DOI: 10.1002/zaac.201100216

The Crystal and Molecular Structure of γ-P₄S₆

Thomas Rödl^[a] and Arno Pfitzner*^[a]

In Memory of Professor Hans Georg von Schnering

Keywords: Phosphorus; Sulfur; Phosphorus sulfides; Cage molecules

Abstract. The crystal and molecular structure of γ -P₄S₆ was determined from single-crystal X-ray diffraction. It crystallizes monoclinically in the space group $P2_1/m$ (No. 11) with a = 6.627(3) Å, b =

10.504(7) Å, c = 6.878(3) Å, $\beta = 90.18(4)^{\circ}$, V = 478.8(4) Å³, and Z = 2. The structure consists of cage-like P₄S₆ molecules with C_S symmetry arranged with the topology of a cubic close packing.

Introduction

In general the phosphorus sulfides consist of small cage-like molecules with the composition P_4S_n (n = 3-10). The structures of a- P_4S_3 ,^[1] γ - P_4S_3 ,^[1,2] α - P_4S_4 ,^[3] α - P_4S_5 ,^[4] β - P_4S_5 ,^[5] β - P_4S_6 ,^[6] α - P_4S_7 ,^[4,7] β - P_4S_7 ,^[8] P_4S_9 -II,^[9] P_4S_9 -III,^[10] and P₄S₁₀^[4,7,11] were determined from single-crystal X-ray diffraction. Other phosphorus sulfides like P₄S₈ have been characterized by ³¹P NMR spectroscopy.^[12] They all have in common, that their molecular structures can be derived from the P₄ tetrahedron of white phosphorus by either insertion of sulfur atoms into P-P bonds or exocyclic addition to phosphorus atoms. Due to the possible combinations a large number of constitution isomers is suggested for each composition. Additionally, different crystal structures of the same molecule are conceivable. In the case of e.g. P₄S₆ five isomers are known, see Figure 1. Among these, only the crystal structure of β -P₄S₆ was determined by X-ray diffraction analysis. [6] On the contrary the structures of α -P₄S₆,^[13] γ -P₄S₆,^[14] δ -P₄S₆, and ε -P₄S₆^[15] have been characterized only spectroscopically.

 γ -P₄S₆ has first been observed by *Jason* as a product in the oxidation of phosphorus by sulfur at low temperatures (< 100 °C) and in the sulfurization of α -P₄S₅ by triphenylarsenic sulfide. Based on the signals in the corresponding solution ³¹P NMR spectra he was able to assign a molecular structure. Herein, we confirm the molecular structure assigned by *Jason*, and in addition, present the crystal structure of γ -P₄S₆.

Results and Discussion

The crystal and molecular structure of γ -P₄S₆ was determined by single-crystal X-ray diffraction. The compound crys-

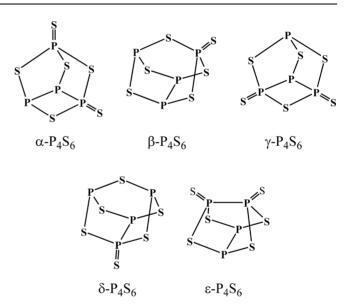


Figure 1. Known molecular structures of P₄S₆.^[6,13–15]

tallizes as a pseudomerohedral twin in the monoclinic space group $P2_1/m$ (No. 11) with a = 6.627(3) Å, b = 10.504(7) Å, c = 6.878(3) Å and $\beta = 90.18(4)^{\circ}$. The monoclinic angle is very close to 90° and mimics a metrically orthorhombic cell. Analyzing the reflection data with XPREP^[16] revealed that the true metric is monoclinic: whereas the internal R-value is poor for the higher symmetry ($R_{\text{int}} = 0.297$) it is very good for the lower symmetry ($R_{\text{int}} = 0.032$). In the monoclinic setting only the reflection condition for $2_1 \parallel b$ was fulfilled indicating the possible space groups $P2_1$ (No. 4) and $P2_1/m$ (No. 11). Due to pseudomerohedral twinning the E statistics ($|E^2-1| = 0.814$) were no real criterion for (non-)centrosymmetry. For this reason the structure solution was performed in the higher- and centrosymmetric space group $P2_1/m$ (No. 11). The structure solution using direct methods was successful and after a few refinement cycles a reasonable structural model was obtained. However, the R values were unusually high at this stage and

^{*} Prof. Dr. A. Pfitzner Fax: +49-941-943-814551 E-Mail: arno.pfitzner@chemie.uni-regensburg.de

