Existence result for a nonlocal viscous Cahn-Hillard equation with a degenerate mobility

M. Hassan Farshbaf-Shaker

Preprint Nr. 24/2011
Existence result for a nonlocal viscous Cahn-Hillard equation with a degenerate mobility

M. Hassan Farshbaf-Shaker*

Abstract

We study a diffusion model of phase field type, consisting of a system of two partial differential equations of second order for the particle densities and the viscosity variable, coupled by a nonlocal drift term. We prove the existence of variational solutions in standard Hilbert spaces for the evolution system by a careful development of uniform estimates and applying finally a comparison principle.

Key words. Nonlocal phase separation models, viscous phase separation models, Cahn-Hilliard equation, integrodifferential equations, initial value problems, nonlinear evolution equations.

AMS subject classification. 80A22, 35B50, 45K05, 35K20, 35K45, 35K55, 35K65, 47J35

1 Introduction

In this article, we deal with an integrodifferential model for volume preserving isothermal phase transitions that takes into account long-range interactions between particles. The physical relevance of nonlocal interaction phenomena in phase separation and phase transition models was already described in the pioneering papers [15] and [1]; however, only recently both isothermal and nonisothermal models containing nonlocal terms have been analyzed in a more systematic way [7, 8]. Besides more slightly complicated models, which also take into account nonlocal viscosity effects has been suggested in [5]; these models are indeed generalizations of corresponding local viscous models, see [14].

Inspired by the nonlocal Cahn-Hilliard model studied by Gajewski in [7], we consider the following nonlocal free energy density

\[
F(u) = f(u) + \frac{1}{2} uw,
\]

1

*Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
1 INTRODUCTION

where u denotes the local concentration of a component occupying a spatial domain Ω, $f(u)$ is a convex function and

$$w(x) := \int K(|x - y|)(1 - 2u(y))\,dy. \quad (2)$$

The kernel K of the integral term (2) describes nonlocal or long-range interactions [2, 9, 10, 11]. Hence, the difference between local and nonlocal models consists in a different choice of the particle interaction potential in the free energy. Moreover the local free energy can be obtained as a formal limit from the nonlocal one, see [12]. In [7] the above nonlocal free energy density has been used to derive a nonlocal Cahn-Hilliard equation

$$u_t - \nabla \cdot (\mu \nabla (f'(u) + w)) = 0,$$

where in standard cases f is the convex (information) entropy function

$$f(u) = u \log(u) + (1 - u) \log(1 - u). \quad (3)$$

Consequently

$$f'(u) = \log \left(\frac{u}{1 - u} \right) \quad \text{and} \quad u = f^{-1}(v - w) = \frac{1}{1 + \exp(v - w)},$$

where f^{-1} is the Fermi-function, whose image is the interval [0, 1]. Thus, the nonlocal model naturally satisfies the physical requirement

$$0 \leq u(x) \leq 1, \quad \forall t \geq 0.$$

and the maximum principle is available, which is not true for fourth order equations like in the case of the local Cahn-Hilliard equations.

1.1 Nonlocal viscous model

As in [5] our aim is to formulate a general nonlocal model, which also takes into account viscosity effects, see [14]. In the nonlocal philosophy these viscosity effects have also been formulated in a nonlocal manner, see [5], where we proposed two different models, namely:

model I:

$$-\gamma \Delta \psi_t + \psi = u_t, \quad \gamma > 0. \quad (4)$$

model II:

$$-\gamma \Delta \psi + \psi = u_t, \quad \gamma > 0.$$
In both cases γ is a model parameter, which is positive and guarantees the nonlocal structure of the additional term ψ in the chemical potential
\[v := \frac{\delta F(u)}{\delta u} + \psi. \] (5)

Model I was analyzed in [5]. The mathematical analysis of model II is devoted to this paper. Taking into account (5) and (4) we end up with the nonlocal viscous Cahn-Hilliard equation:
\[u_t - \nabla \cdot \mu \nabla v = 0, \quad v = f'(u) + w + \psi, \]
\[w(x) = \int_{\Omega} K(|x-y|)(1-2u(y))dy, \]
\[-\gamma \Delta \psi + \psi = u_t, \quad \gamma > 0, \] (6)
which is complemented by suitable initial and boundary conditions.

