Synthesis of New Chiral Bicyclic Aminophosphoranes and of Rhodium(I) Chelates Derived From Their Open-Form Tautomers. Isolation and Characterization of an Optically Pure Rhodium(I) N/P Chelate

F. Jeanneaux, J. G. Riess* and J. Wachter* 1

Received June 30, 1983

We have previously shown that, in the presence of rhodium(I) derivatives, bicyclic aminophosphoranes of type 2 develop into monocylic bidentate phosphorus-nitrogen chelating ligands 3 to give adducts of type 4, 1 the structures of several of which, with diverse substitutions on the cycles, have been established by X-ray crystallography. 4

Among the original features of 4 that are propitious to catalytic activity should be mentioned the location of the rhodium atom in a cradle-shaped ligand, to which it is bound by both the r-accepting phosphorus atom and the solely d-donating nitrogen atom. The latter can contribute toward increasing the electron density at the metal, and hence its nucleophilicity, while its lack of r-accepting capability should stabilize the N-Rh bond, i.e. should constitute an additional, potential vacant site on the metal. In addition, the hydrophilic character of the N-H site within the coordination sphere of the metal was expected to contribute to regioselective control in catalysis.

Preliminary tests showed complexes of type 4 to be active as hydrogenation and hydroformylation catalysts. 5 In view of these results, and because it is easy to render the cradle asymmetric, we undertook the preparation of new chiral bicyclic aminophosphoranes, the isolation of several of which, with diverse substitutions on the cycles, has been established by X-ray crystallography. 6

Results and Discussion

Bicyclic Aminophosphoranes. The new asymmetric bicyclic aminophosphoranes 2a–d, which contain the optically pure (+)-(S)-2-amino-1-propanol (L-alaninol) or (-)-(R)-2-

\[
\text{NH}_2
\]

amino-1-butanol (d-ethylalaninol) residues in one of their cycles, were obtained in 40–85% yield by allowing the optically active amino diols 1a–d to react with bis(diethylamino)phenylphosphines, according to the scheme established by Houalla et al. 2

The elemental analysis and mass, IR, 1H, and 31P NMR spectroscopic data for 2a–d (Tables I and II) are consistent with the above formulation and with those previously published for other bicyclic aminophosphoranes. 7

Compounds of type 2 bear a chiral center at the P atom, which is characterized by the different natures of the equatorial ligands as well as by the differing substitution of the two cycles. 8 The introduction of an asymmetric carbon atom into one of the cycles thus provokes the existence of two diastereoisomers, 2A and 2B, which give rise to two distinct singlets in the 31P[1H] NMR spectra. The 1H NMR spectra also exhibit two distinct sets of signals for the methyl or ethyl groups of the alaninol fragments, as well as two doublets for the proton attached to phosphorus. The diastereoisomeric ratio, which can easily be determined by means of 31P NMR spectroscopy, is usually close to 50:50. No assignment of the absolute configuration at the phosphorus atom has been achieved so far.

Asymmetric Rhodium Chelates 4: Separation of an Optically Pure Diastereoisomer. When bicyclic aminophosphoranes 2 were allowed to react with 1/2 equiv of [Rh("CO")2Cl]2 in toluene at room temperature, the immediate evolution of carbon monoxide was observed and the yellow crystalline adducts 4a–d precipitated. They were isolated in 40–93% yields. Each diastereoisomeric pair of phosphoranes gives rise to a diastereoisomeric pair of rhodium adducts 4A and 4B; for the L-alaninol one has for example

\[
\text{CO}
\]

\[
\text{Cl}
\]

The nitrogen atom, which is probably coplanar with its substituents in 2, becomes pyramidal and asymmetric in 4, but

since its configuration is not independent of that of the phosphorus atom, it does not give rise to additional stereoisomers.

The coordination of phosphorus to the metal in 4 is evidenced in the 31P NMR spectra by the presence of signals in the range 148–161 ppm, the disappearance of the J_{PH} coupling, and the appearance of a J_{PRh} coupling constant of 180–190 Hz (Table I). The coordination of nitrogen to the metal is established by the disappearance of the ν(P–H) vibration in the infrared spectra (Table II), to the profit of a low ν(N–H) vibration around 3200 cm$^{-1}$. A trans location of the phosphorus and chlorine ligands on the metal, consistent with the antisymbiotic rule, is proposed by analogy with related structures that have been established by X-ray diffraction studies. The substitution of the remaining carbon monoxide and chloride ligands by a second phosphorane molecule was not observed even in the presence of an excess of the latter.