[[]a] Institut für Anorganische Chemie Universität Regensburg Universitätsstraße 31 93040 Regensburg, Germany

pseudomerohedral twinning had to be taken into account. The possible twin laws were derived from symmetry reduction starting from the apparent Laue class 2/m 2/m 2/m and ending up with the true Laue class 2/m. Thus, a mirror plane perpendicular to the a axis could be used as a twin element in the refinement procedure. By doing this, the R values dropped significantly from $R_1 = 0.1311$ and $wR_2 = 0.3174$ to $R_1 = 0.0703$ and $wR_2 = 0.1758$ (for all data). Table 1 shows the results of the refinement for γ -P₄S₆. The atomic coordinates and anisotropic displacement parameters are listed in Table 2 and Table 3.

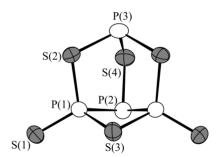
Table 1. Crystallographic data for γ -P₄S₆.^{a)}

Compound Formula Weight /g·mol $^{-1}$ 316.24 yellow crystal system, space group Lattice constants a /Å 6.627(3) b /Å 10.504(7) c /Å 6.878(3) b /Å 6.878(3) b /β 90.18(4) Volume V /Å 478.8(4) Number of formula units Z 2 Calculated density $ρ_{\text{calc}}$ /g·cm $^{-3}$ 2.194 293(2) Diffractometer Stoe IPDS I Wavelength $λ$ /Å 0.71073 (Mo- K_a) Absorption coeff. $μ$ (Mo- K_a) /mm $^{-1}$ 2.018 $θ$ range of data collection f 2.96–25.19 Index ranges f 2.194 f 2.96–25.19 Index ranges f 3.8 f 4.8 f 8.8 f 10.7 f 8.9 f 8.9 f 8.9 f 8.9 f 9.18 f 9.18 f 9.18 f 9.19 f 9.10 f		
Colour Crystal system, space group Lattice constants $a \ / \mathring{A}$ $b \ / \mathring{A}$ b	Compound	γ -P ₄ S ₆
Crystal system, space group Lattice constants a / \mathring{A} b / \mathring{A} b / \mathring{A} b / \mathring{A} c / \mathring{A} b / \mathring{A} c / \mathring{A} b / \mathring{A} c / \mathring{A} $e / $	Formula Weight /g·mol ⁻¹	316.24
Lattice constants $a \ / \mathring{A}$ $6.627(3)$ $b \ / \mathring{A}$ $10.504(7)$ $c \ / \mathring{A}$ $6.878(3)$ $\beta \ / \circ$ $90.18(4)$ Volume $V \ / \mathring{A}^3$ $478.8(4)$ Number of formula units Z 2 Calculated density $\rho_{\rm calc} \ / g \cdot {\rm cm}^{-3}$ 2.194 Temperature $T \ / K$ $293(2)$ Stoe IPDS I Wavelength $\lambda \ / \mathring{A}$ $0.71073 \ ({\rm Mo-}K_a)$ Absorption coeff. $\mu ({\rm Mo-}K_a) \ / {\rm mm}^{-1}$ 2.018 $0.71073 \ ({\rm Mo-}K_a)$ Absorption coeff. $\mu ({\rm Mo-}K_a) \ / {\rm mm}^{-1}$ 2.018 $2.96-25.19$ Index ranges $-7 \le h \le 7$ $-12 \le k \le 12$ $-8 \le l \le 8$ numerical, X-RED[17] and X-SHAPE[18] No. of reflections collected (independent) (905) R_{σ} , $R_{\rm int}$ 0.0353 , 0.0525 99.6% Structure solution SIR92[19] Structure refinement SHELXL-97[20] No. of restraints 0 0 foof 1.142 Twin law $-1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ $	Colour	yellow
a /Å $6.627(3)$ b /Å $10.504(7)$ c /Å $6.878(3)$ β /° $90.18(4)$ Volume V /Å 3 $478.8(4)$ Number of formula units Z 2 Calculated density ρ_{calc} / g ·cm ⁻³ 2.194 Temperature T /K $293(2)$ Diffractometer Stoe IPDS I Wavelength λ /Å 0.71073 (Mo- K_a) Absorption coeff. μ (Mo- K_a) /mm ⁻¹ 2.018 θ range of data collection /° $2.96-25.19$ Index ranges $-7 \le h \le 7$ $-12 \le k \le 12$ $-8 \le l \le 8$ Absorption correction numerical, X-RED[17] and X-SHAPE[18] $0.0353, 0.0525$ No. of reflections collected 6288 (independent) (905) R_{σ} , R_{int} $0.0353, 0.0525$ Completeness to $\theta = 25.19^{\circ}$ 99.6% Structure refinement SHELXL-97[20] No. of restraints 0 GooF 1.142 Twin law $-1 0 0, 0 1 0, 0 0 1$ Batch scale factor BASF $0.138(4)$ R_1 , wR_2 [all	Crystal system, space group	monoclinic, $P2_1/m$ (No.11)
