.4 Contribution of Task3 K^+ channels to the response of adrenocortical cells and tissue upon AngII stimulation

AngII promotes Ca^{2+} influx in glomerulosa cells via the inhibition of K^+ conductance and consequent cell depolarization, leading to opening of voltage gated Ca^{2+} channels. Additionally, AngII induces a release of Ca^{2+} from intracellular stores. The following
experimental sets aimed at investigating the contribution of Task3 K\(^+\) channels to the AngII inhibitable K\(^+\) conductance. The intracellular Ca\(^{2+}\) signaling in adrenocortical primary cells and tissues was also studied.

4.4.1 Impact of Task3 deletion on electrophysiological parameters of adrenocortical primary cells

The patch clamp technique was used to investigate the effect of AngII in the \(V_m\) and whole cell currents of Task3\(^{+/+}\) and Task3\(^{-/-}\) adrenocortical primary cells (Figure 4.9).

![Figure 4.9](image)

As shown in Figure 4.9. A, addition of 20 nM of AngII to Task3\(^{+/+}\) adrenocortical primary cells led to a strong depolarization, accompanied by a drastic reduction of whole cell current (Figure 4.9. C). The \(V_m\) shifted from \(-85.75 \pm 1.68\) mV to \(-62.75 \pm 5.07\) mV after 60 seconds (Figure 4.9. E).
Surprisingly, Task3\(^+\) cells exhibited a transient hyperpolarization as a consequence of the application of AngII (Figure 4.9. B) instead of the depolarization observed in Task3\(^+/+\) cells. These cells were depolarized under control conditions, as previously mentioned in section 4.3.1. AngII also increased the outward K\(^+\) current in a transient manner (Figure 4.9. D). The \(V_m\) shifted from \(-44.72 \pm 4.32\) mV to \(-69.61 \pm 6.37\) mV, 20 seconds after the application of AngII (Figure 4.9. F). 40 seconds later the \(V_m\) was \(-33.25 \pm 2.63\) mV, slightly depolarized with respect to resting conditions.

Another interesting finding was that it was still possible to depolarize Task3\(^{-/-}\) adrenocortical cells by extracellular acidification. After subjected to pH 6, Task3\(^{-/-}\) adrenocortical cells depolarized from \(-49.7 \pm 6.2\) mV to \(-28.5 \pm 4.3\) mV. On the other hand Task3\(^{+/+}\) cells depolarized from \(-84.5 \pm 1.9\) mV to \(-60.1 \pm 6.7\) mV when subjected to acidic pH.

4.4.2 Effect of AngII on the cytoplasmic Ca\(^{2+}\) signaling of glomerulosa cells in acute adrenal slices

Whether Task3 deletion modifies the Ca\(^{2+}\) signaling triggered by AngII in glomerulosa cells was also investigated. To this end Task3\(^{+/+}\) (n=6) and Task3\(^{-/-}\) (n=6) acute adrenal slices were used. The changes in [Ca\(^{2+}\)]\(_i\) were analyzed by loading the cells with the Ca\(^{2+}\) sensitive dye Fluo-4 AM (Figure 4.10).

![Figure 4.10](image)

Figure 4.10. [Ca\(^{2+}\)]\(_i\) changes elicited in zona glomerulosa cells upon AngII stimulation. Original traces of three typical Task3\(^{+/+}\) (A) and Task3\(^{-/-}\) (B) glomerulosa cells. C and D: Mean values ±
Results

SEM of [Ca2+] of six Task3+/+ and Task3-/- experiments. Values are expressed in arbitrary units (au).

AngII promoted an increase of [Ca2+] in Task3+/+ glomerulosa cells (Figure 4.10. A and C). Although the intracellular Ca2+ signaling was found to be variable among different Task3+/+ cells (see the three examples in figure 4.10 A); these cells were generally silent before stimulation. A bursting activity was elicited upon addition of AngII. Remarkably, this stimulation was poorly reversible during the 3 min washing period after AngII.