In Section 2 we formulate the problem and general assumptions. Applying fixed-point arguments and comparison principles in Section 3 we prove the existence of variational solutions in standard Hilbert spaces for evolution systems.
(A2) the potential operator P defined by

$$\rho \mapsto P\rho = \int_{\Omega} K(|x - y|)\rho(y) dy$$

satisfies

$$\|P\rho\|_{W^{2,p}(\Omega)} \leq r_p \|\rho\|_{L^p(\Omega)}, \quad 1 \leq p \leq \infty,$$

where the kernel $K \in (\mathbb{R}^1_+ \mapsto \mathbb{R}^1)$ is such that

$$\int_{\Omega} \int_{\Omega} |K(|x - y|)| dx dy = m_0 < \infty, \quad \sup_{x \in \Omega} \int_{\Omega} |K(|x - y|)| dy = m_1 < \infty.$$

(A3) the mobility μ^θ has the form

$$\mu^\theta(u) = \frac{1}{(\psi^\theta)^\prime(u)}, \quad \theta \in (0, 1/2). \quad (7)$$

(A4) $u_0(x) \in [0, 1]$ a.e. in Ω and $\bar{u}_0 \in (0, 1),$

Remark 1 In (A1) we have chosen a modified entropy function, which posses similar properties as (3) and does not mean any restriction in physical properties of the entropy function. In we choose $\theta = 0$ we would end up with (3). In our paper we only are able to prove existence in cases $\theta \neq 0$. We use a priori estimates which are not uniform in θ. The existence for the case $\theta = 0$ are led to future research.

Remark 2 The kernel K is chosen to be symmetric. Consequently the potential operator P is symmetric, too. Examples for kernels K, see [7]

Remark 3 A concentration-dependent mobility appeared in the original derivation of the Cahn-Hillard equation, see [1], and a natural and thermodynamically reasonable choice is of the form (7) and were considered for $\theta = 0$ in [3].

Now we are going to formulate the nonlocal viscous Cahn-Hillard equation (6) with complemented initial and boundary values. So the initial-boundary value problem we want to discuss takes the form:

$$u_t - \nabla \cdot (\nabla u + \mu^\theta \nabla (w + \psi)) = 0 \quad \text{in } Q_T, \quad (8)$$

$$- \gamma \Delta \psi + \psi = u_t, \quad w = P(1 - 2u) \quad \text{in } Q_T, \quad (9)$$

$$\mu \nu \cdot \nabla v = \nu \cdot \nabla \psi = 0 \quad \text{on } \Gamma_T, \quad (10)$$

$$u(0, x) = u_0(x), \psi(0, x) = \psi_0(x) \quad x \in \Omega. \quad (11)$$
Theorem 1 Suppose that the assumptions (A1)-(A4) hold. Then there exists a triple of functions \((u, w, \psi)\) such that \(u(0) = u_0, \psi(0) = \psi_0\) and
\[
(u, w, \psi) \in W(0, T) \times \mathcal{Y}^{2,\infty}(0, T) \times L^2(0, T; H^1(\Omega))
\]
with \(0 \leq u(t, x) \leq 1\) a.e. in \(Q_T\), which satify equations (8)-(11) in the following sense:
\[
\begin{align*}
\int_0^T \langle u_t, \varphi \rangle \, dt + \int_0^T \int_\Omega (\nabla u + \mu \nabla (w + \psi)) \cdot \nabla \varphi \, dx \, dt &= 0, \quad \forall \varphi \in L^2(0, T; H^1(\Omega)), \\
\gamma \int_0^T \langle \nabla \psi, \nabla \phi \rangle \, dt + \int_0^T \int_\Omega \psi \phi \, dx \, dt &= \int_0^T \langle u_t, \phi \rangle \, dt, \quad \forall \phi \in L^2(0, T; H^1(\Omega)), \quad (13)
\end{align*}
\]

\(w = P(1 - 2u)\) a.e. in \(Q_T\). (14)

3 Proof of Theorem 1

The idea of the existence proof is as follows: we construct regularized problems with truncated nonlinearities. After proving the existence result for such problems we establish the existence result for the original problem by giving a priori estimates.

To do so, for \(c \in \mathbb{R}\) we define the truncation
\[
c^\circ := \min\{\max\{c, \varepsilon\}, 1 - \varepsilon\}, \tag{15}
\]
and we carry over this setting in the usual way to the concept of truncated functions. Thus we define the regularized entropy function in the following manner:
\[
f_\varepsilon^\theta(u) := f^\theta(u^\circ) \tag{16}
\]

Remark 4 We have by (A1) for \(u \geq 1/2\)
\[
(f_\varepsilon^\theta)'(u) = u^{-(1+\theta)}[-\theta(1-\theta) \log u + (1-2\theta)] + (1-u)^{-(1+\theta)}[-\theta(1-\theta) \log(1-u) + (1-2\theta)] \\
\geq (1-2\theta)[u^{-(1+\theta)} + (1-u)^{-(1+\theta)}] \\
\geq (1-2\theta)(1-u)^{-(1+\theta)}
\]

Remark 5 \(\exists \varepsilon_0 := \varepsilon_0(w)\) so that \(\forall \varepsilon \in (0, \varepsilon_0]\):
\[
\begin{align*}
F_{NL,\varepsilon}^\theta(u) := \int_\Omega \left(f_\varepsilon^\theta(u) + \frac{1}{2}uw \right) \, dx &\geq -C_F, \\
\end{align*}
\]
where \(C_F > 0\).