b /Å 10.504(7) c /Å 6.878(3) β /° 90.18(4) Volume V /ų 478.8(4) Number of formula units Z 2 Calculated density ρ_{calc} /g·cm ⁻³ 2.194 Temperature T /K 293(2) Diffractometer Stoe IPDS I Wavelength λ /Å 0.71073 (Mo- K_a) Absorption coeff. μ (Mo- K_a) /mm ⁻¹ 2.018 θ range of data collection /° 2.96-25.19 Index ranges -7 ≤ h ≤ 7 -12 ≤ k ≤ 12 -8 ≤ l ≤ 8 numerical, X-RED[17] and X-SHAPE[18] No. of reflections collected (independent) (905) R_{σ} , R_{int} 0.0353, 0,0525 Completeness to θ = 25.19° 99.6% Structure refinement SHELXL-97[20] No. of restraints 0 GooF 1.142 Twin law -1 0 0, 0 1 0, 0 0 1 Batch scale factor BASF 0.138(4) R_1 , w R_2 [all data] 0.0703, 0.1758	Lattice constants	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	a /Å	6.627(3)
$β/^{\circ}$ 90.18(4) Volume $V/Å^3$ 478.8(4) Number of formula units Z 2 Calculated density $ρ_{calc}/g \cdot cm^{-3}$ 2.194 Temperature T/K 293(2) Biffractometer Stoe IPDS I Wavelength $λ/Å$ 0.71073 (Mo- K_a) $θ$ range of data collection $/^{\circ}$ 2.96–25.19 Index ranges $-7 \le h \le 7$ $-12 \le k \le 12$ $-8 \le l \le 8$ Absorption correction numerical, X-RED[17] and X-SHAPE[18] No. of reflections collected (independent) R_{σ} , R_{int} 0.0353, 0,0525 Completeness to $θ = 25.19^{\circ}$ 99.6% Structure refinement SHELXL-97[20] No. of restraints 0 GooF 1.142 Twin law -1 0 0, 0 1 0, 0 0 1 R_1 , wR_2 [$I > 2σ(I)$] 0.0604, 0.1705 R_1 , wR_2 [all data] 0.0703, 0.1758	b /Å	10.504(7)
Volume V /ų 478.8(4) Number of formula units Z 2 Calculated density ρ_{calc} /g·cm ⁻³ 2.194 Temperature T /K 293(2) Diffractometer Stoe IPDS I Wavelength λ /Å 0.71073 (Mo- K_a) Absorption coeff. μ (Mo- K_a) /mm ⁻¹ 2.018 θ range of data collection /° 2.96–25.19 Index ranges $-7 \le h \le 7$ $-12 \le k \le 12$ $-8 \le l \le 8$ Absorption correction numerical, X-RED[17] No. of reflections collected 6288 (independent) (905) R_{σ} , R_{int} 0.0353, 0,0525 Completeness to $\theta = 25.19^\circ$ 99.6% Structure solution SIR92[19] Structure refined parameters 53 No. of restraints 0 GooF 1.142 Twin law -1 0 0, 0 1 0, 0 0 1 Batch scale factor BASF 0.138(4) R_1 , wR_2 [all data] 0.0703, 0.1758	c /Å	6.878(3)
Number of formula units Z 2 Calculated density $ρ_{calc} / g \cdot cm^{-3}$ 2.194 Temperature T / K 293(2) Diffractometer Stoe IPDS I Wavelength $λ / Å$ 0.71073 (Mo- K_a) Absorption coeff. $μ(Mo-K_a) / mm^{-1}$ 2.018 $θ$ range of data collection $/ °$ 2.96–25.19 Index ranges $-7 \le h \le 7$ $-12 \le k \le 12$ $-8 \le l \le 8$ Absorption correction numerical, X-RED[17] and X-SHAPE[18] No. of reflections collected (independent) (905) $R_σ, R_{int}$ 0.0353, 0,0525 Completeness to $θ = 25.19°$ 99.6 % Structure solution SIR92[19] Structure refinement SHELXL-97[20] No. of restraints 0 GooF 1.142 Twin law -1 0 0, 0 1 0, 0 0 1 Batch scale factor BASF $R_1, wR_2 [I > 2σ(I)]$ 0.0604, 0.1705 $R_1, wR_2 [all data]$ 0.0703, 0.1758	β /°	90.18(4)
