Preparative, Structural, and Electrochemical Investigations on Peralkylated Niobocene Dichlorides and Difluorides[†]

Henri Brunner, Günther Gehart, Walter Meier, and Joachim Wachter*

Institut für Anorganische Chemie der Universität Regensburg, D-93040 Regensburg, Germany

Astrid Riedel

Institut für Biophysik und Physikalische Biochemie der Universität Regensburg, D-93040 Regensburg, Germany

Soumia Elkrami and Yves Mugnier

Laboratoire de Synthèse et d'Electrosynthèse Organométalliques, associé au CNRS (URA 1685), Université de Bourgogne, F-21100 Dijon, France

Bernd Nuber

Institut für Anorganische Chemie der Universität Heidelberg, D-69120 Heidelberg, Germany

Received July 6, 1993[®]

 $Cp^{\dagger}_{2}NbCl_{2}$ ($Cp^{\dagger} = \eta^{5}-C_{5}Me_{4}Et$) (1b) was synthesized from NbCl₅ and a slight excess of $Cp^{\dagger}Li$ and NaBH₄. Its electrochemical (2 e⁻, $E_{1/2} = -1.6$ V) and chemical reduction (2 equiv of Na/Hg) was studied showing that peralkylation of the Cp ligand facilitates two-electron reduction compared to less substituted Cp2NbHal2 derivatives. The reduced solutions of Cp*2NbCl2 (Cp* = C_5Me_5 (1a) and of 1b were shown by means of EPR spectroscopy to contain two new paramagnetic species 1A,B for which bent niobocene ($A_{Nb} = 100$ G) and fulvene-like structures $(A_{\rm Nb} = 55 \text{ G})$ are proposed. The high reduction potential of these species led in their reaction with HPF₆ to the first stable diffuoroniobocene derivative, $[Cp^{\dagger}_2NbF_2]PF_6$ (2), in good yield. The molecular structures of 2 and a cocrystallizate of 2 and $[Cp_{2}NbCl_{2}]PF_{6}$ (3), analyzing as $[Cp_{2}NbCl(Cl,F)]PF_{6}$ (4), were studied by X-ray diffraction techniques. Comparison with the structure of 1b shows a marked decrease of the angle Hal-Nb-Hal from 102.3(4)° (2) to 85.2(1)° (1b). Electrochemical 1 e⁻ reduction of 2 gave rise to the formation of $Cp^{\dagger}_{2}NbF_{2}$, which exhibits a much lower potential ($E_{1/2} = -2.38$ V) than other niobocene dihalides. Reaction of 2 with Li₂S₂ gave $Cp_{2}Nb(\eta - S_{2})F$, whereas 3 was reduced by $Li_{2}S_{2}$ to give 1b.

Introduction

Niobocene dihalides Cp₂NbHal₂ represent a class of widely investigated organometallic compounds exhibiting interesting electronic and structural properties.^{1,2} Their potential in synthesis is based on the ability to undergo metathetical reactions and to form lower Nb oxidation states by chemical³ or electrochemical reduction.⁴ Such compounds are of actual interest because of their application in catalysis^{1,5} and the activation of small molecules.⁶

The stability of the paramagnetic and coordinatively unsaturated Cp₂NbHal₂ compounds was ascribed to a balance between electronic (general preference for higher Nb oxidation states) and steric factors (three ligands in addition to both Cp's would result in a crowded coordination sphere).¹ Therefore, it is rather surprising that only little is known on more substituted Cp derivatives although the influence of e.g. multiple alkylation has been investigated in many other organometallic compounds. One reason may be the lack of a convenient synthesis for peralkylated niobocene halides. The method developed for Cp_2NbCl_2 (1a) by Bercaw et al.⁷ has to pass through Cp*2NbBH4, a compound known for a laborious preparation.8 We now wish to report on a rational synthesis of $Cp_{2}hbCl_{2}$ (1b) as well as the evaluation of its reduction chemistry in comparison to lower substituted niobocene derivatives. The nature of the generated Nb(II) species will be discussed, including an example for application in the synthesis of new niobocene fluoride derivatives.

Experimental Section

Syntheses. All procedures were carried out under argon (as far as handling of NbCl₅ was concerned) or nitrogen with N₂-

[†] Abbreviations employed throughout the text: Cp = any substituted cyclopentadienyl ligand; Cp' = tert-butyl-, Cp* = pentamethyl-, and Cp[†]

ethyltetramethylcyclopentadienyl. • Abstract published in Advance ACS Abstracts, November 15, 1993. (1) Labinger, J. A. In Comprehensive Organometallic Chemistry;
 Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford,
 U.K., 1982; Vol. 3, p 766.
 (2) Hunter, J. A.; Lindsell, W.E.; McCullough, K.J.; Parr, R. A.; Scholes,

M. L. J. Chem. Soc., Dalton Trans. 1990, 2145.

^{(3) (}a) Lemenovski, D. A.; Fedin, V. P. J. Organomet. Chem. 1977, 132, C11. (b) Lemenovski, D. A.; Baukova, T. V.; Fedin, V. P. Ibid. 1977, 132, C14.

^{(4) (}a) Fakhr, A.; Mugnier, Y.; Broussier, R.; Gautheron, B.; Laviron, E. J. Organomet. Chem. 1986, 317, 201. (b) Nabaoui, H.; Fakhr, A.; Mugnier, Y.; Antinolo, A.; Fajardo, M.; Otero, A.; Royo, P. J. Organomet. Chem. 1988, 338, C17. (c) Nabaoui, H.; Mugnier, Y.; Fakhr, A.; Laviron, E.; Antinolo, A.; Jalon, F.-A.; Fajardo, M.; Otero, A. J. Organomet. Chem. 1989. 375. 67.

