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Abstract 
 

A common problem on protein structure determination by NMR spectroscopy is 
due to the solvent artifact. Typically, a deuterated solvent is used instead of 
normal water. However, several experimental methods have been developed to 
suppress the solvent signal in the case that one has to use a protonated solvent or 
if the signals of the remaining protons even in a highly deuterated sample are still 
too strong. For a protein dissolved in 90% H2O / 10% D2O, the concentration of 
solvent protons is about five orders of magnitude greater than the concentration 
of the protons of interest in the solute. Therefore, the evaluation of multi-
dimensional NMR spectra may be incomplete since certain resonances of interest 
(e.g. Hα proton resonances) are hidden by the solvent signal and since signal parts 
of the solvent may be misinterpreted as cross peaks originating from the protein. 
The experimental solvent suppression procedures typically are not able to recover 
these significant protein signals. Many post-processing methods have been 
designed in order to overcome this problem.  

In this work, several algorithms for the suppression of the water signal have been 
developed and compared. In particular, it has been shown that the Singular 
Spectrum Analysis (SSA) can be applied advantageously to remove the solvent 
artifact from NMR spectra of any dimensionality both digitally and analogically 
acquired. In particular, the investigated time domain signals (FIDs) are 
decomposed into water and protein related components by means of an initial 
embedding of the data in the space of time-delayed coordinates. Eigenvalue 
decomposition is applied on these data and the component with the highest 
variance (typically represented by the dominant solvent signal) is neglected 
before reverting the embedding. Pre-processing (group delay management and 
signal normalization) and post-processing (inverse normalization, Fourier 
transformation and phase and baseline corrections) of the NMR data is mandatory 
in order to obtain a better performance of the suppression. The optimal 
embedding dimension has been empirically determined in accordance to a specific 
qualitative and quantitative analysis of the extracted components applied on a 
back-calculated two-dimensional spectrum of HPr protein from Staphylococcus 
aureus. 

Moreover, the investigation of experimental data (three-dimensional 1H13C HCCH-
TOCSY spectrum of Trx protein from Plasmodium falciparum and two-dimensional 
NOESY and TOCSY spectra of HPr protein from Staphylococcus aureus) has 
revealed the ability of the algorithm to recover resonances hidden underneath the 
water signal.  
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Pathological diseases and the effects of drugs and lifestyle can be detected from 
NMR spectroscopy applied on samples containing biofluids (e.g. urine, blood, 
saliva). The detection of signals of interest in such spectra can be hampered by the 
solvent as well. The SSA has also been successfully applied to one-dimensional 
urine, blood and cell spectra. 

The algorithm for automated solvent suppression has been introduced in the 
AUREMOL software package (AUREMOL_SSA). It is optionally followed by an 
automated baseline correction in the frequency domain (AUREMOL_ALS) that can 
be also used out the former algorithm. The automated recognition of baseline 
points is differently performed in dependence on the dimensionality of the data.  

In order to investigate the limitations of the SSA, it has been applied to spectra 
whose dominant signal is not the solvent (as in case of watergate solvent 
suppression and in case of back-calculated data not including any experimental 
water signal) determining the optimal solvent-to-solute ratio. 

The Independent Component Analysis (ICA) represents a valid alternative for 
water suppression when the solvent signal is not the dominant one in the spectra 
(when it is smaller than the half of the strongest solute resonance). In particular, 
two components are obtained: the solvent and the solute. The ICA needs as input 
at least as many different spectra (mixtures) as the number of components 
(source signals), thus the definition of a suitable protocol for generating a dataset 
of one-dimensional ICA-tailored inputs is straightforward.  

The ICA has revealed to overcome the SSA limitations and to be able to recover 
resonances of interest that cannot be detected applying the SSA. The ICA avoids all 
the pre- and post-processing steps, since it is directly applied in the frequency 
domain. On the other hand, the selection of the component to be removed is 
automatically detected in the SSA case (having the highest variance). In the ICA, a 
visual inspection of the extracted components is still required considering that the 
output is permutable and scale and sign ambiguities may occur.  

The Empirical Mode Decomposition (EMD) has revealed to be more suitable for 
automated phase correction than for solvent suppression purposes. It decomposes 
the FID into several intrinsic mode functions (IMFs) whose frequency of 
oscillation decreases from the first to the last ones (that identifies the solvent 
signal). The automatically identified non-baseline regions in the Fourier transform 
of the sum of the first IMFs are separately evaluated and genetic algorithms are 
applied in order to determine the zero- and first-order terms suitable for an 
optimal phase correction.  

The SSA and the ALS algorithms have been applied before assigning the two-
dimensional NOESY spectrum (with the program KNOWNOE) of the PSCD4-
domain of the pleuralin protein in order to increase the number of already existing 
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distance restraints. A new routine to derive 3JHNHα couplings from torsion angles 
(Karplus relation) and vice versa, has been introduced in the AUREMOL software. 
Using the newly developed tools a refined three-dimensional structure of the 
PSCD4-domain could be obtained. 
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1 INTRODUCTION 
 

1.1 NMR spectroscopy 
 

1.1.1 PRINCIPLES OF NUCLEAR MAGNETIC RESONANCE 
 

Nuclei having a nonzero nuclear spin quantum number 𝐼 act like rotating charges 
whose nuclear spin angular momentum 𝐽 generates a small nuclear magnetic moment 
𝜇. The isotopes 1H, 13C, 15N and 2H are the most used in NMR spectroscopy. If a static 
external magnetic field 𝐵0����⃗  is applied they align themselves in discrete states, namely 
they are positioned either with (lowest energy) or against it (highest energy) in 
accordance to the magnetic quantum number  𝑚𝐼 .  They precess around the magnetic 
field with an angular frequency ω0 (Larmor frequency) which is proportional to 𝐵0����⃗   
and to γ, the gyromagnetic ratio (see eq. 1.1). This latter defines the strength of the 
nuclear magnet field and it is different for each isotope.  

 

𝜔0 = 𝛾𝐵0                  (1.1) 

 

At equilibrium the lower energy orientation of 𝜇⃗  (parallel to  𝐵0����⃗ ) is the more 
probable. Typically the spin population difference between the states is very small 
implying a very weak sensitivity of such technique. For instance, a suitable NMR 
sample must contain pure material in a larger order with respect to other methods as 
the mass spectrometry. The material concentration is directly proportional to the 
intensity of the observed signals. Considering that the energy gap is proportional to 
𝐵0����⃗  (in accordance to eq. 1.2), the use of spectrometers operating at higher magnetic 
fields increases the population difference and more intense signals can be obtained 
with a consequent higher general sensitivity.  

 

∆𝐸 = ℎ𝜔0                     (1.2) 

 

Applying an oscillating magnetic field 𝐵1����⃗  perpendicular to 𝐵0����⃗  as a 90° pulse of some 
microseconds produces a transverse magnetization.  
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Every perturbed spin tends to regain the equilibrium state relaxing back to the 
original condition. The population difference is exponentially restored through a 
longitudinal (spin-lattice) relaxation in a time T1, where the spins re-align themselves 
along B0. They also lose the precession coherence on the transverse magnetization 
plane (spin-spin relaxation) in a time T2, where generally T2 is shorter (equal) than 
T1. This latter governs the acquisition rate of the signal where a shorter T1 
corresponds to faster acquisitions. 

The transverse relaxation generates an exponentially decaying time domain signal 
known as FID (free induction decay). It must be Fourier transformed in order to 
obtain the NMR spectrum. The relaxation for population equilibrium restoring 
determines the necessary waiting time before repeating the experiment, the decay of 
the FID and consequently the total line width ∆𝑣1

2
 of the signals at half height in the 

frequency domain, according to eq. 1.3: 
 

∆𝑣1
2

= 1
𝜋𝑇2

                      (1.3) 

 

Therefore, shorter T2 correspond to broader line widths.  

Both relaxation times (T1 and T2) are strictly related to the translational and to the 
rotational correlation times τc (the time to diffuse one diameter) and τr (the time to 
rotate one radian). The former, as described in eq. 1.4, is strictly related to the 
diffusion D. The latter (eq. 1.5) depends on the molecular mass (r is the molecular 
radius, η defines the viscosity of the solution, kB is the Boltzmann constant and T 
represents the absolute temperature):  

 

𝜏𝑐 =  6𝜋𝜂𝐷
𝑘𝐵𝑇

                    (1.4) 

 

𝜏𝑟 =  4𝜋𝜂𝑟
3

3𝑘𝐵𝑇
                                                                      (1.5) 
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Figure 1.1 Longitudinal T1 and transversal T2 relaxation rates as functions of the correlation 
time τc: the correlation time increases with the size of the molecule. The longitudinal rate (T1) 
decreases to reach a minimum, while the transversal relaxation time (T2) continues to decrease [Reich, 
U.Wisc.Chem. 605]. 

 

Considering that the rotational correlation time is longer for large molecules, in 
absence of internal mobility it is possible to observe a specific behavior of T1 and T2 
with respect to increasing τc, as reported in Fig. 1.1 [Reich, U.Wisc.Chem. 605]. 

 

1.1.2 CHEMICAL SHIFTS  
 

Every spin precesses at a slightly different frequency due to the local chemical 
environment. This implies that they are observed at different positions (chemical 
shifts) in the NMR spectrum depending on their environment within the molecule. 
Motion of electrons around the nucleus shield or de-shield it decreasing or increasing 
the effective magnetic field Beff that it feels. 

For instance, electronegative atoms typically attract electrons de-shielding 
neighboring nuclei (in the bonding network) that are consequently more exposed to 
B0 increasing their resonance frequencies. The effective field Beff is obtained 
perturbing B0 by a shielding constant σ, as described in the following equation: 

 

𝐵𝑒𝑓𝑓 = 𝐵0(1 − 𝜎) =  𝐵0 + 𝐵𝑙𝑜𝑐                 (1.6) 

Increasing viscosity or molecular size 
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The eq. 1.1 needs to be consequently modified in a way that the resonance frequency 
becomes proportional to Beff. In order to avoid such dependency, the chemical shift δ 
is normalized in part per million (ppm) relatively to the reference resonance (𝜔𝑟𝑒𝑓) of 
a standard nucleus [Nowick et al, 2003]: 

 

δ = 𝜔−𝜔𝑟𝑒𝑓

𝜔𝑟𝑒𝑓
× 106                 (1.7) 

 

The precession frequency difference among nuclei of the same type is very small, 
while it becomes larger for different nuclear isotopes. Some nuclei may have exactly 
the same chemical shift generating overlap ambiguities. The intensity of the signal is 
anyway proportional to the number of nuclei possessing the same chemical shift. 

The distribution of the electronic charge is anisotropic, thus the intensity of the 
shielding effects produced by the electron clouds surrounding the nuclei depends on 
the molecular orientation with respect to B0. Different chemical shifts are observable 
in dependence on such possible orientations (two parallel and one perpendicular to 
B0). The typical measured chemical shift from NMR spectra (the isotropic one) 
represents the average value of the shielding constants of these three displacements: 

 

𝛿𝐼𝑆𝑂 = (𝜎11+ 𝜎22+𝜎33)
3

                (1.8) 

 

The chemical shift anisotropy (CSA) is defined as the difference between the smallest 
position-related chemical shift and the average of the other two chemical shifts. 

 

∆𝜎 = 𝜎11 −
(𝜎22+𝜎33)

2
                (1.9) 

 

It does not affect the chemical shifts of NMR in solution but it can contribute to the 
relaxation process. 
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1.1.3 COUPLINGS 
 

The shape of the signals (splitting in a multiplet structure) in the NMR spectrum is 
affected by the presence of a neighboring nucleus (connected via bonds) and it is 
strictly dependent on the spin state of this latter. This interaction is also known as J or 
scalar coupling and can be spread only through bonds.  

Two protons with different chemical shifts may be attached to two adjacent atoms 
(e.g. HαCα-CβHβ). The nucleus of one proton can be aligned with or against B0, 
decreasing or increasing respectively the magnetic field felt by its neighboring 
proton. If the effective field is decreased the neighboring proton resonates at lower 
frequency and vice versa.  

Considering that two nuclei of the same type of proton attached to the same atom 
(e.g. Cβ2Hβ) possess four possible spin orientations (with two equivalent cases) with 
respect to B0, the neighboring proton (Hα) results to be split in three signals (triplet) 
separated by a N𝐽𝛼𝛽  distance, expressed in Hz where N defines the number of 
covalent bonds (three in this case) between the nuclei α and β. Generally, N 
neighboring protons to a certain atom produce N+1 splitting signals of such atom 
with intensity ratio defined by the Pascal triangle.  

The J coupling is defined vicinal if the protons are located three bonds apart, while it 
is known as geminal if two bonds are involved. Its magnitude decreases with the 
increasing number of bonds separating the atoms. The splitting effect can be avoided 
by means of a decoupling process where all the protons are irradiated 
contemporarily causing a very rapid transit between the states. This irradiation is 
applied during the acquisition of the FID. 

If the scalar coupling is established between protons with a very different chemical 
shift, the splitting signal reveals a simple multiplet pattern and it is known as weak or 
first order J coupling. In case they have similar chemical shifts, distortions and 
complications on the splitting patterns are commonly observed (strong J coupling).  
The former is guaranteed if the chemical shift difference Δδ  (in Hz) is much greater 
than the J value: 

 

Δδ
𝐽

> 5                             (1.10) 
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1.1.4 NUCLEAR OVERHAUSER EFFECT 
 

The equalization of the population distribution (saturation) of a specific nucleus (e.g. 
Hα) is obtained irradiating it continuously during the relaxation delay (before the 90° 
pulse). This effect propagates enhancing the population difference of another nucleus 
(e.g. Hβ) that is close to the former in the space (5 Ȧ). The observed relaxation of the 
latter is thus strictly dependent on the distance r between the considered nuclei. 

The time for NOE building up is called mixing time (τm) where a combination of 
pulses and delay periods is applied to induce the magnetization transfer between the 
nuclei. In case of a long mixing time, a spin diffusion effect takes place where the 
perturbation of a certain nucleus propagates to a second one that in turn affects a 
third nucleus. The NOE is due to dipole-dipole interactions between two nuclei. It can 
occur in two manners: zero- and double-quantum relaxations that dominate the 
relaxation of large and small molecules respectively. 

 

1.1.5 MULTI-DIMENSIONAL NMR 
 

The one-dimensional experiment [e.g. Purcell et al, 1946] generally yields a spectrum 
of only one type of isotope, while the multi-dimensional one allows the observation of 
several isotopes simultaneously at different ppm frequency ranges and consents to 
overcome the overlapping problem. Dealing with one-dimensional NMR spectra 
furnishes information about the resonance frequencies and intensities and about the 
through-bond and space interactions. The signal overlaps limit the potential of such 
experiment.   

In the two-dimensional NMR experiment [Aue et al, 1976] the direct direction is 
defined by the Fourier transform of the FID in a t2 detection time, while the indirect 
one represents the Fourier transform of incrementally delayed FID at t1 (evolution 
time) steps. In the multi-dimensional NMR the nuclei are identified by their chemical 
shifts in both directions and the existing correlation between them (J coupling or 
NOE) appears as a cross peak. 

Each type of experiment consents to extract different information in accordance to 
the mixing sequence. In particular, there are two main categories of magnetization 
transfers that can be inferred by different mixing pulse sequences: those ones based 
on J-coupling (COSY, TOCSY, HSQC, HMBC and HMQC spectra) and the others based 
on NOE interactions (NOESY and ROESY spectra). The range of the J coupling (the 
amount of bonds where the magnetization is spread) can be directly selected in the 
mixing sequence. The TOCSY experiment is based on a hopping vicinal J coupling that 
is restrained to the atoms belonging to the same residue. The ROESY experiment is an 
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alternative to the NOESY case that can be particularly useful for small molecules as 
peptides. 

The multi-dimensional experiments may be classified in homonulcear (with a 
magnetization transfer between nuclei of the same type, as two protons in NOESY, 
ROESY, TOCSY and COSY spectra) and heteronuclear (with a magnetization transfer 
between two different types of nucleus, as proton and nitrogen in HSQC, HMQC and 
HMBC spectra). The latter involves the use of isotopically labeled proteins (13C and 
15N) [Gardner et al, 1998]. The homonulcear spectra possess diagonal and 
symmetrical couples of cross peaks around it that arise from both possible 
magnetization patterns (i.e. magnetization from Hα to Hβ and vice versa). These 
properties do not characterize the heteronuclear spectra.  

The dimensionality of the measured spectra can be increased obtaining higher 
dimensional NMR data (as three-dimensional spectra) with less overlapping 
problems [Cavanagh et al, 1996; Oschkinat et al, 1988; Marion et al, 1989]. In order to 
obtain a third dimension adjunctive evolution and mixing steps must be intercalated 
combining the mixing sequences of the required two-dimensional experiments (i.e. 
two-dimensional 1H-NOESY and two-dimensional 15N-HSQC experiments as a three-
dimensional 1H15N-HSQC-NOESY). In order to observe three-dimensional 
experiments, the two-dimensional planes are separately evaluated in every direction 
of interest. Some of the most used three-dimensional experiments are HCCH-TOCSY, 
1H15N-HSQC-TOCSY and 1H15N-HSQC-NOESY. A vast part of NMR experiments belong 
to the triple resonance class where three different types of nuclei (e.g. proton, 
nitrogen and carbon) can be observed simultaneously. Some examples are the HNCA, 
the HNCO, the CBCACONH, CBCANH, the HBHA(CBCACO)NH and the HBHA(CBCA)NH, 
whose magnetization transfer is represented in Fig. 1.2 In the former case (a) the 
scalar coupling is transferred from the amide proton to the nitrogen and further to 
the central carbon of its own amino acid and to that one of the previous residue. In 
such experiment both α-carbons can be contemporarily observed. The HNCO 
experiment reveals instead the carbon of the previous residue (b). In the CBCACONH 
spectrum the α- and β-carbons of the previous residue are revealed (c), while the 
CBCANH contains both α- and β-carbons of the considered amino acid and those ones 
of the previous residue (d). The latter couple of triple resonance experiments listed 
above allows the observation of the α- and β-protons only of the previous residue (e) 
and the detection of such atoms also in the considered amino acid (f) respectively.  

In Fig. 1.3 is represented the three-dimensional data matrix of a HNCA experiment 
and the stripes along some different nitrogen planes are extrapolated including HN-Cα 
cross peaks. 

The spectral parameters extracted from such spectra are typically used to determine 
structural information of molecules.  
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(a) 

(b) 

(c) 
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Figure 1.2 Schematic representation of the triple resonances experiments: HNCA (a), HNCO (b), 
CBCACONH (c), CBCANH (d), HBHA(CBCACO)NH (e) and HBHA(CBCA)NH (f). The atoms observed in 
each direction are highlighted in red in every experiment. The magnetization transfer is described by 
the red arrows. 

 

 

Figure 1.3 Three-dimensional HNCA experiment: planes extraction (Ni and Ni-1). 

 

(e) 

(f) 
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1.2 Data processing 
 

Before Fourier transforming the time-domain acquired data, they need to be 
accurately processed. They can be multiplied by a weighting function (exponential, 
Gaussian, sine-bell, etc.) and they can be enlarged by adding zeros at the end of the 
FID. Moreover, after Fourier transforming additional correction may be applied as 
baseline flattening and phase adjusting. Solvent artifact removal is performed both 
during the acquisition of the data and by post-processing methods that can be applied 
either in the time or in the frequency domain. 

 

1.2.1 BASELINE CORRECTION 
 

The baseline in the spectrum should be ideally flat, but in reality it contains rolls and 
wiggles due to several reasons [Tang, 1994; Marion and Bax, 1988] including 
electronics errors. Especially, corruption of the early part of the FID [Hoult et al, 
1983; Otting et al, 1986; Bax et al, 1991] due to the transient response of the 
spectrometer is critical for baseline distortions and it can be alleviated by using the 
Hahn echo pulse sequence [Bax and  Pochapsky, 1992; Kay et al, 1992], by backward 
linear prediction [Marion and Bax, 1989; Güntert et al, 1992] of the corrupted points, 
by baseline cosine fitting [Heuer and Haeberlen, 1989] or by spectra oversampling 
[Wider, 1990; Halamek et al, 1994; Moskau, 2002]. 

Baseline distortions may also originate from the tails of the solvent spreading all over 
the spectrum [Bartels et al, 1995]. If it is not properly corrected it may lead to 
inaccurate signal integration (measurement of the resonance intensity). In multi-
dimensional spectra (NOESY case), if the baseline is not properly corrected the 
volume calculation and consequently distance determination would be erroneous. 
Moreover, the weak resonances of interest may completely disappear under the noise 
threshold. Bartels has proposed an iterative flattening method (IFLAT) for baseline 
correction in multi-dimensional NMR spectra [Bartels et al, 1995] with strong solvent 
signals. It relies on a probabilistic spectral investigation for determining whether to 
attribute the considered data points to a baseline region or to a true resonance of 
interest. 

Post-processing techniques for baseline correction have notably increased in the last 
decades. Some of them rely on the manual determination of the real signals and of the 
baseline regions followed by automated fitting of those baseline points to a 
polynomial function (up to 5th order) that is then subtracted from the data [Barsukov 
and Arseniev, 1987; Dietrich et al, 1991]. The manual baseline point identification 
becomes extremely demanding increasing the dimensionality of the data, where the 
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baseline distortions appear like stripes extending in several directions from a true 
resonance.  

Remarkable efforts have been done in order to automate the baseline point 
recognition and to fit the data with other functions, as the linear and the cubic spline 
interpolation [Saffrich et al, 1992; Zolnai et al, 1989]. The most commonly used 
approaches found in literature apply the automated baseline correction in the 
frequency domain [Pearson, 1977; Güntert and Wüthrich, 1991; Dietrich et al, 1991; 
Chylla and Markley, 1993; Rouh et al, 1993; Brown, 1995; Golotvin and Williams, 
2000; Schulze et al, 2005; Cobas et al, 2006].   

The FLATT algorithm proposed by Güntert and Wüthrich [Güntert and Wüthrich, 
1991] is particularly effective since it automatically detects entire pieces of rows or 
columns (larger than the line width of a true signal) that can be fitted by a straight 
line. The average square deviation for a best fit of a straight line is computed on a 
stretch of 2n+1 data points with n chosen in such a way that 2n+1 corresponds to 75 
Hz. Dietrich proposed [Dietrich et al, 1991] instead an automated recognition based 
on the computation of the first derivative of the average spectrum obtained with a 
moving filter with a width of 2 points sliding along the rows. The power spectrum is 
then generated where an iterative thresholding algorithm is applied. Brown in 1995 
described Bernstein polynomial fitting functions of baseline regions [Brown, 1995]. 
Five years later Golotvin improved the baseline recognition [Golotvin and Williams, 
2000] computing the maximal and the minimal values contained in each stretch of N 
points and evaluating if their difference exceed the noise standard deviation. Cobas in 
2006 proposed instead the baseline recognition [Cobas et al, 2006] based on a 
continuous wavelet derivative transformation (CWT) followed by iterative threshold 
detection in the power spectrum [Dietrich et al, 1991] and by baseline interpolation 
with the Whittaker smoother algorithm [Whittaker, 1923; Eiler, 2003]. 