Calculated density ρ_{calc} /g·cm ⁻³ 2.194 Temperature T /K 293(2) Diffractometer Stoe IPDS I Wavelength λ /Å 0.71073 (Mo- K_a) Absorption coeff. μ (Mo- K_a) /mm ⁻¹ 2.018 θ range of data collection /° 2.96–25.19 Index ranges $-7 \le h \le 7$ $-12 \le k \le 12$ $-8 \le l \le 8$ Absorption correction numerical, X-RED[17] No. of reflections collected (independent) (905) R_σ , R_{int} 0.0353, 0,0525 Completeness to $\theta = 25.19^\circ$ 99.6 % Structure solution SIR92 ^[19] Structure refinement SHELXL-97 ^[20] No. of restraints 0 GooF 1.142 Twin law -1 0 0, 0 1 0, 0 0 1 Batch scale factor BASF 0.138(4) R_1 , w R_2 [I > 2 σ (I)] 0.0604, 0.1705 R_1 , w R_2 [all data] 0.0703, 0.1758	Volume $V/Å^3$	478.8(4)
Temperature T/K Diffractometer Stoe IPDS I Wavelength $λ/Å$ Diffractometer Stoe IPDS I 0.71073 (Mo- K_a) 2.018 2.96–25.19 Index ranges $-7 \le h \le 7$ $-12 \le k \le 12$ $-8 \le l \le 8$ Absorption correction numerical, X-RED[17] and X-SHAPE[18] No. of reflections collected (independent) (905) $R_σ$, R_{int} 0.0353, 0,0525 Completeness to $θ = 25.19^\circ$ Structure solution Sirely Structure refinement SHELXL-97[20] Shoof restraints 0 Goof 1.142 Twin law $-1 \ 0 \ 0, 0 \ 1 \ 0, 0 \ 1 \ 0, 0 \ 1 \ 0, 0 \ 1 \ 0, 0 \ 1 \ 0, 0 \ 1 \ 0, 0 \ 1, 0 \ 0 \ 1$ Batch scale factor BASF R_1 , $wR_2 \ [I > 2σ \ (I)]$ 0.0604, 0.1705 R_1 , $wR_2 \ [all \ data]$ 0.0703, 0.1758	Number of formula units Z	2
Temperature T/K Diffractometer Stoe IPDS I Wavelength $λ/Å$ Diffractometer Stoe IPDS I 0.71073 (Mo- K_a) 2.018 2.96–25.19 Index ranges $-7 \le h \le 7$ $-12 \le k \le 12$ $-8 \le l \le 8$ Absorption correction numerical, X-RED[17] and X-SHAPE[18] No. of reflections collected (independent) (905) $R_σ$, R_{int} 0.0353, 0,0525 Completeness to $θ = 25.19^\circ$ Structure solution Sirely Structure refinement SHELXL-97[20] Shoof restraints 0 Goof 1.142 Twin law $-1 \ 0 \ 0, 0 \ 1 \ 0, 0 \ 1 \ 0, 0 \ 1 \ 0, 0 \ 1 \ 0, 0 \ 1 \ 0, 0 \ 1 \ 0, 0 \ 1, 0 \ 0 \ 1$ Batch scale factor BASF R_1 , $wR_2 \ [I > 2σ \ (I)]$ 0.0604, 0.1705 R_1 , $wR_2 \ [all \ data]$ 0.0703, 0.1758	Calculated density $\rho_{\rm calc}$ /g·cm ⁻³	2.194
Wavelength $λ$ /Å		293(2)
Absorption coeff. μ (Mo- K_a) /mm ⁻¹ θ range of data collection /° Index ranges $ \begin{array}{lll} \theta \text{ range of data collection } / \circ & 2.96-25.19 \\ -7 & \leq h \leq 7 \\ -12 & \leq k \leq 12 \\ -8 & \leq l \leq 8 \end{array} $ Absorption correction numerical, X-RED[17] and X-SHAPE[18] No. of reflections collected (independent) (905) R_σ , R_{int} 0.0353, 0,0525 Completeness to $\theta = 25.19^\circ$ 99.6 % Structure solution STructure refinement SHELXL-97[20] No. of refined parameters No. of restraints 0 GooF 1.142 Twin law -1 0 0, 0 1 0, 0 0 1 Batch scale factor BASF R_1 , w R_2 [$I > 2\sigma$ (I)] 0.0604, 0.1705 R_1 , w R_2 [all data] 0.0703, 0.1758	Diffractometer	Stoe IPDS I
$\begin{array}{lll} \theta \ {\rm range} \ {\rm of \ data \ collection} \ I^{\circ} & 2.96-25.19 \\ & -7 \le h \le 7 \\ & -12 \le k \le 12 \\ & -8 \le l \le 8 \\ \\ {\rm Absorption \ correction} & {\rm numerical, \ X-RED}^{[17]} \\ {\rm and \ X-SHAPE}^{[18]} & {\rm o.0353, \ 0.0525} \\ \\ {\rm Completeness \ to \ } \theta = 25.19^{\circ} & 99.6 \% \\ \\ {\rm Structure \ solution} & {\rm SIR92}^{[19]} \\ \\ {\rm Structure \ refinement} & {\rm SHELXL-97}^{[20]} \\ \\ {\rm No. \ of \ refined \ parameters} & 53 \\ \\ {\rm No. \ of \ restraints} & 0 \\ \\ {\rm GooF} & 1.142 \\ \\ {\rm Twin \ law} & -1 \ 0 \ 0, 0 \ 1 \ 0, 0 \ 0 \ 1 \\ \\ {\rm Batch \ scale \ factor \ BASF} & 0.138(4) \\ \\ {\rm R_1, \ wR_2 \ [I > 2\sigma \ (I)]} & 0.0604, 0.1705 \\ \\ {\rm R_1, \ wR_2 \ [all \ data]} & 0.0703, 0.1758 \\ \\ \end{array}$	Wavelength λ /Å	$0.71073 \text{ (Mo-}K_a)$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Absorption coeff. $\mu(\text{Mo-}K_a)$ /mm ⁻¹	2.018