⁽⁵⁾ Fredericks, S.; Thomas, J.-L. J. Am. Chem. Soc. 1978, 100, 350. Eckart, E. H.; Brintzinger, H. H. J. Organomet. Chem. 1978, 148,
 Bristow, G. S.; Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1981, 1145. Fu, P.-F.; Khan, M. A.; Nicholas, K. M. Organometallics 1992, 11, 2607.

⁽⁷⁾ Bell, R. A.; Cohen, S. A.; Doherty, N. M.; Threlkel, R. S.; Bercaw, J. E. Organometallics 1986, 5, 972. (8) Brunner, H.; Gehart, G.; Meier, W.; Wachter, J.; Wrackmeyer, B.;

Nuber, B.; Ziegler, M. L. J. Organomet. Chem. 1992, 436, 313.

Table 1. Crystal Data and Data Collection Parameters for Cp[†]₂NbCl₂ (1b), [Cp[†]₂NbF₂]PF₆ (2), and [Cp[†]₂NbCl(Cl,F)]PF₆ (4)

	1b	2	4
mol formula	NbCl ₂ C ₂₂ H ₃₄	NbF ₈ PC ₂₂ H ₃₄	NbCl1 67F6 33PC22H34
fw	462.3	574.4	601.83
cryst syst	monoclinic	monoclinic	monoclinic
space group	$C2_{h}^{2}$, $P2_{1}/m$ (No. 11)	$C2_{h}^{5}, P2_{1}/c$ (No. 14)	$C2_{h}^{5}$, $P2_{1}/c$ (No. 14)
cell dimens			
a, Å	8.248(2)	13.35(1)	10.898(5)
b, Å	17.939(5)	11.72(1)	8.667(4)
c, Å	8.452(3)	15.88(2)	27.56(1)
β, deg	118.99(2)	100.14(7)	101.17(4)
V, Å ³	1093.9	2445.8	2553.8
Z	2	4	4
<i>T</i> , K	296	296	296
d _{cale} , g-cm ⁻³	1.40	1.56	1.56
linear abs, μ , cm ⁻¹	7.8	6.0	7.3
F(000)	482	1176	1224
radiation, A	$\lambda(Mo K\alpha) = 0.71073$	λ (Mo K α) = 0.710 73	$\lambda(Mo K\alpha) = 0.71073$
scan type	ω	ω-δ	ω
rflns measd	h, 0-12; k, 0-26; l, -12 to 12	h, -14 to 14; k , 0-12; l , 0-16	h, 0–16; k, 0–13; l, –39 to 39
2θ range, deg	360	3-44	3-60
no. of rflns measd	3474	3710	8149
abs cor; range of transmissn	empirical, 7 rflns; $9.0 < 2\theta < 42.0$	empirical, 4 rflns; $5.0 < 2\theta < 21.0$	empirical, 8 rflns; 7.6 $< 2\theta < 46.2$
no. of unique obsd data	$2771, I > 2.5\sigma(I)$	$1416, I > 2.5\sigma(I)$	$4998, I > 2.5\sigma(I)$
no. of params (NV)	109	180	291
R(F)	0.059	0.068	0.054
$R_{\mathbf{w}}(F)$	0.059	0.057	0.049
GOF	4.19	2.05	3.10
o, residual, e-Å-3	1.07	0.56	0.71

Table 2. Atomic Coordinates (\times 10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for (C₅Me₄Et)₂NbCl₂ (1b)

atom	x	у	Z	$U_{eq}{}^a$
Nb	2374(1)	2500	8378(1)	28(1)
Cl1	-928(3)	2500	6083(3)	59(1)
C12	1243(3)	2500	10589(3)	54(1)
C1	2037(12)	3822(5)	8250(13)	33(2)
C2	2324(14)	3617(5)	6765(11)	30(2)
C3	4220(13)	3339(5)	7541(12)	37(2)
C4	5077(13)	3368(5)	9477(13)	35(2)
C5	3595(18)	3677(8)	9885(18)	47(4)
C6	366(17)	4222(7)	8075(16)	67(3)
C7	1134(16)	3728(6)	4760(14)	61(3)
C8	5193(16)	3202(6)	6508(15)	61(3)
C9	7009(17)	3251(7)	10767(16)	66(3)
C10	4037(16)	3880(6)	11776(14)	57(3)
C11	4775(20)	4724(7)	12222(17)	71(3)
C21	2142(15)	1148(6)	9060(16)	32(2)
C22	1615(16)	1184(6)	7137(17)	38(3)
C23	3123(21)	1436(7)	7000(17)	36(3)
C24	4655(17)	1519(7)	8728(17)	35(3)
C25	4047(17)	1359(6)	10032(15)	16(2)
C26	901(21)	825(9)	9710(19)	65(4)
C27	-245(25)	908(10)	5577(22)	80(5)
C28	3410(28)	1412(11)	5266(24)	94(6)
C29	6689(25)	1555(10)	9362(23)	81(5)
C30	5103(18)	1319(7)	12079(16)	43(3)
C31	5792(21)	522(8)	12626(18)	54(4)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

saturated, dry solvents. Li₂S₂ was prepared from S₈ and LiEt₂-BH in THF as a 0.5 M solution.⁹

Elemental analyses were performed by the Mikroanalytisches Laboratorium, Universität Regensburg. IR spectra were obtained with a Beckman 4240 spectrophotometer. Field desorption mass spectra were run on a Finnigan MAT 95 instrument. NMR spectra were recorded on Bruker WM 250 and WM 400 instruments, and EPR spectra were taken at the X-band with Bruker ER 200 and ESP 300 spectrometers.