Proof of Remark 5. Using (A1), (3.3) and (19) we see that it depends on the choice of \(\varepsilon\) to ensure that \(f_\varepsilon(u)\) dominates \(\frac{1}{2}uw\). Thus, there exists an \(\varepsilon_0 = \varepsilon_0(w)\) so that \(\forall \varepsilon \in (0, \varepsilon_0]\) this is true. \(\square\)
3 PROOF OF THEOREM 1

3.1 Regularized problems

For the system (12)-(14) we get by (15) and (3.3) the regularized system:

\[
\int_0^T \langle u_t, \varphi \rangle dt + \int_0^T \int_\Omega (\nabla u + \mu_{\varepsilon} \nabla (w + \psi)) \cdot \nabla \varphi dx dt = 0, \quad \forall \varphi \in L^2(0, T; H^1(\Omega)),
\]

\[
\gamma \int_0^T \langle \nabla \psi, \nabla \phi \rangle dt + \int_0^T \int_\Omega \psi \phi dx dt = \int_0^T \langle u_t, \phi \rangle dt, \quad \forall \phi \in L^2(0, T; H^1(\Omega)),
\]

\[w_\varepsilon(u) = P(1 - 2u^2) \text{ a.e. in } Q_T.\]

Lemma 1 There exists \(\varepsilon_0 > 0 \) such that \(\forall \varepsilon \in (0, \varepsilon_0] \) there exist \((u_\varepsilon, w_\varepsilon, \psi_\varepsilon)\) such that \(u_\varepsilon(0) = u_0, \psi_\varepsilon(0) = \psi_0 \) and

\((u_\varepsilon, w_\varepsilon, \psi_\varepsilon) \in W(0, T) \times V^{2,\infty}(0, T) \times L^2(0, T; H^1(\Omega)),\)

which satisfy (17)-(19).

Proof of Lemma 1 This proof is similar to the proof established in [5]. Hence, we skip here the details. For the proof we replace the regularized problem (17)-(19) by a semi-discrete approximation, which we solve by Schauder’s fixed-point principle. After constructing suitable a priori estimates and compactness we can converge from the semi-discrete approximation to the regularized problem. \(\square \)

To get the solution for \(\varepsilon \downarrow 0 \) one usually needs a-priori estimates which guarantee compactness and finally the convergence to \((u, w, \psi)\). But we will see that here for our problem this is not necessary, if we are able to show that \(u_\varepsilon \) lives on some smaller sub-intervall of \([0, 1]\). So we will investigate that the regularization is "effectless" and that we can "skip" it. Do do so we need in the following some estimates.

3.2 A priori estimates

Estimate 1 There exists a constant \(\varepsilon_1 \) such that for all \(\varepsilon \in (0, \min(\varepsilon_0, \varepsilon_1)) \) the following estimate holds:

\[
\|\psi_\varepsilon\|^2_{L^2(0, t; L^2(\Omega))} \leq C(\gamma, t, \Omega)(1 + \|u_\varepsilon\|^2_{L^2(0, t; L^2(\Omega))})
\]

Remark 6 The existence of \(\varepsilon_1 \) will be given by Lemma 3.
Proof. 1. We apply the admissible testfunctions $\psi_\varepsilon \in L^2(\Omega)$ in (17) and in (18), $-u_\varepsilon/\gamma$ in (18) and get We obtain by using $-u_\varepsilon/\gamma$ as a testfunction

$$\gamma \int_0^t \int_\Omega |\nabla \psi_\varepsilon|^2 dxds + \int_0^t \int_\Omega |\psi_\varepsilon|^2 dxds - \frac{1}{\gamma} \int_0^t \int_\Omega \psi_\varepsilon u_\varepsilon dxds + \frac{1}{\gamma} \int_0^t \frac{d}{dt} \int_\Omega |u_\varepsilon|^2 dxds + \int_0^t \int_\Omega \mu_\varepsilon^g \nabla w_\varepsilon \cdot \nabla \psi_\varepsilon dxds + \int_0^t \int_\Omega \mu_\varepsilon^g |\nabla \psi_\varepsilon|^2 dxds = 0$$

for all $t \in [0, T]$. Using Young’s inequality we find after standard calculations

$$\gamma \|\nabla \psi_\varepsilon\|^2_{L^2(0,T;L^2(\Omega))} + \|\psi_\varepsilon\|^2_{L^2(0,T;L^2(\Omega))} \leq \frac{C(r_2, \Omega)}{\gamma} \|\nabla w_\varepsilon\|^2_{L^2(0,T;L^2(\Omega))} + \frac{1}{\gamma^2} \|u_\varepsilon\|^2_{L^2(0,T;L^2(\Omega))}$$

Using (A2), (15) and (19) we obtain (20).