Absorption correction $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	θ range of data collection /°	2.96-25.19
Absorption correction $ -8 \le l \le 8 $ numerical, X-RED ^[17] and X-SHAPE ^[18] $ No. of reflections collected $ (6288 (independent) (905) $ R_{\sigma}, R_{int} $ 0.0353, 0,0525 $ Completeness to \theta = 25.19^{\circ} $ 99.6% $ Structure solution $ SIR92 ^[19] $ Structure refinement $ SHELXL-97 ^[20] $ No. of refined parameters $ 73 No. of restraints 0 $ GooF $ 1.142 $ Twin law $ -1 0 0, 0 1 0, 0 0 1 $ Patch Start Star$	Index ranges	$-7 \le h \le 7$
Absorption correction $\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-12 \le k \le 12$
No. of reflections collected (independent) (905		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Absorption correction	numerical, X-RED ^[17]
$\begin{array}{llllllllllllllllllllllllllllllllllll$		and X-SHAPE ^[18]
$\begin{array}{lll} R_{\sigma}, R_{\rm int} & 0.0353, 0,0525 \\ {\rm Completeness \ to \ } \theta = 25.19^{\circ} & 99.6 \% \\ {\rm Structure \ solution} & {\rm SIR92^{[19]}} \\ {\rm Structure \ refinement} & {\rm SHELXL-97^{[20]}} \\ {\rm No. \ of \ refined \ parameters} & 53 \\ {\rm No. \ of \ restraints} & 0 \\ {\rm GooF} & 1.142 \\ {\rm Twin \ law} & -1 \ 0 \ 0, \ 0 \ 1 \ 0, \ 0 \ 0 \ 1 \\ {\rm Batch \ scale \ factor \ BASF} & 0.138(4) \\ {\rm R_1, \ wR_2 \ [I > 2\sigma \ (I)]} & 0.0604, \ 0.1705 \\ {\rm R_1, \ wR_2 \ [all \ data]} & 0.0703, \ 0.1758 \\ \end{array}$	No. of reflections collected	6288
Completeness to $\theta = 25.19^{\circ}$ Structure solution SIR92 ^[19] Structure refinement SHELXL-97 ^[20] No. of refined parameters 53 No. of restraints 0 GooF 1.142 Twin law -1 0 0, 0 1 0, 0 0 1 Batch scale factor BASF 0.138(4) R_1 , wR_2 [$I > 2\sigma$ (I)] 0.0604, 0.1705 R_1 , wR_2 [all data] 0.0703, 0.1758	(independent)	(905)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	R_{σ} , $R_{\rm int}$	0.0353, 0,0525
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Completeness to $\theta = 25.19^{\circ}$	
No. of refined parameters 53 No. of restraints 0 GooF 1.142 Twin law $-1 \ 0 \ 0, \ 0 \ 1 \ 0, \ 0 \ 0 \ 1$ Batch scale factor BASF 0.138(4) $R_1, \ wR_2 \ [I > 2\sigma \ (I)]$ 0.0604, 0.1705 $R_1, \ wR_2 \ [all \ data]$ 0.0703, 0.1758	Structure solution	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Structure refinement	SHELXL-97 ^[20]
	No. of refined parameters	53
Twin law $-1\ 0\ 0,\ 0\ 1\ 0,\ 0\ 0\ 1$ Batch scale factor BASF $0.138(4)$ $R_1,\ wR_2\ [I>2\sigma\ (I)]$ $0.0604,\ 0.1705$ $R_1,\ wR_2\ [all\ data]$ $0.0703,\ 0.1758$	No. of restraints	0
Batch scale factor BASF 0.138(4) R_1 , w R_2 [$I > 2\sigma$ (I)] 0.0604, 0.1705 R_1 , w R_2 [all data] 0.0703, 0.1758	GooF	1.142
R_1 , w R_2 [$I > 2\sigma$ (I)] 0.0604, 0.1705 R_1 , w R_2 [all data] 0.0703, 0.1758	Twin law	-1 0 0, 0 1 0, 0 0 1
R_1 , w R_2 [all data] 0.0703, 0.1758	Batch scale factor BASF	0.138(4)
	R_1 , w R_2 [$I > 2\sigma(I)$]	0.0604, 0.1705
Largest diff. peak & hole /e·Å ⁻³ 1.635 and -0.418		
	Largest diff. peak & hole /e·Å ⁻³	1.635 and -0.418