Electrochemical Equipment and Cells. Voltammetric analyses were carried out in a standard three-electrode cell with

Table 3. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for [(C₅Me₄Et)₂NbF₂]PF₆ (2)

atom	x	у	Z	$U_{\rm eq}{}^a$
Nb	2274(1)	2185(1)	357(1)	35(1)
F1	2398(6)	2806(9)	1489(4)	68(4)
F2	1650(7)	743(8)	472(6)	72(4)
C1	3570(12)	1460(14)	-424(9)	45(5)
C2	3547(12)	690(14)	239(9)	39(4)
C3	3902(11)	1325(14)	971(9)	42(5)
C4	4095(12)	2466(13)	817(9)	44(5)
C5	3913(11)	2580(13)	-105(8)	40(5)
C6	3434(12)	1132(13)	-1374(8)	50(5)
C7	3302(12)	-528(13)	167(9)	63(5)
C8	4044(12)	829(13)	1880(8)	62(6)
C9	4529(12)	3425(14)	1410(9)	68(6)
C10	4284(11)	3577(13)	-577(9)	49(5)
C11	5394(12)	3349(15)	-672(10)	83(7)
C21	821(11)	2334(15)	-799(9)	48(5)
C22	434(11)	2611(13)	8(9)	40(5)
C23	900(11)	3608(13)	297(9)	36(4)
C24	1595(11)	4003(12)	-196(9)	32(4)
C25	1494(11)	3242(12)	-923(9)	34(4)
C26	503(12)	1340(14)	-1389(9)	71(6)
C27	-351(11)	1881(13)	259(9)	61(6)
C28	692(11)	4209(13)	1088(8)	52(5)
C29	2141(11)	5123(13)	-96(9)	54(5)
C30	1824(12)	3566(14)	-1773(9)	58(5)
C31	954(12)	4165(14)	-2360(9)	61(5)
P 1	2477(5)	7765(8)	7575(4)	90(3)
F11	3184(12)	7802(18)	8411(8)	214(11)
F12	1854(11)	8728(16)	7929(10)	181(11)
F13	1781(12)	7764(18)	6723(8)	200(11)
F14	3093(18)	6848(19)	7248(13)	284(16)
F15	1761(19)	6936(17)	7900(11)	242(15)
F16	3080(16)	8699(21)	7254(12)	247(15)

^{*a*} Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

a Tacussel UAP4 unit. The reference electrode was a saturated calomel electrode separated from the solution by a sintered glass disk. The auxiliary electrode was a Pt wire. For all voltammetric measurements the working electrode was a Pt disk electrode (surface area: 3.1 mm^2) which was initially polished with alumina of decreasing particle size (down to 0.05 mm). For the polarograms, a three-electrode Tacussel Tipol polarograph was used. The dropping Hg electrode characteristics were $m = 3 \text{ mg} \cdot s^{-1}$ and

⁽⁹⁾ Gladysz, J. A.; Wong, V. K.; Jick, B. S. J. Chem. Soc., Chem. Commun. 1978, 838.

Table 4. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for [(CeMe_Et)_NbCl(CLF)]PF6 (4)

	[(034)=1			
atom	x	у	Z	U_{eq}^{a}
Nb	2015(1)	3155(1)	5940(1)	35(1)
Cl1	1567(2)	5802(1)	5832(1)	70(1)
C12	106(2)	2282(2)	5562(1)	73(1)
C1	2010(6)	4101(6)	6782(2)	65(2)
C2	3091(5)	3207(7)	6800(2)	59(2)
C3	2691(4)	1665(5)	6702(2)	47(2)
C4	1392(4)	1637(5)	6602(2)	45(2)
C5	957(5)	3163(6)	6641(2)	54(2)
C6	2021(8)	5746(6)	6955(2)	121(4)
C7	4421(6)	3711(9)	7024(2)	108(3)
C8	3478(6)	236(7)	6832(2)	89(3)
C9	585(6)	223(6)	6515(2)	90(3)
C10	-402(6)	3621(8)	6600(2)	100(3)(5)
C11	2672(4)	3633(5)	5142(2)	43(1)
C12	2365(4)	2054(5)	5143(2)	50(2)
C13	3175(5)	1332(5)	5532(2)	49(2)
C14	4062(4)	2457(5)	5762(2)	43(1)
C15	3714(4)	3884(5)	5522(2)	39(1)
C16	2054(5)	4783(6)	4765(2)	65(2)
C17	1389(6)	1270(7)	4756(2)	84(3)
C18	3247(6)	-399(5)	5610(2)	78(3)
C19	5341(4)	2132(6)	6066(2)	63(2)
C20	4431(5)	5353(5)	5623(2)	60(2)
C21	-817(7)	3369(10)	7088(2)	157(5)
C22	6218(5)	1691(7)	5722(2)	83(3)
P 1	2930(2)	2613(2)	8350(1)	59(1)
F11	2359(5)	2175(5)	7814(1)	146(3)
F12	4304(4)	2500(6)	8263(2)	160(3)
F13	3544(5)	3030(4)	8898(1)	131(2)
F14	1589(4)	2662(6)	8461(2)	147(3)
F15	3019(3)	869(4)	8508(1)	99(2)
F16	2888(6)	4335(4)	8204(2)	173(3)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

E = 0.5 s. For controlled-potential electrolysis, a mercury pool was used as cathode and a Pt plate as anode, the latter being separated from the solution by a sintered glass disk. High-scale electrolyses were carried out in a cell with three compartments being separated with fritted glasses of medium porosity. In all cases, the electrolyte was a 0.2 M solution of n-Bu₄NPF₆ in THF or CH₂Cl₂. The electrolyses were performed with an Amel 552 potentiostat coupled to an Amel 721 electronic integrator.

