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Purified flagellar filaments of Halobacterium hal-
obium contain three different protein species based on
sodium dodecyl sulfate-polyacrylamide gel electropho-
resis. These proteins were designated as flagellins Fla
I, FlaII, and Fla III and were characterized as sulfated
glycoproteins with N-glycosidically linked oligosac-
charides of the type GlcA-(1=—4)-GlcA-(1=4)-GlcA-
(1-4)-Glc. All halobacterial flagellin polypeptides are
immunologically cross-reactive.

A gene fragment of one flagellin was isolated in an
expression vector using antibody probes. Using this
gene fragment as probe, we identified, subcloned, and
determined the nucleotide sequences of five different
but highly homologous flagellin genes. Two flagellin
(flg) genes are arranged tandemly at one locus (flg A1
and -2), and the other three in a tandem arrangement
at a different locus (flg B1, -2, and -3), Two flg mRNAs
were detected, one from the A genes and the other from
the B genes. Based on immunological analysis, the
products of the flg A1 and A2 are Fla II and Fla I,
respectively.

The first true glycoprotein discovered in a procaryotic or-
ganism was the cell surface glycoprotein of halobacteria, a
main constituent of the halobacterial S layer (1). The sac-
charide structures of this protein have been analyzed in detail
(2), the gene encoding this procaryotic glycoprotein has been
cloned, and its nucleotide sequence has been determined (3).
Halobacteria synthesize at least three more glycoproteins. A
set of heterogenous sulfated glycoproteins is halobacterial
flagellins (4), originally purified by Alam and Oesterhelt (5)
and designated as Fla I, Fla II, and Fla III. On SDS!-poly-
acrylamide gel electrophoresis these flagellins display a lad-
der-like pattern of different bands with three centers of inten-
sity.

The halobacterial flagellum exhibits unusual biological
properties (5). Halobacteria swim forward by clockwise and
backward by counterclockwise rotation of their right-handed
flagellar bundles. These flagellar bundles do not fly apart
when the sense of rotation changes. The relationship of struc-
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ture to function in this unique flagellum is of obvious interest.
A starting point for such an investigation is the establishment
of the primary structure of all the halobacterial flagellins
involved in formation of the flagellum. In this paper, we
describe the isolation and characterization of five related
genes encoding the halobacterial flagellins.

MATERIALS AND METHODS

Strains, Plasmids, DNA and RNA Preparations—Halobacterium
halobium strain R;M,; was grown in complex medium (6). DNA and
RNA preparations, construction of libraries of halobacterial genomic
DNA in the expression vector pIN-III A, and EMBLA4 were previously
described (3). Oligonucleotides were synthesized on an Applied Bio-
systems DNA synthesizer.

DNA Sequencing—DNA sequencing was performed by the dideoxy
chain termination method (7) using [a-thio-*S]dATP and pUCS as
a vector (8).

Purification of Flagellin Proteins—Isolation of flagellin proteins
was performed according to Ref. 9.

Labeling of DNA Fragments and Oligonucleotides—Double-
stranded DNA fragments were labeled with [a-thio-**S]dATP either
by nick translation (10) or by using random 6-mer oligonucleotides
and the Klenow polymerase to a specific activity of 10° cpm/pg DNA
(11). Oligonucleotides were labeled with [y-*P]ATP using polynucle-
otide kinase to give 6 X 10° cpm/pmol.

Southern Blot Hybridizations—After electrophoresis and denatu-
ration, the DNA fragments were transferred to nitrocellulose mem-
branes (12) and hybridized (10). Using *S-labeled DNA as probes
(10% cpm/ml), the hybridization solution contained 50% formamide
and 50 mM dithiothreitol. The blots were incubated and washed under
standard conditions (10). Hybridization with labeled 3*P-oligonucle-
otides (10° cpm/ml) was in the absence of formamide for 15 h at
42 °C. The blots were washed twice in 2 X SSC, 0.1% SDS at room
temperature followed by a wash in 1 X SSC, 0.1% SDS at 40 °C.