 

1.2.2 PHASE CORRECTION 
 

After Fourier transforming not all signals in the spectrum have an absorptive line 
shape since phase distortions due to instrumental errors may arise. Ideally the real 
spectrum should be in pure absorptive mode and the imaginary should possess both 
absorptive and dispersive signals. In order to correct deviations from such ideal case 
a phase rotation angle ϕ of both spectra must be accurately defined, taking into 
account that it is a linear function of the chemical shift δ (see eq. 1.11). 

 

𝜙𝑖 = (𝑝ℎ𝑐1 × 𝜔) + 𝑝ℎ𝑐0 = �𝑝ℎ𝑐1 × 𝑖
𝑛
� + 𝑝ℎ𝑐0  (1.11) 
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in which the zero-order (phc0) and the first-order (phc1) phase corrections must be 
determined for each ith data point in the real and imaginary spectra over a total of n 
data points. 

Typically, the zero-order phase distortion comes from differences between the 
reference phase and the receiver detector phase and it is frequency independent. The 
first-order phase distortion is due to several factors as time delay between excitation 
and detection, flip-angle variations and filtering procedures [Craig and Marshall, 
1988; Neff et al, 1977; Daubenfeld et al, 1985]. Unlike the zero-order case, it is 
frequency dependent.  

The phase correction is applied in the real and imaginary spectra accordingly to eq. 
1.12 and eq. 1.13: 

 

𝑅𝑖𝑎𝑐 =  𝑅𝑖𝑏𝑐 cos(𝜙𝑖) + 𝐼𝑖𝑏𝑐 sin(𝜙𝑖)                                                (1.12) 

 

 

𝐼𝑖𝑎𝑐 =  𝐼𝑖𝑏𝑐 cos(𝜙𝑖) −  𝑅𝑖𝑏𝑐 sin(𝜙𝑖)                              (1.13) 

  

where 𝑅𝑖𝑏𝑐, 𝐼𝑖𝑏𝑐 and 𝑅𝑖𝑎𝑐 , 𝐼𝑖𝑎𝑐 represent the ith data points of the real and the imaginary 
parts before and after phase correction respectively. 

Using the modern software (e.g. TOPSPIN, XWINNMR), the phase correction is 
typically performed in the frequency domain with a manual evaluation of the signals 
in the spectrum. Dealing with multi-dimensional data implies the simultaneous 
correction on more than one row and more than one column. Many efforts have been 
done in order to automate this task. 

Automated phase correction of 1D NMR spectra has been deeply analyzed [Chen et al, 
2002; Koehl et al, 1995; Balacco, 1994; Ernst, 1969; Heuer, 1991; Brown et al, 1989; 
Craig and Marshall, 1988]. Ernst in 1969 [Ernst, 1969] firstly proposed to use the 
Hilbert transform for finding dispersion and absorption signals with null and 
maximal integral respectively. Chen in 2002 developed an automated phase 
correction algorithm for one-dimensional spectra based on entropy minimization. 
This method [Chen et al, 2002] overcame the limitations due to signal-to-noise ratio 
and signal overlapping affecting previous techniques [Heuer, 1991; Brown et al, 
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1989; Craig and Marshall, 1988] based on symmetrizing lines, baseline optimization 
and DISPA (dispersion versus absorption plots) respectively. 

The multi-dimensional problem is actually a challenging task [Cieslar et al, 1988; 
Hoffman et al, 1992; Dzakula, 2000; Balacco and Cobas, 2009]. Cieslar has been the 
first to propose an automated multi-dimensional phase correction algorithm [Cieslar 
et al, 1988] based on the maximization of signal asymmetry and of signal height in the 
diagonal. It was limited to homonuclear spectra. Hoffman exploited the DISPA method 
[Hoffman et al, 1992] for correcting the phase in multi-dimensional spectra. Dzakula 
in 2000 [Dzakula, 2000] developed the PAMPAS algorithm (Phase Angle 
Measurement from Peak Areas) and as last proposal Balacco and Cobas used a 
whitening algorithm in 2009 [Balacco and Cobas, 2009]. 

 
1.2.3 SOLVENT SUPPRESSION 

 

The one-dimensional FID is represented by the sum of K exponentially damped 
sinusoids (see eq. 1.14) with ak amplitude, 𝜑k phase, dk damping factor and fk 
frequency. The different precession rates of the spins in the transverse plane are 
observable as different oscillation rates fk. After Fourier transforming, each signal is 
translated in to a Lorentzian line disposed at a specific position (chemical shift) in the 
frequency domain. In particular, n is related to the nth data point and ∆𝑡 defines the 
sampling interval: 

 

𝑦𝑛 =  ∑ 𝑎𝑘𝐾
𝑘=1 𝑒𝑖𝜑𝑘𝑒(−𝑑𝑘+𝑖2𝜋𝑓𝑘)𝑛∆𝑡                           (1.14) 

 

The solvent signal is responsible for the low-frequency component of the FID signal 
that can be eventually subtracted from the original dataset before Fourier 
transforming. Typically, in the frequency domain it is positioned in the middle of the 
spectrum. Temperature changes induce phase and amplitude variations of the signals 
(i.e. the solvent) in the time domain that correspond to a shift of the resonance 
positions in the frequency domain. 

 

1.2.3.1 DEUTERATED SAMPLES 
 

The use of liquid-state NMR data involves the dissolution of the samples in a solvent.  
Since in proton 1H NMR the solvent resonance must not dominate the spectrum, the 
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hydrogen atoms of the solvent molecule can be replaced with atoms of deuterium 
(2H).  

The deuterium is also necessary to lock the strength of the magnetic field B0 that must 
be unchanged during the experiment. Since there are several scans for each FID (the 
same experiment is acquired several times and added up), a field strength variation, 
thus a frequency change, would not allow a correct sum of the same peak through the 
various acquisitions. The lock channel monitors the drift of the magnetic field 
detecting continuously the chemical shift position of the deuterium signal. Any shift 
on the deuterium resonance is detected and B0 is adjusted to keep it constant. The 
resonance of the deuterium becomes sharper enhancing the shimming (correcting the 
inhomogeneity of the magnetic field), thus it is easily detectable keeping constant the 
amount of deuterium in the sample. 

The D2O (heavy water) is the ideal solvent when dealing with water soluble 
molecules. 

 

1.2.3.2 SOLVENT SUPPRESSION: EXPERIMENTAL METHODS 
 

The solvent-to-solute ratio concentration is often in the order of 105, thus recording 
the spectrum in completely non-deuterated solutions would lead to an almost 
complete disappearing of the solute resonance in the spectrum.  In order to detect 
amide hydrogen atoms, the spectrum is generally acquired in a solution of 90% H2O / 
10% D2O. In samples containing small amount of deuterated solvent the water 
protons may still be too strong and hide resonances of interest. In order to avoid that 
problem, instrumental techniques for solvent suppression must be always applied.  

Among all the existing experimental methods, one of the most used is the 
presaturation [Hoult, 1976] where a long low-power irradiation at the solvent 
frequency is applied in order to saturate the solvent protons during the relaxation 
time. It is immediately followed by a normal pulse exciting them. Typically, partial 
saturation of HN spins due to rapid chemical exchange between amide protons and 
saturated water protons affects spectra with presaturation. This effect and the 
presence of protons resonating close to the water position (Hα) cause a reduction of 
the intensity of the amide proton resonances. Alternative methods without water 
saturation have been designed with the aim to overcome these problems. 

The WATERGATE (WATER suppression by GrAdient Tailored Excitation) solvent 
suppression method encompasses gradients pulses (PFG) de-phasing the 
magnetization of the water and of the solute with a successive refocusing of the solute 
signals [Piotto et al, 1992; Sklenar et al, 1993; Saudek et al, 1994; Liu et al, 1998].  The 
water signal is much more strongly suppressed compared to presaturation. Intensity 
reduction of the resonances of interest is still observable. The water signal needs a 
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longer T1 relaxation time to regain its equilibrium state with respect to the protein 
resonances, thus it cannot fully relax back and it is partially saturated.  

Water-flip-back [Grzesiek and Bax, 1993a,b; Lippens et al, 1995] with an adjunctive 
selective pulse at the water resonance before the standard watergate sequence 
reducing the saturation transfer. 

Alternative method to presaturation and selective excitations is the use of spin-lock 
pulses [Messerle et al, 1989], the jump-return suppression method [Plateau and 
Gueron, 1982] and the use of binomial sequences [Hore, 1983]. 

Using modern NMR spectrometers an excellent water suppression can be achieved 
with selective excitation techniques such as WET (Water suppression Enhanced 
through T1 effects) [Smallcombe et al, 1995], excitation sculpting [Hwang et al, 1995] 
or by applying more complicated selective presaturation sequences such as PURGE 
[Simpson and Brown, 2005].   

The above mentioned experimental techniques are typically complemented with 
post-processing solvent suppressing methods. 

 

1.2.3.3 SOLVENT SUPPRESSION: POST-PROCESSING METHODS 
 

The experimental suppression alone is not sufficient for resonance recovering after 
water suppression, thus several post-processing methods have been developed.  

Some of the first approaches exploited the fact that the water resonance is usually 
positioned at the center of the spectrum. Kuroda in 1989 proposed the Fourier 
transform of second derivatives of the FID for solvent suppression [Kuroda et al, 
1989]. Marion in the same year used convolution filters with the same purposes. In 
this case the FID was typically filtered by a low pass finite digital filter with a specific 
bandwidth positioned at the resonance frequency of the water [Marion et al, 1989]. 
The convolution of the FID with a Gaussian or sine bell window is then subtracted for 
water suppression. A modified low-frequency deconvolution filter on COSY spectra 
has been proposed by Friedrichs et al, in 1991. The Karhunen-Loeve transformation 
has been applied for filtering out low-frequency contributions in the time domain 
signal [Mitschang et al, 1990]. The continuous wavelet transform (CWT) and the 
Gabor transform furnish a time-frequency representation of the signal and they can 
also be used for suppressing large unwanted spectral resonances as the solvent 
[Barache et al, 1997; Antoine et al, 2000]. Günther applied the dyadic discrete wavelet 
transform (DWT) as alternative method [Günther et al, 2002]. For a critical review of 
such filtering approaches see Coron et al, in 2001, where several methods are 
compared concluding that the finite impulse response FIR filter [Sundin et al, 1999] is 
the most efficient one. 
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The dispersive tails of the water resonance can be eliminated applying suitable 
baseline correction [Adler and Wagner, 1991]. They are largely attenuated by fitting 
these tails to a hyperbolic function which is then subtracted from the spectra. The 
dispersive tails of the water resonance can also be suppressed by phasing the water 
signal in absorption mode, eliminating such signal from the real part of the spectrum, 
discarding the imaginary part and regenerating the correct imaginary data from the 
processed real part via a Hilbert transform [Tsang et al, 1990]. 

Signal decomposition techniques as principal component analysis (PCA) and singular 
value decomposition (SVD) have been also applied for solvent suppression purposes. 
Grahn in 1988 described the use of PCA for pattern recognition in two-dimensional 
NMR spectra [Grahn et al, 1998]. The PCA was previously used for artifact reduction 
in COSY spectra [Hardy and Rinaldi, 1990]. Singular value decomposition (SVD) on a 
Hankel-type matrix of the FID was also employed for large artifact removal [Brown 
and Campbell, 1990; Pijnappel et al, 1992]. 

The SSA (singular spectrum analysis) [Ghil et al. 2002] is an extension of the PCA. The 
latter creates an autocorrelation matrix by time averaging over a sample of free 
induction decays, while the former embeds each FID separately in an M-dimensional 
vector space [Zhu et al, 1997]. The interrelationships among SVD, PCA and KLT have 
been discussed by Gerbrands [Gerbrands, 1981].  

The matrix pencil techniques are related to PCA and SVD determining the 
eigenvectors and eigenvalues of a pair of time delayed correlation matrices [Lin et al, 
1997]. Time-embedding techniques and simultaneous or joint diagonalization of a set 
of Toeplitz trajectory matrices recently led to reconsider those methods [Parra and 
Sajda, 2003]. These blind source separation (BSS) techniques based on a GEVD 
(generalized eigenvalue decomposition) of a matrix pencil have been applied to 2D 
NOESY proton NMR spectra of proteins to remove the water resonance [Stadlthanner 
et al, 2006]. The extracted components are automatically identified using the 
simulated annealing [Boehm et al, 2006]. 

The ideal procedure must not only remove the solvent signal, but it also must not 
distort the rest of the spectrum, reveal the hidden resonances of interest and require 
no user intervention. 

 

1.3 Molecules 
 

Proteins are biochemical essential compounds of the organism, having diverse 
biological functions: oxygen transport (hemoglobin), hormone transport (albumin), 
cell signaling (transduction proteins), antibody (immunoglobulin), antigen (bacterial 
and viral proteins), hormone effector (insulin), mobility (myosin, actin), receptor, 
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repressor, storage (ferritin), catalyst (enzymes) and structure (keratin, collagen). 
Generally, they build up complexes connecting to other biomolecules such as lipids 
(lipoproteins), carbohydrates (glycoproteins), phosphate groups, nucleic acids and 
prosthetic groups.  

The proteins are constituted by different compositions of 20 canonical amino acids 
forming a polypeptide chain. The peptide covalent bond is formed between the 
carboxyl and the amide groups of adjacent amino acids losing a water molecule. 
When they are joined together they are called residues. The function of each protein 
is strictly related to the properties of its constituting amino acids. As described in Fig. 
1.4 they possess common basic structure (i.e. backbone or main chain atoms) 
including an amino group (NH2), a carboxyl group (COOH), a hydrogen atom (Hα) and 
a carbon (Cα). A variable side chain (R) is bonded to this latter. 

The side chains of the various amino acids reveal different properties as the 
hydrophobicity. Glycine is the simplest one exhibiting a certain conformational 
flexibility. Alanine, valine, leucine and isoleucine possess aliphatic side chains mostly 
involved in hydrophobic interactions.  

 

 

Figure 1.4 Chemical structure of the backbone (main chain) of an amino acid: the backbone is the 
same for all amino acids that are distinguished only by different side chains (R). 

The hydrophobicity increases with the number of aliphatic C atoms in the side chain. 
Aspartic and glutamic acids are polar and behave as organic acids. Their amides 
(asparagine and glutamine) are very hydrophilic. Tyrosine, tryptophan and 
phenylalanine are aromatic amino acids absorbing ultraviolet light. The basic ones as 
histidine, lysine and arginine are hydrophilic. Proline is the only cyclic one exhibiting 
similar behavior of the aliphatic group. Serine and threonine are hydroxyl hydrophilic 
amino acids. Cysteine and methionine contain sulfur atoms and are considered 
hydrophobic. 
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Alanine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, 
serine and tyrosine can be directly produced by the human organism, while the other 
10 amino acids must be provided by the food. 

The extended polypeptide chain that constitutes the protein is stabilized by the 
planarity of the non-hydrogen atoms involved in the peptide bonds and by the limited 
rotation about this bond. The peptide bond angle ω can therefore assume only two 
values: 0° (cis conformation) and 180° (trans conformation). There are two other 
bonds in the polypeptide backbone, between N and Cα and between Cα and C. The 
former is known as phi (ϕ) torsion angle and the latter is called psi (ψ) torsion angle. 
Since relative free rotation about them is permitted, the number of possible 
conformations of the polypeptide chain is restricted by the combination of rotatable 
bonds with rigid planar regions as described in Fig. 1.5. 

The values of the torsion angles are anyway sterically constrained by unfavorable 
contacts between atoms. The Φ and ψ allowed values are described in the 
Ramachandran plot, reported in Fig. 1.6. Glycine is the only residue that possesses a 
different Ramachandran plot since the allowed regions are typically larger for 
residues with a very short side chain. 

 

Figure 1.5 Polypeptide chain with backbone bonds: the peptide bond connects two amino acids. 
Phi and psi torsion angles limit the allowed conformations of the polypeptide chain. 
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Figure 1.6 Ramachandran plot: most favorable regions highlighted in green with phi and psi angle 
values giving rise to well-defined structural motifs. 

 

Additional covalent bonds may be present in some proteins in the form of disulfide 
bridges built up between the sulfur atoms in the side chains of the cysteine residues. 
They can be broken at high temperatures and acidic pH when a denaturing process is 
imposed. 

 

1.3.1 PROTEIN STRUCTURE 
 

The primary structure is the linear sequence of the residues along the polypeptide 
chain that is unique for each protein.  Spatial relationships between close residues are 
responsible of local conformations (secondary structures) of the polypeptide chain. 
Mainly, they are represented by α helix, β strand and turns. A typical alpha helix 
contains 3.6 residues per turn (as described in Fig. 1.7). Its existence is strictly related 
to the values of the torsion angles allowing the building up of hydrogen bonds 
between the backbone carbonyl oxygen of one residue and the amide hydrogen of the 
residue located four positions ahead in the polypeptide chain. Proline cannot 
participate in helical structures due to the lack of an amide proton. The 310 helix is 
another type of helix whose hydrogen bonds are formed between the residues i and 
i+3 with 3 residues per turn, while the π helix has hydrogen bonds between i and i+5 
residues with 4.4 residues per turn. 
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Figure 1.7 Alpha helix secondary structure: hydrogen bonds highlighted in red. 

 

The β sheet is formed by two or more β strands stabilized by hydrogen bonds 
between the residues i and i+3, with a reversion of the chain direction. Adjacent 
strands can be parallel or antiparallel (more common) arranged as shown in Fig. 1.8. 

The turns often join together such secondary structures and can be distinguished in γ 
turns, containing three residues and β turns with four residues. The amino acids are 
commonly found in certain secondary structure. For instance, those ones having a 
long side chain (leucine, methionine, glutamine and glutamic acid) are typically 
disposed in α helices, while valine, isoleucine and phenylalanine prevalently form β 
sheets. Proline and glycine often appear in turn structures. Exceptions must be 
considered anyway. 
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Figure 1.8 Beta Sheet secondary structure: antiparallel (left) and parallel (right) beta sheets 
(hydrogen bonds highlighted in red). 

 

The folding or the linking of those secondary structures represents the tertiary 
structure of the protein, where amino acids located far apart in the primary sequence 
are spatially closely arranged. This structure derives from the interactions arising 
among secondary elements by means of hydrogen bonds, disulfide bridges, van der 
Waals interactions, hydrophobic contacts and electrostatic interactions. The 
polypeptide chain must fold into a correct tertiary structure (native state) in order to 
become a functional protein. There is a tide relation between primary sequence and 
folded structure that in turn determines the protein function. 

 

1.3.2 PSCD4-DOMAIN OF PLEURALIN PROTEIN 
 

The pleuralin cell wall protein is obtained from the diatom Cylindrotheca fusiformis 
organism [Kröger et al, 1997; Wenzler et al, 2001]. Diatoms are unicellular organisms 
belonging to the class of the algae [Van den Hoek et al, 1993]. The scaffold of the 
diatom cell walls is made up of silica that is associated with proteins [Volcani, 1981]. 
Within the cell wall there are proteins resistant to EDTA and SDS treatment, thus they 
are only extractable after complete dissolution of the cell wall in anhydrous hydrogen 
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fluoride (HF) [Mort and Lamport, 1977]. The pleuralin HEP200 [Kröger et al, 1997] 
belongs to this class of proteins. 

The pleuralin is linked to the silanol groups (SiOH) in the silica surface of the cell wall 
through covalent bonds (glycoside bonds, phosphodiester-bonds and OH-groups 
linkages [Hecky et al, 1973; Lobel et al, 1996]). In all the described cases, the 
pleuralin shows the same modular construction with an N-terminal pre-sequence 
(amino acids: 1-4), a proline-rich (65%) domain (amino acids: 46-82), 3 to 5 proline-
rich (22%) conserved PSCD-domains (with 87 or 89 amino acids for each PSCD 
domain) and a different C-terminal (amino acids: 576-946) for each pleuralin.  

 

PSCD1 NPSSQPSECA DVLEECPIDE CFLPYSDASR PPSCL—SFG RPDCDVLPTP QNINCPRCCA TECRPDNPMF TPSPDGSPPI 
CSPTMLPTN 

PSCD2 EPSSAPSDCG EVIEECPLDT CFLPTSDPAR PPDCT—AVG RPDCDVLPFP NNLGCPACCP FECSPDNPMF TPSPDGSPPN 
CSPTMLPTP 

PSCD3 APSSQPSQCA EVIEQCPIDE CFLPYGDSSR PLDCTDPAVN RPDCDVLPTP QNINCPACCA FECRPDNPMF TPSPDGSPPI 
CSPTMMPSP 

PSCD4 EPSSQPSDCG EVIEECPIDA CFLPKSDSAR PPDCT—AVG RPDCNVLPFP NNIGCPSCCP FECSPDNPMF TPSPDGSPPN 
CSPTMLPSP 

PSCD5 QPSSQPSECA DVLELCPYDT CFLPFDDSSR PPDCTDPSVN RPDCDKLSTA IDFTCPTCCP TQCRPDNPMF SPSPDGSPPV 
CSPTMMPSP 

Table 2.1 Sequence comparison of the five PSCD-domains of the pleuralin HEP200: PSCD4-
domain is the investigated one. Red letters of amino acids identify the parts of the sequences that are 
identical to the PSCD4-domain. The ten residues of cysteine have conserved the position in all the five 
domains (green highlighted) being responsible of establishment of disulfide bridges. 

 

The PSCD domains share the 73-91% of the sequence and they contain 10 cysteine 
residues at exactly the same positions. The PSCD4-domain (amino acids: 372-458) of 
HEP200 is shown in Table 2.1 and it is compared with the other four domains. Only 
the third and the fourth domains are directly connected while the others are 
separated by short sequences of amino acids. The recombinant His6PSCD4 [Wenzler 
et al, 2001] is one hundred-twelve amino acids long and contains the PSCD4-domain 
(amino acids: 16-102) as reported in Appendix A. 

 

1.4   Protein Structure Determination 
 

The three-dimensional structure of the protein is essential information that can be 
exploited in order to understand the biological function of the protein. There are two 
major methods for protein structure determination: X-ray crystallography and NMR 
spectroscopy. They are often complemented by computational approaches based on 
the simulation of the molecular dynamics.  
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1.4.1 PROTEIN STRUCTURE DETERMINATION: X-RAY 
CRYSTALLOGRAPHY 
 

The diffraction of X-ray by sodium chloride crystals has been discovered by William 
and Lawrence Bragg in 1907 [Bragg, 1907] who determined the direct relationship 
between the diffraction pattern and the crystal structure (known as Bragg’s law). 
James Sumner has crystallized the first protein in 1926 (enzyme urease). The first 
protein structure has been determined in 1958 by John Kendrew [Kendrew et al, 
1958]. Patterns of diffracted X-rays have been used to obtain information about the 
orientation of the atoms in the molecule.  

Solid three-dimensional crystals of the molecule have to be grown for diffraction and 
it is a time-consuming process, thus this method would be more appropriate for small 
molecules. The crystal acts as an amplifier since the X-ray irradiation of a single 
molecule would be too weak, while the crystal contains numerous molecules oriented 
in the same direction. The crystallized protein is positioned in a tube and it is 
irradiated by an X-ray beam. The wavelength of the electromagnetic radiation must 
equalize the distance between the atoms in order to observe such diffraction. The 
intensity and the positions of the diffraction spots are collected, the crystal is rotated 
and the measurement is repeated. An electron density map (a map of the distribution 
of the electrons in the molecule) is obtained which being a good approximation of the 
atomic position provides information about the relative distance between the atoms. 
Some fitting models must be computationally determined and refined. The R-factor is 
the measure of agreement with the measured diffraction data. 