Preparation of Cp[†]₂NbCl₂ (1b). A suspension of 2.32g (14.83 mmol) of LiCp[†] and 0.35 g (9.27 mmol) of NaBH₄ in 80 mL of dimethoxyethane was cooled to -78 °C. Under argon 1.67 g (6.18 mmol) of NbCl₅ was added with efficient stirring. The resulting light-brown mixture was allowed to warm to 25 °C and then refluxed for 15 h. The following workup was carried out under nitrogen. After evaporation of the solvent the resulting green oil was washed with pentane to remove the oily components and blue $Cp_2Nb_2(\mu-B_2H_6)Cl_2^8$ and then dried. The green solid was sublimed at 200 °C (0.1 Pa, 50% yield). Additional 1b (10% yield) was obtained by chromatographic workup (SiO₂, column 20×3 cm; 10:1 toluene/ether as eluent) of the pentane extracts. Analytically pure samples were obtained by recrystallization from CH₂Cl₂ as green needles. Anal. Calcd for C₂₂H₃₄Cl₂Nb: C, 57.16; H, 7.41; mol wt, 462.3. Found: C, 57.20; H, 7.18; mol wt, 461.5 (FD-MS from CH₂Cl₂).

Preparation of [Cp[†]₂NbF₂]PF₆ (2). A 300-mg amount (0.65 mmol) of 1b was dissolved in 50 mL of THF and stirred over Na/Hg containing 2.60 mmol of Na in 10 mL of Hg for 1 h. After separation of the orange-brown solution from the amalgam, 1 mL of HPF₆ (75% in H₂O, 15-fold excess) was added. Spontaneous evolution of H₂ and a significant color change from orange-brown to red-brown was observed. After stirring of the mixture for 1 h, the solvent was removed under vacuum to give a dark oil. Washing with ether gave an orange-yellow solid, which was dissolved in CH₂Cl₂. After filtration and evaporation of the solvent 2 was obtained in 62% yield. Recrystallization from 5:1 CH₂Cl₂/toluene at -25°C gave orange crystals. Anal. Calcd for

C₂₂H₃₄F₈PNb (2): C, 46.00; H, 5.97; mol wt, 574.4. Found: C, 45.63; H, 5.95; mol wt, 429.4 (FD-MS from CH₂Cl₂; calcd 429.4 for C₂₂H₃₄F₂Nb). ¹H-NMR (CDCl₃): δ 1.05 (t, 6), 2.10, 2.17 (s, 24), 2.69 (q, 4). ³¹P-NMR (CDCl₃): δ -145.74 (sep, J_{P-F} = 712 Hz); ¹⁹F-NMR: δ -73 (d), 80 (br). IR (KBr): ν_{P-F} 843, 556 cm⁻¹; ν_{Nb-F} 598, 581 cm⁻¹.

If only 1.5 equiv of HPF₆ was added to the reduced solution of 1b, complex 2 was obtained in 50% yield (same workup as described above). This product is contaminated with $[Cp_{2}NbCl_{2}]$ -PF₆(3). The ether extract was evaporated and then washed with toluene to remove traces of 1b. Recrystallization from 1:1 CH₂-Cl₂/toluene gave red crystals of 3 still containing varying amounts of 2. Examination of a crystal by X-ray diffraction resulted in the adventitious composition $[Cp_{2}NbCl(Cl,F)]PF_{6}$ (4). C, H analyses gave values between those for 2 and 3.

Preparation of $[Cp_{2}NbCl_{2}]PF_{6}$ (3). (a) From 2 and Concentrated HCl. A mixture of 140 mg (0.24 mmol) of 2, 30 mL of CH₂Cl₂, and 3 mL of concentrated HCl was stirred for 60 min. After removal of the aqueous phase, the solvent was evaporated to give 3. Recrystallization from 1:1 CH₂Cl₂/toluene gave red-violet crystals. Anal. Calcd for C₂₂H₃₄Cl₂F₆PNb: C, 43.51; H, 5.64; mol wt, 607.3. Found: C, 43.71; H, 5.35; mol wt, 461.4 (FD-MS from CH₂Cl₂; calcd 462.34 for C₂₂H₃₄Cl₂Nb). IR (KBr): ν_{P-F} 840, 565 cm⁻¹.

(b) From Oxidation of 1b by $[(C_5H_5)_2Fe]PF_6$. A solution of 170 mg (0.37 mmol) of 1b and 122 mg (0.37 mmol) of $[(C_5H_5)_2-Fe]PF_6$ in 30 mL of THF was stirred for 1 h. After evaporation of the solvent $(C_5H_5)_2Fe$ was extracted with 20 mL of toluene. The solid residue was dissolved in 20 mL of CH_2Cl_2 , the solution was filtered, and then the solid recrystallized from 1:1 $CH_2Cl_2/$ toluene at -25°C to give red-violet 3 in 90% yield.