On the other hand Task3-/- glomerulosa cells exhibited a severely disturbed intracellular Ca2+ signaling (Figure 4.10. B). In contrast to Task3+/+ traces, cytoplasmic Ca2+ of Task3-/- under baseline conditions was often rather unstable due to spontaneous oscillations of [Ca2+], as already described in section 4.3.2. The intracellular Ca2+ signaling also varied among different Task3-/- cells. The upper trace of the Figure 4.10. B is characteristic of a group of cells exhibiting a strong spontaneous Ca2+ activity, which is silenced upon the addition of AngII. A broader peak (indicated with an arrow) appears immediately after stimulation, which might correspond to store release of Ca2+ from the ER. The trace in the middle is typical from a group of cells with spontaneous activity which was not silenced by AngII. Finally, the last trace is characteristic from cells exhibiting a stable baseline and a transient peak (indicated with an arrow) after AngII stimulation.

In Figure 4.10. D, the summary of the intracellular Ca2+ activity in Task3-/- glomerulosa cells is shown. Notably the scattering of the Ca2+ activity under baseline conditions was larger in these cells compared to Task3+/+ cells (Figure 4.10. B). Remarkably, only a transient [Ca2+] increase was elicited in Task3-/- cells by AngII, the plateau phase was virtually absent.

4.5 Phenotype of Task3-/- mice

As showed in the previous sections of this chapter, the deletion of Task3 K+ channels impaired cellular processes involved in the regulation of aldosterone secretion. In the experimental sets of the following sections, the main goal was to investigate the systemic impact of Task3 deletion on the aldosterone regulation in living mice.
4.5.1 Effect of dietary K⁺ on plasma aldosterone concentrations

K⁺ rich and K⁺ depleted diets were used to investigate the impact of Task3 deletion on the K⁺ sensitivity of aldosterone secretion in living mice (Figure 4.11).

Under control conditions, Task3⁺/+ and Task3⁻/⁻ animals had similar concentrations of aldosterone in plasma. After reduction of K⁺ in the diet, animals from both genotypes were able to reduce the secretion of aldosterone to a similar extent.

On the other hand, Task3⁺/+ animals secreted more aldosterone when subjected to K⁺ rich diets, comparatively to control diet. Although Task3⁻/⁻ mice were also able to increase the plasma aldosterone concentrations upon a K⁺ rich diet, they were not able to do it to the same extent as Task3⁺/+ animals. Interestingly, this difference was more pronounced in females, although in males the tendency was also present.

4.5.2 Effect of dietary Na⁺ on plasma renin and aldosterone levels

Task3⁺/+ and Task3⁻/⁻ mice were subjected to diets with different concentrations of Na⁺. Under these conditions plasma renin activity (PRA) and plasma aldosterone concentrations were measured and the aldosterone/renin ratio was calculated (Figure 4.12).
Figure 4.12. A: Plasma aldosterone concentrations of Task3+/+ (n=6-13) and Task3-/- (n=5-10) mice under normal (control), deprived (low Na+) and rich (high Na+) Na+ diets. B and C: Plasma renin activity and aldosterone/renin ratio of the same animals. Asterisks indicate statistically significant differences (p≤0.05). Data contributed by Prof. Dr. Jacques Barhanin; Prof. Dr. Frank Schweda and Dr. Sascha Bandulik, included with permission.

As summarized in Figure 4.12. A, Task3+/+ as well as Task3-/- mice were able to increase their secretion of aldosterone to a similar extent in response to Na+ deprivation. Similarly, the plasma concentrations of aldosterone in animals subjected to Na+ rich diet were decreased to a similar extent in both genotypes. However it is noticeable, although not statistically significant, that Task3-/- mice secreted relatively higher amounts of aldosterone under high Na+ diet.

These changes in aldosterone secretion reflected the changes in PRA in Task3+/+ mice (Figure 4.12. B). Thus, PRA was increased in Task3+/+ animals deprived of dietary Na+.
but it was similar to the control values of animals kept under high Na⁺ diet. Surprisingly, Task3⁻/⁻ animals exhibit a very low PRA under control conditions when compared to Task3⁺/+. In Task3⁻/⁻ mice subjected to Na⁺ deprivation, the PRA increased to a similar extent as in Task3⁺/+ mice. Task3⁻/⁻ animals fed with a Na⁺ rich diet exhibited lower PRA than Task3⁺/+.