The presence of two diastereoisomers is evidenced by two signals in the 31P(1H) and by distinct sets of 1H signals for the alkyl groups of the alaninol residues. All the complexes with 31P resonances at lower fields should belong to the same type of stereoisomer, called A, whereas the high-field resonances should belong to the opposing diastereoisomers, B. The absolute configuration at the P atom can however not be determined. In complexes 4b–d no significant change in the diastereomic ratio was found upon coordination, whereas some optical induction leading to an $A:B$ ratio of 39:61 was observed in the case of 4a, even when starting with an approximately 50:50 mixture of the two diastereoisomers of 2a.

In the case of 4a, separation of one diastereoisomer was successfully and reproducibly achieved by two fractional crystallization steps in CH$_3$CN. No noticeable changes in the diastereomeric ratio were observed in the other cases, even upon repeated and very slow recrystallization. The originally predominant diastereoisomer B formed in 4a could thus very easily be separated as the sparingly soluble isomer, in optically pure quality ([α]$^0_{D}$ = -435°, 0.9 mg/3 mL of CH$_3$CN solution) as measured on a Jasco J-40A instrument.

![Figure 1. Molecular ellipticity of (–)4aB (10$^{-3}$ m in CH$_3$CN solution) as measured on a Jasco J-40A instrument.](image-url)
4 has previously been reported. In contrast to these reactions, which took place at an initial pressure of 1 bar when cyclohexene was the substrate, a drastic increase in H pressure was required for the hydrogenation of (Z)-\(\alpha\)-acetamidocinnamic acid; this pressure is moreover dependent on the solvent. In a typical run, the acid could be hydrogenated in the presence of (\(-\)\(4a\B) under 100 bar of \(H_2\) in 92% yield but with only an 18% enantiomeric excess.

Experimental Section

Elemental analyses (Service Central d'Analyses du CNRS) are shown, together with melting points, yields, and infrared data, in Table II. All procedures were carried out under nitrogen with dry, \(N_2\)-saturated solvents. The optically active amino diols \(\text{HOCH}_2\CH(R)_2\text{NHCH}_2\text{C(R)}_3\text{OH}\) were prepared according to published methods. The preparation of the phosphoranes \(2a-d\) in general follows the procedure given by Houalla et al. with some modifications.

General Operation Mode for Bicyclic Aminophosphoranes \(2a-d\). A mixture of carefully distilled bis(diethylamino)phenylphosphane (5.04 g, 20 mmol) was heated with an equivalent amount of the amino diol in 100 mL of toluene at 140 °C for 24 h. The diethylamine was distilled as it formed. The solution was concentrated to 20 mL and filtered through SiO\(_2\) (5 × 2 cm). After evaporation of the solvent, the phosphoranes were isolated as colorless, viscous oils. \(2a\) was obtained as white crystals on cooling a saturated pentane solution to \(-15^\circ C\).

Preparation of the Rh Complexes \(4a-d\). A solution of 1 mmol of phosphorane \(2a\) in 10 mL of benzene was added at room temperature to a solution of [\(\text{Rh(CO)}_2\text{Cl}_2\)] (194 mg, 0.5 mmol) in 10 mL of benzene. The mixture immediately darkened, and a bright yellow solid precipitated with evolution of CO. The solid was filtered and washed twice with small portions of benzene to give the crude product in 60–90% yield, from which the optical inductions were examined by means of \(^{31}P\) and \(^{1}H\) NMR spectroscopy.

Isolation of (\(-\)\(3a\B). A 572-mg sample of complex \(4a\) was dissolved in 15 mL of \(\text{CH}_3\text{CN}\) at 60 °C. The solution was filtered and then slowly cooled to 0 °C over 2 days. The resulting yellow crystals were again recrystallized, to give 57 mg (8% yield) of the optically pure compound (\(-\)\(3a\B.

Catalytic Hydrogenation of (Z)-\(\alpha\)-Acetamidocinnamic Acid. A solution of (\(-\)\(3a\B (35 mg, 0.09 mmol) in 10 mL of \(\text{CH}_3\text{CN}\) was added to a solution of (Z)-\(\alpha\)-acetamidocinnamic acid (506 mg, 2.4 mmol) in 10 mL of \(\text{CH}_3\text{OH}\). The mixture was transferred into a 100-mL autoclave. After being purged three times with 50 bar of \(H_2\), the solution was stirred under 100 bar of H\(_2\) for 24 h at 35 °C. Workup of the dark solution and determination of the enantiomeric excess were accomplished as described in the literature.

Acknowledgment. We are grateful to E. Fischer and Dr. K. K. Mayer for measurement of the mass spectra. J.W. is indebted to Prof. H. Brunner for generous support of part of this work.