The majority of the protein structures that have been collected up today have been 
determined by X-ray crystallography. This technique can be applied also to very large 
molecule while NMR is actually limited to 80 kDa and it is recently increased by the 
use of TROSY (Transverse Relaxation-Optimized Spectroscopy) experiments 
[Pervushin et al, 1997]. The crystallization process is extremely difficult for non-
globular proteins, thus X-ray is not always applicable. NMR spectroscopy allows a 
more realistic determination of the structure, since it is performed in solution. The 
different flexibility of the various domains of the molecule is easily detected by NMR. 

 

1.4.2 PROTEIN STRUCTURE DETERMINATION: NMR SPECTROSCOPY 
 

The sample containing the molecule in solution must be located in a spectrometer in 
order to collect a set of NMR spectra. At this point, the spectroscopist must 
investigate such data assigning each resonance with a specific nucleus in the 
molecule. Such task is performed with different strategies depending on the type of 
measured spectra. In particular, the TOCSY and the COSY spectra allow the 
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identification of resonance positions in each amino acid separately, due to the fact 
that the scalar coupling between different residues is four bonds apart and it is 
negligible. The NOESY experiment is used to perform a sequential assignment 
building a sort of path between HNi-Hαi cross peaks connected through intense 
sequential resonances of the type HNi-Hαi-1. The assignment task can be slighted by the 
use of adjunctive triple resonance experiments.  

After completing the assignment, some restraints must be derived from the spectra. 
They are necessary to infer accurately the molecular three-dimensional structure 
from the NMR spectra. The main constraint is related to measurements of the NOEs 
[Macura and Ernst, 1980; Neuhaus and Williamson, 1989] that define the distances 
between hydrogen atoms of residues that are close in the space but can be even far 
away in the primary sequence. This information is extracted from cross peaks 
volumes of the NOESY spectra, considering that for small mixing time τm, the intensity 
of the peak is inversely proportional to the sixth power of the distance r separating 
two considered atoms [Kumar et al , 1980], as expressed in eq. 1.15: 

 

𝑉𝑖𝑗 ∝  1
𝑟𝑖𝑗
6                             (1.15) 

 

The distance between atoms can be computed as described in eq. 1.16, given a well-
known reference distance 𝑟𝑟𝑒𝑓 that arises either from cross peaks of methylene 
groups (i.e. Hβ1 and Hβ2 of aspartic acid) and it is typically 1.78 𝐴̇ or from cross peaks 
of aromatic rings (as in phenylalanine, tyrosine and tryptophan) that corresponds to 
2.42 𝐴̇. 

 

𝑟𝑖 = (𝐼𝑟𝑒𝑓
𝐼𝑖

)
1
6 𝑟𝑟𝑒𝑓                   (1.16) 

 

in which Iref and Ii represent the cross peak intensities. 

The mixing time used to detect the NOEs must be neither too long to avoid spin 
diffusion [Kalk and Berendsen, 1976; Mertz et al, 1991] effects nor too short in order 
to make it observable. The volume of the cross peaks must be measured by means of 
integration tools but a very precise determination is not thinkable. The NOEs must be 
considered as upper bounds on such distances and can be classified as strong (in the 
range 1.9 -2.7 Ȧ ), medium (between 2.7-3.3 Ȧ) and weak (up to 5 Ȧ). 
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NMR experiments provide other information as hydrogen bonds developed through 
scalar couplings. In particular, the long-range HNCO experiment is typically used to 
find such type of bonds [Cordier et al, 2008; Cordier and Grzesiek, 1999]. In 
particular, the observed hydrogen bonds are translated in distance constraints as 
described in Fig. 1.9. 

 

 

 

 

 

Figure 1.9 Hydrogen bonds developed via scalar coupling: distance restraints obtained from 
observed hydrogen bonds. 

 

Such restraints are strictly involved in the secondary structure (α-helix and β-sheets) 
definition. 

The chemical shifts are also valuable parameters that can be used in order to infer 
some structural information. In particular, some studies have been conducted to 
reveal recurrent chemical shift values for backbone atoms of specific amino acids in 
well-defined secondary structures [Wishart et al, 1995; Wang et al, 2001]. The TALOS 
program [Corneliescu et al, 1999] has been developed with the aim to compare the 
observed chemical shifts to an existing database of chemical shift values in order to 
predict which residues are involved in secondary structure motifs that in turn define 
the allowed values of dihedral angles along the main chain of such amino acids. 

The torsion angle restraints can be derived not only from chemical shifts, but they are 
mainly obtained through vicinal scalar coupling constant 3J, whose value can be 
observed from coupled COSY spectra or from triple resonance experiments as the 
HNCA E.COSY (Exclusive Correlation Spectroscopy) [Griesinger et al, 1987].  

The Karplus relation [Karplus, 1963] connects the three-bond scalar coupling 3J with 
the torsion angle θ as follows: 

 

3J(𝜃) = 𝐴𝑐𝑜𝑠2𝜃 + 𝐵𝑐𝑜𝑠𝜃 + 𝐶             (1.17) 

 

C O H N 

1.8 – 2.5 𝐴̇ 

2.3 – 3.5 𝐴̇ 
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in which A, B and C are empirically computed constants [Habeck et al, 2005]. In 
particular, the φ dihedral angle restraints are derived from 3JHNHα coupling constant, 
while the χ1 is obtained from the constant 3JHαHβ [Pardi et al, 1984]. 

A new class of restraints is related to the measurement of residual dipolar couplings 
(RDCs) in partially aligned molecules. It provides distance restraints between two 
atoms (N-HN) and orientational information about the angle formed between the 
vector connecting them and the magnetic susceptibility tensor [Tjandra et al, 1997]. 
They define the bond orientations with respect to the tensor, a global defined axis in 
the molecule.  

The RDC arises from dipolar couplings that have been not averaged out, as in the case 
of anisotropic conditions. In solution NMR the RDCs can be obtained adding a co-
solute inducting a partial alignment (i.e. liquid crystals [Saupe et al, 1964; Saupe et al, 
1968; Tjandra and Bax, 1997], bicelle [Sanders et al, 1994; Sanders and Schwonek, 
1992; Cavagnero et al, 1999] and other media [Clore et al, 1998a; Hansen et al, 1998; 
Sass et al 1999; Sass et al, 2000]). The degree of alignment is adjusted varying the 
concentration of co-solute in the sample [Bryce and Bax, 2004]. They behave 
isotropically at room temperature, while at high temperatures they cause a signal 
splitting [Ottiger and Bax, 1998]. 

The RDC is an additional contribution to the J coupling splitting that is observable in 
coupled aligned HSQC spectra. The dipolar coupling DAB(θ,Φ) is described by eq. 1.18, 
where Aa and R are the axial and rhombic components of the alignment tensor, while 
θ and Φ are the polar and azimuthal angles describing the orientation of the 
internuclear vector with respect to the alignment frame. Both the rhombicity and the 
axiality parameters must be determined for structure calculation. The magnitude of 
the molecular alignment tensor is described by three components |𝐴𝑧𝑧| ≥  �𝐴𝑦𝑦�  ≥
|𝐴𝑥𝑥| or equivalently by 𝐴𝑎 = 3

2
𝐴𝑧𝑧 and  𝐴𝑟 =  𝐴𝑥𝑥 − 𝐴𝑦𝑦. The orientational restraints 

are measured building a histogram [Clore et al, 1998b, Bryce and Bax, 2004; Wei and 
Werner, 2006] of the distribution of normalized RDCs values where the extremes (Ayy 
and Azz) and the most likely value (Axx) are determined as reported in Fig. 1.10. The 
accuracy of the histogram is enhanced increasing the amount of available RDCs. 

 

𝐷𝐴𝐵(𝜃,𝛷) = 𝐷𝑎𝐴𝐵 �(3 𝑐𝑜𝑠2𝜃 − 1) + 3
2
𝑅𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝛷�    (1.18) 

 

where       𝐷𝑎𝐴𝐵 =  −𝜇0𝛾𝑎𝛾𝐵ℎ
8𝜋3𝑟𝐴𝐵

3 (𝐴𝑎
2

)           (1.19)     
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with 𝜇0 defining the magnetic moment, h is the Planck’s constant, 𝛾𝑖 are the 
gyromagnetic ratios and r is the distance between the nuclei A and B. The rhombicity  

𝑅 = 𝐴𝑟
𝐴𝑎

   is obtained as follows: 

 

𝑅 =  2
3
𝐴𝑥𝑥−𝐴𝑦𝑦

𝐴𝑧𝑧
                   (1.20) 

 

while the axiality is computed in the following manner:  

 

𝐴𝑎 =  −𝐴𝑧𝑧
2

                                                                      (1.21) 

 

The RDC tensor components fulfill the relation: 

 

𝐴𝑧𝑧 + 𝐴𝑦𝑦 + 𝐴𝑥𝑥 = 0                                                    (1.22) 

 

The histogram pattern provides the magnitude of the alignment tensor, while the 
orientation is optimized during the structural calculation. 
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Figure 1.10 Residual dipolar coupling restraints: histogram of the RDCs distribution with extremes 
highlighted in red. 

 

In order to derive a high quality structure from NMR data at least 20 restraints per 
residue must be obtained. The calculation of a three-dimensional molecular structure 
is a minimization problem of a potential energy function describing the agreement 
between an initial conformation and a given set of restraints. Generally, the folded 
protein possesses the lowest potential energy, thus a simulated annealing algorithm 
[Kirkpatrick et al, 1983; Nilges et al, 1988; Bruenger and Nilges, 1993] must be 
performed for avoiding that the energy is trapped in a local minima. The initial 
structure is generated by metric matrix distance geometry [Nilges et al, 1988;  
Crippen and Havel, 1988; Havel, 1991] or by the variable function method [Braun and 
Go, 1985; Güntert et al, 1991]. It is also possible to start from an extended structure 
[Brooks et al, 1983] at the expense of the computational time. 

The potential energy function that must be minimized is described in eq. 1.23: 

 

𝐸𝑝𝑜𝑡 =  𝐸𝑏𝑜𝑛𝑑 +  𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 + 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐸𝑣𝑎𝑛𝑑𝑒𝑟𝑊𝑎𝑎𝑙𝑠        (1.23) 

 

where the first three pseudo-energy terms correspond to three different types of 
atom movement involving bond length stretching, bond angles stretching and bond 
rotations. The last two terms represent the contribution of non-bounded interactions. 

Some of the existing molecular dynamics program widely used are: Amber [Cornell et 
al, 1995], Xplor [Bruenger, 1992] and CNS [Bruenger et al, 1998]. 
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In particular, an ensemble of several conformations having low energy is generated, 
which reflect the flexibility of the molecule in solution. The RMSD (root mean square 
deviation) is computed (in accordance to eq. 1.24) as the difference between the 
average structure and the other components of the bundle [Renugopalakrishnan et al, 
1991, Hyberts et al, 1992]. The lowest is the RMSD the more similar are the 
conformations in the ensemble.  

 

𝑅𝑀𝑆𝐷 =  �1
𝑁
∑ (𝑠𝑚𝑒𝑎𝑛 − 𝑠𝑖)𝑁
𝑖=1                                                         (1.24) 

 

1.4.2.1 NMR in METABOLOMICS 
 

The metabolome represents the complete set of metabolites (low-molecular-weight 
compounds as amino acids, carbohydrates, vitamins, lipids, etc.) in cell, tissue, organ 
and biological fluid (i.e. urine, plasma, etc.). The metabolomics provides an exhaustive 
analysis of the metabolites contained in a sample furnishing information about 
physiological status of an organism, pathological diseases, and effects of nutrients, 
drugs, lifestyle, environment and toxic agents. 

 

Figure 1.11 NMR-metabolomics: 1H NMR spectrum of blood serum [Beckonert et al, 2007] 
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NMR spectroscopy and mass spectrometry have been typically used in metabolomics. 
The former has revealed to be particularly significative in this field [Lindon et al, 
1999; Aranibar et al, 2011]. The first applications of NMR to metabolism studies 
(metabonomics) have been conducted since the 1970s by Brown [Brown et al, 1977]. 
Successive toxicity metabolism studies have been developed by Nicholson’s group 
[Wilson et al, 1987; Nicholson et al, 1999]. They have designed a method based on 
PCA in order to ease the urine spectra assignment and to discover new signals 
[Holmes et al, 1992].  

Biofluids are typically used in NMR-metabolomics since they are easily obtainable (i.e. 
urine, plasma and saliva). This noninvasive technique is also well-suited for metabolic 
analysis of in vitro cell systems as yeast and tumor cells. 

The drug and metabolite concentration levels in blood plasma are especially 
important to determine the precise dosage of a medicine.  As in the urine case the 
signal overlapping is very common and is mainly due to the presence of broad 
resonances caused by macromolecules as lipids and proteins (albumin and 
immunoglobulins) covering some minor metabolites of drugs. A typical 1H NMR 
spectrum of urine reveals thousands of overlapping sharp signals from low molecular 
weight metabolites (as creatinine and hippurate). The typical spectrum of blood 
plasma contains instead also the high molecular weight components (as lipids) 
resulting in a larger line width of the signals. An example of one-dimensional NMR 
spectrum of blood serum is reported in Fig. 1.11 [Beckonert et al, 2007]. 

Accuracy in signal assignment and intensity quantification is particularly critical in 
NMR-metabolomics since many small but significant resonances may be neglected 
cause of baseline distortions. This problem would lead to incorrect detection of 
important metabolites and biomarkers. Time and frequency domain baseline 
correction methods are typically applied on NMR data (see par. 1.2.1). They usually 
need a robust identification of noise regions [Brown, 1995; Saffrich et al, 1992; 
Golotvin and Williams, 2000] that can represent a challenging task in metabolomics. 
Xi has proposed a baseline correction of NMR metabolomics spectra based on a 
penalized smoothing model. Neither an explicit identification of noise data points nor 
fixed baseline fitting curves are required [Xi and Rocke, 2008]. Chang pointed out that 
many existing algorithms are aggressive [Pearson, 1977; Bartels et al, 1995] 
proposing a baseline correction method based on sliding window over high pass 
filtered signal dense spectra [Chang et al, 2007]. 

 

 

 



Chapter I                                                                                  Introduction 
 

31 
 

1.5 Automated structure determination 
 

In comparison to the large number of protein sequences available, only relatively few 
3D protein structures have been solved so far. The gap between the number of 
experimentally solved structures and the number of known protein sequences is huge 
and will most probably continue to widen in the future. As long as computational 
methods are not sufficiently well developed for accurately predicting a protein’s 
structure based on its amino acid sequence alone [Chothia et al, 1986], experimental 
methods for structure determination at atomic resolution will continue to play a 
dominant role in structural biology. NMR-based structure determination of small 
well-behaved proteins (highly soluble, globular and uniquely folded) is nowadays a 
manageable scientific problem which generally leads to a trustworthy solution. 
However, an expert must be involved and may need several months for a complete, 
self-consistent analysis. This situation is, in general, not acceptable in proteomics 
research, where a large number of structures need to be solved in as short time as 
possible. Considerable efforts have been made for a complete automated structure 
determination. 
 
 
1.5.1 AUREMOL 

 
 
The twelve years old AUREMOL software [Gronwald and Kalbitzer, 2004] based on 
AURELIA [Neidig et al, 1995] has been successfully used for the determination of 
three dimensional protein structures. The goal of AUREMOL is to provide routines for 
a reliable and automatic protein structure determination from a minimum of 
experimental NMR data with no or a minor user intervention.  AUREMOL relies on a 
molecule-centred top-down strategy, which means that starting from an initial 
structure it is iteratively refined until it fits the experimental data.  
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Figure 1.12 AUREMOL top-down strategy: the initial trial structure is iteratively refined in order to 
optimally fit the experimental data. External programs for molecular modelling are used to validate the 
structure. 
 
As shown in Fig. 1.12 it is evident that starting from some filtered and Fourier 
transformed measured spectra, the AUREMOL Bayesian peak picking [Antz et al, 
1995] can be applied in order to find all the true resonances of interest and 
automatically recognize artefacts and noise signals. All the true signals are 
automatically segmented [Geyer et al, 1995] to obtain volume information. They are 
automatically assigned by the KNOWNOE module [Gronwald et al, 2002] with a 
successive optimization step for chemical shift assignment [Baskaran et al, 2009; 
Baskaran et al, 2010]. The REFINE routine [Trenner, 2006] is used to automatically 
reproduce NOEs distance restraints and to estimate errors that together with some 
adjunctive dihedral angles, J couplings and H-bond restraints are required for an 
external protein molecular dynamics (MD) simulation. Once the MD has been 
performed, the RFAC module [Gronwald et al, 2000] is applied to validate the 
molecular structures back calculated through the RELAX module [Görler and 
Kalbitzer, 1997; Ried et al, 2004; Görler et al, 1999] comparing it with an initial trial 
structure. A homology modelling routine [Chothia et al, 1986] based on simulated 
annealing allows one to create suitable starting structures. AUREMOL contains a 
sequential assignment tool for 3D heteronuclear NMR data and the results can be 
used to simulate 2D and 3D NOESY spectra based on the complete relaxation matrix 
formalism using different motional models, including simulation of individual T2 
relaxation times. AUREMOL currently relies on external software only for raw data 
processing and restrained molecular dynamics calculations. Accurate constraint 
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information that may be used as input for structure calculation programs such as 
CNS, X-PLOR, or DYANA, for example, is automatically generated from 2D and 3D 
NOESY spectra using iterative relaxation matrix calculations. AUREMOL provides 
routines and utilities for the data analysis and structure validation steps in one NMR 
program with an emphasis on NOESY evaluation.  
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2 MATERIALS and METHODS 
 

2.1 Materials 
 

2.1.1 BACK-CALCULATED DATASET: HPr PROTEIN 
 

The back-calculated dataset is made up of a two-dimensional NOESY spectrum of HPr 
protein from Staphylococcus aureus (mutant H15A). SSA has been applied on the time 
domain both before and after adding the experimental solvent signal (also not 
positioned in the middle of the spectrum) and in the mixed domain (t1, ω2) including 
the water experimental artifact. The PCA has been performed directly on the 
spectrum without any time embedding of the data and it has been compared with the 
SSA. The two-dimensional dataset with additional experimental water has been also 
used to perform baseline correction (ALS) without any prior solvent removal. 

The one-dimensional simulated spectrum of the HPr protein from Staphylococcus 
aureus (mutant H15A) has been extracted (first FID) from the two-dimensional one. 
SSA has been applied in the time domain, in order to investigate quantitatively the 
number of extracted components (embedding dimension of SSA) and to determine 
specific limitations of the algorithm in dependence on the magnitude of the added 
experimental solvent signal, and in the mixed domain (t1, ω2). ICA has been applied 
in the frequency domain and it has been compared with SSA. 

 
2.1.1.1 SSA AND PCA OF TWO-DIMENSIONAL SPECTRA 

 

A synthetic two-dimensional NOESY spectrum has been back-calculated with the AU-
REMOL module RELAX-JT2 [Ried et al, 2004] using the three dimensional bundle of 
structures of histidine-containing phosphocarrier protein HPr (H15A) from Staphylo-
coccus aureus  made up of 20 conformations and the corresponding experimental 
chemical shifts. The HPr is made up of eighty-eight residues and its structure consists 
of three α-helices and four stranded anti-parallel β-sheets [Maurer et al, 2004]. The 
mutation H15A involves the substitution of the histidine residue number fifteen with 
an alanine residue. 

The HPr spectrum has been simulated at a temperature of 303 K with a  𝜏𝑟𝑜𝑡  of 3.65 
ns. The order parameters of the backbone-backbone, backbone-sidechain and 
sidechain-sidechain correspond to 0.85, 0.80 and 0.65 respectively. The H2O content 
is 90%. The following parameters have been used: mixing time, 150 ms; cut off 
distance, 0.5 nm; relaxation delay, 1.3 s; time-domain data, 1024x2048; size of the 
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real data after Fourier transformation, 512x1024; spectrometer frequency, 600.13 
MHz; spectral width, 13.9791 pm in both directions; acquisition modes, qsim and 
States in 𝑤2 and 𝑤1respectively. Another synthetic two-dimensional spectrum has 
been simulated with the same parameters described above, with 512x16384 time 
domain data points in order to perform a quantitative investigation of the embedding 
dimension of the SSA. 

The Lorentzian line shape of the peaks has been used in order to compute the 
artificial dataset with a simultaneous phase increment on both directions. Gaussian 
noise has been added to the spectrum by means of an existing AUREMOL routine. It 
has been added with a signal to noise ratio of approximately 2σ for a proton-proton 
pair in a distance of 0.5 nm [Baskaran et al, 2009]. The resulting time domain data has 
been filtered by exponential multiplication with a line broadening in the two 
dimensions of 3Hz and zero filled.  

The water artifact was produced by measuring a two-dimensional NOESY spectrum of 
90 % H2O/10 % D2O with solvent presaturation [Hoult, 1976] at 600.13 MHz, having 
the same acquisition parameters used for the spectrum simulation. The time domain 
signal of the synthetic HPr (obtained using the Cfid routine of AUREMOL) has been 
added to the time-domain signal of the experimental water (inverse Fourier 
transformed) scaled in such a way that the maximum of the water was about 500 
times stronger than the protein signals. 

 

2.1.1.2 SSA AND ICA OF ONE-DIMENSIONAL SPECTRA 
 

The synthetic one-dimensional spectrum of histidine-containing phosphocarrier 
protein HPr (H15A) from Staphylococcus aureus has been obtained from the two-
dimensional (with 1024x2048 time domain data points) back-calculated one [Ried et 
al, 2004] whose parameters have been described in par. 2.1.1.1. In particular, the first 
FID has been extracted from the two-dimensional raw data (Cfid routine of 
AUREMOL), while Gaussian noise and experimental water have been added to it 
before Fourier transforming. Moreover, several one-dimensional spectra have been 
obtained summing different water artifact signals to the simulated one-dimensional 
spectrum. The solvent signal has experienced several modifications as scaling and 
phase change as described in details in chapter four. The experimental water artifact 
has been measured with the same acquisition parameters of the simulated one as 
described in par. 2.1.1.1. Moreover, the first FID of the second two-dimensional 
spectrum (with 512x16384 time domain data points) has been used to investigate the 
embedding dimension of the SSA in dependence on the data dimensionality. 