The ratio between the plasma aldosterone concentration and the PRA is a valuable tool for the diagnosis of primary hyperaldosteronism. It indicates whether aldosterone secretion is or not mainly regulated by the renin-angiotensin system. Thus, an elevated aldosterone/renin ratio suggests a (partially) autonomic secretion of aldosterone by the adrenal gland. This was the case of Task3⁻/⁻ mice when subjected to control conditions or under a Na⁺ rich diet. Under both diets they exhibited an increased aldosterone/renin ratio when compared to Task3⁺/+. Male animals showed more pronounced differences, although in females the tendency is also apparent.
5. Discussion
5 Discussion

In the early fifties of the past century, Sylvia and her husband James Tait isolated and identified the molecule of "electrocortin" (later named aldosterone) from 500 Kg of beef adrenals (134; 135). After this seminal work, the Tait couple also pioneered the research of the metabolic pathways and the physiological effects of this and other steroids (135). Another milestone in the studies of aldosterone and its related pathophysiology was contributed by Jerome W. Conn who produced the first report of primary hyperaldosteronism (PA) in 1954 (136). Since then, numerous studies have addressed questions regarding aldosterone secretion, its physiological role and related pathologies.

Aldosterone is produced by zona glomerulosa cells from the adrenal cortex, which exhibit a very high K⁺ conductivity and are thus strongly hyperpolarized under resting conditions. The two strongest secretagogues of aldosterone, hyperkalemia and angiotensin II, exert their actions (at least in part) by depolarizing aldosterone producing cells. The discovery of the K₂P family of potassium channels immediately raised the hypothesis that some of its members could participate in the K⁺ sensitivity of glomerulosa cells. The K₂P channels Trek1, Task1 and Task3 have been found to be highly expressed in the adrenal cortex of several species. In the present work, the particular contribution of Task3 to the regulation of aldosterone secretion was investigated by using the Task3 knockout mouse model.

5.1 Task3 expression and localization in the adrenal cortex is sex dependent

In the present work we provide evidence supporting the conclusion that the adrenal gland is the organ exhibiting the highest level of Task3 expression in mice (see Figure 4.1). Moreover, Task3 was found to be expressed in the zona glomerulosa of the adrenal cortex. This finding supports the hypothesis that Task3 plays a role in the regulation of aldosterone production.

Interestingly, the expression and localization of Task3 in the adrenal cortex was found to be sex dependent. Remarkably, sex-related differences were also found previously in Task1⁻/⁻ mice. Heitzmann and co-workers (66) found that only Task1⁻/⁻ female mice
Discussion

are affected with hypertension and hyperaldosteronism. These mice exhibited an ectopic localization of the aldosterone synthase enzyme in the zona fasciculata instead of the normal localization in the zona glomerulosa. In the same work, the authors proposed the possible role of Task3 as compensatory factor in male animals. In line with this hypothesis, we found that in females, Task3 is only expressed in zona glomerulosa cells, while in males it is also expressed in the cells of zona fasciculata (see Figure 4.2).

Heitzmann and co-workers also found that it was possible to rescue the normal zonation in female Task1-/- mice by treating them with testosterone. In line with these data, we found that testosterone promotes the expression of Task3 in zona fasciculata cells both in females and castrated male mice (see Figure 4.3).

At this point one might think that the explanation of the different phenotype exhibited by male and female Task1-/- mice could be described as follows: Task1, which is expressed throughout the whole adrenal cortex (65; 85) is a key factor controlling the normal localization of the aldosterone synthase. When Task1 is deleted, its close relative Task3 can take over its function. Since Task3 is expressed in zona fasciculata only in males, Task1-/- female animals are the most affected ones. The proof of concept to corroborate this hypothesis would have been a dezonated phenotype in Task1-/-/Task3-/- male mice. However, some findings added a bit of complexity to this allegedly simple scenario.

Davies and co-workers (65) described the phenotype of Task1-/-/Task3-/- mice and reported that males were normally zonated. By using immunofluorescence and in situ hybridization we confirmed that Task1-/-/Task3-/- male mice express the aldosterone synthase only in zona glomerulosa (data not shown). Interestingly, these mice exhibit an apparent broadening of this zone; a feature which probably contributes to their hyperaldosteronism. On the other hand, the ectopic localization of the aldosterone synthase found in Task1-/- females was less prominent when Task3 was also deleted (data not shown).