a) Further details on the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49-7247-808-666; E-Mail: crysdata@fiz-karlsruhe.de), on quoting the depository number CSD-423037.

As it is common for phosphorus sulfides the structure of γ -P₄S₆ consists of discrete cage-like molecules. The molecular structure can be derived from the P₄ tetrahedron of white phosphorus by introducing four bridging and two terminal sulfur atoms, see Figure 2. A single γ -P₄S₆ molecule exhibits only one symmetry element, a mirror plane through the atoms P(2), P(3), S(3) and S(4). Thus, the molecules are achiral and belong to the point group C_s . The intramolecular distances and angles in γ -P₄S₆ are summarized in Table 4. They are in good agree-

Table 2. Atomic coordinates and equivalent isotropic displacement parameters U_{eq} ^{a)} (in Å²) for γ -P₄S₆.


Atom	Wyck.	х	у	Z	$U_{ m eq}$
P(1)	4 <i>f</i>	0.2485(3)	0.1118(2)	0.2612(4)	0.040(1)
P(2)	2e	0.2046(5)	0.25	0.5084(5)	0.044(1)
P(3)	2e	0.6795(5)	0.25	0.3851(6)	0.053(1)
S(1)	4f	0.1055(3)	0.5460(2)	0.2492(4)	0.051(1)
S(2)	4f	0.5638(3)	0.0890(2)	0.2396(4)	0.053(1)
S(3)	2e	0.1533(6)	0.25	0.0562(6)	0.054(1)
S(4)	2e	0.4878(5)	0.25	0.6368(6)	0.053(1)

a) U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

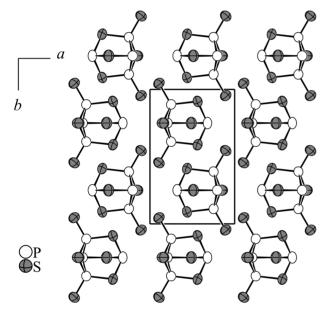
Table 3. Anisotropic displacement parameters U^{ij} (in Å² × 10³) for γ -P₄S₆.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
P(1)	35(1)	39(1)	46(1)	-2(1)	-1(1)	-2(1)
P(2)	39(2)	41(2)	52(2)	0	5(1)	0
P(3)	30(2)	55(2)	74(3)	0	0(2)	0
S(1)	47(1)	43(1)	63(2)	0(1)	-8(1)	7(1)
S(2)	35(1)	48(1)	75(2)	-8(1)	3(1)	5(1)
S(3)	59(2)	45(2)	59(2)	0	-23(2)	0
S(4)	45(2)	58(2)	58(2)	0	-12(2)	0

ment with those in other phosphorus sulfides. The distance P(1)–P(2) is 2.255(4) Å. The exocyclic phosphorus sulfur distance d(P(1)–S(1)) = 1.912(3) Å is as expected shorter than the distances between phosphorus and bridging sulfur atoms which vary in the range from 2.071(5) Å to 2.151(6) Å.