Reaction of 2 with Li₂S₂. A mixture of 140 mg (0.24 mmol) of 2, 0.24 mmol of Li₂S₂, and 40 mL of THF was stirred at room temperature. After 2 h the solvent was removed under vacuum. With chromatography on SiO₂ (column 10 × 3 cm), a red-brown band was eluted with ether containing Cp[†]₂NbS₂F (5) in 40% yield. 5 was recrystallized from 1:1 toluene/ether. Anal. Calcd for C₂₂H₃₄FNbS₂: C, 55.70; H, 7.22; mol wt, 474.6. Found: C, 55.85; H, 7.14; mol wt, 474.4 (FD-MS from toluene). ¹H-NMR (CDCl₃): δ 0.97 (t, 6), 1.77 (d, J_{H-F} = 0.8 Hz; 6), 1.79 (s, 6), 1.82 (s, 6), 1.83 (d, J_{H-F} = 1.1 Hz, 6), 2.21 (m, 4). IR (KBr): ν_{Nb-F} 538 cm⁻¹, ν_{S-S} 485 cm⁻¹.

X-ray Crystallography and Structure Solution. Data were collected on a Syntex R3 (1b, 4) or a Siemens Stoe AEDII diffractometer (2) at room temperature. Relevant crystal and data collection parameters are given in Table I. The structures were solved by using standard Patterson methods, least-squares refinement, and Fourier techniques. All calculations were performed with the SHELXTL PLUS program.¹⁰

 $Cp^{\dagger}_2NbCl_2$ (1b). A green prism of the dimensions $0.1 \times 0.1 \times 0.4 \text{ mm}^3$ was obtained from CH_2Cl_2 . The unit cell was determined and refined from 27 reflections ($4.5 < 2\theta < 26^\circ$) to be monoclinic. Cell reduction alternatively gave an orthorhombic C cell, but from intensity measurements (two pairs of equal intensities instead of four equal intensities for symmetry-related reflections) a monoclinic cell followed unequivocally. The solution of the structure required the assumption of a mirror plane with a statistical distribution of the ring carbons (56:44\%). For this reason only Nb and Cl atoms were refined anisotropically; the hydrogen atoms have not been calculated.

 $[Cp_{2}NbF_{2}]PF_{6}$ (2). A yellow needle of the approximate dimensions $0.06 \times 0.08 \times 0.95 \text{ mm}^{3}$ was obtained from $10:1 \text{ CH}_{2}$ -Cl₂/toluene. The unit cell was determined and refined from 24 reflections ($8 < 2\theta < 22^{\circ}$). Because of the limited number of reflections, only the Nb, F, and P atoms were refined anisotropically. The PF₆ anion was slightly disordered. The hydrogen atoms were included riding on calculated positions (HFIX option of SHELXTL¹⁰).

⁽¹⁰⁾ SHELXTL PLUS (release 3.4), Siemens Analytical X-Ray Instruments, 1989.

Table 5. Electrochemical^a and Electron Spin Resonance^b Data for Niobocene Dihalide Derivates

compd	$E_{1/2(\text{Red})}, V$	$E_{1/2(O_{R})}, V$	Aiso, G	Biso	ref
$(C_5Me_5)_2NbCl_2$ (1a)	-1.60	+0.04	109.4	2.0019	this work
$(C_5Me_4Et)_2NbCl_2$ (1b)	-1.61	+0.07	115.4	1.999	this work
$(C_5Me_4Et)_2NbF_2$	-2.38	-0.38	114.2 (A _{Nb}) 20 (A _F)	1.956	this work
$(C_{5}H_{4}SiMe_{3})_{2}NbCl_{2}$	-1.19	+0.34	115.4	2.0018	4b
$[1,3-C_{5}H_{3}(SiMe_{3})_{2}]_{2}NbCl_{2}$	-1.28	+0.40	112.7	1.989	4c
(C ₅ H ₄ CMe ₃) ₂ NbCl ₂	-1.27	+0.26	109.3	1.997	this work
(C ₅ H ₅) ₂ NbCl ₂	-1.29	+0.36	112.4	2.0075	4a

^a THF with 0.2 M *n*-Bu₄NPF₆; dropping Hg electrode ($m = 3 \text{ mg} \cdot \text{s}^{-1}$, $\tau = 0.5 \text{ s}$); potentials vs SCE. ^b THF, 20 °C.

Figure 1. Structure of 1 (ORTEP plot). The thermal ellipsoids are drawn at a 50% probability level.

[Cp[†]₂NbCl(Cl,F)]PF₆ (4). A dark red irregular crystal of the dimensions $0.4 \times 0.5 \times 0.6 \text{ mm}^3$ was obtained from 1:1 CH₂Cl₂/ toluene. The unit cell was determined and refined from 23 reflections ($4 < 2\theta < 38.3^{\circ}$). All non-hydrogen atoms were included riding on calculated positions (HFIX option of SHELX-TL¹⁰). The occupancy factor of Cl2 is 0.85; this means about $^2/_3$ of the site are occupied by Cl and $^1/_3$ by F atoms.

Results and Discussion

 $Cp_{2}NbCl_{2}$ (1b) was synthesized from NbCl₅ and 2.4 equiv of Cp[†]Li in boiling dimethoxyethane. As reducing agent 1.5 equiv of NaBH₄ was employed, which gave also rise to the formation of a dinuclear complex comprising the $B_2H_6^2$ - unit as bridging ligand.⁸ Cp*₂NbCl₂ (1a) was obtained by the same procedure in about 50% yield.⁸ The green complexes 1a,b exhibit ten-line (93 Nb, $I = ^{9}/_{2}$) EPR spectra (Table V) with g values and coupling constants typical of Cp₂NbCl₂ derivatives.² These parameters are not significantly influenced by the nature of the Cp ligand. The same observation is valid for the solid-state structure of 1b when compared to that of $(C_5H_5)_2NbCl_2$.¹¹ An X-ray diffraction analysis of 1b (Figure 1; Tables II and VI) reveals the same pseudotetrahedral geometry and an angle Cl1-Nb-Cl2 (85.2(1)°) very close to that in the unsubstituted complex (85.6°). The Cp rings are disordered in a way that they give rise to a statistic distribution of 56 and 44%, respectively. As a consequence larger standard deviations for the ring carbon parameters are noted.