It has been shown that testosterone has a crucial role in the plasticity and metabolism of the adrenal cortex. For instance, the activity of the 3β-hydroxysteroid dehydrogenase (the enzyme catalyzing the conversion of pregnenolone into progesterone), was found to be suppressed in vivo (137) and in vitro (138) by testosterone. Moreover, the zona
Discussion

X, which is supposedly a reminiscence of the fetal adrenal zone (139), is also significantly influenced by testosterone. It degenerates in male mice after puberty, whereas in females it persists until the first pregnancy (133). This degeneration can be prevented by castration in male mice and can be promoted by androgen treatment in females (9). Nevertheless, the factors promoting the degeneration of zona X in females after the first pregnancy are not yet well understood.

Altogether these evidences strongly support the idea that the remodeling of the cellular and metabolic characteristics of the adrenal cortex is a fully dynamic process. Perhaps the effects of androgens have been the most studied but other overlooked factors such as age, nutritional state, stress etc. can also take part in this process. It is tempting to hypothesize that Task3 is probably involved in the compensatory effect observed in Task1^{−/−} male mice, but certainly it is not the only element.

Another conflictive issue concerns the localization of Task3 in the male adrenal cortex. By using in situ hybridization Davies and co-workers (65) found Task3 mRNA exclusively in the zona glomerulosa cells. This finding was confirmed in our lab using a different probe (data not shown). However, here we report that at the protein level Task3 is also expressed in the zona fasciculata.

Remarkably, as shown in Figure 4.3, higher levels of protein detected by immunofluorescence corresponds to higher levels of mRNA measured by quantitative RT-PCR and vice versa. Furthermore, Heitzmann and co-workers also described gender dependent expression of Task3 using different primers for real time-PCR (66). In addition, Task3 mRNA levels were comparable in male and female before puberty (66) and at protein level; exclusive glomerulosa localization was found (data not shown).

It is striking that Task3 mRNA level is approximately four times higher in males than in females, as measured by RT-PCR by us and others (66). Since the zona fasciculata is far larger than the zona glomerulosa, a relatively low expression of Task3 mRNA levels in male fasciculata cells can account for the observed differences. It is thus possible that such levels are below the sensitivity threshold of an in situ hybridization.

A differential developmental regulation between males and females can also account for the differences found. The current model of adrenocortical homeostatic
maintenance claims that the cells with progenitor properties lie in the capsular and/or subcapsular region. These cells then differentiate during a centripetal migration into glomerulosa, fasciculata and reticularis, undergoing apoptosis in the boundary between the cortex and the medulla (140). We speculate that, in the more differentiated fasciculata cells, the transcription of the Task3 gene decreases. A testosterone dependent mechanism (a longer half-life of the Task3 protein, for example) could support the membrane expression of the protein in zona fasciculata cells.

5.2 Task3 channels contribute to the major K+ current in adrenocortical cells and provide them with their unique K+ sensibility

We and others (67; 75; 141) have observed that adrenocortical cells function like a potassium sensitive electrode in regard to their membrane voltage. Thus, they are hyperpolarized under control conditions and the membrane potential follows the changes in [K+]o. These cells behave similarly to the “ideal cell” predicted by the Nernst equation. Indeed, the V_m was linearly related to the log of the [K+]o (slope of the regression $= 43.5$ mV per 10-fold change; $R^2=0.988$). On the other hand, Task3−/− adrenocortical cells are strongly depolarized under control conditions and the V_m do not depend on the [K+]o (see Figure 4.5). Altogether these observations lead us to the conclusion that Task3−/− adrenocortical primary cells exhibit an impaired K+ conductance and therefore K+ sensitivity. These results were confirmed by measuring the cytoplasmic Ca2+ signal that results from [K+]o increase (see Figure 4.6 and Figure 4.7).