Figure 2. Single γ -P₄S₆ molecule. Ellipsoids are drawn at 75 % probability level.

Table 4. Selected interatomic distances (in Å) and angles (in °) in v-P.S.

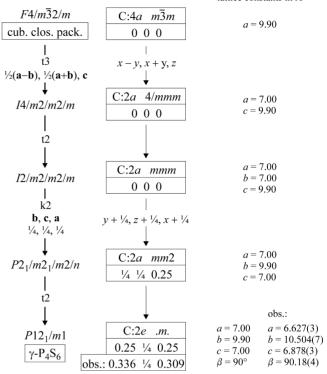

P(1)–S(1)	1.912(3)	$S(1)^{#1}-P(1)-S(2)$	112.9(1)
P(1)-S(2)	2.109(3)	$S(1)^{#1}-P(1)-S(3)$	114.8(2)
P(1)-S(3)	2.118(4)	S(2)-P(1)-S(3)	108.9(2)
P(1)-P(2)	2.255(4)	$S(1)^{#1}-P(1)-P(2)$	121.7(2)
P(2)-S(4)	2.071(5)	S(2)-P(1)-P(2)	104.8(2)
P(3)-S(2)	2.108(4)	S(3)-P(1)-P(2)	91.3(1)
P(3)-S(4)	2.151(6)	S(4)-P(2)-P(1)	101.7(2)
		$P(1)-P(2)-P(1)^{\#1}$	80.1(2)
		$S(2)-P(3)-S(2)^{\#1}$	106.7(2)
		S(2)-P(3)-S(4)	99.6(2)
		P(3)-S(2)-P(1)	103.6(1)
		$P(1)^{#1}$ – $S(3)$ – $P(1)$	86.5(2)
		P(2)-S(4)-P(3)	101.1(2)

#1 symmetry transformation used to generate equivalent atoms: x, $-y+\frac{1}{2}$, z

Zeitschrift für Anorganische Inorganic and General Chemie

lattice constants in Å

Each unit cell contains two equivalent γ-P₄S₆ molecules related by a 2_1 screw axis along b. The shortest intermolecular distances are 3.58(3) Å for P(2)...P(3), 3.41(4) Å for $P(2)\cdots S(1)$ and 3.45(4) Å for $S(1)\cdots S(3)$. Hence, weak van der Waals forces are present between adjacent molecules. Figure 3 shows a section of the crystal structure of γ -P₄S₆ illustrating the molecular arrangement. Considering the cages to be almost spherical it is strongly related to a cubic closest packing of spheres. The symmetry relations are explained with the help of a Bärnighausen tree, see Figure 4. The low symmetry of the molecules enforces a reduction of the space group symmetry. Due to the non-ideal spherical shape of the molecules there are deviations from a perfect fcc packing resulting in a slight shift of the molecular centre from the ideal position and a significant distortion of the lattice. This finding is not surprising since α -P₄S₃, γ -P₄S₃, α -P₄Se₃ and α -As₄S₃ show quite similar deviations, albeit this time from a hexagonal packing of spheres.


Figure 3. Section of the crystal structure of γ -P₄S₆ with view along c.

Note added in proof: In the meantime, the crystal structures of polymeric phosphorus polysulfides α -P₂S₇ and β -P₂S₇ were determined. They show a ratio of P:S < 4:10 and are the first well-characterized crystalline polymeric phosphorus polysulfides. ^[21]

Experimental Section

 P_4S_3 was prepared by reaction of stoichiometric amounts of the elements, phosphorus (Hoechst, 99.999%) and sulfur (Chempur, 99.999%) in an evacuated silica ampoule at 300 °C and purified by recrystallization from toluene (Merck, p.A.). Commercial FeCl $_3$ (Fluka, $>\!98\,\%$) was purified by sublimation in a stream of chlorine gas at 250 °C.