Table 6. S	Selected	Distances	and	Angle	for	1b
------------	----------	-----------	-----	-------	-----	----

	Distan	ices (Å)	· · · · ·
Nb-Cl1	2.461(2)	Nb-C5	2.418(13)
Nb-Cl2	2.460(3)	Nb-C21	2.521(11)
Nb-C1	2.383(8)	Nb-C22	2.536(12)
Nb-C2	2.413(9)	Nb-C23	2.466(15)
Nb-C3	2.476(11)	Nb-C24	2.488(13)
Nb-C4	2.500(10)	Nb-C25	2.485(11)
	Angle	e (deg)	

Cl1-Nb-C12 85.2(1)

Electrochemical studies of 1a,b showed that an exhaustive electrolysis at the potential of the reduction wave (-1.6 V for both complexes) consumed 2 equiv of electrons. This means a significant difference compared to the other Cp₂NbCl₂ derivatives investigated thus far,⁴ which generally do not consume more than 1 e⁻. The influence of the peralkylated Cp ligands is also expressed by a drastic shift to more negative reduction potentials when compared to the lower substituted compounds (Table V). From several experiments solutions were obtained whose EPR spectra exhibit multiline spectra of two new paramagnetic species which are similar to those obtained by 2e⁻ chemical reduction of 1a;b.

The reduction of 1a,b with 2 equiv of Na/Hg was monitored by EPR spectroscopy. In dimethoxyethane, toluene, and THF a simple ten-line spectrum ($A_{\rm Nb} = 55$ G) was obtained for sublimed starting material (Figure 2a). Additional, but not well-resolved, satellites for the inner signals may be interpreted as Nb-H couplings of the order of 11 G. All reduced solutions are very sensitive to air and moisture rendering the investigations very difficult. The EPR spectra of recrystallized samples are more complex, for they contain three paramagnetic Nb species (Figure 2b). Spectrum analysis shows the presence of 1a (or 1b), traces of the spectrum type shown in Figure 2a, and a third species of coupling constant $A_{\rm Nb} = 100$ G. The value of this coupling is close to that observed for " $(C_5H_5)_2Nb$ " so that a bent 15 e⁻ niobocene structure 1A may be assumed by analogy. Unsubstituted niobocene has been independently obtained by two different ways, 3a, 12 and because of its simple ten-line spectrum (g = 2.001, $A_{\rm Nb}$ = 103 G) association of two or more molecules or solvent coordination at the niobium center has been excluded.13

It is not yet clear how the different EPR signals can be influenced by external factors. Neither influence of different solvents nor of N_2 has been observed. An explanation of the spectral type shown in Figure 2a may involve species of the fulvene-like structure 1B. There may be an equilibrium between 1A and 1B by transfer of an

⁽¹¹⁾ Prout, K.; Cameron, T. S.; Forder, R. A.; Critchley, S. R.; Denton, B.; Rees, G. V. Acta Crystallogr., Sect. B. 1974, 30, 2290.

⁽¹²⁾ Elson, I. H.; Kochi, J. K. J. Am. Chem. Soc. 1975, 97, 1262.
(13) "Cp₂Ti" solutions are able to coordinate THF: Bercaw, J. E.; Marvich, R. H.; Bell, L. G.; Brintzinger, H. H. J. Am. Chem. Soc. 1972, 94, 1219. Van Tamelen, E. E.; Cretney, W.; Klaentschi, N.; Miller, J. S. J. Chem. Soc., Chem. Commun. 1972, 481.

Figure 2. EPR spectra for reduced $Cp_{12}^{\dagger}NbCl_{2}$ (2 equiv of Na/Hg): (a, top) Spectrum with $A_{Nb} = 55$ G, solvent dimethoxyethane; (b, bottom) spectrum containing 1b (\diamond) and two species with the coupling constants $A_{Nb} = 100$ G (\downarrow) and $A_{Nb} = 55$ G (O).

 α -alkyl hydride to the metal, which would increase the electron configuration around Nb from 15 to 17, but further studies will be required to confirm this assumption. Nevertheless, the peralkylated niobocenes resemble more $(C_5Me_5)_2Ti$,¹⁴ for which a bent metallocene structure has been established in an equilibrium with a fulvene-like structure, than the classical sandwich type structure reported for $(C_5Me_5)_2V.^{15}$ This interpretation is supported by the observation that products arising from attack at ring alkyls may be quenched in the reaction of reduced **1a**,**b** with sulfur.¹⁶ In this regard it will be of interest to investigate how the nature of the reduced solution does affect the chemical results.

Figure 3. Structure of 2 (ORTEP plot), with anion not shown. The thermal ellipsoids are drawn at a 50% probability level.