Northern Blot Analysis—RNA and DNA size markers were dena-
tured in 50% formamide containing 2.2 M formaldehyde and 40 mM
Mops, pH 7, at 56 °C for 15 min, followed by 97 °C for 3 min (10).
Total RNA from H. halobium was subjected to electrophoresis in
1.2% agarose gels containing 2.2 M formaldehyde and blotted to Zeta
probe (Bio-Rad). Hybridization (5 X 10° cpm/ml) was in 50% form-
amide (omitted for oligonucleotide probes), 1% SDS, 0.5% nonfat
powdered milk, and 0.01% NaNj;. All other conditions were as de-
scribed for Southern blot hybridizations.

Primer Extension—Total RNA (10 ug) was incubated with 10 fmol
of oligonucleotide primer in 7 gl of RT buffer (50 mM Tris, pH 8.0, 8
mM MgCl;, and 4 mM MnCl;) under two different annealing condi-
tions: 10 min at 70 °C followed by 20 min at 42 °C, or 15 min at 56 °C
and 40 min at room temperature. TTP, dGTP, and dCTP were then
added to final concentrations of 1 mM each, and dithiothreitol to 10
mM. After addition of [a-thio-**S]dATP, the volume was adjusted to
15 ul with RT buffer and the reaction started with 100 units of
Molony murine leukemia virus reverse transcriptase. After incubation
for 30 min at 42 °C the products of the primer extension reaction
were analyzed on a 7% sequencing gel.

Production of Antibodies against Synthetic Peptides—Synthetic
peptides (5 umol), prepared according to the Fmoc synthesis method
on a Labortec SP 640 peptide synthesizer, were coupled to 10 mg of
hemocyanin according to the method described in Refs. 13 and 14.
Peptide-hemocyanin complex (1 mg) dissolved in 500 ul of buffer was
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mixed with 500 ul of Freund’s complete adjuvant and injected sub-
cutaneously into a rabbit. The rabbit was reinjected 2 and 4 weeks
later with 1 mg of peptide adduct/injection. Antiserum was collected
10 days after the final injection. IgG was purified by ammonium
sulfate fractionation.

Western Blot Analysis—Purified flagellins from H. halobium strain
R:M; (9) were separated on 12% SDS-polyacrylamide gels and elec-
trophoretically transferred in buffer containing 25 mM Tris, 114 mM
glycine, pH 8.3 (15), to nitrocellulose sheets at 50 V, 4 °C for 4 h. The
nitrocellulose sheets were dried and stained with antibodies and
fluorescein isothiocyanate-marked goat anti-rabbit IgG, as described
for the immunological screening of the halobacterial gene library (3).

RESULTS

Identification of Flagellin Genes—Polyclonal antibodies
raised against deglycosylated Fla I polypeptide cross-react
with both the Fla II and Fla III polypeptides, indicating a
close relationship of all halobacterial flagellins (4). This an-
tibody was used to screen a genomic library of H. halobium
DNA constructed in the high level expression vector pIN-III A
(16). The vector has the following features: the Escherichia
coli lipoprotein promoter and the 95-bp lac UV 5 promoter-
operator region are inserted in tandem, so that a cloned gene
is expressed only in the presence of lac inducer. Expression
of cloned DNA results in a fusion protein consisting of the
amino-terminal prolipoprotein amino acids followed by the
amino acids encoded by the insert DNA. Screening of 40,000
clones resulted in the identification of a single immunoposi-
tive clone (clone 129). The halobacterial insert DNA of this
clone was transferred into the pUC8 vector and its nucleotide
sequence determined. Since amino acid sequences of peptides
from purified flagella are known (4), the cloned DNA fragment
was identified definitively as part of a flagellin gene. However,
the cloned DNA encoded only 181 amino acids and lacked the
information for the N-terminal portion of the flagellin.

To isolate a complete flagellin gene, a second genomic
library of halobacterial DNA constructed in the phage
EMBLA vector (containing 14-15-kb inserts of halobacterial
DNA (3)) was screened with insert DNA from clone 129. Qut
of 5000 phage, 2 clones gave a hybridization signal and were
subsequently found to contain identical DNA inserts. EcoRI
cleaved the insert DNA once, resulting in 4.5- and 11-kb
fragments. Only the 4.5-kb fragment hybridized with the
flagellin DNA probe and was subsequently subcloned into the
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pUCS vector and sequenced. The strategy of sequencing and
the restriction map are summarized in Fig. 14. The dideoxy
chain termination method was used throughout, using mainly
synthetic 17-mer oligonucleotides and the universal pUC
primers.