Synthesis of γ -**P**₄**S**₆. Equimolar amounts of P₄S₃ and anhydrous FeCl₃ were dissolved in a 2:1 solvent mixture of dry carbon disulfide and chloroform. The reaction mixture was kept in a Schlenk flask under

Figure 4. Bärnighausen tree relating a cubic closest packing of spheres with the molecular arrangement in γ -P₄S₆. Only the centre of the molecule (C) is displayed.

argon atmosphere for eight weeks. The solvent was then removed by slow evaporation under inert gas conditions at room temperature, yielding some crystals of $\gamma\text{-P}_4S_6$, together with larger amounts of unreacted starting materials. The air- and moisture-sensitive yellow crystals of $\gamma\text{-P}_4S_6$ were manipulated under argon atmosphere in a glovebox and a crystal suitable for the X-ray diffraction analysis was sealed in a glass capillary. The measurement was carried out on a STOE IPDS I diffractometer with $\lambda=0.71073$ Å (Mo- K_a). Further details on the data collection are shown in Table 1.

References

- a) Y. C. Leung, J. Waser, S. van Houten, A. Vos, G. A. Wiegers, E. H. Wiebenga, *Acta Crystallogr.* 1957, 10, 574–582; b) T. K. Chattopadhyay, W. May, H. G. von Schnering, G. S. Pawley, Z. Kristallogr. 1983, 165, 47–64; c) I. Raabe, S. Antonijevic, I. Krossing, Chem. Eur. J. 2007, 13, 7510–7522.
- [2] H. Gruber, U. Müller, Z. Kristallogr. 1997, 212, 662-664.
- [3] a) A. M. Griffin, P. C. Minshall, G. M. Sheldrick, J. Chem. Soc., Chem. Commun. 1976, 809–810; b) P. C. Minshall, G. M. Sheldrick, Acta Crystallogr., Sect. B 1978, 34, 1326–1328; c) C.-C. Chang, R. C. Haltiwanger, A. D. Norman, Inorg. Chem. 1978, 17, 2056–2062.
- [4] a) S. van Houten, E. H. Wiebenga, Acta Crystallogr. 1957, 10, 156–160; b) A. Vos, R. Olthof, F. van Bolhuis, R. Botterweg, Acta Crystallogr. 1965, 19, 864–867.
- [5] A. M. Griffin, G. M. Sheldrick, Acta Crystallogr., Sect. B 1975, 31, 2738–2740.
- [6] R. Blachnik, U. Peukert, A. Czediwoda, B. Engelen, K. Boldt, Z. Anorg. Allg. Chem. 1995, 621, 1637–1643.
- [7] A. Vos, E. H. Wiebenga, Acta Crystallogr. 1955, 8, 217–223.

- [8] D. T. Dixon, F. W. Einstein, B. R. Penfold, Acta Crystallogr. **1965**, 18, 221–225.
- [9] W. Wilmer, Acta Crystallogr., Sect. B 1969, 25, 1229–1232.
- [10] B. Wallis, G. U. Wolf, P. Leibnitz, Z. Anorg. Allg. Chem. 1990, 588, 139-146.
- [11] R. Blachnik, J. Matthiesen, A. Müller, H. Nowottnick, H. Reuter, Z. Kristallogr. - New Cryst. Struct. 1998, 213, 233-234.
- [12] J.-J. Barieux, M. C. Demarcq, J. Chem. Soc., Chem. Commun. 1982, 176-177.
- [13] T. Bjorholm, H. J. Jakobsen, J. Am. Chem. Soc. 1991, 113, 27-
- [14] a) M. E. Jason, T. Ngo, S. Rahman, Inorg. Chem. 1997, 36, 2633-2640; b) M. E. Jason, Inorg. Chem. 1997, 36, 2641-2646.

- [15] H. Nowottnick, R. Blachnik, Z. Anorg. Allg. Chem. 1999, 625, 1966-1968.
- [16] XPREP, Reciprocal Space Exploration, Ver. 2005/2, Bruker AXS, 2005.
- [17] X-RED32, STOE & Cie GmbH, 2004.
- [18] X-SHAPE, STOE & Cie GmbH, 1999.
 [19] A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, G. Polidori, J. Appl. Crystallogr. 1994, 27,
- [20] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112.
- [21] T. Rödl, R. Weihrich, J. Wack, J. Senker, A. Pfitzner, Angew. Chem. Int. Ed. 2011, in press. DOI: 10.1002/anie.201103485.

Received: May 9, 2011 Published Online: August 20, 2011