Given the availability of similar studies on Task1−/− mice it is possible to further speculate on the particular contribution of each channel to the adrenocortical K+ conductance. Here we report that Task3 deletion leads to a depolarization of approximately 27 mV at [K+]o of 3.8 mM when compared to wild type animals. Conversely, Heitzmann and co-workers (66) reported a depolarization of approximately 7 mV inTask1−/− adrenocortical primary cells compared to wild type through a similar approach. It is noticeable that the contribution of Task3 to the resting potassium conductance of mouse adrenocortical primary cells is thus larger than that of Task1.
In this work we report a novel method to measure the intracellular Ca$^{2+}$ signaling by loading freshly prepared adrenal slices with the Ca$^{2+}$ sensitive dye Fluo-4 AM. Through this means, it was possible to confirm the impairment of the potassium sensitivity observed previously in Task3$^{-/-}$ adrenocortical primary cells (see Figure 4.6 and Figure 4.7). This is a highly valuable method which enables at the same time the unequivocal identification of zona glomerulosa cells, and the measurement of [Ca$^{2+}$], changes in a more physiological scenario.

In the context of the accepted model of the regulation of aldosterone secretion, one would expect a severe disruption in the aldosterone secretion as a consequence of the deletion of Task3. Drastically depolarized glomerulosa cells would be expected to have an increased T and probably also L-type voltage gated Ca$^{2+}$ channels activity. This would promote an increase of [Ca$^{2+}$], even under control conditions, leading to a greater aldosterone secretion.

Surprisingly, the [Ca$^{2+}$] baseline was similar in Task3$^{+/+}$ and Task3$^{-/-}$ adrenocortical primary cells, as measured by Fura-2 AM (see Figure 4.6). On the other hand, Task3$^{-/-}$ glomerulosa cells from freshly prepared adrenal slices exhibit a more frequent spontaneous oscillations of [Ca$^{2+}$] than their Task3$^{+/+}$ counterparts (see Figure 4.7 and Figure 4.10). It is tempting to hypothesize that this bursting activity is an evidence of an increased activity of voltage gated Ca$^{2+}$ channels, presumably of L-type. Evidences for this hypothesis are given by the fact that when Task3$^{+/+}$ cells are subjected to 7.6 mM of [K$^+$]$_o$, and thus depolarize to -65 mV, still they do not exhibit such bursts (see Figure 4.7). This V_m is still far from the -50 mV proposed by Cohen and co-workers (64) as a threshold to trigger important Ca$^{2+}$ currents through L-type Ca$^{2+}$ channels. On the other hand, Task3$^{-/-}$ cells exhibit a V_m of -47.82 ± 2.77 mV under resting conditions, allowing L-type channel activity.

However, it seems that these transient augmentations of [Ca$^{2+}$] in Task3$^{-/-}$ glomerulosa cells are not enough to elicit supra-basal levels of aldosterone secretion; since the perifused adrenal glands from both genotypes secrete similar amounts of aldosterone under control conditions (see Figure 4.8). Furthermore, the impaired K$^+$ sensitivity observed in Task3$^{-/-}$ adrenocortical cells and slices is not reflected at the level of aldosterone secretion when looking at the whole organ. Task3$^{-/-}$ glands exhibit – if some - only minor differences comparatively to Task3$^{+/+}$ glands in terms of aldosterone secretion as a consequence of [K$^+$]$_o$ increase. As follows, the current model of the
regulation of aldosterone secretion fails to explain these results. It is still possible that different cells and not exclusively glomerulosa cells, are able to sense the \([K^+]_o\) and somehow transmit a secretory signal to aldosterone producing cells. A plethora of paracrine factors such as catecholamines (142-144), neuropeptides (145-147), intra-adrenal RAS (44; 148; 149) have been described to promote aldosterone secretion. Moreover, it has also been proposed that adrenal glomerulosa cells have only a minor impact on the \textit{de novo} synthesis of aldosterone (150). According to this theory, their main function is to convert the corticosterone produced in \textit{zona fasciculata} into aldosterone. We (data not show) and others (151) observed that upon \textit{zona fasciculata} stimulation by typical aldosterone secretagogues such as K\(^+\) and AngII, corticosterone secretion was increased too. All these hypotheses require an intact adrenal architecture. Therefore, the availability of zone-specific cell markers would allow the culture of pure cell populations and the study of possible interactions. For instance, the neural cell adhesion molecule CD56 has been recently used to isolate human \textit{zona glomerulosa} cells (152). This and other zone-specific markers would be probably useful for further investigations.