 

 



Chapter II                                                            Materials and Methods 
 

36 
 

2.1.2 EXPERIMENTAL DATASET 
 

All the experimental spectra successively described (except the data of the PSCD4-
domain of the pleuralin protein) have been acquired and processed with the TOPSPIN 
software. SSA has been applied on the three-dimensional 1H13C HCCH-TOCSY 
spectrum of Trx protein from Plasmodium falciparum, while baseline correction (ALS) 
has been performed on the same spectrum before SSA. This latter has been applied on 
the two-dimensional NOESY spectra of HPr protein from Staphylococcus aureus 
(mutant H15A) both digitally (used also for a qualitative analysis of the extracted 
components) and analogy acquired to define the group delay data points 
management, on the two-dimensional TOCSY spectrum of HPr protein from 
Staphylococcus aureus (mutant H15A) and on the two-dimensional NOESY spectrum 
of the PSCD4-domain of the pleuralin protein (successively baseline corrected by 
means of ALS). It has also been applied on the one-dimensional spectrum of HPr 
protein from Staphylococcus aureus (mutant H15A) measured with watergate solvent 
suppression (to verify the SSA and the ALS performances when the solvent is not the 
dominant signal) and on metabolomics data as the one-dimensional spectra of blood 
plasma, human urine and COS7 cell. Moreover, the urine spectrum has been 
intentionally baseline distorted before applying the ALS in cascade after the SSA. The 
ICA has been performed in the frequency domain of two datasets of the one-
dimensional human urine spectrum and it has been compared with the SSA. The first 
dataset is composed of two experiments acquired with mixing times of 10 and 20 ms, 
while the second one is made up of two experiments measured with a mixing time of 
1500 and 2000 ms. Two datasets of ICA-tailored one-dimensional spectra of HPr 
protein from Staphylococcus carnosus have been obtained with specific pulse 
sequences in order to improve the solvent removal performance. In particular, the 
first dataset contains two experiments acquired with a different phase cycling, while 
the second one is composed by two experiments measured with different diffusion 
times. EMD of the time domain signal of the one-dimensional spectrum measured 
from a sample containing a mixture of five amino acids has been investigated in 
details in order to determine the solvent removal performance. It has been also 
applied to the time domain of the one-dimensional spectrum of a mixture of twenty 
amino acids with phase correction purposes.  

 
2.1.2.1 SSA OF THREE-DIMENSIONAL SPECTRA: Trx PROTEIN 

 

A three-dimensional experimental 1H13C HCCH-TOCSY spectrum has been recorded 
from a sample containing Thioredoxine protein (Trx) from Plasmodium falciparum in 
D2O 99.5%, pH 7.0. It is a medium size protein with one hundred-and-four residues 
and formed by four α-helices and a five stranded β-sheet [Munte et al, 2009]. The 
spectrum has been recorded on a Bruker DMX-600 spectrometer operating at 600.13 
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MHz, employing a mixing time of 12 ms, a relaxation delay of 1 s, 2048x96x128 time 
domain points and 1024x64x64 real frequency domain points. The water signal has 
not been experimentally reduced since the spectrum has been measured in 
deuterium. The spectral widths were 6.9945 ppm in the direct direction (𝜔3), 70.0 
ppm for the first indirect (𝜔1) and 6.9945 ppm for the second indirect direction (𝜔2). 
It has been acquired with the 3-1-2 order with the first indirect direction related with 
the 13C. The acquisition modes used are DQD in the direct direction and States-TPPI in 
both indirect directions. The spectrum has been filtered with a Gaussian function with 
a line broadening of -6.0 Hz in the direct direction and -8.0 Hz in both the indirect 
directions and positioned at 0.12 and 0.1 respectively. It has been acquired at 303 K. 

 

2.1.2.2 SSA  OF TWO-DIMENSIONAL SPECTRA 
 

2.1.2.2.1 NOESY SPECTRA OF HPr PROTEIN 
 

A two-dimensional NOESY spectrum has been recorded from a sample with 2.7 mM 
uniformly 15N-enriched histidine-containing phosphocarrier (HPr) protein from 
Staphylococcus aureus (H15A) in 500 μL 95% H2O/5% D2O, pH 7.0. It was recorded 
on a Bruker Avance-800 spectrometer operating at 800.13 MHz with a mixing time of 
100 ms. The two-dimensional NOESY spectrum has been recorded using a relaxation 
delay of 2 s, with 512x1024 time domain points and with 512x512 real frequency 
domain points. The spectral widths in the two dimensions were 13.970 ppm. It has 
been acquired at 303 K. The acquisition modes were DQD and States in the direct and 
indirect direction respectively. Solvent presaturation [Hoult, 1976] of 2.1 s has been 
used. Digital filtering [Moskau, 2002] have been applied as well. 

Another NOESY spectrum of histidine-containing phosphocarrier HPr protein from 
Staphylococcus aureus has been obtained from the same sample recorded without 
digital filtering (analog mode). It has been recorded at 600.13 MHz (Bruker Avance-
600.13) employing a mixing time of 100 ms, a relaxation delay of 2 s and with 
512x1024 complex time domain points. The spectral widths were 13.9790 in both 
directions. The acquisition modes were qsim and States in the direct and indirect 
direction respectively. It has been acquired at 303 K. Solvent presaturation of 2.1 s 
[Hoult, 1976] has been applied. 

 

2.1.2.2.2 TOCSY SPECTRUM OF HPr PROTEIN 

 

A two-dimensional TOCSY spectrum has been recorded from a sample with 2.7 mM 
uniformly 15N-enriched histidine-containing phosphocarrier (HPr) protein from 
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Staphylococcus aureus (H15A) in 500 μL 95% H2O/5% D2O, pH 7.0. It was recorded 
on a Bruker Avance-800 spectrometer operating at 800.13 MHz with a mixing time of 
100 ms. The two-dimensional TOCSY spectrum has been recorded using a relaxation 
delay of 1 s, with 1024x4096 time domain points and with 1024x2048 real frequency 
domain points. The spectral widths in the two dimensions were 13.9486 ppm. It has 
been acquired at 303 K. The acquisition modes were qsim in 𝑤2 and TPPI in  𝑤1. 
Solvent presaturation [Hoult, 1976] of 1 s has been used. Digital filtering [Moskau, 
2002] has been applied as well. 

 

2.1.2.2.3 NOESY SPECTRUM OF PSCD4-DOMAIN OF THE PLEURALIN 
PROTEIN 

 

A two-dimensional NOESY spectrum has been acquired at 298 K on a DRX-800 
spectrometer operating at 800.13. The sample contained 10 mM sodium-phosphate 
buffer with a pleuralin protein concentration of 10 mg/ml and 10% D2O. In addition, 
0.1 mM EDTA, 1 mM NaN3, 1 μM Leupeptin, 1 μM Pepstatin, 1 μM BPTI and 0.1 mM 
DSS as internal reference have been added in the solution. The NOESY spectrum has 
been obtained with the following acquisition and processing parameters: mixing time, 
100 ms; relaxation delay, 1.6 s; acquisition modes, DQD in 𝑤2 and TPPI in 𝑤1; time-
domain data points, 512x4096; real points after Fourier transforming, 256x2048; 
spectral width, 13.8858 ppm in both directions; window filter, Gaussian; line 
broadening, -6 Hz and –8 Hz in the direct and indirect dimensions respectively. 
Solvent presaturation [Hoult, 1986] of 1.7 s and further baseline correction have been 
applied on the two-dimensional NOESY spectrum. The data have been acquired and 
processed with XWINNMR 2.6. 

 

2.1.2.3 SSA OF ONE-DIMENSIONAL SPECTRA 

 

2.1.2.3.1 HPr PROTEIN SPECTRUM WITH WATERGATE SOLVENT 
SUPPRESSION 
 

The one-dimensional spectrum of histidine-containing phosphocarrier protein has 
been acquired from a sample of HPr protein from Staphylococcus aureus (H15A) in a 
1.5 mM buffer, pH 7.0 in 95% H2O/5% D2O. For the reference, 0.05 mM DSS has been 
added to the sample. To prevent degradation 0.5 mM EDTA and 1 mM NaN3 have 
been used. The spectrum was recorded at 298 K and 800.13 MHz (Bruker Avance-
800) using a DQD acquisition mode, a mixing time of 60 ms and a relaxation delay of 2 
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s. The spectral width was 14 ppm, the data were recorded using oversampling and 
digital quadrature detection. 64 K complex time domain points were obtained. 
Watergate solvent suppression has been applied [Piotto et al, 1992; Sklenar et al, 
1993; Saudek et al, 1994; Liu et al, 1998]. 

 

2.1.2.3.2 BLOOD PLASMA SPECTRA WITH SOLVENT PRESATURATION 

 

A sample of human blood plasma with EDTA added for anticoagulation has been used 
to record a one-dimensional spectrum at 310 K and 600.13 MHz (Bruker AvanceII-
600) with a DQD acquisition mode, a mixing time of 8 ms and a relaxation delay of 2 s. 
The spectral width was 20.0 ppm, the data were recorded using oversampling 
[Moskau, 2002] and digital quadrature detection. Water presaturation [Hoult, 1976] 
of 2.8 s has been applied on the spectra. 32 K time domain points were collected. 
Three different groups of spectra have been acquired: 1) from fasting patient; 2) 
ninety minutes after eating; 3) one-hundred-fifty minutes after eating.  

 

2.1.2.3.3 CELL SPECTRUM WITH PRESATURATION AND WATERGATE 
SUPRRESSION 

 

A one-dimensional spectrum has been measured from a sample containing african 
green monkey fibroblast cells [Couillard-Depres et al, 2004]. COS7 cells were grown 
in Dulbecco’s modified essential medium (DMEM) containing 10% fetal bovine serum, 
4 mM glutamine, 1.5 mg/ml sodium bicarbonate, 4.5 mg/ml glucose, 1mM sodium 
pyruvate, 100 U/ml penicillin and 100 μg/ml streptomycin. 1-10 millions of cells per 
sample were washed twice in phosphate-buffered saline (PBS) and embedded in 
ultralow gelling point agarose (Sigma Aldrich; 1 % agarose in PBS solution containing 
10 % D2O and 40 μM DSS) to avoid inhomogeneous distributions and sedimentations 
inside the 5 mm NMR tubes. Samples were cooled to 5°C and NMR measurement 
started within 15 min thereafter. During measurement, the temperature was kept at 
5°C [Ramm et al, 2009]. The spectrum was recorded at 278 K and 800.13 MHz using a 
DQD acquisition mode, a mixing time of 10 ms and a relaxation delay of 1 s. The 
spectral width was 12 kHz, the data were recorded using oversampling [Moskau, 
2002] and digital quadrature detection. 64 K time domain points were gathered. 
Solvent presaturation [Hoult, 1976] and watergate [Piotto et al, 1992; Sklenar et al, 
1993; Saudek et al, 1994; Liu et al, 1998] solvent suppression have been applied on 
the spectrum. 
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2.1.2.4 SSA AND ICA OF ONE-DIMENSIONAL SPECTRA 
 

2.1.2.4.1 URINE SPECTRA WITH SOLVENT PRESATURATION 
 

The one-dimensional human urine spectrum was recorded with a Bruker Avance-600 
spectrometer operating at a 1H frequency of 600.13 MHz. It was acquired using 
oversampling [Moskau, 2002] and digital filtering (Bruker DQD mode). A NOESY-type 
1D pulse sequence was used for the sample, including a selective presaturation of the 
solvent resonance [Hoult, 1976] of 5 s and a spoiler z-gradient pulse applied during 
the mixing time. For obtaining standardized conditions 133 mM sodium phosphate 
buffer, pH 7.4, 5% D2O, and 0.1 mM DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) 
was added. The spectrum was recorded at 298 K using a DQD acquisition mode, a 
mixing time of 10 ms and a relaxation delay of 5 s. The spectral width was 20.0276 
ppm, the data was recorded using oversampling [Moskau, 2002] and digital 
quadrature detection. 128 K time domain points were sampled.  Two datasets of 
experiments have been measured with a different NOE mixing times of 10 and 20 ms 
in the first dataset and of 1500 and 2000 ms in the second case. 

 

2.1.2.5 ICA-TAILORED ONE-DIMENSIONAL SPECTRA 
 

The one-dimensional experimental NMR spectra have been measured from a sample 
containing 1mM of uniformly 15N-enriched HPr protein from Staphylococcus carnosus 
95% H2O/5% D2O, pH 7. The NMR spectra were recorded on Bruker Avance-600 
operating at 600 MHz employing a mixing time of 10 ms, a relaxation delay of 1 s, a 
spectral width of 14.9872 ppm and with 32 K time domain points (including 140 
points of the group delay). The water signal was reduced by selective pre-saturation. 
All spectra were measured at 298 K. In particular, two datasets made up each one of 
two experiments have been obtained with specific pulse sequences. The first dataset 
has been generated measuring two experiments with a different phase cycling, while 
the second one is made up of two experiments acquired with different diffusion times 
(gradient weights of 80 G/cm and 50 G/cm for each case). 

 

2.1.2.6 EMD OF ONE-DIMENSIONAL SPECTRA 
 

2.1.2.6.1 SPECTRUM OF A METABOLITE MIXTURE OF FIVE AMINO 
ACIDS 
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The one-dimensional spectrum of a metabolite mixture [Snyder et al, 2008] made up 
of five different amino acids (S,G,V,T,L) with a concentration of 0.1 mg/ml has been 
recorded from a sample containing, in addition to the residues, 80% D2O including 
100 μM DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid). It has been measured at 
600.13 MHz (Bruker Avance-600) employing a qsim acquisition mode and a mixing 
time of 10 ms. The water signal was reduced by selective presaturation [Hoult, 1976] 
of 20.1 s. The spectrum has been recorded using a relaxation delay of 20 s and with 
64 K time domain points. The spectral width of the spectrum is 20.0 ppm. It has been 
measured at 278 K. 

 

2.1.2.6.2 SPECTRUM OF A METABOLITE MIXTURE OF TWENTY 
AMINO ACIDS 

 

The one-dimensional spectrum of a sample made up of twenty amino acids [Snyder et 
al, 2008] with a concentration of 0.1 mg/ml has been recorded in 80% D2O including 
100 μM DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) on a Bruker Avance-600 
spectrometer. The acquisition parameters are the following: acquisition mode, qsim; 
mixing time, 10 ms; relaxation delay, 20 s; time domain data, 64 K; spectral width, 
20.0 ppm. It has been recorded at 278 K with water presaturation [Hoult, 1976] of 
20.1 s. 

 

2.1.3 PROTEIN STRUCTURE DETERMINATION: PSCD4-DOMAIN 
 

The sequential assignment [see e.g. Sattler et al, 1999] has been obtained using the 
following two- and three-dimensional experiments [Wenzler, 2003]:  

 

1.             HNCA  
2.             HNCO  
3.             HACACO  
4.             HBHA(CO)NH 
5.             CBCA(CO)NH  
6.             3D 1H 15N-TOCSY-HSQC 
7.             3D 1H 15N-NOESY-HSQC 
8.             3D 1H 13C-NOESY-HSQC 
9.             3D HCCH-TOCSY 
10.             3D HNCA-E.COSY 
11.             2D 1H 15N-HSQC 
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12.             2D TOCSY 
13.             2D NOESY 

 

The first eleven spectra have been measured on a DRX-600 spectrometer operating at 
600.13 MHz, while the last two has been acquired on a DRX-800 spectrometer 
operating at 800.13 MHz. All the spectra have been measured at 298 K. The sample 
used for the NMR measurements contained 10 mM sodium-phosphate buffer with a 
protein concentration of 10 mg/ml and 10% D2O. In addition, 0.1 mM EDTA, 1 mM 
NaN3, 1 μM Leupeptin, 1 μM Pepstatin, 1 μM BPTI and 0.1 mM DSS as internal 
reference have been added in the solution. 

The sequential assignment of the atoms of the backbone has been obtained using the 
first eight spectra listed above. The side chain assignment has been performed using 
the experiments number 4, 5, 6, 8, 12 and 13. The assignment of the NOESY spectrum 
(number 13) has been automatically performed using the KNOWNOE routine 
[Gronwald et al, 2002]. 

The assignment furnished chemical shift restraints used to predict secondary 
structures. Statistical analysis has demonstrated the relationship existing between 
the chemical shift of certain atoms of the backbone and the presence of specific 
secondary motives [Wishart et al, 1995]. The TALOS+ [Corneliescu et al, 1999] 
program has been used to predict those secondary structures from the chemical shifts 
reported in Appendix A. It has produced dihedral angle restraints (φ angles) 
analyzing a database of homologous tri-peptides.  

The 3JHNHα coupling restraints have been observed (Appendix B) in the HNCA-E.COSY 
(number 10) spectrum [Griesinger et al, 1987]. Such restraints have been compared 
and added to those ones obtained with TALOS+ (Appendix C).  

The distance restraints have been obtained from NOESY spectra (number 13) using 
the REFINE routine [Trenner, 2006]. Lower and upper limits on those automatically 
computed distances have been manually adjusted [Kalbitzer and Hengstenberg, 
1992].  

Hydrogen bonds restraints (Appendix D) have been obtained using an HNCO 
spectrum with a longer transfer delay (66 ms) respect with the experiment number 2 
(16.5 ms) [Cordier et al, 2008; Cordier and Grzesiek, 1999]. 

Residual dipolar coupling restraints (Appendix E) have been obtained from the 1H-
15N HSQC experiment that has not been decoupled in the 15N-dimension (number 11). 
The anisotropic solution has been obtained adding bicelle as co-solute [Sanders et al, 
1994; Sanders et al, 1992; Cavagnero et al, 1999]. 
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All the spectra have been acquired and processed with XWINNMR 2.6. The three-
dimensional structure has been determined using the CNS program [Bruenger et al, 
1998].  

 

2.2 Methods 
 

2.2.1 SIGNAL DECOMPOSITION: PCA 
 

Principal Components Analysis (PCA) [firstly developed by Pearson in 1901] is also 
known as Proper Orthogonal Decompositions (POD) since it is an orthogonal linear 
transformation of the data. It transforms the original signal x in a new coordinate 
system that is built projecting the data along the N directions spanned by the 
eigenvectors with the highest variances. Therefore, the orthogonal components can 
reveal the variance of the data in a space of reduced dimensionality. It is in fact often 
used to find a lower dimensional representation y of the original zero-mean data x. 
The first component 𝑦1 can be defined as a linear combination of the K elements of 
the signal x weighted by scalar coefficients 𝑤𝑖 that maximize the variance of  𝑦1, as 
described in eq. 2.1 

 

𝑦1 =  ∑ 𝑤𝑖𝑥𝑖𝐾
𝑖=1 = w1

𝑇x                                                                                    (2.1) 

 

The unitary norm constraint �|w|� = 1 on the weighting vector w is additionally 
imposed in order to maximize the following criterion: 

 

𝑃𝐶𝐴 (w1) = E{𝑦12}  = E {(w1
𝑇x)2} = 

                                      = w1
𝑇E{xxT} w1 =  w1

𝑇R w1                           (2.2) 

 

in which E defines the expected value and R represents the (NxN) covariance matrix 
of x that is symmetric and positive definite. In particular, if x is a vector it 
corresponds to the variance of x. R may also represent the correlation matrix 
[Borgognone et al, 2001]. 

The PCA problem consists in finding the eigenvectors 𝑒𝑖 and eigenvalues 𝜆𝑖 of R, 
which corresponds to the eigenvalue decomposition of R: 
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𝑅 = 𝐸𝛬𝐸𝑇                  (2.3) 

 

where Λ is a diagonal matrix containing the eigenvalues 𝜆𝑖 in a descent order 
(𝜆𝑖 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑁), while E represents the matrix of eigenvectors. 

The scalar coefficient w1 maximizing eq. 2.2 corresponds to the first eigenvector 𝑒1 
related to the eigenvalue 𝜆1 encompassing the highest variance of x. The projection of 
the original data along the direction spanned by the first eigenvector describes the 
first component (that one with the highest variance): 

 

y1 =  e1Tx                                                                            (2.4) 
 

The successive components must fulfill the criterion reported in eq. 2.2 and they must 
be uncorrelated (orthogonal) with the previous ones: 

 

𝐸�𝑦𝑖𝑦𝑗� = 𝐸 ��wi
Tx��wj

Tx�� =  w𝑖
𝑇R w𝑗 = 0           (2.5) 

 

Iteratively, it yields: 

 

w𝑘 =  e𝑘      and       𝑦𝑘 =  e𝑘𝑇x           (2.6) 

 

Writing eq. 2.6 in a matrix form, we obtain: 

 

Y = ETX                                                                             (2.7) 

 

As a consequence of eq. 2.6 the variances of the principal components are described 
by the eigenvalues of R in accordance to eq. 2.8: 
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E�𝑦𝑘2� =  E�𝑒𝑘𝑇𝑥𝑥𝑇𝑒𝑘� =  𝑒𝑘𝑇𝑅𝑒𝑘 = 𝜆𝑘                       (2.8) 

 

Typically, the principal components related to the largest eigenvalues describe the 
dominant signals while those ones corresponding to the smallest eigenvalues 
represent the noise. 

The principal components that eventually need to be discarded correspond to some 
of the projections of the signal along the directions spanned by the eigenvectors (i.e. 
the kth component is discarded as in eq. 2.9). They are nullified (see eq. 2.9) before 
transforming back to the original coordinate system (eq. 2.10): 

 

𝑦𝑘𝑛𝑢𝑙𝑙 =  e𝑘𝑛𝑢𝑙𝑙
𝑇 x = 0                                                        (2.9) 

 

Xnew = E𝑛𝑢𝑙𝑙 E𝑛𝑢𝑙𝑙TX = E𝑛𝑢𝑙𝑙𝑌                                 (2.10) 
 

The mean can be added on the reconstructed signal as last step. 

 

2.2.2 SIGNAL DECOMPOSITION: SSA 
 

The Singular Spectrum Analysis (SSA) was initially published by Broomhead in 1986 
[Broomhead and King, 1986]. Actually, SSA is applied with several purposes as 
smoothing, extraction of periodicities or trends and many others. The theoretical 
aspects of SSA have been widely described (see Danilov and Zhigljavsky, 1997 and 
Golyandina et al, 2001).   

SSA encompasses two different stages: decomposition and reconstruction. The 
former involves embedding of the signal and eigenvalue decomposition of the 
covariance matrix of the embedding as described in eq. 2.3. SSA is in fact an extension 
of PCA that allows the decomposition of an embedded one-dimensional time series 
into a sum of M components. The second stage consists in components selection and 
diagonal averaging of the reconstructed dataset with an implicit reverse embedding. 
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Time series analysis techniques often perform the embedding of one-dimensional 
signals, in the space of their time-delayed coordinates (e.g. Zhu et al, 1997). 
Embedding can be considered as a mapping that transforms a one-dimensional time 
series 𝑥 = (𝑥[0], 𝑥[1], … , … , 𝑥[𝑁 − 1])𝑇 into a sequence of M time-lagged vectors 
𝑥 = (𝑥[0], 𝑥[1], … , … , 𝑥[𝑁 −𝑀])𝑇 . The zero-mean time signal 𝑥 of length N is 
embedded in its delayed coordinates with an (N-M) window size, to build up a 
trajectory matrix X (see eq. 2.11) whose rows constitute the lagged vectors. The 
embedding requires defining the window size that can vary in the range  2 ≤ 𝑀 ≤ 𝑁. 

 

[ 1]   [ ]        ....   ...              [ 1]
[ 2]  [ 1]   ....    ...             [ 2]
[ 3]  [ 2]   [ 1] ...      [ 3]

       ....           ....             ....                ..

x M x M x N
x M x M x N
x M x M x M x N

X

− −
− − −
− − − −

= ..  
       ....           ....             ....                ....
   [1]           [2]     [3]     ....      [ 1]
   [0]           [1]     [2]     ....      [ ]  

x x x x N M
x x x x N M

 
 
 
 
 
 
 
 

− + 
 − 

                                                        (2.11) 

 

The embedding dimension can be estimated using model order selection techniques 
[Liavas and Regalia, 2001]. Generally a fixed shift of Δnt = 1 is used between the 
lagged vectors. The trajectory matrix X thus contains as many time lagged copies of 
the signal x as the number of components, shifted by one data point for every row of 
the data matrix. Moreover, the trajectory matrix X of (Mx(N-M)) dimensions is a 
Töplitz matrix which means that it has identical entries along its (top left to bottom 
right) diagonals.  