Estimate 2 There exists a constant ε_1 such that for all $\varepsilon \in (0, \min(\varepsilon_0, \varepsilon_1))$ the following estimate holds:

$$0 \leq u_\varepsilon(t, x) \leq 1, \quad \text{a.e. in } Q_T.$$

Proof. Using in (12) the admissible testfunctions $u_\varepsilon^\ominus := \min(u_\varepsilon, 0)$ and $u_\varepsilon^\oplus := \min(1-u_\varepsilon, 0)$ we get

$$\frac{1}{2} \int_\Omega |u_\varepsilon^\ominus(t)|^2 dx + \int_0^T \int_\Omega |\nabla u_\varepsilon^\ominus|^2 dx dt + \int_0^T \int_\Omega \mu_\varepsilon^g (w_\varepsilon + \psi_\varepsilon) \cdot \nabla u_\varepsilon^\ominus dx dt = 0.$$

where $\ominus \in \{\ominus, \oplus\}$. Because of $\mu_\varepsilon^g \nabla u_\varepsilon^\ominus = 0$ for $\ominus \in \{\ominus, \oplus\}$ the last term vanishes and we get

$$0 = \frac{1}{2} \int_\Omega |u_\varepsilon^\ominus(t)|^2 dx + \int_0^T \int_\Omega |\nabla u_\varepsilon^\ominus|^2 dx dt \geq \frac{1}{2} \int_\Omega |u_\varepsilon^\ominus(t)|^2 dx,$$

that means $u_\varepsilon^\ominus(t, x) = 0$ a.e. in Q_T, hence $1 \geq u_\varepsilon(t, x) \geq 0$ a.e. in Q_T.

We introduce following notations

$$\tilde{u} := \max(0, u - k) \quad (21)$$

$$M(k, t) := \{x \in \Omega \mid \tilde{u}(t, x) > 0\} \quad (22)$$
3 PROOF OF THEOREM 1

Estimate 3 There exists a constant ε_1 such that for all $\varepsilon \in (0, \min(\varepsilon_0, \varepsilon_1))$ the following estimate holds with a constant ϑ independent of ε:

$$
\int_0^t \|\tilde{u}_\varepsilon(s)\|^2_{L^2(\Omega)} ds \leq \frac{\vartheta^2}{(f'_\varepsilon)^2(k)} \left(\int_0^t M(k, \tau) d\tau \right)^{2/p'}
$$

(23)

Proof. We only will show the proof for one side, the other side can be proven analogously.

1. Let be $k \in [k_0, 1), k_0 \in [1/2, 1), \tilde{u}_0 = 0$ and $2 \leq p \leq \frac{2(N+1)}{N}$. The function $\varphi = \max(0, (f^\theta)'(u_\varepsilon) - (f^\theta)'(k)) \in L^2(0, T; H^1(\Omega))$ is a valid testfunction in (17). Therefore we obtain

$$
\int_0^t \langle \partial_t u_\varepsilon, \max(0, (f^\theta)'(u_\varepsilon) - (f^\theta)'(k)) \rangle ds
$$

$$
+ \int_0^t \int_\Omega \mu^\theta(u_\varepsilon) \nabla v_\varepsilon \cdot \nabla \max(0, (f^\theta)'(u_\varepsilon) - (f^\theta)'(k)) dx ds := J_1 + J_2 = 0
$$

(24)

(25)

for a.e. in $[0, T]$.

We first treat the first term J_1: We define steklov averaged functions

$$
u_{eh}(t, x) := \frac{1}{h} \int_{t-h}^t u_\varepsilon(\tau, x) d\tau,
$$

(26)

where we set $u_\varepsilon(t, x) = u_0(x)$ when $t \leq 0$. From [13] we have

$$
u_{eh} \longrightarrow \nu_\varepsilon \text{ strongly in } L^2(0, T; H^1(\Omega)) \text{ as } h \searrow 0.
$$

Because of (A2) and the continuity of f'_ε it is easily proven that as $h \searrow 0$

$$
w_{eh} \longrightarrow w_\varepsilon \text{ strongly in } L^2(0, T; H^1(\Omega)),
$$

$$
f'_\varepsilon(u_{eh}) \longrightarrow f'_\varepsilon(u_\varepsilon) \text{ strongly in } L^2(0, T; H^1(\Omega)).
$$

(27)

We define $g_{eh} := (f^\theta)'(u_{eh}) + w_{eh}$, and $v_{eh} := g_{eh} + \psi_{eh}$. It follows from (20) that

$$
\psi_{eh} \longrightarrow \psi_\varepsilon \text{ strongly in } L^2(0, T; H^1(\Omega)) \text{ as } h \searrow 0.
$$