Table 7	7. Selected D	istances and Angles	for 2
	Dist	ances (Å)	,
Nb-F1	1.920(8)	Nb-C5	2.471(15)
Nb-F2	1.906(10)	Nb-C21	2.432(13)
Nb-C1	2.451(17)	Nb-C22	2.473(15)
Nb-C2	2.470(16)	Nb-C23	2.469(16)
Nb-C3	2.437(15)	Nb-C24	2.420(14)
Nb-C4	2.434(15)	Nb-C25	2.451(14)
	Ang	gles (deg)	
F1-Nb-F2	102.3(4)	Cp1cent-Nb-Cp2cent	140.7

The reduced solution of 1a, b readily react with HPF₆ under spontaneous evolution of H_2 . The product obtained is dependent on the stoichiometry. When a 15-fold excess of acid is employed, a yellow salt is isolated in good yield which analyses as $[Cp_{2}NbF_{2}]PF_{6}(2)$. In the case of 1a yellow oils were obtained which did not crystallize. The IR spectrum of 2 consists of each of two strong absorptions for the PF_{6} and the NbF₂ moieties. The presence of two chemically very different fluoro ligands is proven by the ¹⁹F NMR spectrum: A well-resolved doublet ($J_{P-F} = 712$ Hz) attributed to the hexafluorophosphate anion appears at -73 ppm, whereas a broad resonance at +80 ppm is in agreement with Nb-coordinated fluoro ligands. An X-ray diffraction analysis confirms the pseudotetrahedral environment of the Nb center (Figure 3; Tables III and VII): Two fluoro ligands are attached to the Nb center at an average distance of 1.91(1) Å, while the PF₆ unit serves as counterion without closer contacts.¹⁷ Only two Cp₂Nb fluoro derivatives have been structurally described thus far with Nb–F distances of striking difference ($\Delta = 0.28$ Å).¹⁸ The large F-Nb-F angle (102.3(4)°) when compared to Cl-Nb-Cl in 1b $(85.2(1)^\circ)$ is a consequence of the absence of any unpaired electron at Nb which would exert a repulsive influence on the other ligands lying in the same plane.² Cyclovoltammetry of 2 in THF of CH₂Cl₂ shows a reversible system E'/E (Figure 4). For sweep rates (v) between 0.01 and 0.20 V/s the ratio $i_p/v^{1/2}$ was constant

⁽¹⁴⁾ Bercaw, J. E. J. Am. Chem. Soc. 1974, 96, 5087.

⁽¹⁵⁾ Robbins, J. L.; Edelstein, N.; Spencer, B.; Smart, J. C. J. Am. Chem. Soc. 1982, 104, 1882. Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Inorg. Chem. 1984, 23, 1739.

⁽¹⁶⁾ Manuscript in preparation.

⁽¹⁷⁾ An example for a coordinating hexafluoroanion in metallocene chemistry is $(C_5H_6)_2VAsF_6$: Gorwik, P.; Klapötke, T. M.; Siems, K.; Thewalt, U. J. Organomet. Chem. 1992, 431, 47.

⁽¹⁸⁾ $[(MeC_5H_4)_2Nb(CH_2SiMe_3)F]FF_6(d_{Nb-F} = 1.910(2) Å): Fu, P.-F.; Khan, M. A.; Nicholas, K. M. Organometallics$ **1992**,*11* $, 2607. [(Me_3-SiC_5H_4)_2Nb(<math>\eta^2$ -(C,N)-Ph_2HCCNPh)F]PF_6(d_{Nb-F} = 2.199(5) Å): Antiñolo, A.; Fajardo, M.; Gil-Sanz, R.; López-Mardomingo, C.; Martin-Villa, P.; Otero, A.; Kubicki, M. M.; Mugnier, Y.; El Krami, S.; Monrad, Y. Organometallics **1993**, *12*, 381.

Figure 4. Cyclic voltammogram of $[Cp_2NbF_2]PF_6$ (2) in CH_2Cl_2 : Starting potential 0.7 V; sweep rate 0.020 V s⁻¹.

and $i_{ps}/i_{pc} = 1.0$ in accord with diffusion control. A potential separation between cathodic and anodic peaks was about 0.070 V for a sweep rate of 0.30 V/s. After 1 e- reduction of 2 in CH₂Cl₂ at -15°C the paramagnetic complex Cp[†]₂NbF₂ was obtained which exhibits a ten-line EPR spectrum with a triplet hyperfine structure (g = 1.956; $A_{\rm Nb} = 114.2$ G; $A_{\rm F} = 20$ G). Attempts to isolate this compound were unsuccessful because of its instability.¹⁹ The negative oxidation potential ($E_{1/2} = -0.38 \text{ V}$) of Cp[†]₂-NbF₂ may explain the relatively easy formation of the Nb(V) compound 2 in the presence of HPF_6 . We have verified that the addition of HPF_6 on electrogenerated $Cp^{\dagger}_{2}NbF_{2}$ yields complex 2. The fate of the PF_{6}^{-} anion during oxidation of the Nb(II) species has not been followed, but it may be supposed as in previous work²⁰ that PF5 has been formed after F- transfer to the complex giving rise to a polymerization of THF. In this regard it is important to note that " $Cp_2^{\dagger}Nb$ " containing solutions with HCl form $Cp^{\dagger}_{2}NbCl_{2}$ in good yield. No hint for any Nb(V) compound was obtained because of the positive oxidation potential of 1b (Table V).

The interaction of " Cp_2Nb " with smaller amounts of HPF_6 (e.g. 1.5 equiv) gave complex 2 and two byproducts, which were identified as $[Cp_{2}^{\dagger}NbCl_{2}]PF_{6}$ (3) and $[Cp_{2}^{\dagger}]PF_{6}$ NbCl(Cl,F)]PF₆(4). The latter complex, which apparently is the result of a cocrystallization of 2 and 3, was only detected by an X-ray diffraction analysis (Figure 5; Tables IV and VIII): The structure solution required the occupation of one chloro site by 1/3 of a fluoride. Another hint for the presence of a fluoro ligand in the crystal is the unusual difference of 0.083 Å between both Nb-Cl distances. The overall geometry of 4 is the same as in 1b and 2, but the angle Cl1-Nb-Cl2 (96.8(1)°) is much closer to the value observed in 2 than in 1b and is thus indicative for a Nb(V) compound.