The eigenvalue decomposition of the trajectory matrix X is then applied in 
accordance to eq. 2.3. The (i, j) entry of the covariance matrix R of the trajectory 
matrix X is obtained as following: 

 

𝑅𝑖𝑗 = 𝐸 �(𝑋𝑖,𝑘 − 𝜇𝑖)(𝑋𝑗,𝑘 − 𝜇𝑗)�        (2.12) 

 

where 𝑢𝑖 = 𝐸(𝑋𝑖) and 𝑢𝑗 = 𝐸(𝑋𝑗) are the expected values of the ith and the jth 
(among the M rows) row vector (of dimension 1xN-M) of X and k =1,…,N-M. 

Any signal 𝑥𝑘 that constitutes the columns of X, is projected along the directions 
spanned by the eigenvectors related with the eigenvalues of the covariance matrix. 
Reduction of the dimension can be obtained at this point by projecting the data 𝑥𝑘 
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only onto the L< N directions defined by the L eigenvectors related with the L largest 
eigenvalues. This process represents a denoising procedure since the eigenvectors 
related to the smallest eigenvalues encompass just noise. 

The reconstruction stage after nullifying some of the projections (see eq. 2.9) leads to 
a new set of vectors 𝑥𝑘′   forming the estimated trajectory matrix  𝐗′. In particular, the 
elements along each descending diagonal of  𝐗′ are no more identical as in the 
original trajectory matrix X. This is repaired by replacing the entries in each diagonal 
by their average, obtaining again a Töplitz matrix 𝐗𝐫. This procedure provides the 
best approximation so that the Frobenius norm of the difference (𝐗𝐫 − 𝐗′) is minimal 
[Golyandina et al, 2001; Teixeira et al, 2008]. Therefore, the one-dimensional signal 
𝐱 ′ is reproduced by reverting the embedding. 

In summary, in order to perform SSA, the (Mx(N-M)) time domain signal x must be 
embedded into the trajectory matrix X (eq. 2.11) and the eigenvalue decomposition of 
the (MxM) covariance matrix R of X must be computed (eq. 2.12). The eigen-
representation of R yields an (MXM) diagonal matrix Λ of eigenvalues and an (MXM) 
matrix E of eigenvectors. The projections along the eigenvectors related to certain 
eigenvalues (i.e. the smallest for denoising purposes) are nullified (eq. 2.9) and the 
new (Mx(N-M)) trajectory matrix 𝐗′ is obtained transforming back to the original 
coordinate system (eq. 2.10). Diagonal averaging is applied on 𝐗′ replacing every 
element along each descending diagonal by its averaged element. The reconstructed 
one-dimensional signal 𝐱 ′ is finally obtained by reverting the embedding process. 
The mean can be added again to the reconstructed signal. 

The reconstruction process can proceed in two different ways which should be 
equivalent in principle. Nullifying the projection related to the smallest eigenvalue 
(i.e. for denoising purposes) corresponds to reconstructing the signal defined by the 
last component (with the lowest variance) and to subtract it from the original data, 
i.e.  y(𝑖) = x(𝑖) − x′(𝑖).         
                           

2.2.3 SIGNAL DECOMPOSITION: ICA 
 

The Independent Component Analysis (ICA) [Comon, 1994] belongs to the class of 
Blind Source Separation (BSS) methods [Hyvärinen et al, 2001]. It has been 
successfully applied on EEG data revealing brain activities [Makeig et al, 1996; Jung et 
al, 1998; Vigario et al, 2000; Krishnaveni et al, 2006] and for feature extraction 
purposes from image and audio signals [Bell and Sejnowski, 1995; Bell and 
Sejnowski, 1997]. The PCA [Joliffe, 1986] extracts uncorrelated components by means 
of second order statistics (variance maximization), while ICA looks for independent 
sources using higher order statistics (i.e. non-Gaussianity maximization). The ICA 
works by finding a transformation of the measured signals (mixtures) that produces 
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independent components (sources), assuming that each of these independent signals 
is associated with a different physical process. 

The ith observed signal (xi) can be represented as a weighted sum of several sources 
(m components), denoted by si. This can be expressed as follows: 

 

xi (t) = ai1s1(t) + ai2s2(t)+…+… aimsm(t)                    (2.13) 
 

The number of mixtures (i=1,….,N) must be at least equal to the number of underlying 
sources ( N ≥ m ), as N microphones located at different positions in a room, 
recording m talking persons (sources) in the well-known Cocktail-party problem 
[Comon, 1994]. In this case the aij mixing coefficients are determined by the different 
distances of each person from every microphone.  

In order to estimate aij it must be assumed that sj and sj+1 are statistically independent 
at all times t. The set of mixtures can be represented as a matrix of vectors x = (x1, x2, 
… , … , xN)T of length M, with the following expansion of eq. 2.13: 

 

                    𝐱 =

⎝

⎛
x11 x12 ⋯ x1M

x21 x22 ⋯ x2M
… … ⋯ …
xN1 xN2 ⋯ xNM⎠

⎞ =                   (2.14) 

=�
a11 a12    
a21 a22   

… a1m
… a2m… …

aN1 aN2   
… …
… aNm

�

⎝

⎛
s11 s12 ⋯ s1M

s21 s22 ⋯ s2M
… … ⋯ …
sm1 sm2 ⋯ smM⎠

⎞ = 𝐀s

          

where x is the (NxM) matrix of the observations at each time t = 1,…,M, while A 
represents the (Nxm) mixing matrix and s is the (mxM) matrix containing the m 
independent source signals at each time point t = 1,…,M. 

The vector x must be centered by zero-mean normalization, involving that s is zero 
mean as well. The variance of the independent component cannot be determined 
since both s and A are unknown. As a consequence the complexity of the estimation 
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problem must be reduced by means of a whitening pre-processing step restricting the 
sources to have unit variance. Due to the whitening process a new orthogonal Ã 
mixing matrix is obtained whose free parameters to be estimated are notably 
reduced. Instead of estimating any arbitrary full-rank matrix A, the orthogonal matrix 
Ã can be easily found.  

This method allows a faster approach to the decomposition problem but it obviously 
leads to ambiguities on the magnitude and on the sign of the independent 
components. Moreover, for the same reason the order of the terms in eq. 2.13 may be 
permutated conducting to indeterminacy on the order of the estimated independent 
components. As a consequence the independent component analysis requires a visual 
inspection of the extracted sources in order to identify the undesired ones (i.e. 
artifacts) and to remove them. A semi-automated ICA method has been proposed by 
Delorme [Delorme et al, 2001], while Joyce [Joyce et al, 2004] and Nicolaou [Nicolaou 
and Nasuto, 2004] have presented automated identification of the components via 
correlation metrics and support vector machines (SVM) respectively. 

After estimating the orthogonal mixing matrix Ã, its inverse U is computed and the 
sources are obtained as follows: 

 

        𝐬� =

⎝

⎛
s�11 s�12 ⋯ s�1M

s�21 s�22 ⋯ s�2M
… … ⋯ …
s�m1 s�m2 ⋯ s�mM⎠

⎞ =                               (2.15) 

�
u11 u21    
u12 u22   

… uN1
… uN2… …

u1m u2m   
… …
… uNm

�

⎝

⎛
x11 x12 ⋯ x1M

x21 x22 ⋯ x2M
… … ⋯ …
xN1 xN2 ⋯ xNM⎠

⎞ = 𝐔𝐱      

 

The statistically independent non-Gaussian components are obtained by means of 
high order moments. ICA can be defined as a method that finds a linear 
transformation which maximizes the non-Gaussianity or equivalently minimizes the 
mutual information of the sources [Kraskov et al, 2004]. Exploiting the central limit 
theorem it is straightforward that the distribution of a mixture of many variables 
tends to have a Gaussian behavior, thus minimizing it would lead to the optimal signal 
decomposition.  
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The de-mixing matrix U is found by optimizing certain cost functions that measure 
the non-Gaussianity (i.e. kurtosis and negentropy), the independence, and the mutual 
information of the extracted components.  

Computing the kurtosis k or the fourth-order cumulant of a random variable y, it is 
possible to measure the non-Gaussianity: 

 

𝑘 (𝑦) = 𝐸{𝑦4} − 3(𝐸{𝑦2})2                                        (2.16) 

 

In case of a Gaussian variable y, the fourth moment E{y4} corresponds exactly to 
3(E{s2 })2 thus, the kurtosis is zero for a Gaussian variable. Sub-Gaussian are the 
random variables yielding a negative kurtosis, while super-Gaussian are those ones 
having positive kurtosis. Starting from a weighting vector w, the direction in which 
the kurtosis of  𝑦 = 𝒘𝑻𝒙 increases (positive kurtosis) or decreases (negative kurtosis) 
more strongly is computed. At this point a gradient method is applied in order to find 
a new vector w.  

Using the kurtosis as a measure of non-Gaussianity has some drawbacks [Huber, 
1985] thus, typically the negentropy is alternatively used.  
Considering the differential entropy H of a random vector y with density f (y): 

 

H(𝑦) = −∫𝑓(y) log𝑓(y)dy                                        (2.17) 

 

 it is straightforward the definition of negentropy J: 

 

J (𝑦) = H �ygauss� − H (𝑦)                                          (2.18) 
 

where ygauss is a Gaussian random vector. A Gaussian variable has the largest entropy, 
thus the negentropy can be used to measure the non-Gaussianity of the extracted 
sources. 

The negentropy J is typically approximated using higher-order moments [Jones and 
Sibson, 1987; Hyvärinen, 1998]: 
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𝐽 (𝑦) ≈ 𝑐 [𝐸{𝐺 (𝑦)} − 𝐸{𝐺 (𝜐)}]2                             (2.19) 
 

in which G is any non-quadratic function [Hyvärinen, 1998], c is a constant and υ is a 
Gaussian variable. G(y) can be arbitrarily chosen and if G(𝑦) =  𝑦4, a kurtosis-based 
approximation would be obtained. 

The most robust estimators are defined in eq. 2.20 and 2.21: 

                                        

𝐺1(𝑦) =  1
𝑎1

log cosh𝑎1 𝑦                                             (2.20) 

 𝐺2(𝑦) =  −𝑒
−𝑦2

2                                                                                                        (2.21) 

where 1 ≤ 𝑎1 ≤ 2. 

The mutual information I defines the dependence between n random variables and it 
can be expressed in terms of negentropy: 

 

I (𝑦1,𝑦2, … ,𝑦𝑛) = J(y) − ∑ 𝐽 (𝑦𝑖)𝑚
𝑖=1                         (2.22) 

 

The mutual information has to be minimized or equivalently the negentropy of the 
extracted sources needs to be maximized (it is zero only if y has a Gaussian 
distribution). 

Since there are several cost functions, different ICA methods have been developed 
such as FastICA [Hyvärinen and Oja, 1997], InfoMax [Bell and Sejnowski, 1995; Lee 
and Sejnowski, 1996], JADE [Cardoso, 1999], SOBI [Beloucharani et al, 1997], MILCA 
[Kraskov et al, 2004] and other similar algorithms.  

The FastICA uses a fixed-point iteration scheme to maximize the non-Gaussianity of 
the sources. In order to provide an approximation of negentropy, the algorithm used 
originally kurtosis as contrast function, but more recent versions apply the 
hyperbolic tangent, exponential and cubic functions. Hyvärinen highlighted that the 
ordering of the sources is influenced by the contrast function used. In particular, 
using kurtosis as contrast function, the super-Gaussian sources tend to be the first 
ones. Ordinary ICA algorithms (InfoMax) are based on gradient descent whose 
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convergence is slow (linear). The FastICA has allowed a faster and more reliable 
learning, using a fixed-point iteration algorithm with a cubic convergence, thus it has 
been used in the present work. 

The InfoMax exploits an adaptive learning algorithm which maximizes the 
information passed through a neural network. The joint entropy H(y) of the outputs 
of the network is maximized which corresponds to a minimization of the mutual 
information among the outputs. Bell and Seinowski initially proposed an algorithm 
well-suited for separating signals with positive kurtosis (super-Gaussian 
distribution), while Lee and Sejnowski extended the original version of the InfoMax to 
make it able to handle both super- and sub-Gaussian distributions.  

The JADE algorithm (Joint Approximation Diagonalization of Eigenmatrices) 
calculates the maximization by means of joint diagonalization. This method can be 
described in two steps:  

1) diagonalization of the covariance matrix (eigenvalue decomposition) of the 
mixtures  

2) diagonalization of the kurtosis matrices of the observations. 

The SOBI (Second-Order Blind Identification) algorithm relies on joint-
diagonalization of time delayed second order covariance matrices. MILCA (Mutual 
information based Least dependent Component Analysis) minimize the mutual 
information between the estimated sources. 

 

2.2.4 SIGNAL DECOMPOSITION: EMD 
 

The Empirical Mode Decomposition (EMD) method [Huang et al, 1998] can be seen as 
an exploratory data analysis technique. It is ideally suited to decompose any non-
stationary time-domain signal into its oscillatory components. In general, it aims to 
decompose an arbitrary signal via a, usually small, number of IMFs (intrinsic mode 
functions) and the residual r. The IMFs represent zero-mean amplitude and frequency 
modulated components. The EMD relies on a process called sifting which allows the 
decomposition of the signal into a finite set of oscillatory components.  

It has been successfully applied to solve many practical problems [Wu et al, 2001; 
Coughlin and Tung, 2004; Wang et al, 2008; Lo et al, 2008; Lo et al, 2009; Cong et al 
2009]. 

On a signal x(t) the EMD performs the mapping: 

 

𝑥(𝑡) =  ∑ 𝑥𝑛(𝑡) + 𝑟(𝑡)𝑛                                                                                (2.23) 
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where the xn(t) term, with n=1,....,N, denotes the set of IMFs and r(t) is the trend 
within the data (also known as the last IMF or residual). Any IMF is a function which 
is characterized by the following properties (criteria):  

a) the upper and the lower envelopes of the signal have to be symmetric (the 
local average is zero). 

b) the number of zero-crossings and the number of extremes are equal or they 
differ at most by one.  

The IMF represents an oscillatory mode with a variable amplitude and frequency 
along the time axis. 

In order to extract the IMFs from a signal, the sifting algorithm [Huang et al, 1998] is 
applied as described below: 

(1) Identify all local maxima and minima of xk(t) 

(2) Connect all the local maxima of the signal by cubic spline yielding the upper 
envelope Uk(t) of the signal 

(3) Connect all the local minima of the signal by cubic spline yielding the lower 
envelope Lk(t) 

(4) Subtract the mean envelope  𝑚𝑘(𝑡) =  1
2

( 𝑈𝑘(𝑡) − 𝐿𝑘(𝑡))  from the signal yielding 
the most oscillating pattern 

 

𝑥𝑘+1(𝑡) = 𝑥𝑘(𝑡) −  𝑚𝑘(𝑡)                                           (2.24) 

 

(5) Verify all IMF criteria. If not satisfied repeat all previous steps on  𝑥𝑘+1(𝑡), 
otherwise set: 

 

 𝑥𝑛(𝑡) =  𝑥𝑘+1(𝑡)                                                                                                    (2.25) 

 

   and                                                

                                   

𝑟𝑛+1(𝑡) =  𝑟𝑛(𝑡) − 𝑥𝑛(𝑡)                       (2.26) 
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(6) The algorithm is completed if the residual of Step 5 is a monotonous function. If 
not, the same procedure is applied on the residue signal in order to identify the next 
highest oscillating pattern. 

Typically after extracting all IMFs, the components are further analyzed by applying 
the Hilbert-Huang transform or by processing them in any other suitable way 
[Quiroga et al, 2000; Quiroga et al, 2002]. The Hilbert spectral analysis of the IMFs is 
particularly suitable for non-stationary and non-linear data in order to obtain 
instantaneous frequency information evolving with time. 

 

 



Chapter III                         Singular Spectrum Analysis of NMR data 
 

55 
 

3 Singular Spectrum Analysis of NMR 
data 

 

3.1 Solvent suppression and baseline 
correction 
 

3.1.1 GENERAL CONSIDERATIONS 
 

Time series embedding in the space of time-delayed coordinates (by means of a 
trajectory matrix X) is applied on the measured FID of length N. This procedure is 
straightforward when a one-dimensional spectrum is analyzed, while it must be 
iteratively repeated over all the rows (representing the same FID acquired at a 
varying evolution time 𝑡1) of a multi-dimensional spectrum. This latter in fact consists 
of Q FIDs 𝑥𝑖 , (𝑖 = 1, … … , 𝑞), each one of length N. As many trajectory matrices (𝐗𝐐) as 
the number of acquired FIDs (that corresponds to the size of the time-domain 𝑡1 in 
the indirect direction) must be constructed and the eigenvalue decomposition has to 
be separately performed. The embedding dimension M of the trajectory matrices has 
been determined empirically. The projections of the eigenvectors related to the 
eigenvalues of interest can be nullified and new trajectory matrices  𝐗′ are obtained. 
In particular, the eigenvector related to the largest eigenvalue describing the 
component with the highest variance (thus corresponding to the dominant signal) has 
been rejected in order to obtain solvent suppression. Reverting the embedding leads 
to a modified FID (not containing water artifacts), one for each row of a multi-
dimensional spectrum.  

Pre-processing of the NMR spectra is mandatory and it includes:  

(1) the computation of the number of time-domain points belonging to the group delay 
(GRPDLY in accordance to the Bruker parameters) due to the oversampling and to the 
digital filtering;  

(2) the signal normalization to unit norm (z-transform).  

Post–processing steps are instead related to the inverse normalization, to the Fourier 
transformation, to phase correction in accordance to the group delay points and to 
baseline correction in the frequency domain. A general schema of the SSA application 
on NMR data for water suppression is presented in Fig. 3.1.  
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The performance of the solvent suppression by means of the SSA has been evaluated 
applying this technique on several dataset in order to determine its ability to deal with 
analog or digital (par. 2.1.2.2.1) spectra (group delay management), with mixed (time-
frequency) domain data (in multi-dimensional cases as described in par. 2.1.1.1) and 
with spectra whose dominant signal is not the solvent (as in case of watergate 
suppression [Piotto et al, 1992; Sklenar et al, 1993; Saudek et al, 1994; Liu et al, 
1998]as in par. 2.1.2.3.1, or in case of back-calculated two-dimensional data [Ried et al, 
2004] not including any experimental solvent spectrum as in par. 2.1.1.1).  

 

 
Figure 3.1 Flowchart describing the SSA application on NMR spectra: pre-processing encompasses 
group delay management and normalization in the time domain; post-processing is related to phase 
and baseline correction in the frequency domain [De Sanctis et al, 2010]. 
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The most suitable embedding dimension M and the optimal solvent-to-solute ratio for 
a reliable solvent suppression have been investigated on the back-calculated one-
dimensional HPr spectrum (par. 2.1.1.2). 

The SSA has been applied on three- (par. 2.1.2.1), two- (par. 2.1.2.2) and one-
dimensional (par. 2.1.2.3 and 2.1.2.4) experimental spectra and on two- (par.2.1.1.1) 
and one-dimensional (par.2.1.1.2) back-calculated data. Its application to one-
dimensional cases has been compared with other techniques such as the EMD (in the 
time domain), the ICA and the PCA (in the frequency domain) as explained in chapter 
four. 

 

3.1.1.1 PRE-PROCESSING:OVERSAMPLING AND DIGITAL FILTERING  
 

Modern spectrometers use oversampling of the data followed by digital frequency 
filtering by finite impulse response filters (FIR) and a reduction of the stored spectral 
range [Moskau, 2002]. The Analog to Digital Converter allows data oversampling that 
has some advantages as mayor accuracy and increased dynamic range. As defined by 
the Bruker parameters, it means that they are not sampled according to the DW 
(dwell time) but to DWOV (oversampling dwell time). However, it yields more data 
points TD than those ones determined by the SW (spectral width) imposed from the 
Nyquist theorem, thus a decimation procedure must be applied in order to reduce 
them (in accordance to the Bruker parameters: DECIM= DW/DWOV).  

The ideal digital filter would be a rectangular curve that matches perfectly the 
spectral window. A rectangular filter function in the frequency domain corresponds 
to a sinc function in the time domain that must be cut off at some point and whose 
consequent truncation effects are cured by some internal optimizing procedures. The 
filter function slides through the raw data with unknown manufacturer weights. FIR 
filtering leads to a delayed response where the first time points of the FID are 
corrupted. The dead time (group delay or GRPDLY) visible at the beginning of a 
digitally filtered FID corresponds to the time necessary for the filter to slide over the 
data. For example, using a sinc filtering function the highest intensity of such a filter 
lays in the center, thus the filtered FID starts to show a significant behavior only when 
this part of the filter reaches the beginning of the FID that may happen after Ng 
complex data points (e.g. 70 complex data points). The length of the GRPDLY reveals 
the steepness of the filter.  

In a two-dimensional case the digital filter is always applied only on the direct 
dimension (𝑡2).  

In Fig. 3.2 the first FIDs of each experimental two-dimensional NMR NOESY spectra 
(digital and analog acquisition mode) of HPr from Staphylococcus aureus (H15A) are 
depicted (par. 2.1.2.2.1). In particular, the signal in the upper part represents the 
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digitally filtered FID with a group delay of 71 real data points, while the analog one is 
in the bottom. They look very similar except in the initial (GRPDLY*DW) seconds, 
where in the digital case appears a dead time containing no significant information.  

 

 
Figure 3.2 Oversampling and digital filtering effects: digital (upper) and analog (lower) FIDs (first 
rows) of the two-dimensional experimental NOESY spectra (par. 2.1.2.2.1) of HPr from Staphylococcus 
aureus (H15A). 

 

A shift of Ng points in the time domain is translated to a very large first-order phase 
change after Fourier transforming which is clearly recognizable in the baseline 
wiggles of the spectrum. The Bruker manufacturer automatically calculates such 
correction using the decimation parameter that avoids showing those wiggles.  

Generally, a circular shift of the points belonging to the group delay is applied in the 
time domain and a consequent phase correction (180° for each point of the GRPDLY) 
is performed after Fourier transforming the data. If the number of points belonging to 
the group delay is not exactly defined a baseline distortion would appear after 
Fourier transforming due to an incorrect phase correction. The Fig. 3.3 (part a) 
represents what typically occurs in the frequency domain if the GRPDLY is not 
properly managed (i.e. the first order phase correction is not correctly applied). The b 
part of the same figure represents instead the Fourier transform of the digitally 
filtered FID with a proper GRPDLY management.  

The Bruker manufacturer does not always reveal the number of points belonging to 
the group delay (in the acquisition files). The user simply can recognize that in case of 
a digitally filtered FID, the parameter PKNL is typically set to TRUE that implies an 



Chapter III                         Singular Spectrum Analysis of NMR data 
 

59 
 

underlying automated first order phase correction in accordance to the number of 
points of the group delay.   

For the purposes of this project, it was necessary to exactly know the number of data 
points belonging to the group delay, thus it is automatically computed from the 
DECIM and DSPFVS parameters, contained in the acquisition files.  

 

 
Figure 3.3 Group delay management: incorrect (left) and correct (right) first order phase correction 
in accordance to the number of time-domain data points belonging to the group delay. The first FID of 
the digitally filtered experimental two-dimensional NOESY NMR spectrum of HPr from Staphylococcus 
aureus (H15A) is reported (par. 2.1.2.2.1). 