(28)
Furthermore, we can show \(\partial_t u_{\varepsilon h} \longrightarrow \partial_t u_{\varepsilon} \) strongly in \(L^2(0, T; H^1(\Omega)^*) \). For any \(\varphi \in L^2(0, T; H^1(\Omega)) \) we have

\[
|\langle \partial_t u_{\varepsilon h} - \partial_t u_{\varepsilon}, \varphi \rangle| = \frac{1}{h} \left| \int_0^T \left\langle \int_{t-h}^t (\partial_t u_{\varepsilon}(\tau) - \partial_t u_{\varepsilon}(t)) d\tau, \varphi \right\rangle dt \right|
\]

\[
= \frac{1}{h} \left| \int_0^T \left\langle \int_{0}^0 (\partial_t u_{\varepsilon}(t + s) - \partial_t u_{\varepsilon}(t)) ds, \varphi \right\rangle dt \right|
\]

\[
\leq \frac{1}{h} \left| \int_0^T \int_{-h}^0 \int_0^t (\mu^0_{\varepsilon}(u_{\varepsilon}(t + s)) \nabla v_{\varepsilon} - \mu^0_{\varepsilon}(u_{\varepsilon}(t)) \nabla v_{\varepsilon}) \nabla \varphi dx dt \right| ds
\]

\[
\leq \max_{-h \leq s \leq 0} \| (\mu^0_{\varepsilon}(u_{\varepsilon}(t + s)) \nabla v_{\varepsilon}(t + s) - \mu^0_{\varepsilon}(u_{\varepsilon}(t)) \nabla v_{\varepsilon}(t)) \|_{L^2(Q_T)} \| \nabla \varphi \|_{L^2(Q_T)}.
\]

We have

\[
\max_{-h \leq s \leq 0} \| \mu^0_{\varepsilon}(u_{\varepsilon}(t + s)) \nabla v_{\varepsilon}(t + s) - \mu^0_{\varepsilon}(u_{\varepsilon}(t)) \nabla v_{\varepsilon}(t) \|_{L^2(Q_T)}
\]

\[
\leq \max_{-h \leq s \leq 0} \| [\mu^0_{\varepsilon}(u_{\varepsilon}(t + s)) - \mu^0_{\varepsilon}(u_{\varepsilon}(t))] \nabla v_{\varepsilon}(t + s) \|_{L^2(Q_T)}
\]

\[
+ C \max_{-h \leq s \leq 0} \| g_{\varepsilon}(t + s) - g_{\varepsilon}(t) \|_{L^2(0, T; H^1(\Omega))}
\]

\[
+ C \max_{-h \leq s \leq 0} \| \nabla \psi_{\varepsilon}(t + s) - \nabla \psi_{\varepsilon}(t) \|_{L^2(0, T; L^2(\Omega))}.
\]

The first part of the right hand side tends as \(h \to 0 \) pointwise to zero, because of the Lipschitz continuity of \(u_{\varepsilon} \rightarrow \mu^0_{\varepsilon}(u_{\varepsilon}) \) and the convergence

\[
\max_{-h \leq s \leq 0} \| u_{\varepsilon}(t + s) - u_{\varepsilon}(t) \|_{L^2(Q_T)} \to 0 \quad \text{as} \quad h \to 0.
\]

The second and the third part follow from (27) and (28). It follows that

\[
\partial_t u_{\varepsilon h} \longrightarrow \partial_t u_{\varepsilon} \quad \text{strongly in} \quad L^2(0, T; H^1(\Omega)^*) \quad \text{as} \quad h \searrow 0.
\]

Using \(\partial_t u_{\varepsilon h} \in L^2(0, T; L^2(\Omega)) \), we have for almost all \(t \in [0, T] \)
\[
\int_0^t \int_{\Omega} \partial_t u_{\epsilon h}, \max(0, (f^\theta_\epsilon)'(u_{\epsilon h}) - (f^\theta_\epsilon)'(k)) \, dx \, ds = \int_0^t \int_{M(k,s)} \partial_t u_{\epsilon h}[(f^\theta_\epsilon)'(u_{\epsilon h}) - (f^\theta_\epsilon)'(k)] \, dx \, ds \\
= \int_0^t \int_{M(k,s)} [f^\theta_\epsilon(u_{\epsilon h}(s)) - (f^\theta_\epsilon)'(k) \tilde{u}] \, dx \, ds \\
= \int_{M(k,t)} [f^\theta_\epsilon(u_{\epsilon h}(t)) - f^\theta_\epsilon(k) - (f^\theta_\epsilon)'(k) \tilde{u}(t)] \, dx \\
\geq \frac{1}{2} \int_{M(k,t)} (f^\theta_\epsilon)''(k) |\tilde{u}_{\epsilon}(t)|^2 \, dx,
\]
where we used for the last inequality the Taylor expansion of \(f^\theta_\epsilon\) and \((f^\theta_\epsilon)'''(u_{\epsilon}) \geq 0\) for \(u_{\epsilon} \geq 1/2\). Passing to the limit \((h \searrow 0)\) in this equation, where we apply the convergence properties of \(u_{\epsilon h}\) proved above and using Remark 5, we obtain a.e. in \([0,T]\)

\[
J_1 \geq \frac{(f^\theta_\epsilon)''(k)}{2} \|\tilde{u}_{\epsilon}(t)\|^2_{L^2(\Omega)}.
\]