The 1983-bp segment of this 4.5-kb EcoRI fragment shown
in Fig. 24 contains an open reading frame (ORF 1) starting
at position 402 and ending at position 992 with a TAA codon.
Three stretches of the predicted amino acid sequence were
confirmed by sequencing of peptides derived from purified
flagella (underlined in Fig. 2). Thus the translation of ORF 1
indeed represents the primary structure of a halobacterial
flagellin molecule.

Surprisingly, ORF 1 is immediately followed by a second
open reading frame (ORF 2) which starts only 11 nucleotides
downstream from the stop codon of ORF 1. The predicted
amino acid sequence from ORF 2 is nearly identical with that
of ORF 1, with 85% of the amino acids conserved in ORF 2.
Thus, ORF 2 encodes another flagellin molecule. Subse-
quently, these tandem genes are called flg A1 and flg A2.

Since purified flagella appear to be composed of three
related glycoproteins, at least one additional flagellin gene
remained to be identified. A comparison of the nucleotide
sequence of original flagellin gene fragment (clone 129) with
flagellin genes Al and A2 revealed an unexpected result: the
flagellin gene fragment was not derived from gene flg Al nor
from gene flg A2, because its variable regions did not match
the corresponding nucleotide sequences. Therefore, the insert
DNA of clone 129 is part of a third flagellin gene. To locate
this additional flagellin gene, genomic DNA of H. halobium
was digested with BamHI and analyzed by a Southern blot
experiment, using the 350-bp EcoRI fragment of clone 129 as
the radioactive probe. Two strong hybridization signals at 5.5
and 15 kb were detected (Fig. 3, lane 2). The DNA was
reprobed with the synthetic oligonucleotides 5 CGGTCCC-
ACTAGCGGTC 3’ and 5° CGGTTGAGCCAGACGTG 3’
(sequences unique to flagellin gene flg A1 and flagellin frag-
ment of clone 129, respectively). The 5.5-kb fragment gave a
positive signal with the clone 129-specific probe (Fig. 3, lane
5); the 11-kb fragment did not. Therefore, the 5.5-kb fraction
from a BamHI digest of genomic DNA was ligated directly
into the vector pUC8 and the resulting transformants probed
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F1G6. 1. Sequencing strategy and restriction maps of the flg A and flg B loci, encoding a total of five
related flagellin proteins. A, the 4.5-kb EcoRI fragment derived from the EMBL 4 genomic library carries two
tandemly arranged flagellin genes, flg Al and flg A2. B, the 5.5-kb BamHI fragment obtained by direct cloning of
size-fractionated BamHI-digested genomic DNA. This fragment carries a cluster of three flagellin genes, flg Bl,
B2, and B3. Sequencing reactions using the universal pUC primers are marked by a dot; all other sequencing
reactions were primed with synthetic 17-mer oligonucleotides.
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AGC
8er