 

In particular, it has been experimentally proven that completely excluding those 
points from the SSA calculation leads to better solvent suppression. In order to obtain 
the optimal solvent removal without any distortion due to the presence of the group 
delay some attempts have been done. Initially the SSA has been performed on the 
complete FID, including the GRPDLY points. In this case the solvent removal is rather 
good but after the SSA, the initial part of the FID is distorted and it is no more zero, as 
typically happen in a digitally filtered case. The circular shift of such group delay 
points to the end of the FID before Fourier transforming leads to a step function 
yielding wiggles in the baseline.  The proposed solution to overcome this problem is 
to completely exclude the GRPDLY part from the removal procedure. However, it has 
been empirically demonstrated that an equivalent result could be obtained including 
the GRPDLY in the SSA calculation and applying a baseline correction in the time 
domain (i.e. Bruker manufacturer BC_mode parameter set to quad) after SSA and 
before the circular shift in the following manner: 

 

(a) (b) 
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𝑥𝑖 =  𝑥𝑖 −
1
𝑇𝐷
4

 (∑ 𝑥𝑗)𝑇𝐷
𝑗=𝑇𝐷−𝑇𝐷4

                        (3.1) 

 

with i = 0,……,TD. 

The average of the last quarter of the FID is calculated and subtracted from the whole 
FID (including the GRPDLY points) after the solvent removal, avoiding any step 
function connecting the final part of the FID and the circular shifted GRPDLY.   

Considering that typically the user can decide whether to apply the time domain 
baseline correction (quad averaging in the Bruker BC_mode for zero filling 
compensation) or not and that the GRPDLY does not contain any additional 
information, it has been directly excluded from the SSA calculation [Malloni et al, 
2010; De Sanctis et al, 2011]. 

Since the GRPDLY is not an integer number, it is rounded to the closest integer value 
representing the imaginary part of the complex number concluding the time delay, in 
order to avoid baseline distortions after SSA.  

A complete substitution of the group delay with zero values has been attempted as 
well but it has not improved the solvent removal performance, yielding distortions 
and needing time domain baseline correction as described above. Moreover, it has 
been demonstrated that substituting the GRPDLY with zero values and applying the 
SSA on the whole FID produces the same results as keeping the original values of 
those points during the SSA since they do not contain relevant information.  

A prior circular shift of the group delay to the end of the FID and the use of only the 
first half part of the signal as input to the SSA algorithm, has not improved the 
performance. It has generated wiggles in the frequency domain due to the step 
function connecting the part of the signal that undergoes to the algorithm and the 
second half of the FID. Signal averaging needs to be applied also in such case. 

Therefore, for several time domain applications (as the SSA), the FID has to be left 
shifted by Ng data points, since the inclusion of these data leads to spectral artifacts. 
Before application of SSA, the data points belonging to the group delay are removed 
and stored for a subsequent reconstruction of the complete dataset.  

As previously described (see par. 2.2.2) the dimensionality of each trajectory matrix 
is related to the embedding dimensions. Generally, fixing the shift of Δnt = 1 between 
M lagged vectors, a trajectory matrix of (Mx(N-M)) dimensions is obtained. Excluding 
the group delay points, the zero-mean FID has a length of (1x(N-Ng)) and from it a 
trajectory matrix X of dimension MxQ with Q = (N-Ng) –M can be generated. 
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Figure 3.4 SSA application for solvent removal on digital and analog spectra: two-dimensional 
experimental NOESY spectrum of HPr from Staphylococcus aureus (H15A) with an analog (top left) and 
a digital (top right) acquisition (par. 2.1.2.2.1). SSA applied on the analog (bottom down) and on the 
digital (bottom right) spectra. 

 

A digitally filtered two-dimensional NOESY spectrum of HPr from Staphylococcus 
aureus (H15A) has been measured (par. 2.1.2.2.1) and the SSA has been used to 
remove the solvent signal. The analog two-dimensional NOESY spectrum of the same 
protein (par. 2.1.2.2.1) has been obtained with the same acquisition parameters of the 
former and the SSA application on both spectra has been compared in Fig. 3.4. It is 

Analog NOESY spectrum before SSA Digital NOESY spectrum before SSA 

Digital NOESY spectrum after  SSA Analog NOESY spectrum after  SSA 
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evident that, if the group delay is excluded from the removal procedure, the 
performance of SSA to suppress the solvent becomes independent on the digitization 
mode used during the acquisition. The Fig. 3.4 shows the analog (top and down left 
side) and the digital (top and down right side) two-dimensional NOESY spectra 
before (upper part) and after (lower part) the solvent removal by means of the SSA. 

 

3.1.1.2 PRE-PROCESSING: NORMALIZATION 
 

As shown in Fig. 3.1 the group delay is excluded from the signal and normalization to 
unit norm (z-transform) is afterwards applied on each FID in order to avoid scale 
variations: 

 

𝑥�𝑖 = 𝑥(𝑡)− 𝜇
𝜎

                                                                        (3.2) 

 

with t = 1,….,N-Ng  and  

 

𝜎 =  1
𝑁−𝑁𝑔

 ∑ (𝑥(𝑡) − 𝜇)2�𝑁−𝑁𝑔�−1
𝑡=0                                (3.3) 

 

where  

 

𝜇 =  1
𝑁−𝑁𝑔

 ∑ 𝑥(𝑡)(𝑁−𝑁𝑔)−1
𝑡=0                                             (3.4) 

 

The trajectory matrix X is thus formed by M time-delayed copies of a zero-mean 
normalized FID of length (N-Ng): 
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𝐗� =  �
𝑥�[𝑀 − 1] 𝑥�[𝑀] ⋯ 𝑥���𝑁 − 𝑁𝑔� − 1�

⋮ ⋱           ⋱  ⋮
𝑥�[0] 𝑥�[1]   ⋯ 𝑥��(𝑁 − 𝑁𝑔� −𝑀]

�  (3.5) 

 

The inverse z-transform is applied on the data after the SSA solvent removal before 
Fourier transforming.  

 

3.1.1.3 SSA ON SPECTRA WHOSE SOLVENT SIGNAL IS NOT THE 
DOMINANT ONE 
 

The SSA extracts the underlying components of each FID in accordance to the 
variance of the signal of each component. Typically, presaturation of the solvent 
signal [Hoult, 1976] is applied during the acquisition yielding a spectrum whose 
dominant signal is still the water. The SSA in such cases exploits the fact that the first 
component encompasses the greatest variance of the FID, thus it represents the 
solvent and it can be automatically discarded. In case that watergate solvent 
suppression [Piotto et al, 1992; Sklenar et al, 1993; Saudek et al, 1994; Liu et al, 1998] 
is applied during the measurement, the solvent signal is usually reduced to be no 
more the dominant one in the spectrum. If the SSA is applied in similar situations, the 
algorithm obviously detects the strongest solute signals and automatically removes 
them from the spectrum, while the water artifact is unchanged. In Fig. 3.5 is reported 
the application of the SSA on the one-dimensional spectrum of HPr protein from 
Staphylococcus aureus (H15A) with watergate solvent suppression (par. 2.1.2.3.1). It 
is evident that some resonances of the protein have been removed (red trace).  
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Figure 3.5 SSA of the one-dimensional spectrum acquired with watergate solvent 
suppression: a one-dimensional spectrum of HPr from Staphylococcus aureus (H15A) before (black 
trace) and after (red trace) SSA (par. 2.1.2.3.1). The solvent signal is not the dominant one in the 
spectrum, thus it is not properly recognized by the algorithm that automatically removes some 
resonances of the solute.  

 

The SSA applied on the back-calculated (par. 2.1.1.1) two-dimensional spectrum of 
HPr from Staphylococcus aureus (H15A) obtained without adding the experimental 
water leads to general spectral distortions. In this case in fact the dominant signals 
are represented by some of the resonances lying along the diagonal that are 
automatically rejected by the algorithm. Whole stripes of artifacts are detected all 
over the spectrum along the 𝑤1 direction spanned by the strongest diagonal peaks, as 
reported in Fig. 3.6. 

If watergate solvent suppression [Piotto et al, 1992; Sklenar et al, 1993; Saudek et al, 
1994; Liu et al, 1998] is applied on a multi-dimensional spectrum the SSA produces 
entire stripes of artifacts as well, thus it could be selectively applied only along those 
rows whose dominant signal is still the solvent. The algorithm for an automated 
identification of the rows of interest is proposed in the last chapter (in the discussion 
section). 
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Figure 3.6 SSA of a back-calculated spectrum without solvent: a simulated two-dimensional 
spectrum (par. 2.1.1.1) of HPr from Staphylococcus aureus (H15A) after (a) and before (b) SSA. The 
experimental solvent signal has not been added to the protein spectrum, thus the SSA automatically 
removes some resonances of the solute, generating spectral distortions. 

 

The qualitative assessment of the performance of SSA for solvent removal by 
inspection of the back-calculated spectra has been supported by a quantitative 
analysis. As starting point, the l2-norm (Euclidian norm) between the original one-
dimensional simulated HPr spectrum without water (par. 2.1.1.2) and the same 
spectrum with the addition of a solvent signal 5000 times stronger than a typical 
amide protein resonance or 500 times stronger than the strongest protein signals 
(the superposed signals in methyl region) has been calculated after applying the SSA. 
The l2-norm of that spectrum has been arbitrarily set to 1 and the values obtained 
with other solvent/signal amplitude ratios were scaled correspondingly. As 
demonstrated in Fig. 3.7 the use of SSA even on a very distorted spectrum (where the 
solvent signal is 150 times stronger than the most intense protein resonance) can 
definitively improve the spectral analysis. As to be expected, when the relative 
intensity of the solvent resonance is reduced, the performance of the algorithm as 
measured by the l2-norm is improved reaching an optimum when the water artifact 
amplitude is about twice that one of the strongest protein resonance (see the region 
zoomed out from Fig. 3.7). Further reduction of the solvent signal mixed to the 
protein spectra leads to a slow increase of the l2-norm.  This behavior directly follows 
from the method itself: SSA removes the component of the FID having the largest 

(a) (b) 
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variance. When the intensity of the solvent signal becomes of the order of the 
intensity of the protein resonances, it is not properly recognized by SSA. When its 
intensity is smaller than roughly the half of the most intense protein resonance, the 
algorithm removes just this component of the protein signal. Thus, a meaningful 
application of SSA is clearly related to the relative amplitude of the water artifact. A 
warning message about the solvent strength actually appears before starting the SSA 
calculation. Further improvements for dealing with such cases are described in 
chapter four. 

 

 
Figure 3.7 Quantitative analysis of the performance of SSA: a one-dimensional spectrum of HPr 
from Staphylococcus aureus was simulated (par. 2.1.1.2), the obtained FID was combined with an FID 
of an experimental water artifact signal with various relative intensities. As a measure of the 
performance of SSA for water suppression, the l2-norm was calculated between the original 
simulated HPr spectrum and an HPr spectrum where a water signal was added. The l2-norm of a 
spectrum where the solvent signal was 500-times stronger than the most intense protein signal was 
arbitrarily set to 1. Dependence of the l2-norm on the relative intensity of the solvent signal for a 
spectrum of HPr with 2 K complex data points is reported [De Sanctis et al, 2011]. 
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3.1.1.4 SSA ON MIXED (TIME-FREQUENCY) DOMAIN 
 

The two-dimensional spectrum is obtained applying a hypercomplex Fourier 
transformation on the acquired time-domain signals in both directions (t1ω1 and t2 
ω2). If the data are Fourier transformed only along the columns (ω2), a mixed time-
frequency domain is obtained (t1, ω2). The SSA for solvent suppression has been 
tested in such domain, where the rows are still in the time domain. In particular, the 
SSA has been applied on the first FID of the back-calculated two-dimensional NOESY 
spectrum (par. 2.1.1.2) of HPr from Staphylococcus aureus (H15A) and on the first FID 
of the same spectrum Fourier transformed only along ω2 (mixed domain). The 
comparison of the resulting time (part a) and frequency (part b) domain signals is 
reported in Fig. 3.8. The same analysis has been conducted on the entire two-
dimensional spectrum and the comparison of the SSA application in the time (part b) 
and in the mixed (part a) domain is shown in Fig. 3.9. 

 

 

(a) 
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Figure 3.8 Solvent removal by means of the SSA applied in the time and in the mixed domain: 
(a) first FID of a synthetic two-dimensional NOESY spectrum (par. 2.1.1.2) of HPr from 
Staphylococcus aureus (H15A) (black trace); the same FID with additional experimental water (red 
trace); the same FID after SSA in the time domain (blue trace); the same FID after SSA in the mixed 
domain (green trace). (b) Fourier transform of the signals reported in part a of this figure. 

 

Figure 3.9 Solvent removal by means of the SSA applied in the time and in the mixed domain: 
synthetic two-dimensional NOESY spectrum (par. 2.1.1.1) of HPr from Staphylococcus aureus 
(H15A); SSA applied in the mixed (a) and in the time (b) domain. 

(b) 

(a) (b) 
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The performance of the solvent suppression by means of the SSA is almost equivalent 
in both domains. In order to do not increase the computational time, the SSA is 
directly applied in the time domain. 

 

3.1.1.5 SSA ON SPECTRA WHOSE SOLVENT SIGNAL IS NOT IN THE 
MIDDLE 
 

In order to test the performance of the solvent suppression by means of the SSA, the 
back-calculated two-dimensional spectrum (par. 2.1.1.1) has been intentionally 
modified. In particular, the experimental solvent signal added to the synthetic protein 
spectrum has been positioned in some random locations in the spectrum. The SSA for 
solvent removal has demonstrated its capability to deal with such data, 
independently on the position of the dominant signal in the spectra. This analysis is 
reported in Fig. 3.10, where the original back-calculated spectrum (c) is compared 
with the same spectrum after the addition of the experimental water (a) and with 
itself after the solvent suppression obtained by means of the SSA (b).  

 

 
Figure 3.10 Solvent removal by means of the SSA in case of a not centered solvent signal: two-
dimensional simulated NOESY spectrum (par. 2.1.1.1) of HPr from Staphylococcus aureus (H15A) 
before (c) and after (a) adding the experimental dislocated solvent signal, compared with the same 
spectrum after solvent removal by means of SSA (b). 

(a) (b) (c) 
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This investigation shows that SSA can be applied also for other purposes, since it is 
not related to the location of the signal of interest but to the variance of such signal, as 
discussed in the last chapter. 

 

3.1.2 SSA COMPONENTS EVALUATION  
 

The eigenvalue decomposition of each trajectory matrix has to be performed. In 
particular, the projection of the columns of any of the Q trajectory matrices Xi (with i= 
1,…,q) along the directions spanned by the eigenvectors of the covariance matrix R 
can be used to investigate the underlying components (see eq. 2.7). The variance of 
the components is described by the eigenvalues of the covariance matrix R, thus the 
projection of the eigenvector related to the first eigenvalue (the largest one) 
corresponds to the component with the highest variance (containing the dominant 
signal of the FID).  

The decreasing order of the components (related to a decreasing order of the 
eigenvalues) allows an automated identification of the signal of interest. In particular, 
for denoising purposes the last components (with the smallest variance) can be 
discarded with a consequent nullification of the corresponding projections of the 
eigenvectors related to the smallest eigenvalues.  For water suppression removal the 
first component is rejected and the new trajectory matrix 𝐗′ is obtained after 
nullifying the projection of the eigenvector corresponding to the first eigenvalue.  
This procedure is valid only if the solvent artifact in the spectrum of interest is the 
dominant signal.  

The number of extracted components is strictly related to the chosen embedding 
dimension. The number of time-delayed copies of the FID (namely the amount of the 
M rows of the trajectory matrix X) corresponds to the number of identified 
components. The embedding dimension has been empirically determined in 
accordance to the performance of the method (measured using the l2-norm) whose 
investigation is reported in Fig. 3.11. Such analysis has been conducted to determine 
the optimal embedding in dependence on the dimensionality of the dataset. In 
general, as Fig. 3.11 shows for spectra with higher digital resolution more than 20 
components have to be used for the analysis. Starting with FIDs with an optimal 
solvent to protein intensity ratio of 2 (see Fig. 3.7 in par. 3.1.1.3), the dependence of 
the l2-norm on the number of components used in the SSA analysis was followed for a 
2 K and a 16 K FID extracted from the two-dimensional back-calculated spectra of 
HPr protein (par. 2.1.1.2). In accordance with Malloni et al, 2010, optimal values are 
obtained for the low resolution FID with 20 components. Such a low resolution FID is 
usually recorded in multi-dimensional spectra.  For the high resolution data (as in 
one-dimensional spectra) the optimal removal of the water signal is reached using 40 
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components (see the region zoomed out in Fig. 3.11). Therefore, the number of 
components must be automatically adapted to the size of the handled data. 

 

 
Figure 3.11 Quantitative analysis of the embedding dimension M: dependence of the performance 
of SSA on the number of extracted components. The l2-norm was calculated for a 2 K and 16 K FID 
(par. 2.1.1.2) with a ratio of solvent to protein signal intensity of 2 [De Sanctis et al, 2011]. 

 

A detailed description of the extracted components has been conducted on the 
trajectory matrix X built from the first FID (first row) of a digitally filtered two-
dimensional spectrum (par. 2.1.2.2.1) of HPr from Staphylococcus aureus (H15A). Due 
to the low digital resolution (TD = 1K), 20 components have been extracted. They are 
reported in Fig. 3.12 demonstrating a clear separation between the water artifact and 
the protein signals in the time domain. Typically, as described in Fig. 3.13 (showing 
the corresponding components in the frequency domain), the first of the estimated 
components represents the solvent almost perfectly, the successive ten components 
identify the protein signal, while all the remaining ones contain just noise.  
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Figure 3.12  Time-domain extracted components by means of SSA: representation of some of the 
extracted components from the trajectory matrix of the first FID of the digitally filtered two-
dimensional NOESY experimental spectrum (par. 2.1.2.2.1) of HPr from Staphylococcus aureus (H15A); 
time domain data, 1x512 complex data points; embedding dimensions of the trajectory matrix 20x492; 
number of extracted components 20. Superimposition in the time domain of the first component (red 
trace) related to the solvent signal, the second component (green trace) representing a portion of the 
protein signal, the last component (black trace) containing only noise and the first original FID before 
the decomposition (blue trace) [Malloni et al, 2010]. 
 

Investigating the components is mandatory to obtain a suitable solvent suppression. 
In particular, using more components than necessary, leads to undesired effects such 
as the splitting of the solvent signal in more than one component. Using twenty 
components for a FID with a resolution of 2K allows the direct rejection of the first 
component in order to suppress the solvent signal. Increasing this number to forty 
does not simply involves the nullification of the first two components for water 
removal purposes, since this signal is effectively shared between such components 
but the second one typically represents a mixture of solvent and solute signals. 
Therefore, the rejection of the second component leads to the removal of the 
strongest resonances of the protein as well, but discarding only the first one does not 
furnish a sufficient water artifact suppression (that still appears in the spectrum).  

If the number of components is smaller than the necessary amount (e.g. twenty 
instead of forty components in case of a FID with 16 K of digital resolution), the first 
component inevitably contains a mixture of solute and solvent. Discarding such 
component leads to the loss of protein resonances. 
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Figure 3.13 Frequency-domain extracted components by means of SSA: representation in the 
frequency domain of some of the extracted components from the trajectory matrix of the first FID of 
the digitally filtered two-dimensional NOESY experimental spectrum (par. 2.1.2.2.1) of HPr protein 
from Staphylococcus aureus (H15A); time domain data, 1x512 complex data points; embedding 
dimensions of the trajectory matrix 20x492; number of extracted components 20; size of the real data 
after Fourier transformation 20x492. A representation of the original data after Fourier 
transformation of the first FID (a), the first estimated component (b), the second component (c), the 
fifth component (d), the tenth component (e) and the last component (f) in the frequency domain. The 

(a) (b) 

(c) (d) 

(e) (f) 
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first component (b) contains the solvent signal, from the second to the tenth component (c-e) is 
instead identified the protein, while after the tenth component (f) there is only noise [Malloni et al, 
2010]. 

 

3.1.3 SSA SOLVENT SUPPRESSION: TEST CASES 
 

3.1.3.1  SSA OF THREE-DIMENSIONAL DATA 

 

The result of the artifact removal procedure to an oversampled three-dimensional 
HCCH-TOCSY spectrum (par. 2.1.2.1) is reported in Fig. 3.14. SSA is applied in the 
direct (t3)-dimension. After performing the solvent removal over all rows, the data 
were Fourier transformed. The water resonance and its tails were almost completely 
removed. The recovery of the peaks lying under the water is demonstrated in Fig. 
3.15, showing the projection on the F1-F3 plane of the three-dimensional HCCH-
TOCSY spectrum before (red colored) and after (green colored) the solvent removal.  

 

 

(a) 

(b) 
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Figure 3.14 Solvent removal by means of SSA applied on a three-dimensional NMR spectrum: 
sub-cube of a three-dimensional 1H13C HCCH-TOCSY spectrum (par. 2.1.2.1) of the thioredoxine 
protein (Trx) from Plasmodium falciparum prior (a) and after (b) artifact removal. Size of the subcube 
2048x96x128 real data points [Malloni et al, 2010]. 

 

 

Figure 3.15 Solvent removal by means of SSA applied on a three-dimensional NMR spectrum: 
projection showing a portion of the F1-F3 plane of the three-dimensional 1H13C HCCH-TOCSY spectrum 
(par. 2.1.2.1) before (red) and after (green) the water artifact removal by means of SSA [Malloni et al, 
2010]. 

 

3.1.3.2 SSA OF TWO-DIMENSIONAL DATA 

 

The synthetic data have the advantage that the pure, artifact free spectrum is 
available and can be used as the standard for comparing the obtained results. In the 
case of experimental spectra, a reference spectrum does not exist, thus the 
performance of the routines cannot be quantified absolutely but only a visual 
inspection of the data can be applied for quality assessment. 

In Fig. 3.16 is demonstrated the performance of the method applied on the two-
dimensional back-calculated NOESY spectrum (par. 2.1.1.1). The resulting spectrum 
(after water suppression) looked almost as the unperturbed original one (without 
additional experimental solvent signal). It is evident that water is strongly 
suppressed, whereas hidden protein resonances are recovered. Several processing 
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methods for solvent suppression tend to change the peak intensities. This cannot be 
accepted for a quantitative analysis of the data and for structural restrains 
determination. The residual is calculated as the difference between the processed 
spectrum and the original artifact-free spectrum and it is almost zero (within the 
limits of pure noise) for the protein cross peaks as shown in Fig. 3.16.  

 

  

Figure 3.16 Artifact removal by means of SSA on a synthetic two-dimensional spectrum: 
synthetic NOESY spectrum (par. 2.1.1.1) of HPr from Staphylococcus aureus after solvent removal (a) 
and the result of the difference between the original simulated spectrum and the artifact free spectrum 
obtained by means of  SSA (b). It is evident that the noise has not been removed as well as the small 
central portion of the water signal [Malloni et al, 2010]. 

 

The SSA application on an experimental two-dimensional TOCSY spectrum (par. 
2.1.2.2.2) of the HPr protein from Staphylococcus aureus is reported in Fig. 3.17. The 
artifact is largely suppressed and hidden protein resonances lying underneath the 
water are recovered. The boxed part of the spectrum close to the water resonance is 
zoomed out in Fig. 3.18. It shows that a threonine Hα − Hβ  cross peak (at 5.430 ppm, 
5.150 ppm) superposed by the water resonance has been recovered after the 
application of SSA. 