5.3 \textbf{The cellular response to AngII is altered in adrenocortical slices and primary cells}

AngII promoted a strong depolarization and a decrease of outward currents in Task3\(^{+/+}\) adrenocortical primary cells. On the other hand, Task3\(^{-/-}\) cells exhibited a transient hyperpolarization followed by a slight depolarization as a consequence of AngII application (see Figure 4.9). These findings can be explained by the presence of large-conductance Ca\(^{2+}\) dependent MaxiK channels (107; 153). Indeed, we were able to measure putative MaxiK currents in cell attached and excised patches (inside-out) (preliminary data, not shown). The activation of MaxiK channels has been proposed to limit the depolarization triggered by AngII and hyperkalemia in glomerulosa cells and consequently the production of aldosterone (85). MaxiK channels have also been proposed to be involved in the inhibition of aldosterone secretion by ANP (84).

Our findings also provide indirect evidences of the contribution of Task1 homodimers to whole cell conductance. A late depolarization - compared to the resting \(V_m\) - was observed in Task3\(^{-/-}\) cells as a result of AngII action. Furthermore, it was still possible to depolarize Task3\(^{-/-}\) primary cells by some 20 mV upon extracellular acidification, very
Discussion

similar to the depolarization obtained in Task3\(^{+/+}\) cells. On the other hand, Heitzmann and co-workers (66) observed a depolarization of approximately 5 mV in Task1\(^{-/-}\) adrenocortical cells upon extracellular acidification. These evidences are in agreement with the previous findings that Task3 channels (119) are less sensitive to pH than Task1 channels (118).

Not only the electrophysiological characteristics, but also the cytoplasmic Ca\(^{2+}\) response of Task3\(^{-/-}\) glomerulosa cells upon the application of AngII was altered in comparison to Task3\(^{+/+}\) cells (Figure 4.10). AngII caused an increase in [Ca\(^{2+}\)] in Task3\(^{+/+}\) glomerulosa cells from adrenal slices. Although the effect was heterogeneous, bursting [Ca\(^{2+}\)] increases were a common feature. On the other hand, in Task3\(^{-/-}\) cells the cytoplasmic Ca\(^{2+}\) bursting activity was also present, but as discussed previously, it also appeared in non-stimulated cells. It seems that the initial Ca\(^{2+}\) release from the ER is conserved in these cells, but the sustained phase - supported by the influx through voltage activated Ca\(^{2+}\) channels - is altered. Interestingly, the bursting cytoplasmic Ca\(^{2+}\) activity was transiently silenced in a group of Task3\(^{-/-}\) glomerulosa cells after AngII addition. This phenomenon can be explained by the inactivation of the voltage gated Ca\(^{2+}\) channels due to the transient hyperpolarization observed in the primary cultured cells.

5.4 The physiological regulation of aldosterone secretion fails in Task3\(^{-/-}\) mice

Although the impact of Task3 deletion is remarkable given the severe impairment of \(V_m\), the reduced [K\(^+\)]\(_o\) sensitivity and the reduced cytoplasmic Ca\(^{2+}\) signaling in adrenocortical cells, the overall phenotype of the Task3\(^{-/-}\) mice is surprisingly mild. Heitzmann and co-workers (66) described a sex dependent dezonation of aldosterone synthase as a consequence of the deletion of Task1. This Task1 deletion depolarized the adrenocortical cells by approximately 7 mV. Here we described a far stronger depolarization with no consequences in aldosterone synthase localization (see Figure 4.4). It is tempting to hypothesize that the dezonation exhibited by Task1\(^{+/+}\) females is related to a yet unknown developmental function of Task1, rather than to its channel properties.
Discussion

Despite their depolarized adrenocortical cells, the plasma aldosterone concentrations of Task3−/− mice subjected to control diet are similar to those of Task3+/+ animals. However, Task3−/− mice failed to increase their aldosterone secretion normally when subjected to K⁺ rich diet (see Figure 4.11). This phenotype resembles the impaired K⁺ sensitivity observed in adrenocortical primary cells and adrenal slices.