TAC QGC AAC GTC AAC
2yr Gly Asn Val Asn

CGC CAG GCC GCC GGA GCC

Arg Gln Ala Ale Gly Als

CAG TGG
Gln Trp

ATC GaC
Ile G1y

cce
Pro

GAC
Asp

aar
a1y

AGC cco
Ser Pro

AGT TCG
Ser Rer

cTaG
Leu

cra
Leu

AAC AAC
Aen Aen

GCT GAC
Ale Asp

GCC AGC
Als Ser

¢TG
Val

aac
cly

arc
Vel

ATG TAC
Het 2T

ACC
Thr

ACG
Thr

CAG TTC
Gln Leu

ACG GTG
Thr Val

c1C
Leu

CCT GAG
Pro Glu

TC6
Ber

CAC @TC
His Val

GAG AAA
Glu Lys

GTC GAC TAC
Val Asp Tyr

GAC AAC ATC AAC CTC ACG AM TCcC
Asp Asn Il TAr Ber

ACC ACC cTO
Thr ?hr Leu

AAA aCC
Lys Ala

GAA AAC 'C_ACC ACC
Gly [Asn Phe Thr|Thr
GTC GAG CAG TCC GAC
Val Glu Gln Ber isp

CcTC
Leu

aac
ely

AGC TCC
8er Ser

ACC
Thr

CAG TAC
Gln Tyr

AAG GAC
Lys Asp

aaoe
aly

AAA
Lys

TCG
8Ser

AAA
Lys

Gcc
Als

AAC
Asn

oTae
Val

GTG AAC CTC_AC
Val [Asn Leu Thr|

ACG ATC
Thr Ile

TCG AAC
Ser Asn

ACG
Thr

TAC
T

cC
8er

TcG
Ber

GAA
Glu

ATC
Ile

AAG OGO
Lys O1y

arC ATC
Val Ile

ATC
Ile

cac
Arg

‘rCcC
8er

AAG
Lys

aag
Clu

aoT
a1y

GAA GT0
Glu Val

ACC
Thr

AAG
Lys

TAC
T
CT6
Leu

763G OCG
Trp Als

ACC
Thr

arc
Val

TAA GOC
End

GCGCGTTTCGCACCGCCGCCCCCGTTGAACGATATCATTT

GC 7Y

10CT0C

AGGAAAGCGAGAAGGAAA

AACTTAGACGAGC

CGGAACCGGAGGUGATCC

FiG. 2. Nucleotide sequences and predicted amino acid sequences of genes flg Al and flg A2 and of
the genes flg B1, B2, and B3. Numbers on the right indicate nucleotide positions. A4, flg A locus. The first ORF
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Fi1G. 3. Southern blot analysis of genomic DNA. Halobacter-
ial DNA (2 ug/lane) was digested with BamHI (lanes 2, 4, and 5),
separated by electrophoresis in 0.7% agarose, and transferred to a
nitrocellulocse sheet. Radioactive size standards (A HindIII) were
applied to lanes 1, 3, and 6. The filters were hybridized to three
different probes. Lane 2 was probed with the 350-bp EcoRI fragment
of clone 129 which should recognize all related flagellin genes. In lane
4, the flg Al-specific oligonucleotide 5° CGGTCCCACTAGCGGTC
3’ (complementary to positions 617-633 of flg A) was used as the
probe. Lane 5 was probed with the clone 129-specific oligonucleotide
5" CGGTTGAGCCAGACGTG 3’ (complementary to positions 1233-
1249 of flg B).

fla A1 HPEI‘ITDEDEBGQVGIGTLIVFIAHVLVAAIAAGVLINTAGPLQSKGSAT 50

fla A2 50
fla B1 50
fla B2 50
fla B3 50
fla A1 GEEASAQVSNRINIVSAYGNVETASGTDTVDYANLTVRQAAGADNINLSK 100
ZIR K2 cvivioraiom o o eosareioiaiaine o ~===NNEE.D.V......0o00vennn. S. 96
£18 Bl i —===NNEK.D.V..eeununnnnnn. T. 96
£18 B2 i DTBCSTEV. Nohiosrviviin s o o wiuisios S. 100
I8 BB weeenind e s s SReRE T —ee=NSEK. D. Vuoinroinios s & ¢ siniai T. 96
fla A1 STIQWIGPDTATTLTY---DGSTADAENFTTESIKGNNADVLVEQSDRIK 147
£1a A2 ......... A HANAADKTTLG.E.N.T....NNDN...Q..... K 146
£1a Bl ......... Ro.... Y-SSNSPSSLG.N.T.E....SSAD...D..... K 145
fla B2 ......... ... Y---DGTTADA.N.T.N....DNAD...D..... E 147
£la B3 ......... - Y-SSNSPSSLG.N.T.E....NNAD...E..... K 145

fla A1 IVMDAASITTNGLKAGEEVQLTVTTQYGSKTTYWANVPESLKDKNAVTLe 196
fla A2 -.IMY.GGVSSK.GA.D.......ccc0venunnn Niiiis i cnmennie T.e 194

fla B1 -.IMY.SGVSSN.GA.D......coovvvnnnnns Qicie oo vmoins T.e 193
fla B2 I.HDA.EITTNG.KA.E .................. Niie s o'l oisiiaiie T.e 196
fla B3 -.IMY.SGVSST.GS.E....cvcvrveatrnnnns R K. 193

Fic. 4. Comparison of amino acid sequences of flagellin
proteins. The predicted amino acid sequences of all halobacterial
flagellins are arranged for maximum sequence identity. Amino acid
positions common to all five flagellins are indicated by dots. Amino
acid deletions are indicated by dashes.