Moreover we have

\[
J_2 = \int_0^t \int_{\Omega} \nabla v_{\epsilon} \cdot \nabla \tilde{u}_{\epsilon} \, dx \, ds = \int_0^t \int_{\Omega} [(f^\theta_\epsilon)''(u_{\epsilon}) |\nabla \tilde{u}_{\epsilon}|^2 + \nabla \psi_{\epsilon} \cdot \nabla \tilde{u}_{\epsilon} - \Delta w_{\epsilon} \tilde{u}_{\epsilon}] \, dx \, ds.
\]

Testing (17) by the admissible testfunction \(\tilde{u}_{\epsilon}\) and using (20) we have

\[
\int_0^t \int_{\Omega} \nabla \psi_{\epsilon} \cdot \nabla \tilde{u}_{\epsilon} \, dx \, ds = \frac{1}{2} \int_{\Omega} |\tilde{u}_{\epsilon}(t)|^2 \, dx - \frac{1}{\gamma} \int_0^t \int_{\Omega} \psi_{\epsilon} \tilde{u}_{\epsilon} \, dx \, ds \\
\geq -\frac{1}{2\gamma^2} \|\psi_{\epsilon}\|^2_{L^2(0,t;L^2(\Omega))} - \frac{1}{2} \|u_{\epsilon}\|^2_{L^2(0,t;L^2(\Omega))} \\
\geq -C(\gamma, t, \Omega) \|u_{\epsilon}\|^2_{L^2(0,t;L^2(\Omega))},
\]
Hence, applying Estimate 2, (A2), Hölder’s and Young’s inequalities, we find

\[
J_2 \geq \int_0^t \int_\Omega (f^\theta_\varepsilon)^\prime \nabla \tilde{u}_\varepsilon |^2 dx ds - C(r_\infty, \gamma, t, \Omega) \int_0^t \| \tilde{u}_\varepsilon \|_{L^p(\Omega)} ds \\
\geq \int_0^t \int_\Omega (f^\theta_\varepsilon)^\prime \nabla \tilde{u}_\varepsilon |^2 dx ds - C(r_\infty, \gamma, t, \Omega) \left(\int_0^t M(k, s) ds \right) ^{1/p'} \left(\int_0^t \| \tilde{u}_\varepsilon \|_{L^p(\Omega)} ds \right) ^{1/p} \\
\geq (f^\theta_\varepsilon)^\prime (k) \int_0^t \int_\Omega | \nabla \tilde{u}_\varepsilon |^2 dx ds - \frac{C(r_\infty, \gamma, t, \Omega)^2}{2 \delta (f^\theta_\varepsilon)^\prime (k)} \left(\int_0^t M(k, s) ds \right) ^{2/p'} \\
- \frac{\delta}{2} (f^\theta_\varepsilon)^\prime (k) \left(\int_0^t \| \tilde{u}_\varepsilon \|_{L^p(\Omega)} ds \right) ^{2/p},
\]

where \(1/p + 1/p' = 1\).

Using the Gagliardo-Nierenberg-inequality (with the constant \(C_g\))

\[
\| \tilde{u}_\varepsilon \|_{L^p(\Omega)} \leq C_g \left(\| \tilde{u}_\varepsilon \|_{L^2(\Omega)}^{1-\beta} \| \nabla \tilde{u}_\varepsilon \|_{L^2(\Omega)}^\beta \right)
\]

with \(\beta = 1/p\), we find for the last term applying the Hölder inequality

\[
\left(\int_0^t \| \tilde{u}_\varepsilon \|_{L^p(\Omega)} ds \right) ^{2/p} \leq C_g \left(\int_0^t \| \tilde{u}_\varepsilon \|_{L^2(\Omega)}^{p(1-\beta)} \| \nabla \tilde{u}_\varepsilon \|_{L^2(\Omega)}^\beta ds \right) ^{2/p} \\
\leq C_g \left(\int_0^t \| \tilde{u}_\varepsilon \|_{L^2(\Omega)}^{p-1} \| \nabla \tilde{u}_\varepsilon \|_{L^2(\Omega)} ds \right) ^{2/p} \\
\leq C_g \left(\int_0^t \| \tilde{u}_\varepsilon \|_{L^2(\Omega)}^{2(p-1)} ds \right) ^{1/p} \left(\int_0^t \| \nabla \tilde{u}_\varepsilon \|_{L^2(\Omega)} ds \right) ^{1/p} .
\]