Registry No. 1a, 91239-52-0; 1b, 74572-06-8; 1c, 91239-53-1; 1d, 91239-54-2; 2aA, 91239-48-4; 2aB, 91280-11-4; 2bA, 91239-49-5; 2bB, 91280-12-5; 2cA, 91239-50-8; 2cB, 91280-13-6; 2dA, 91239-51-9; 2dB, 91280-14-7; 3aA, 91239-55-3; 3aB, 91280-15-8; 4aA, 91239-56-4; 4aB, 91280-16-9; 4cA, 91239-57-5; 4cB, 91280-17-0; 4dA, 91239-58-6; 4dB, 91280-18-1; [\(\text{Rh(CO)}_2\text{Cl}_2\)] , 14522-22-9; [\(\text{PNP(NEt)}_2\)] , 1636-14-2; (Z)-\(\alpha\)-acetamidocinnamic acid, 55065-02-6.

Supplementary Material Available: Tables of selected ions from mass spectra of phosphoranes \(2a-d\) and rhodium adducts \(4a-d\). Preliminary data on hydrogenation of (Z)-\(\alpha\)-acetamidocinnamic acid with (\(-\)\(3a\B (2 pages). Ordering information is given on any current masthead page.

Table II. Selected Properties of Compounds \(2a-d\) and \(4a-d\)

<table>
<thead>
<tr>
<th>compd</th>
<th>yield</th>
<th>mp, °C</th>
<th>mol wt</th>
<th>% C</th>
<th>% H</th>
<th>% N</th>
<th>% P</th>
<th>% Cl</th>
<th>% Rh</th>
<th>infrared peaks, cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2a)</td>
<td>60</td>
<td>225.2</td>
<td>58.72</td>
<td>7.17</td>
<td>6.22</td>
<td>13.76</td>
<td></td>
<td></td>
<td></td>
<td>2295</td>
</tr>
<tr>
<td>(2b)</td>
<td>90</td>
<td>225</td>
<td>58.20</td>
<td>7.19</td>
<td>5.82</td>
<td>13.67</td>
<td></td>
<td></td>
<td></td>
<td>2310</td>
</tr>
<tr>
<td>(2c)</td>
<td>85</td>
<td>259.2</td>
<td>60.24</td>
<td>7.58</td>
<td>5.86</td>
<td>12.94</td>
<td></td>
<td></td>
<td></td>
<td>2320</td>
</tr>
<tr>
<td>(2d)</td>
<td>85</td>
<td>239</td>
<td>60.21</td>
<td>7.47</td>
<td>5.80</td>
<td>12.17</td>
<td></td>
<td></td>
<td></td>
<td>2320</td>
</tr>
<tr>
<td>(4b)</td>
<td>58</td>
<td>225</td>
<td>61.65</td>
<td>7.96</td>
<td>5.53</td>
<td>12.23</td>
<td></td>
<td></td>
<td></td>
<td>2320</td>
</tr>
<tr>
<td>(4d)</td>
<td>83</td>
<td>225</td>
<td>61.64</td>
<td>8.22</td>
<td>5.34</td>
<td>12.34</td>
<td></td>
<td></td>
<td></td>
<td>2320</td>
</tr>
<tr>
<td>(4b)</td>
<td>42</td>
<td>215</td>
<td>405.6</td>
<td>38.52</td>
<td>4.44</td>
<td>3.46</td>
<td>7.65</td>
<td>8.64</td>
<td>25.37</td>
<td>3201 m</td>
</tr>
<tr>
<td>(4c)</td>
<td>42</td>
<td>228</td>
<td>405</td>
<td>38.79</td>
<td>4.46</td>
<td>3.50</td>
<td>7.70</td>
<td>8.68</td>
<td>25.43</td>
<td>3190 m</td>
</tr>
<tr>
<td>(4d)</td>
<td>43</td>
<td>228</td>
<td>419.6</td>
<td>40.12</td>
<td>4.81</td>
<td>3.34</td>
<td>7.40</td>
<td>8.47</td>
<td>24.55</td>
<td>3203 m</td>
</tr>
<tr>
<td>(4d)</td>
<td>43</td>
<td>225</td>
<td>419</td>
<td>40.19</td>
<td>4.90</td>
<td>3.58</td>
<td>7.50</td>
<td>8.54</td>
<td>24.27</td>
<td>3190 m</td>
</tr>
</tbody>
</table>

Notes

\(^{a}\) Films (2a-d) or KBr disks (4a-d) measured on a Beckman 4240 or a Perkin-Elmer 577 instrument. \(^{b}\) Mass spectroscopy. \(^{c}\) Top row of data for each compound gives calculated values; bottom row, found values.