with the clone 129-specific oligonucleotide. Three of 150
transformants contained the desired flagellin gene. The re-
striction map and the sequencing strategy for this 5.5-kb
fragment are shown in Fig. 1B. The results of the sequencing
experiments are summarized in Fig. 2B. Surprisingly, the
cloned 5.5-kb DNA fragment again contains a flagellin gene
family consisting of a cluster of three closely related genes.
These genes are called flg B1, B2, and B3. The spacing
between each nonoverlapping open reading frame is again 11
nucleotides, i.e. each of the three flagellin genes lies within a
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different reading frame. Each spacer in the two gene families
flg A and B has the conserved nucleotide sequence 5’ CA-
CACACGCTC 3".

Protein Sequence Comparison—In Fig. 4, the predicted
amino acid sequences of all five flagellins are shown arranged
for maximum homology. Large stretches of the amino acid
sequences are highly conserved with the exception of three
variable regions centered around positions 80, 120, and 155,
respectively. These variable regions were used for the synthe-
sis of either oligonucleotides or peptides which would discrim-
inate between the different flagellins (see below). In their N-
terminal region, all flagellins share identical amino acid se-
quences as long as 70 residues. Within this conserved region
the sequence of 19 amino acid residues, Leu-Ile-Val-Phe-Ile-
Ala-Met-Val-Leu-Val-Ala-Ala-Ile-Ala-Ala-Gly-Val-Leu-Ile
(amino acids 19-37) is composed exclusively of hydrophobic
amino acids. This hydrophobic stretch may represent a con-
tact site for a flagellin-flagellin interaction.

Three possible N-glycosylation sites (Asn-X-Thr (or -Ser))
are located in each gene product (boxed amino acid sequences
in Fig. 2). Glycosylations at the second glycosylation sites
encoded by genes flg B1 or flg B3 were confirmed by amino
acid sequencing of peptides derived from purified flagella.
Remarkably, N-glycosylation sites are located immediately to
the C-terminal sides of both the first and second variable
regions of the polypeptide chains.

The calculated molecular masses for the gene products of
flg A1 and A2 are 20,605 and 20,569 daltons, respectively.
Those for the products of genes flg B1, B2, and B3 were
calculated to be 20,437, 20,663, and 20,401 daltons, respec-
tively. The N terminus of flagellin Fla I was resistant to
Edman degradation. Therefore, a modification or processing
at the N terminus may change the actual molecular masses
of the mature flagellin protein.

The National Biomedical Research Foundation protein
data base (17) was searched for sequence similarity between
halobacterial flagellins and other proteins. No significant
relationships were revealed, and in particular, no significant
sequence similarity was detected with the flagellins of Bacillus
subtilis (18), Caulobacter crescentis (19), E. coli (20) and Sal-
monella typhimurium (21).

Expression of Flagellin Genes—To test for in vivo expression
of genes flg A1 and A2 and genes flg B1, B2, and B3, we
hybridized a genomic flagellin sequence to RNAs isolated
from exponentially growing halobacteria. When a flagellin
gene fragment common to all five flagellin genes (EcoRI
fragment of flg B2) was used as the probe, two mRNA species
were detected with chain lengths of approximately 1300 and
1900 nucleotides, respectively (Fig. 5). However, when probed
with oligonucleotides that represented only the nonhomolo-
gous regions of the flagellin genes (specific either for the A or
B genes) we found that the smaller RNA is derived from the
flg A genes and the larger RNA from the flg B gene cluster
(Fig. 5).

The initiation sites for both flagellin mRNAs were deter-
mined by primer extension. To define the initiation site on
the flg A gene, the synthetic oligonucleotide 5 ACAT-
GACTTTTTTGAG 3’ (¢cDNA, nucleotide position 390-405)
was incubated with total RNA and primer extension per-

is located between positions 402 and 992 (gene flg A1). Only 11 nucleotides downstream, the second ORF (gene flg
A2) starts at position 1004 and ends at position 1588. B, flg B locus. Gene flg B1 is located between positions 425
and 1006, flg B2 between 1018 and 1608, and flg B3 between 1620 and 2201. The boxed nucleotide sequences may
represent halobacterial promoters (22). The arrows in flg A and flg B indicate transcription start sites. The boxed
amino acid sequences represent potential N-glycosylation sites. Amino acid sequences confirmed by sequencing of