 

(a) (b) 
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Figure 3.17 Solvent removal by means of SSA on an experimental two-dimensional spectrum: 
TOCSY spectrum (par. 2.1.2.2.2) of the histidine-containing phosphocarrier protein (HPr) from 
Staphylococcus aureus. (a) Original spectrum and (b) the spectrum after SSA. The regions in the red 
boxes are zoomed out in Fig. 3.18 [Malloni et al, 2010]. 

 

   

Figure 3.18 Enlargement of the red box regions depicted in Figure 3.17: TOCSY spectrum (par. 
2.1.2.2.2) of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus. (a) 
Original spectrum and (b) the spectrum after SSA. Cross-peak resonance recovering at ω2 = 5.430 ppm 
and ω1 = 5.150 ppm revealed by symmetry criteria [Malloni et al, 2010]. 

 

 

(a) (b) 

(a) (b) 
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3.1.3.3 SSA OF ONE-DIMENSIONAL DATA 

 

The general method was initially developed for multi-dimensional NMR data of 
proteins [Malloni et al, 2010] but cannot be applied as such to one-dimensional 
spectra. In particular, the typical higher digital resolution of one-dimensional NMR 
spectra leads to the necessity of extracting much more components from the time 
domain signal in order to achieve an accurate separation of the solvent from the rest 
of the spectrum. Moreover, it is necessary to take into account that one-dimensional 
spectra of biomolecules are usually very crowded and may contain resonances with 
widely differing line widths that is determinant for a reliable baseline correction. 

The synthetic one-dimensional spectrum (par. 2.1.1.2) allows a direct investigation of 
the performance of SSA since the original protein spectrum before adding the solvent 
signal can be compared with the result after application of SSA. Especially, the back-
calculation of the one-dimensional time-domain signal of HPr protein allows the 
identification of the peaks of interest that are located in the water artifact region 
before adding the solvent signal. Since the back-calculated data are generated without 
any digital filtering, the algorithm automatically recognizes that no group delay data 
points have to be taken into account. After the addition of the partly saturated water 
signal to the time domain signal of the protein, the SSA removal procedure is applied. 
As default for 1D-spectra, 40 components would be extracted by SSA (par. 3.1.2). 
Since the simulated 1D spectrum of HPr has not a such high digital resolution (it is 2 
K), 20 components showed to be sufficient. The central trace of Fig. 3.19 shows the 
simulated HPr spectrum after exponential filtering and Fourier transformation of the 
time domain data. The signal in the bottom was obtained after time domain filtering 
and Fourier transformation of the same data set with the addition of a very strong 
solvent artifact time domain signal (500 times stronger than the typical protein 
signals). The water signal obscures the protein resonances lying in the center of the 
spectrum and introduces strong baseline distortions with anti-phase contributions 
and also additional truncation artifacts especially visible in the high field and the low 
field regions of the spectrum.  After application of the SSA (Fig. 3.19 top trace), the 
water signal is almost reduced to zero, the baseline is almost perfect, and most of the 
truncation artifacts have been removed. The intensities of the protein signals are not 
influenced by the procedure, a property very important for quantitative evaluations 
of NMR spectra. 

A zoom of the central area of the spectrum is shown in Fig. 3.20. The HPr resonances 
in the range between 4.4 ppm and 5.5 ppm are severely compromised by the residual 
water signal and can hardly be evaluated. The situation changes when SSA is applied 
(Fig. 3.20 top trace): apart from a small region between 4.7 ppm and 4.8 ppm all HPr 
resonances are recovered with accurate intensities.   
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Figure 3.19 Solvent removal by means of SSA applied to a back-calculated one-dimensional 
spectrum: synthetic one-dimensional spectrum (par. 2.1.1.2) of HPr (H15A) from Staphylococcus 
aureus. An experimental one-dimensional solvent with solvent pre-saturation has been added to the 
simulated protein time domain data. The water artifact is approximately 500 times stronger than a 
typical protein resonance. The simulated protein spectrum (middle trace); the spectrum containing the 
water artifact (bottom signal) and the spectrum after application of SSA (top trace) [De Sanctis et al, 
2011]. 

 

 

Figure 3.20 Zoom of the spectra shown in Figure 3.19: recovering of resonances close to the water 
line by means of SSA. Back-calculated Hpr spectrum with additional experimental water (bottom 
trace); the original spectrum without water (middle trace) and the spectrum after the application of 
SSA (top trace) [De Sanctis et al, 2011]. 
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Solvent suppression by means of SSA has also been tested on one-dimensional NMR 
spectra obtained from biofluids (blood and urine) and cells yielding satisfactory 
results (par. 2.1.2.3.2, 2.1.2.3.3 and 2.1.2.4.1).  

The result of the SSA applied on the one-dimensional NMR spectrum of blood plasma 
of a fasting patient is reported in Fig. 3.21, the SSA on one-dimensional human urine 
is described in Fig. 3.22, while the one-dimensional cell spectrum is shown in Fig. 
3.23. 

 

  
Figure 3.21 Solvent removal by means of SSA applied on the one-dimensional spectrum of blood 
plasma: the one-dimensional signal in the time (a) and in the frequency domain (b) before (red traces) 
and after (blue traces) SSA (par. 2.1.2.3.2). 

 

  

(b) 

(b) 

(a) 

(a) 
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Figure 3.22 Solvent removal by means of SSA applied on the one-dimensional spectrum of 
human urine: the one-dimensional urine signal with a mixing time of 10 ms in the time (a) and in the 
frequency domain (b) before (blue traces) and after (green traces) SSA (par. 2.1.2.4.1). 

 

 
Figure 3.23 Solvent removal by means of SSA applied on the one-dimensional cell spectrum: the 
one-dimensional spectrum before (blue trace) and after (green trace) SSA (par. 2.1.2.3.2). 

 

3.1.4 POST-PROCESSING: AUTOMATED BASELINE CORRECTION 
 

After suppressing the solvent, an inverse normalization steps is applied at the output 
of the SSA, in order to avoid scaling problems on the data. In accordance to Fig. 3.1, 
the previously stored group delay points (when existing) are then re-appended to the 
corrected FIDs. This particular treatment of the digitally filtered data for water 
removal avoids the generation of undesired artifacts. 

The entire multi-dimensional time domain dataset is automatically Fourier 
transformed to the frequency domain and a phase correction is applied coherently 
with the group delay time shift introduced by the digital filter.  

After removing the strong solvent signal, the base plane usually needs to be corrected 
in the frequency domain. One of the most robust methods for baseline correction is 
the cubic spline [Zolnai et al, 1989] that, however, induces new artifacts in areas 
where only few baseline points can be defined. In this project the linear spline 
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interpolation [Saffrich et al, 1992] of the baseline points has been chosen since it is 
more efficient and simpler. 

Typically, the base points where there are no relevant peaks are defined interactively 
by the user. This is not acceptable for a complete automated procedure, hence the 
points have to be identified by the program. 

A method similar to that one developed by Guentert and Wuethrich in 1992 [FLATT 
algorithm] is used to automatically recognize the baseline regions in the spectrum 
(par. 1.2.1). The algorithm looks for contiguous pieces of row or column that can be 
well fitted by a straight line. This is possible only if they correspond to pure baseline 
regions. Obviously, the baseline correction depends on the ability of the automated 
recognition of the baseline points that must not contain valid signals. 

Starting from any data point k, the size W of a window surrounding it, must be 
determined and it must be obviously larger than the line width of the protein 
resonance peaks. Therefore, it must automatically adapt this window in dependence 
on the spectrum of interest. The default value of 75Hz [Guenter and Wuethrich, 1992] 
is suitable only for homonuclear two-dimensional proton NMR spectra. The spectrum 
needs to be investigated in order to define the optimal window size. It is evaluated 
peak by peak fitting a Lorentzian function to the datasets optimized by the nonlinear 
least-squares algorithm of Levenberg-Marquardt [Levenberg, 1994; Marquardt, 
1963]. Dealing with two-dimensional data, the maximal values of the line width of the 
peaks are computed separately for each dimension in the following manner: 

 

𝐿𝑊1 = max  (max (𝑙𝑤𝑟))                                              (3.6) 

 

𝐿𝑊2 = max  (max (𝑙𝑤𝑐))                                                                 (3.7) 

 

with r =1,.….., number of rows and c = 1,….., number of columns.            

In a two dimensional case, two line width histograms are generated. They represent 
the line width distributions within the frequency range (0, LW1) and (0, LW2) 
respectively and they contain the occurrence of the maximal line width values of the 
peaks for each dimension (i.e. the peaks with the maximum line width row by row or 
column by column). Only the peaks having intensities significantly larger (> 3𝜎𝑁) 
than the noise level 𝜎𝑁 are evaluated. The most frequently occurring line width is 
detected and it is used to establish the window size W along the considered 
dimension. Actually, it corresponds to the double of the most occurring line width 
values (i.e. the double of the maxima in the histograms). The Fig. 3.24 (part a) shows 
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the occurrence of the maximal line width values along the columns of the two-
dimensional experimental spectrum of HPr protein (par. 2.1.2.2.1) from 
Staphylococcus aureus (H15A). In this case the line width value of 34 Hz has been the 
maximal value encountered in 37 rows, thus a window size of 72 Hz is generated. 

 

  
Figure 3.24 Line width distributions: (a) histogram of the maximal line width values along the 
columns of the two-dimensional experimental spectrum of HPr protein (par. 2.1.2.2.1) from 
Staphylococcus aureus (H15A); (b) histogram of the line width values of the one-dimensional spectrum 
of human urine (par. 2.1.2.4.1). The window size W is set to the double of the most occurring value (W 
= 72 Hz) in case of a two-dimensional dataset and to the double of the maximal value (W = 88 Hz) in 
the one-dimensional case. 

 

This window size is especially important in the complicated spectra of biological 
samples with large variations in line widths. In one-dimensional spectra of such cases 
the previous definition of W does not work satisfactory since resonance lines with 
large line widths are not recognized correctly. It turned out that a window size W set 
to the double of the maximal occurring value (not the most occurring one) yielded 
optimal results in one-dimensional spectra, as described in the part b of Fig. 3.24. A 
unique histogram is generated in case of one-dimensional data and it contains the 
occurrence of all the line width values of the spectrum. In the one-dimensional human 
urine spectrum (par. 2.1.2.4.1) reported in Fig 3.24 (part b) the line width value of 44 
Hz has been encountered only once and the window size is set to 88 Hz in accordance 
to this maximal computed line width. 

The window slides over the data row-wise and column-wise. Within each sliding 
window (centered at the kth point), the data points are fitted by a straight line. The 
mean square deviation 𝜒𝑘2  from the best fitting straight line is determined. The 
regions in the spectrum where it is lower than a certain threshold are determined as 
follows: 

 

(a) (b) 
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 𝜒𝑘2  ≤ 𝜏𝜒𝑚𝑖𝑛2                                                                      (3.8) 

 

The data points verifying eq. 3.8 are identified as pure baseline regions (where 
generally τ =10, as described by Güntert and Wüthrich in 1991).  An example of the 
algorithm implementation is reported in Fig. 3.25, where the sliding widow appears 
with different colors and for each stretch of points included in every window the 
condition reported in eq. 3.8 is evaluated. If it is verified, the central point of a specific 
window joins the group of the baseline points. 

 

 

Figure 3.25 Automated baseline point identification: schematic representation of the sliding 
window (whose size depends on the most occurring line width value along the considered direction) 
and automated identification of baseline points by means of threshold setting on the mean square 
deviation of each central peak in the window from the best fitting to a straight line. 

 

If the gap between two consecutive baseline points is larger than the 5% of the 
complete row or column size, then the threshold is iteratively modified as follows: 

 

𝜏 =  1.5𝑘𝜏                                                                          (3.9) 
 

with k = 1,..,4. 

The total set of pure baseline regions is linearly interpolated and subtracted row-wise 
and column-wise from the original dataset. However, if long stretches of baseline 
regions are interpolated straight lines of zeros appear in the spectrum. This happens 
when baseline points are direct neighbors and regions with a noise-less baseline are 
created by the linear spline. In order to avoid this, not all the consecutive baseline 
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points are interpolated. In stretches of five consecutive baseline points, only the 
middle one is used in the interpolation. In addition, the intensity value of such a 
baseline point is substituted by the mean value between its own intensity and the 
intensities of the two adjacent points. The described procedure is firstly applied on 
the rows and then repeated column-wise excluding the already corrected points 
(along the rows) from the search of baseline points. 

The automated baseline point identification is highlighted in Fig. 3.26, where the left 
side of the one-dimensional HPr spectrum measured with watergate solvent 
suppression (par. 2.1.2.3.1) is reported before and after determining the baseline 
regions.  

 

 

Figure 3.26 Example of automated baseline points identification: left side of the experimental 
one-dimensional spectrum of HPr from Staphylococcus aureus measured with watergate solvent 
suppression (par. 2.1.2.3.1) before (blue trace) and after (green trace) baseline correction. The 
automatically identified baseline points are highlighted with red stars. 

 

In Fig. 3.27 is described an example of baseline correction by means of the developed 
algorithm (ALS, automated linear spline). The back-calculated two-dimensional 
NOESY HPr spectrum (par. 2.1.1.1) is shown without water and base plane distortions 
(a). The same spectrum with additional experimental solvent signal and severe base 
plane deviations (b) is reported as well and it is compared with the baseline corrected 
spectrum (c). This example demonstrates that the method is able to correct the 
baseline distortions outside the region of the water artifact but it alone cannot 
remove the solvent signal. This is in fact the domain of the SSA-module. In accordance 
to the schema reported in Fig. 3.1 the baseline correction (ALS-module) applied in 
cascade after the application of the SSA leads to significant improvements. A similar 
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example is reported in Fig. 3.28 where the automated baseline correction has been 
applied on an experimental three-dimensional spectrum (par. 2.1.2.1). 

 

  

 

Figure 3.27 Two-dimensional automated baseline correction (ALS): synthetic two-dimensional 
NOESY spectrum (par. 2.1.1.1) of HPr from Staphylococcus aureus (a), the simulated NOESY spectrum 
with additional experimental water (b) and baseline correction on the same spectrum (c) [Malloni et 
al, 2010]. 

 

(a) (b) 

(c) 
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Figure 3.28 Multi-dimensional automated baseline correction (ALS): experimental 1H13C HCCH-
TOCSY spectrum (par. 2.1.2.1) of the thioredoxine protein (Trx) from Plasmodium falciparum prior (a) 
and after (b) baseline correction. Size of the subcube, 2048 x 96 x 128 real data points. 

 

A typical case where ALS has to be applied after solvent suppression by SSA would be 
on the urine (par. 2.1.2.4.1) spectrum (see Fig. 3.29, part a). Here, SSA as described in 
this application removes the strongest signal (that is the water signal) from the 
spectrum but has only a small effect on the baseline (see Fig. 3.29, part b). A 
sinusoidal baseline distortion as it occurs by data clipping was additionally 

(a) 

(b) 
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introduced before in the spectrum. As Fig. 3.29 (part c) shows the ALS module 
perfectly removes the baseline distortion. With the calculation method for the 
determination of the window size W used in multidimensional NMR a too small size 
of 6 Hz would result, however the window size calculated from the largest effective 
line width is 120 Hz and is necessary for a proper baseline correction. 

 

  

 
Figure 3.29 One-dimensional automated baseline correction (SSA/ALS): one-dimensional urine 
spectrum is recorded with a mixing time of 10 ms (par. 2.1.2.4.1). Solvent removal and baseline 
correction by means of SSA and ALS. Complete experimental spectrum of the urine (a), spectrum after 
application of SSA (b) and the spectrum after application of ALS (c) [De Sanctis et al, 2011]. 

 

(a) (b) 

(c) 
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The two-dimensional NOESY spectrum of the PSCD4-domain has been assigned for 
obtaining distance restraints (par. 2.1.2.2.3). The SSA and the ALS modules have been 
applied in cascade on this spectrum, as shown in Fig. 3.30. 

 

 

 

Figure 3.30 Two-dimensional solvent suppression and baseline correction (SSA/ALS): two-
dimensional NOESY spectrum of PSCD4-domain (par. 2.1.2.2.3). Solvent removal and baseline 
correction by means of SSA and ALS. Complete experimental spectrum (a), spectrum after application 
of SSA (b) and the spectrum after application of ALS (c). 

 

 

(a) (b) 

(c) 
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3.1.5 AUREMOL-SSA and AUREMOL-ALS DIALOGS 
 

It is possible to start the developed AUREMOL-SSA routine from the “Calculation” 
menu as shown in Fig. 3.31. The main interface is launched once that the “Remove 
Water” submenu has been selected and it is represented in Fig. 3.32. The user must 
provide the input file path where the ser (multi-dimensional case) or the fid (one-
dimensional spectra) files are located. The user may provide the frequency domain 
data in input to the routine (as the 2rr or 1r files). In this case an automated inverse 
Fourier transform is performed in order to obtain the time-domain data necessary to 
apply the SSA. It has been empirically demonstrated that starting directly from the 
time domain is more efficient since several procedural steps cannot be inverted from 
the frequency to the time domain (as the filtering) yielding spectral distortions after 
the SSA. 

In addition, the user may need to store the time domain signal after applying the 
solvent suppression by means of the SSA. The last option in the dialog must be 
checked for such purposes, since otherwise the SSA provides directly frequency-
domain results. 

After launching the SSA routine, a warning message appears in order to continue the 
computation only with the user agreement. This dialog is reported in Fig. 3.33 and if 
the user indicates that the solvent signal is not the dominant one in the spectrum, the 
calculation is promptly interrupted. 

 

 
Figure 3.31 Starting the AUREMOL-SSA module to remove the water: the SSA module is in the 
“Remove Water” submenu of the “Calculation” menu in the AUREMOL software package. 
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Figure 3.32 Main dialog of the AUREMOL-SSA: the time domain signal must be inserted as input file. 
If the user wishes to store the time-domain data after applying the solvent suppression by means of the 
SSA, the second option must be checked. 
 

 

Figure 3.33 Warning message about the strength of the solvent signal in the investigated 
spectrum: the user must confirm that the solvent signal is the dominant one in the spectrum, 
otherwise the SSA calculation is promptly interrupted. 
 
At the end of the computation for the solvent removal, the routine directly perfomes 
an hypercomplex Fourier transform. The processing parameters that had been 
eventually determined by the spectroscopist can be retained. If the processing files 
are not located in the same folder of the ser or fid file (see Fig. 3.34, part a), the user 
must indicate the folder path of such files (see Fig. 3.34, part b).  

 

  

Figure 3.34 Processing files for Fourier transforming the data after the water removal: the user 
must provide the processing file path only if they are not in the same folder of the ser or the fid file. 
 

(a) (b) 
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If the processing files folder is not provided by the user and if the FnMODE parameter 
in the acquisition files describing the Fourier transformation type along the indirect 
direction (𝜔1) is set to undefined, a message appears informing the user to verify the 
FnMODE directly in the processing files, using the MC2 parameter (see Fig. 3.35). 
 
 

 
Figure 3.35 Message to identify the Fourier transformation type along the indirect direction: the 
MC2 parameter in the processing files contains such information in case that the FnMODE value in the 
acquisition files is set to undefined. 
 
If the folder path containing the processing parameters has been provided the dialog 
reported in Fig. 3.36 is automatically filled for all the parameters. They can be anyway 
modified for obtaining different filtering types, data resolutions and phase 
corrections. 
After the Fourier transformation, the spectrum without solvent appears to the user 
and the frequency domain files (2rr, 2ii, 2ri and 2ir in a two-dimensional case) and 
the processing files are generated and stored in a folder (called ssa) in the same 
directory of the ser or the fid files. 
The post-processing step including the baseline correction is then applied if the user 
decides to perform it from the dialog reported in Fig. 3.37. In case that the baseline 
correction is requested the size of the sliding window (row-wise and column-wise) is 
automatically determined in accordance to the histograms of the line widths. The 
user is informed about these values (see Fig. 3.38) and he can eventually modify 
them. The final spectrum without solvent and baseline distortions appears at the end 
of the computation. 
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Figure 3.36 The AUREMOL dialog of the Fourier transformation: the dialog automatically contains 
all the previously defined processing parameters that can be modified in order to perform the Fourier 
transformation of the data in cascade with the solvent suppression by means of the SSA. 
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Figure 3.37 The ALS routine for baseline correction can be applied in cascade with the SSA: after 
removing the water from the time domain and after Fourier transforming, the user can decide to 
perform the baseline correction. 
 
 

 
Figure 3.38 The automatically determined values of the window size for baseline point 
identification: the size of the window is obtained from the histograms of the line widths measured 
separately in the each direction. 
 
The baseline correction can be applied out of the solvent suppression module. The 
“Auto-Baseline” submenu in the “Calculation” menu of AUREMOL can be used for such 
purposes (see Fig. 3.39). It performs the histogram analysis of the line widths and 
furnishes the window size values as previously shown in Fig. 3.38. 
 
 

 
Figure 3.39 AUREMOL-ALS module: the baseline correction can be performed out of the solvent 
suppression routine selecting the Auto-Baseline option from the Calculation menu. 
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4 Alternative methods for solvent 
suppression 

 

4.1 Comparison of methods  
 

4.1.1  PCA OF TWO-DIMENSIONAL DATA 

 

If the PCA is directly applied in the time domain on the whole set of FIDs without 
generating any trajectory matrix, satisfactory results are not obtainable. The number 
of projections along the directions spanned by the eigenvectors related to the largest 
eigenvalues does not correspond to the embedding dimensions (as in the SSA case) 
but it is equal to the number of measured FIDs. Dealing with such a larger number of 
estimated components (e.g. 512) and with many different time signals 
simultaneously, increases the computational time and generates the problem of 
identifying the components, since more than one projection could be related to the 
water artifact. Alternatively to the trajectory matrix, the autocorrelation matrix of the 
ensemble of FIDs may be generated in order to perform the PCA step [Mitschang et al, 
1991]. If the data are not previously embedded in a specific manner in fact, the PCA 
cannot be satisfactorily applied to one-dimensional data. 

The direct PCA application for solvent suppression (without any embedding) has 
demonstrated meaningful effects if performed in the frequency domain. This 
procedure relies on the direct eigenvalue decomposition of the covariance matrix (eq. 
2.12) obtained from the multi-dimensional data matrix in the frequency domain after 
the two-dimensional Fourier transformation. As previously explained (in par. 2.2.2), 
the SSA is an extension of the PCA with the main difference concerning the trajectory 
matrix construction. In the PCA case this matrix is directly replaced by the multi-
dimensional spectrum. The projections along the eigenvectors related to the largest 
eigenvalues are nullified (eq. 2.9) and a new data matrix is obtained (eq. 2.10). 

The result of the PCA applied in the frequency domain (complex data) of the back-
calculated two-dimensional (par. 2.1.1.1) NOESY spectrum of HPr from 
Staphylococcus aureus (H15A) is reported in Fig. 4.1. In this case the solvent 
suppression is not as strong as using the SSA. A visual or an automated inspection of 
the extracted components is mandatory in order to identify all of them representing 
the solvent artifact (in this case five of the 512 components have been discarded). 
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Figure 4.1 Solvent suppression by means of PCA applied in the frequency domain: back-
calculated two-dimensional (par. 2.1.1.1) NOESY spectrum of HPr from Staphylococcus aureus (H15A). 
(a) original spectrum and (b) the spectrum after PCA. 