Numerous evidences support the conclusion that Task3−/− mice exhibit partial autonomy with regard to the adrenal secretion of aldosterone. At a cellular level the depolarized \(V_m \) and the altered cytoplasmic Ca²⁺ signaling under control conditions support this hypothesis. At the organism level, Task3−/− mice exhibit a depressed renin activity when subjected to control diet. This might counteract the relative autonomy of basal aldosterone secretion leading to a compensated state of autonomy. After Na⁺ deprivation, the RAS is able to stimulate aldosterone secretion but this regulatory pathway fails when the mice are subjected to Na⁺ rich diet. We speculate that this is related to the impossibility to further reduce aldosterone secretion below the autonomous basal level.

In any case, it seems clear that many compensatory mechanisms are involved in the regulation of aldosterone secretion in Task3−/− mice. Despite the described effects of Task3 deletion, these mice exhibit a normal mean arterial pressure (data not shown). However, preliminary results obtained by telemetric monitoring of the blood pressure point to a deregulation of circadian rhythms observed in Task3+/+ mice.

5.5 Future directions

Our future research should be directed towards answering questions like:

- Why is the phenotype of Task3−/− mice only mild, despite the severe cellular impairment?
- Which mechanisms are supporting the adrenal ex vivo [K⁺]₀ sensibility?
- Are Task3 defects involved in human pathologies?

We propose to address these and other questions by:

- Investigating the ex vivo response of the adrenal gland to AngII.
• Examining the role of ACTH in the control of aldosterone secretion and blood pressure in Task3^{-/-} animals.

• Exploring in detail the blood electrolytes concentrations and arterial pressure of Task3^{-/-} mice.

• Developing a setup that allows electrophysiological measurements in tissue slices.

• Studying in detail the role of K_{2P} channels for the dynamics of the adrenal gland development and zonation in mice.
6 References

60. Belloni AS, Andreis PG, Macchi V, Gottardo G, Malendowicz LK, Nussdorfer GG. Distribution and functional significance of angiotensin-II AT1- and AT2-

127. Guagliardo N a, Yao J, Bayliss D a, Barrett PQ. TASK channels are not required to mount an aldosterone secretory response to metabolic acidosis in mice. Molecular and Cellular Endocrinology. 2010 Nov;

7 Supplements

Publications during PhD period

Presentations at Scientific conferences

“TASK3 potassium channels are involved in the regulation of aldosterone secretion in mice”, Oral presentation at the 90th Annual Meeting of the DPG. Regensburg (Germany), 26-29 March. 2011.

"TASK3 potassium channels are involved in the regulation of aldosterone secretion in mice", Poster presentation at the Joint Meeting of the Scandinavian and German Physiological Societies. Copenhagen (Denmark), 8-10 July. 2010.
“The role of Task3 potassium channels in the regulation of aldosterone secretion”, Poster presentation at the 88th Annual Meeting of the DPG. Giessen (Germany), 22-25 March. 2009.
8 Acknowledgments

I want to express my gratitude to those people who helped me during this period of my education and life.

First I would like to thank my supervisor Prof. Dr. Richard Warth for the great experience that this PhD was for me. Through his guidance I discovered the fascinating world of physiology, which still keeps me trapped. He showed me that science can be at the same time sacrifice and fun; self improvement and friendship, and always challenging. Thank you very much!

I also want to thank Dr. Sascha Bandulik for his help, scientific guidance and fruitful discussions. To Dr. Markus Reichold, a special thanks for introducing me into electrophysiology (and for being so funny and comprehensive). Special thanks also to Evi, "Felipe", Carste(te)n, Sophia, Maria, Ines, Karolin and Christina for all the help and for making the lab a unique place of joy.

I want to thank Prof. Dr. Jacques Barhanin for the scientific and personal advices as well as for his contribution to this work.

I would like to thank the staff from the "Mechanische Werkstatt Biologie" for making my craziest ideas technically possible.

Muchas gracias a René, sin su ayuda este trabajo hubiera quedado sólo en un sueño.

Un millón de gracias a Janet y a Abel, por su amistad y por la paciencia para leer y corregir este manuscrito.

Thank you Lesly, Sylvia (Kika), Diana, Nestor, Aim, Nadine, Arthur, Inna and Joana Almaça, for making my life easier in Germany.

Muchas gracias a Raquel por todo y por hacerme soñar. Obrigado à sua família por ser tambélm a minha.

Esta tesis es mi pequeño regalo para mis padres, por todo su amor.

Para Diego es todo el universo.