peptides are underlined.
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Fi1Gc. 5. Northern blot analysis of halobacterial RNA. Total
RNA was extracted from H. halobium, denatured as described under
“Materials and Methods,” and separated by electrophoresis in 1.2%
agarose. Each lane contained 30 ug of RNA, except for lane I which
contained denatured DNA size standards (A HindIII). Northern
transfers were prepared and challenged with a DNA probe hybridizing
to all flg sequences (lane 2) or with oligonucleotide probes specific for
individual flg gene sequences. Lanes 3 and 4 are with the flg Al-
specific probe and the flg B2-specific probe, respectively (see legend
to Fig. 3).

GATC 1o ATE

123

FiG. 6. Mapping of the transcription initiation site of flg A
and flg B. Primer extension experiments were performed as de-
scribed under “Materials and Methods.” Left, the flg Al-specific
oligonucleotide 5 ACATGACTTTTTTGAG 3’ (complementary to
positions 390-405) served as primer (lanes I and 2). The same
oligonucleotide was used in a sequencing experiment (dideoxy chain
termination) with the 4.5-kb DNA fragment carrying the flg A locus
(lanes G, A, T, and C). In lane 3, the primer extension product was
coelectrophoresed with the DNA fragments of lane G. Right, the same
type of experiment was performed with the flg B1-specific oligonucle-
otide 5 ACATGAGTGTGTCGTT 3’ (complementary to positions
413-428 of flg B). Lanes 1, 2, G, A, T, and C are as described above.
The template for the sequencing reaction was the 5.5-kb DNA frag-
ment carrying the flg B locus. In lane 3, the primer extension product
was coelectrophoresed with the DNA fragments of lane A. At both
the flg loci, RNA synthesis is initiated with an adenine nucleotide.

formed with Molony murine leukemia virus reverse transcrip-
tase. The same oligonucleotide was used as a primer in a
Sanger sequencing experiment with the 4.5-kb DNA fragment
as template. The analogous experiment was performed with
an oligonucleotide complementary to nucleotides 413-428 of
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Fi1Gc. 7. Immunological identification of the flg A1 and flg
A2 gene products. Purified flagella (9) containing the related pro-
tein populations Fla I, Fla II, and Fla III were fractionated on a 12%
SDS-polyacrylamide gel, transferred to nitrocellulose, and probed
with an IgG specific for flg Al peptide (lane 1), flg A2 peptide (lane
2), or a polyclonal antiflagellin IgG (lane 3). The unique peptides
used to raise these antibodies are described in the text. Antigen-
antibody complexes were visualized by incubation with fluorescein
isothiocyanate-conjugated anti-rabbit antibodies.

the flg B gene cluster. Messenger RNA synthesis is initiated
on the flg A genes at nucleotide 363, 39 bp upstream of the
first ATG codon, and on the flg B genes at nucleotide 376, 49
bp upstream of the first ATG codon (Fig. 6). The estimated
chain lengths of both mRNAs indicate that they are polycis-
tronic. This is further supported by specific recognition of the
1.9-kb mRNA by an oligonucleotide probe specific for gene
flg B2 (Fig. 5).