Furthermore using the Young inequality we get

\[
\left(\int_0^t \| \tilde{u}_\varepsilon \|_{L^p(\Omega)} ds \right) ^{2/p} \leq C_g \left[\frac{1}{p'} \left(\int_0^t \| \tilde{u}_\varepsilon \|_{L^2(\Omega)}^{2(p-1)} ds \right) ^{1/p'} + \frac{1}{p} \left(\int_0^t \| \nabla \tilde{u}_\varepsilon \|_{L^2(\Omega)} ds \right) ^{1/p} \right] .
\]
Standard calculations give
\[
\left(\int_0^t \| \tilde{u}_\varepsilon \|_{L^p(\Omega)}^p \right)^{2/p} \leq C_g \left[\frac{1}{p'} \left(\sup_{0 \leq s \leq t} \| \tilde{u}_\varepsilon(s) \|_{L^{p/2}(\Omega)}^{2(p-2)} \right) \left(\int_0^t \| \tilde{u}_\varepsilon \|_{L^2(\Omega)}^2 \right)^{p-1} + \frac{1}{p} \left(\int_0^t \| \nabla \tilde{u}_\varepsilon \|_{L^2(\Omega)}^2 \right) \right]
\]
\[
\leq C_g \left(\frac{p-2}{p-1} \sup_{0 \leq s \leq t} \| \tilde{u}_\varepsilon(s) \|_{L^2(\Omega)}^2 + \frac{C_g}{p-1} \int_0^t \| \tilde{u}_\varepsilon \|_{L^2(\Omega)}^2 ds \right)
\]
\[
+ \frac{1}{p} \int_0^t \| \nabla \tilde{u}_\varepsilon \|_{L^2(\Omega)}^2 ds.
\]
where we have used the Poincaré inequality with the Poincaré constant C_p for the last step. Choosing $\delta = \frac{1}{C_g(1 + \frac{2}{C_p})}$ we obtain
\[
J_2 \geq \frac{(f_\varepsilon')^2(k)}{2} \int_0^t \int_\Omega | \nabla \tilde{u}_\varepsilon |^2 - \frac{C(r_\infty, \gamma, t, \Omega)^2 C_g(1 + 1/C_p)}{2(f_\varepsilon')^2(k)} \left(\int_0^t M(k, s) ds \right)^{2/p'} \]
\[- \frac{(f_\varepsilon')^2(k) C_p}{2(1 + C_p)} \sup_{0 \leq s \leq t} \| \tilde{u}_\varepsilon(s) \|_{L^2(\Omega)}^2.
\]
We finally obtain for $J_1 + J_2$
\[
\| \tilde{u}_\varepsilon(t) \|_{L^2(\Omega)}^2 + \int_0^t \| \nabla \tilde{u}_\varepsilon \|_{L^2(\Omega)}^2 ds \leq \frac{C(r_\infty, \gamma, t, \Omega)^2 C_g(1 + 1/C_p)}{(f_\varepsilon')^2(k)} \left(\int_0^t M(k, s) ds \right)^{2/p'} + \frac{C_p}{2(1 + C_p)} \sup_{0 \leq s \leq t} \| \tilde{u}_\varepsilon(s) \|_{L^2(\Omega)}^2.
\]
This implies
\[
\sup_{0 \leq s \leq t} \| \tilde{u}_\varepsilon(s) \|_{L^2(\Omega)}^2 \leq \frac{\vartheta^2}{(f_\varepsilon')^2(k)} \left(\int_0^t M(k, s) ds \right)^{2/p'},
\]
where $\vartheta^2 = C(r_\infty, \gamma, t, \Omega)^2 C_g(1 + 1/C_p)(1 + C_p)$ and hence with $Y(t) := \int_0^t \| \tilde{u}_\varepsilon(s) \|_{L^2(\Omega)}^2 ds$ and the Poincaré inequality (30) becomes
\[
Y'(t) + (1 + C_p) C_p Y(t) \leq \frac{\vartheta^2}{(f_\varepsilon')^2(k)} \left(\int_0^t M(k, s) ds \right)^{2/p'}. \tag{30}
\]
3 PROOF OF THEOREM 1

We get by integration with respect to time
\[\int_0^t \| \tilde{u}_\varepsilon(s) \|_{L^2(\Omega)}^2 ds \leq \frac{\vartheta^2}{(f^\varepsilon)^{\alpha^2}(k)} \int_0^t \exp(1 + C_p)(s - t) \left(\int_0^s M(k, \tau) d\tau \right)^{2/\nu'} ds \]
\[\leq \frac{\vartheta^2}{(f^\varepsilon)^{\alpha^2}(k)} \left(\int_0^t M(k, \tau) d\tau \right)^{2/\nu'} . \]

\[\Box \]