Complex 3 has been characterized by comparison with independently synthesized samples (see below). The degree of cocrystallization between 2 and 3 obviously depends on crystallization conditions. It is responsible for color variations of the products from yellow to deep red, and it can roughly be examined in the IR spectra by the intensity ratio of the $v_{\rm Nb-F}$ and the $v_{\rm P-F}$ absorptions. As the slightly positive oxidation potential of 1b (Table V) does not allow its oxidation by H⁺, the formation of **3**

Figure 5. Structure of the cation of 4 (ORTEP plot), with Cl2 is replaced by 1/3 F. The thermal ellipsoids are drawn at a 50% probability level.

Fal	ole	8.	Selected	Distances	and	Angl	es :	for	4
-----	-----	----	----------	-----------	-----	------	------	-----	---

	Dista	ances (Å)	
Nb-Cl1	2.352(2)	Nb-C5	2.434(5)
Nb-Cl2	2.269(2)	Nb-C11	2.476(5)
Nb-C1	2.461(5)	Nb-C12	2.492(5)
Nb-C2	2.432(4)	Nb-C13	2.431(5)
Nb-C3	2.454(4)	Nb-C14	2.451(5)
Nb-C4	2.449(5)	Nb-C15	2.445(5)
	Ang	les (deg)	
CI1-Nh-Cl2	96.8(1)	Cn1Nb-Cn2	137.6

(and 4) must be interpreted as a substitution of fluoride in preformed 2 by chloride, which is present from the reduction process. In a control experiment 2 was reacted with an excess of HCl giving pure 3 in good yields. More convenient for the preparation of 3 is the oxidation of $Cp_{2}^{\dagger}NbCl_{2}$ by means of $(C_{5}H_{5})_{2}FePF_{6}$.²¹ Both methods produced compounds slightly contaminated by traces of the starting material, which gave rise to broadened ¹H NMR signals.

The difference in the potentials ($\Delta E_{1/2(Ox)} = 0.45$ V, Table V) of 2 and 3 is also expressed in their reactivity toward Li_2S_2 : Whereas 3 is reduced to give 1b in 45% yield, 2 forms the neutral Nb(V) compound 5, in which one fluoro ligand is replaced by a η^2 -S₂ ligand. From spectroscopic data one may deduce a similar structure as in related diamagnetic group V metallocene disulfides.²² This means that a symmetry plane divides the molecule into two equivalent halves. Therefore, the duplication of two of the ring methyl resonances in the ¹H NMR spectrum is attributed to a weak ¹⁹F-¹H coupling in the range between 0.8 and 1.1 Hz. Such a coupling is not present in 2.

Conclusions

The electron-donating effect of the ring alkyl groups exerts a considerable influence on the electrochemical and chemical reduction of the peralkylated Cp₂Nb dihalides. The resulting low-valent niobocene species exist in two forms as has been established by EPR studies. Further proofs will be needed however to establish the proposed

⁽¹⁹⁾ The formation of the "extremely air sensitive" $(C_5H_5)_2NbF_2$ has already been observed in a fluoride transfer from hexafluorobutyne to (C₅H₅)₂NbH₃: Sala-Pala, J.; Amaudrut, J.; Guerchais, J. E.; Mercier, R.;
 Douglade, J.; Theobald, J. G. J. Organomet. Chem. 1981, 204, 347.
 (20) Jordan, R. F.; Dasher, W. E.; Echols, S. F. J. Am. Chem. Soc. 1986,

^{108, 1718.}

⁽²¹⁾ This method has already been employed for the synthesis of other niobocene(V) halides: Arnold, J.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. Organometallics 1987, 6, 473.

⁽²²⁾ Bach, H.-J.; Brunner, H.; Wachter, J.; Kubicki, M. M.; Leblanc, J.-C.; Moise, C.; Volpato, F.; Nuber, B.; Ziegler, M. L. Organometallics 1992, 11, 1403 and references cited therein.

hydride transfer from a ring alkyl group to the Nb center of the completely reduced niobocenes "Cp*₂Nb" and "Cp[†]₂-Nb". The reduced species exhibit a pronounced reduction potential which permits the synthesis of novel fluoroniobocene derivatives. An extension of this behavior to other inorganic redox systems seems to be promising, and we are going to investigate the nucleophilic fragmentation of sulfur and the activation of CO₂ in our laboratories. The carbenoid character of electron-rich niobocenes with respect to unsaturated organic compounds^{1,5,23} and a comparison to "reactive" titanocene may also be worthy of further investigations.²⁴

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft and Electricité de France (Novelect Bourgogne) for financial support. We thank Dr. Y. Mowad for his helpful interest, Mrs. M. T. Compain for her technical assistance, and Dr. J.-C. Leblanc for taking the ¹⁹F NMR spectra. Prof. G. Huttner is acknowledged for financial support of X-ray crystallography.

Supplementary Material Available: Tables S1–S3, listing the anisotropic thermal parameters for non-hydrogen atoms (2 pages). Ordering information is given on any current masthead page.

OM9304568

⁽²³⁾ Fermin, M. C.; Hneihen, A. S.; Maas, J. J.; Bruno, J. W. Organometallics 1993, 12, 1845.

⁽²⁴⁾ Shur, V. B.; Berkovich, M. E.; Vol'pin, M. E.; Lorenz, B.; Wahren, M. J. Organomet. Chem. 1982, 228, C36. Schobert, R. Angew. Chem., Int. Ed. Engl. 1988, 27, 855.