A consensus sequence for archaebacterial promoters, based

on RNA polymerase binding experiments is 5’ TTTAI,.?\ATA

3’ and is centered about 25 nucleotides upstream of the
transcription initiation site (22). The upstream sequences of
the transcription initiation sites of flg A and flg B loci support
this hypothesis. At the proposed positions, the flg A and B
loci exhibit the sequences TTTATTAG and TTTTGTAT,
respectively. In addition, the recently cloned gene of the cell
surface glycoprotein also exhibits a similar element, TTTAC-
CAG, at the proposed promoter position (3). As reported for
other halobacterial genes (bacteriorhodopsin (23) and halo-
rhodopsin (24)), a potential ribosome binding site is located
in all flagellins downstream from the initiation AUG codon.
The nucleotide sequence 5° GGGGATC 3’ complementary
(with a single mismatch) to a sequence near the 3’-end of
halobacterial 16 S rRNA (3’ CCACUAG 5’ (25)) is found 39
nucleotides downstream of the AUG initiation codon.
Immunological Identification of Gene Products—The flagel-
lins have regions of variable amino acids around positions 80,
120, and 155. Thus, antibodies raised against these unique
peptide sequences should distinguish between the flagellin
species encoded by the individual flg genes. In particular, the
chemically synthesized peptide Lys-Thr-Ala-Ser-Gly-Thr-
Asp-Thr-Val-Asp (amino acids 72-81 of gene Al) and the
peptide His-Ala-Asn-Ala-Ala-Asp-Lys-Thr-Thr-Leu-Gly-
Glu-Glu (amino acids 112-124 of gene A2) are unique to flg
A1l and A2, respectively. Therefore, these peptides were cross-
linked independently to hemocyanin and used to raise anti-
bodies in rabbits. The resulting antisera were analyzed by
Western immunoblotting. Antibodies against the Al-specific
peptide recognize only Fla II proteins (30 kDa), whereas those
directed against the gene A2-specific peptide selectively bind
to the Fla I (26 kDa) protein family (Fig. 7). This immuno-
logical approach does not allow us to distinguish the gene
products of flg Bl and B3, because only minor variations
occur in the amino acid sequences of these genes. The peptide
Asp-Thr-Ser-Gly-Ser-Thr-Glu-Val-Val-Asn-Tyr (amino acids
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72-82 of gene B2) is unique to the B2 gene product. For
unknown reasons, attempts to raise antibodies against this
peptide failed. Thus, identification of flg B-derived proteins
is only possible after the purification of individual flagellins
and subsequent collection of partial amino acid sequence data.
This (protein-chemical) approach is currently under way.

DISCUSSION

In eubacteria, flagellin is usually encoded by a single gene.
Exceptions are Caulobacter (19, 26) and Bdellovibrio (27), in
which different types of flagellin are encoded by at least three
and two genes, respectively. On SDS-polyacrylamide gels,
purified halobacterial flagella, even after reversible dissocia-
tion, display a ladder-like pattern of bands with three distinct
centers of intensity at positions corresponding to 26, 30, and
36 kDa. This pattern suggests three different flagellin poly-
peptides with variable extents of modification, e.g. glycosyla-
tions (4). The results described in this paper demonstrate
that the structural organization of the halobacterial flagellum
is even more complex. We cloned and determined the nucleo-
tide sequences of five closely related flagellin genes, all of
which appear to be expressed. Thus, the heterogenous ap-
pearance of halobacterial flagellins is explained by at least
two different types of structural variations. The polypeptides
appear in five different variants with each polypeptide pos-
sessing three N-glycosylation sites. The sulfated oligosaccha-
rides linked to these glycosylation sites show structural vari-
ation with respect to glucuronic acid content and degree of
sulfation (28).

Glycosylation of proteins in halobacteria is selectively in-
hibited in vivo by removal of Mg®* ions in the growth medium
(2, 6). Under these conditions, the molecular masses of newly
synthesized flagellins are shifted toward lower values, the 26-
kDa flagellin to 19 kDa, the 30-kDa flagellin to 23 kDa, and
the 36-kDa flagellin to 29 kDa. The same shifts in apparent
molecular masses are observed upon treatment of purified
flagellins with anhydrous hydrogen fluoride (4). This treat-
ment deglycosylates glycoproteins (29). Since all of the flg
gene products code for polypeptides with molecular masses
around 20 kDa, the appearance of deglycosylated flagellins
with molecular masses of 23 and 29 kDa is an unexpected
observation. Possibly, another modification of the flagellin
molecules, insensitive to hydrogen fluoride treatment, re-
mains to be discovered.

Glycosylation of halobacterial glycoproteins (including the
flagellins) occurs at the extracellular surface of the cell mem-
brane (2, 30). As a consequence, the flagellin polypeptides
must be translocated across the cell membrane before glyco-
sylation. If so, aggregation to a functional flagellum is likely
to occur by a mechanism different from that proposed for the
assembly of eubacterial flagella. This latter mechanism as-
sumes transport of flagellin through the central channel of
the hook to its tip (31, 32).

At this time, the stoichiometry of the five gene products in
the halobacterial filament is unknown. Now that we know the
primary structure of all flagellins, we plan to raise additional
antisera against synthetic peptides. These antisera should
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allow by immune electron microscopy a detailed investigation
of the structural organization of the halobacterial flagellum.
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