3.3 Existence to the original problem

Lemma 2 (Auxilliary Lemma) Let \(\Phi(\xi) \) be a function defined for \(\xi \geq M \), nonnegative and nondecreasing such that for \(h > k \geq M \) the estimate
\[\Phi(h) \leq \frac{\beta k^\varsigma}{(h - k)^\alpha} \Phi(k)^{1+\chi} \]
holds. Here \(\alpha, \beta \) and \(\chi \) are positive constants. Moreover \(\varsigma < \alpha(1 + \chi) \). Then \(\Phi(2d) = 0 \) where \(d > M \) is the root of the equation
\[d = M + \lambda M^{\varsigma/\alpha} d^{\frac{\alpha}{\alpha + \varsigma}} \]
and
\[\lambda^\alpha = 2^{\frac{\alpha + \varsigma}{\chi}} \beta^{1 + \frac{1}{\chi}} \Phi(M)^{1+\chi} . \]

Proof. Set \(k_j = d(2 - 2^{-j}) \), for \(j = 0, 1, 2, ..., \). We want to show that
\[\Phi(k_j) \leq \left[\frac{d^{\alpha - \varsigma}}{2^{(j+1+1/\chi)+\varsigma}} \beta \right]^{1/\chi} . \]
This proves that \(\Phi(2d) = 0 \), since \(\lim_{j \to +\infty} k_j = 2d \). Equation (31) for \(h = k_0 \) and \(k = M \) shows that
\[\Phi(k_0) \leq \frac{\beta M^\varsigma}{(d - M)^\alpha} \Phi(M)^{1+\chi} . \]
By replacing \((d - M)^\alpha \) by the value obtained from equation (32) it readily follows that the right hand side of (35) is equal to the right hand side of (34) for \(j = 0 \). Next, by supposing that (34) holds for some \(j \geq 0 \) and by using (31), we prove that
\[\Phi(k_{j+1}) \leq \frac{\beta 2^{\varsigma + (j+1)\alpha}}{d^{\alpha - \varsigma}} \left[\frac{d^{\alpha - \varsigma}}{2^{(j+1+1/\chi)+\varsigma}} \beta \right]^{1+1/\chi} . \]
Straightforward calculations show that the right hand side of (36) is equal to the right hand side of (34) if here we replace j by $j + 1$.

Lemma 3 There exists a constant $\varepsilon_1 > 0$ such that for all $\varepsilon \in (0, \min(\varepsilon_0, \varepsilon_1)]$

$$\varepsilon_1 \leq u_\varepsilon(t, x) \leq 1 - \varepsilon_1 \text{ a.e. in } Q_T.$$ \hspace{1cm} (37)

Proof. Let now $1 > h > k \geq 1/2$. We have

$$\int_0^t \| \tilde{u}_\varepsilon(s) \|_{L^2(\Omega)}^2 ds \geq (h - k)^2 \int_0^t M(h, \tau) d\tau$$ \hspace{1cm} (38)

and consequently with $1 + \chi := 2/p'$ and by Estimate 3 we obtain

$$\left(\int_0^t M(h, \tau) d\tau \right)^{1/2} \leq \frac{\vartheta}{(f^\vartheta(\varepsilon)(k)(h-k))^{1/2}} \left[\left(\int_0^t M(k, \tau) d\tau \right)^{1/2} \right]^{1+\chi}.$$ \hspace{1cm} (39)

Defining $\pi(\xi) := \left(\int_0^t M(\xi, \tau) d\tau \right)^{1/2}$ and using Remark 4 we get

$$\pi(h) \leq \frac{\vartheta (1-k)^{1+\vartheta}}{(1-2\vartheta)(h-k)} \pi(k)^{1+\chi}.$$ \hspace{1cm} (40)

By $\xi := 1 - 1/\Xi$ and $\Pi := \pi \circ \xi$ we find

$$\Pi(H) \leq \frac{\vartheta K^{-\vartheta} H}{(1-2\vartheta)(H-K)} \Pi(K)^{1+\chi}.$$ \hspace{1cm} (41)

Defining $\Phi(\Xi) := \Pi(\Xi)/\Xi$, $\beta_\theta := \vartheta/(1 - 2\theta)$ and $\varsigma := 1 + \chi - \theta$ we end up with (31). So by Lemma 2 there exists a D which is characterized by (32) and (33) for which we have $\Phi(2D) = 0$. That means that there exists a value $(1/2, 1) \ni u_r := 1 - \frac{1}{2D}$ for which we have $\pi(d) = 0$. Hence the solution $u_\varepsilon(t, x) \leq u_r$ a.e. in Q_T. Analogously we can prove that there exists a $(0, 1/2) \ni u_l$ such that $u_\varepsilon(t, x) \geq u_l$ a.e. in Q_T. So defining $\varepsilon_1 := \min(u_l, u_r)$ we end up with (37). \hfill \Box

Remark 7 The constant ε_1 depends on θ.

Hence, by the definition of the truncation (15) we have $f^\vartheta(u) = f^\vartheta(u^\circ)$, that means that the solution to (17)-(19) is a solution to the original problem (12)-(14), too.

Acknowledgment. The author wishes to thank Herbert Gajewski for many fruitful discussions.
References