 

4.1.2  ICA OF ONE-DIMENSIONAL DATA 

 

Since SSA cannot be properly applied to spectra where the solvent artifact is not the 
dominant signal, the independent component analysis (ICA) represents a possible 
alternative. SSA is applied in the time domain data, whereas the ICA can be used to 
decompose the overlapping signals directly in the frequency domain. SSA embeds a 
single time domain signal (FID) in a multi-dimensional space, yielding a trajectory 
matrix containing shifted versions of the same FID. An inherent property of ICA is 
instead that it needs at least as many different spectra as the number of source 
signals that should be separated. In addition the source components have to be 
differently weighted in the spectra. As shown earlier [Stadlthanner et al, 2006] for 
higher dimensional spectroscopy one can use several rows in the mixed time-
frequency domain for this purpose. In one-dimensional NMR spectroscopy this is not 
possible since usually only one FID is available. The solution to that problem lies in 
the creation of a set of one dimensional spectra tailored for the application of ICA. 

(b) (a) 



Chapter IV                 Alternative methods for solvent suppression 
 

97 
 

The Fourier transform of a one-dimensional FID, of length N, is considered to be one 
of the n possible mixtures to be analyzed by the ICA. This number depends on the 
available measurements of the same dataset. The source separation problem consists 
in recovering a set of m independent source signals from (n >m) observed mixtures. It 
implies that more than one experimental FID of the same dataset needs to be Fourier 
transformed and then used as input to the separating algorithm. The simple collection 
of an arbitrary set of NMR experiments measured on the same sample is not enough 
to guarantee an optimal recovery of the resonances of interest. In order to reveal such 
resonances a proper protocol with a specific pulse sequence must be applied during 
the acquisition. In particular, the NMR mixtures must be properly generated (as a 
linear combination of the solute and the solvent signals) in order to obtain suitable 
ICA-tailored inputs (par. 2.1.2.5) during the experimental acquisition. 

The number of sources m to estimate is for simplicity reduced at two, since a unique 
separation between the two signals of interest (i.e. the solvent and solute signals) is 
required. A general problem is the selection of the components to be removed. In SSA, 
usually the component with the largest eigenvalue is removed for solvent 
suppression, in ICA the component containing the water signal in the center of the 
spectrum must be removed after a visual inspection of the data. In particular, ICA 
produces a permutable output with scaling and sign ambiguities, which must be 
evaluated directly by the user or by an adjunctive method for the automated 
recognition of the components (see discussion section in the last chapter). SSA 
overcomes this problem since the natural ordering of the extracted components is 
strictly related to the variance of the involved signals. 

In Fig. 4.2 the schematic representation of one-dimensional NMR data separation by 
means of ICA is compared with the SSA removal method. The ICA simply allows 
avoiding all the previously described pre and post-processing procedural steps 
typically used by the SSA algorithm, since it is applied directly in the frequency 
domain (complex data). For instance, the group delay points at the beginning of the 
FIDs have not to be removed before the decomposition and the trajectory matrix 
containing shifted versions of the FID is not built. However, the exact number of those 
points belonging to the delay is implicitly calculated by the TOPSPIN software during 
the experimental acquisition, in order to apply a first order phase correction into the 
spectrum coherently with the group delay information without any user intervention. 
In such way the undesired effect of arising wiggles in the frequency domain is 
avoided and the spectrum is not distorted. All the steps concerning the group delay 
management need to be take in account only if dealing with time domain data, as in 
the SSA case. It implies that ICA is faster than SSA avoiding those pre-processing 
steps. The zero-mean and the unit-norm normalizations of the Fourier transformed 
signals are anyway automatically applied by the FastICA algorithm. Moreover, it is 
assumed that the spectra have been already baseline and phase corrected before 
applying the ICA removal procedure, thus they do not need any further automated 
correction. 
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Figure 4.2 Schematic description of ICA and SSA applied to NMR data: ICA requires an ensemble of 
n one-dimensional spectra with different contributions of the solvent signal. ICA performs the 
separation of two main components on the frequency domain data: the solvent and the solute that nees 
to be automatically recognized. SSA uses only one of the FIDs as input. The points belonging to the 
group delay are excluded and afterwards a trajectory matrix containing M shifted versions of the FID is 
generated. The algorithm extracts the M components and nullifies that one corresponding to the signal 
with the highest variance (the solvent). An inverse reconstruction process is then applied by the SSA 
and a new FID is built. The points belonging to the group delay are re-appended at the beginning of the 
FID, then it is Fourier transformed, phase corrected in accordance with time shift due to the group 
delay and baseline corrected. ICA avoids all these steps, but it requires a visual inspection of the two 
extracted components in order to define which one must be retained (the solute signal). 

 

4.1.2.1  ICA OF SIMULATED ONE-DIMENSIONAL SPECTRA 

 

Both methods have been firstly applied on one-dimensional back-calculated HPr 
(H15A) protein spectra (par. 2.1.1.2). It is clear that for an optimal solvent removal by 
means of ICA a dataset of experiments must be generated with different weights of 
the solvent and of the solute signals. In order to investigate the most suitable input 
dataset for the ICA, the simulated HPr protein spectra have been added to 
experimental solvent spectra differing on the phase and/or on the intensity of the 
solvent signal.  In particular, phase and intensity variations were performed in the 
frequency domain of the experimental solvent spectrum by different zero-order 
phases and by different scaling factors followed by an inverse Fourier transformation.  
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These data have been used to carry out a quantitative analysis of the performance of 
the ICA over a range of inputs with different solvent weights. Before the forward 
Fourier transformation the modified time domain water artifact signals have been 
added to the synthetic time domain signal of the protein scaled in such a way that the 
maximum of the water signal was 2.5 times smaller than the strongest protein 
resonance. As described by De Sanctis et al, 2011, the SSA algorithm has some 
limitations when it deals with spectra with a solvent signal having an intensity minor 
than the half of the strongest resonance of the protein in hand. A relatively small 
intensity of the solvent signal has intentionally produced with the aim to show the 
comparison between the ICA and SSA in such unfavorable cases.  

The Fig. 4.3 shows such an ideal synthetic data set where a water signal with different 
phases and/or intensity was added to a simulated spectrum of HPr protein (par. 
2.1.1.2) containing in addition artificial white noise. The zoom of the solvent peak is 
reported in each spectrum. In particular, in Fig. 4.3 the experimental water has been 
directly added to the simulated HPr spectrum (a); the phase of the experimental 
solvent has been corrected by forty-six degrees before adding it to the protein (b); the 
intensity of the water has been reduced by an adjunctive factor before mixing it with 
the solute (c); a phase change of nineteen degrees and an additional scaling factor 
have been applied on the solvent signal before generating the mixture (d). The 
reported cases represent only a part of the dataset created for applying a successive 
quantitative analysis of the number and of the type of the inputs used by the ICA 
algorithm. The SSA has been tested separately on anyone of the simulated spectra 
with an embedding of M= 20, whereas ICA has been applied on any combination of 
those spectra, varying the number and the type of inputs. 
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Figure 4.3 Fourier transforms of the back-calculated one-dimensional FIDs of the HPr protein 
(par. 2.1.1.2) from Staphylococcus aureus (H15A) added to four different experimental solvent 
signals: water artifact 2.5 times smaller than the strongest resonance of interest having the same 
acquisition parameters of the simulated protein, with no phase and intensity change (a), with a phase 
change of 46° (b), with an intensity variation (c) and with an intensity change and a phase correction of 
19° (d). A zoom of the solvent is reported in each spectrum. 

 

The application of ICA on two back-calculated spectra (parts (a) and (b) of Fig. 4.3) 
with the water signals having different phases leads to a not optimal recovery of the 
protein spectrum. The use of a third input (part (c) or part (d) of Fig. 4.3) allows an 
almost perfect removal as described in Fig. 4.4 (upper trace) when compared to the 
spectrum before adding the experimental solvent artifact (Fig. 4.4, central trace). This 
result is independent on the selection of the three spectra. Therefore, the same is true 
when the water signal has different intensities relative to the protein signal or differs 
in phase as well as in the intensity. 
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Figure 4.4 Application of SSA and ICA to the one-dimensional HPr synthetic data set (par. 
2.1.1.2): (bottom trace) SSA has been applied to the FID of a back-calculated one-dimensional HPr 
protein spectrum with an experimental solvent signal added (part a of Fig. 4.3); (top trace) ICA has 
been applied to three simulated spectra with variations on the phase and on the intensity of the 
solvent as shown in Fig. 4.3 (part a, b and c or d); (central trace) original synthetic spectrum without 
additional water signal. 

 

In summary, the application of ICA works always equally good independently on the 
relative phases and intensities of the water signals, as long as they are significantly 
different. From a quantitative analysis of the ICA applied on the simulated dataset it 
has been demonstrated that the performance can differ in dependence on the number 
of inputs or on the strength of solvent variation. For a detailed analysis see Fig. 4.5 
and the corresponding Table 4.1. It is evident that using only two inputs to the ICA 
algorithm does not lead to extremely good results, especially when the phase or the 
intensity variation of the solvents in the experiments is very weak. Increasing such 
variation improves the recovery, overcoming the SSA performance with a phase 
variation major than ninety degrees or when three inputs are used by the ICA 
algorithm (see fig. 4.5).  
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Figure 4.5 Dependence of the performance of ICA on the number and on the type of inputs: the 
data shown in Fig. 4.3 were used for the analysis with some additional cases (see Table 4.1). As a 
measure for the performance of the ICA, the l2-norm, calculated on the difference between the original 
simulated HPr spectrum and an HPr spectrum where the water signal was 500 times stronger than the 
most intense protein signal, was arbitrarily set to 1. The ICA has been applied on the simulated HPr 
spectrum with additive experimental water (part a of Fig. 4.3) and on the simulation mixed with a 
different solvent signal having a modified phase (indicated by P) and/or a different intensity 
(represented by the letter I). The performance improves increasing either the number of inputs or the 
strength of the phase and/or of the intensity variation (red highlighted cases). 
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Table 4.1 Symbol interpretation of Figure 4.5: number of inputs to the ICA algorithm; phase P and 
intensity I variation of the solvent in the first, second, third and fourth input. The zero-order phase 
PHC0 of the solvent is set to 0° in case of direct sum of the simulated solute and the experimental 
solvent signals. The intensity scale of the solvent is set to S(P), corresponding to a water maximum 2.5 
times smaller than the strongest protein resonance, in the default case. The best solvent removal 
performances are highlighted in red. 

 

This assertion involves two possible sceneries: when the spectroscopist acquires the 
data, he does not need to measure more than two spectra of the same sample, but the 
solvent signal on those spectra must be as much different as possible between the 
two experiments; the spectroscopist must acquire three experiments from the same 
sample with a weak variation in the phase and/or in the intensity of the solvent signal 
in accordance to some ICA-tailored inputs. As described in Fig. 4.5 the best results 
have been achieved either using three inputs with very small phase variations (i.e. 0, 
1.2 and 2.6 degrees in each experiment) or two inputs with strong differences (i.e. 
130 degrees). When SSA is applied to one of the spectra, the solvent resonance is 
strongly suppressed but very close to the former position of the water signal, the 
resonance recovery is not perfect (Fig. 4.4, top trace). On the other hand, using ICA 
the calculation becomes computationally more involving and one has to inspect more 
than one component interactively or solve the non-trivial task to select the valid 
components. 
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Inspecting the results obtained from the simulated dataset, one can conclude that it is 
advisable to apply ICA in the unfavorable case of a spectrum with a very weak solvent 
signal and that using ICA-tailored inputs leads to perfect recovery of the resonances 
of interest. 

The first assertion has been confirmed applying the ICA and the SSA on the 
experimentally acquired one-dimensional human urine spectra. In order to confirm 
the second assertion, the ICA and the SSA have been then applied on the 
experimentally acquired one-dimensional HPr protein spectra from Staphylococcus 
carnosus designed as ICA-tailored inputs. 

 

4.1.2.2  ICA OF EXPERIMENTAL ONE-DIMENSIONAL SPECTRA 

 

4.1.2.2.1  HUMAN URINE SPECTRA 

 

The algorithms (SSA and ICA) have been applied on two datasets of experimental 
one-dimensional spectra of human urine recorded with a 1D-NOESY pulse sequence 
[McKay, 2011] with different mixing times τ, as shown in Fig. 4.6. The first urine 
dataset (mixing time of 1500 and 2000 ms) has been used to show the SSA limitations 
and to propose ICA as a valid alternative. The second urine dataset (mixing time of 10 
and 20 ms) has been chosen in order to demonstrate the ICA limitations if applied on 
experimental spectra without a proper data acquisition for a suitable ICA application.  

 

 

Figure 4.6 Pulse sequence of the human urine dataset: 1D-1H-NOESY-type [McKay, 2011]. After a 
long low power saturation period, two initial 90 degree pulses, another long low power saturation 
period and a final 90 degree pulse are applied before starting the FID acquisition. 
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The Fig. 4.7 shows four experimental NOESY-type 1D spectra of human urine 
recorded with different mixing times. Fig. 4.7 part a, shows the Fourier transform of 
the FIDs acquired with a mixing time of 10 ms (left side) and 20 ms (right side), 
whereas the b part shows the urine spectra acquired with a mixing time of 1500 ms 
(left side) and 2000 ms (rights side), including a zoom of the solvent signals of each 
spectrum. The SSA has been applied separately on the experiments with a mixing 
time of 10 ms and on the 2000 ms, with M= 40. ICA has been instead applied 
separately on the two datasets.  

 

 

 

Figure 4.7 One-dimensional human urine spectra (par. 2.1.2.4.1) with different mixing times: 
(left side) 10 ms and (right side) 20 ms (a); (left side) 1500 ms and (right side) 2000 ms including a 
zoom of the solvent signal (b).  

 

In Fig. 4.8, part a, the urine spectrum has been displayed after the ICA solvent 
removal procedure (in the first urine dataset) and it has been compared with SSA. In 
this case the very strong solvent signal has been better removed by the SSA that does 
not compromise the intensities of the solute resonances of interest. ICA in such case 

(a) 



Chapter IV                 Alternative methods for solvent suppression 
 

106 
 

does not remove the solvent signal as properly as the SSA does (see the box depicted 
in Fig. 4.8 part a). However, as previously described SSA has some limitations. This 
work has the aim to propose a valid alternative method that allows overcoming such 
problems. In Fig. 4.8 part b the comparison between SSA and ICA has been thus 
reported in a typical unfavorable case for the SSA algorithm (with a weak solvent 
signal as in the second urine dataset). It is evident that also when dealing with 
experimental data, the ICA allows a better removal than the SSA if the solvent signal is 
not the dominant one. As depicted in Fig. 4.8 part b, the SSA removes the component 
with the highest variance in the spectrum that in this case was not the solvent. 

 

  

Figure 4.8 ICA and SSA application on the two human urine dataset (par. 2.1.2.4.1): (a) zoom of 
solvent artifact removed by SSA applied on the FID of the one-dimensional human urine spectrum 
measured with a mixing time of 10 ms (lower trace) and zoom of solvent artifact removed by ICA 
applied on the two experimental one-dimensional spectra with a mixing time of 10 ms and 20 ms 
(upper trace). The complete spectra are depicted in the box on the left top of the figure. The results of 
both methods can be compared with the experimental spectra having a mixing time of 10 ms and 20 
ms described in Fig. 4.7 part a; (b) zoom of solvent artifact removed by SSA used on the FID of the one-
dimensional human urine spectrum measured with a mixing time of 2000 ms (upper trace); zoom of 
solvent artifact removed by ICA used on the two experimental one-dimensional spectra with a mixing 
time of 1500 ms and 2000 ms (lower trace). Comparison of the results of both methods with the 
experimental spectrum having a mixing time of 2000 ms without any solvent removal (middle line). On 
the left top of the b part of the figure the complete original spectrum (lower trace) and the spectrum 
after SSA removal (upper trace) are shown in order to highlight the loss of the strongest resonance of 
interest due to the SSA failure. 

 

4.1.2.2.2  HPr ICA-TAILORED SPECTRA 

 

In order to obtain suitable linear combinations of solute and solvent signals, some 
additional ICA-tailored inputs have been acquired (par. 2.1.2.5). In particular, two 

(a) (b) 
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dataset of one-dimensional HPr protein spectra from Staphylococcus carnosus have 
been measured. 

In Fig. 4.9 the first dataset of ICA-tailored inputs is highlighted: it is made up of two 
one-dimensional experiments acquired with a different phase cycling, whose pulse 
sequence in reported in Fig.  4.10. ICA has been applied on both spectra (blue trace). 
The performance of the ICA is not satisfactory, thus a second dataset made up of two 
experiments has been generated with different diffusion times. In Fig. 4.11, the 
Fourier transform of the second dataset is represented, while the pulse sequence is 
reported in Fig. 4.12. SSA has been applied only on the first spectrum with M= 40, 
whereas ICA has used all the two measured spectra.  

 

 

Figure 4.9 Two one-dimensional experimental HPr protein spectra (first dataset) with a 
different phase cycling used as ICA-tailored inputs (par. 2.1.2.5): complete spectrum of the first 
(black trace) and of the second (red trace) experiment. They are compared with the signal after solvent 
removal by means of ICA (blue trace). 
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Figure 4.10 Pulse sequence of the first ICA-tailored dataset: two one-dimensional spectra of HPr 
protein from Staphylococcus carnosus have been measured with a different phase cycling. The solid 
rectangular bars represent 90° selective pulses. Gradient pulses applied along the z-axis are 
represented by blue boxes. The phase cycles are:  𝜑1 = (𝑥), 𝜑2 = (𝑥), 𝜑3 = 2(𝑥)2(−𝑥)2(𝑦)2(−𝑦) and 
receiver = 2(𝑥)2(−𝑥)2(𝑦)2(−𝑦) (first experiment);  𝜑1 = (−𝑥), 𝜑2 = (𝑥), 𝜑3 = 2(𝑥)2(−𝑥)2(𝑦)2(−𝑦) 
and receiver = 2(𝑥)2(−𝑥)2(𝑦)2(−𝑦) (second experiment). Relaxation delay d1, 1 s; G1 gradient length, 
1 ms; G1 gradient strength, 50 G/cm; G2 gradient length, 1 ms; G2 gradient strength, -10 G/cm; mixing 
time d8, 10 ms; delay for gradient recovery d16, 0.5 ms; gradient shape, sinus. 

 

 

Figure 4.11 Two one-dimensional experimental HPr protein spectra (second dataset) with 
different diffusion times used as ICA-tailored inputs (par. 2.1.2.5): complete spectrum of the first 
experiment and zoom of the solvent artifacts of the two spectra. Gradient weights G2: 80 G/cm (blue 
trace) and 50 G/cm (red trace). 
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Figure 4.12 Pulse sequence of the second ICA-tailored dataset: two one-dimensional spectra of 
HPr protein from Staphylococcus carnosus have been measured with different diffusion times. The thin 
and the thick solid rectangular bars represent 90° and 180° selective pulses respectively. Gradient 
pulses applied along the z-axis are represented by blue boxes. The phase cycles are: 𝜑1 = (𝑥)(−𝑥), 
𝜑4 = (𝑦)(−𝑦), 𝜑2 = 8(𝑥)8(−𝑥), 𝜑3 = 2(𝑥)2(−𝑥)2(𝑦)2(−𝑦), and receiver 
=(𝑥)2(−𝑥)(𝑥)(𝑦)2(−𝑦)(𝑦)(−𝑥)2(𝑥)(−𝑥)(−𝑦)2(𝑦)(−𝑦). Relaxation delay d1, 1 s; G1 gradient length, 1 
ms; G1 gradient strength, 50 G/cm;  G2 gradient length, 4 ms; G2 gradient strength, 80 G/cm; G3 gradient 
length, 1 ms; G3 gradient strength, -10 G/cm. G2 gradient weights: 80 G/cm (first experiment) and 50 
G/cm (second experiment); mixing time d8, 10 ms; delay for gradient recovery d16, 0.5 ms; gradient 
shape, sinus. 
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Figure 4.13 ICA and SSA application on the ICA-tailored one-dimensional experimental HPr 
protein from Staphylococcus carnosus with different diffusion times (second dataset): zoom of 
the solvent artifact removed by SSA (black trace) applied on the first experiment; zoom of the ICA 
applied on the second dataset (par. 2.1.2.5) made up of two ICA-tailored experiments (red trace); first 
of the two ICA-tailored spectra (blue trace). 

As evident from the comparison reported in Fig. 4.13, the SSA (black trace) removes 
almost completely the dominant solvent signal, but does not reveal any resonance of 
interest previously hidden by the solvent artifact. The ICA recovers almost all the 
resonances in the solvent area (red trace). Moreover, a detailed inspection of the Hα 

chemical shifts of the HPr protein from Staphylococcus carnosus may allow the 
recognition and the assignment of such resonances. 

 

4.1.3  EMD OF ONE-DIMESIONAL SPECTRA 

 

The EMD of time-domain signals (complex data) has been performed on the one-
dimensional spectrum of a sample containing a mixture of five amino acids (par. 
2.1.2.6.1), shown in Fig. 4.14. The group delay has been excluded before applying the 
decomposition. The routine has generated sixteen different IMFs. It has been initially 
applied with solvent removal purposes but since its lower performance than the SSA, 
this algorithm revealed to be more suitable for automated phase correction 
procedures. 

 

 

Figure 4.14: One-dimensional spectrum of a sample with a mixture of five amino acids: spectrum 
description in par. 2.1.2.6.1. 
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In Fig. 4.15 some of the IMFs are reported. The detailed analysis of the oscillating 
components extracted from the time domain signal is a necessary step for the 
rejection of a specific signal as the solvent artifact. It is evident that the frequency of 
the oscillations decreases from the first to the last component. In particular, the first 
five IMFs contain all the high frequency oscillations of the recorded FID, whereas the 
last IMFs reveal the low ones. 
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Figure 4.15 IMFs extracted from the one-dimensional spectrum measured from the mixture of 
five amino acids: it represents the first (a), the second (b), the third (c), the fourth (d), the fifth (e), the 
fifteenth (f) and the sixteenth (g) IMF and the residual (h). 

 
 

 

 

Figure 4.16 Superposition of the first five IMFs with different sections of the original time 
domain signal: the first (green trace), the second (red), the third (purple), the fourth (yellow) and the 
fifth (cyan) IMF compared with different parts of the original time domain signal (blue trace). The best 
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fitting of the initial part of the FID is obtainable using only the first IMF (a); the successive FID time 
window is well reconstructed by the sum of the first and the second IMFs (b); the successive section of 
the FID is well fitted summing the first, the second and the third IMFs (c). 

 

A detailed comparison among the first five components and the original time domain 
signal is depicted in Fig. 4.16. Clearly, the data may be well fitted with only those 
IMFs. However, a deeper inspection reveals an interesting trend. The early time 
segment of the FID is well represented by only the first IMF. In the subsequent 
segment, the first two IMFs need to be summed to fit properly the signal (see part b of 
Fig. 4.16). The third segment needs the sum of the first three IMFs for a perfect fit 
(see part c of Fig. 4.16) and so on. The aim is to show that the contribution of the first 
IMF is not sufficient to well describe the solute signal, but a fusion with some of the 
successive IMFs may improve the performance of the suppression. 

The Fourier transformed spectra of the IMFs (Fig. 4.15) are shown in Fig. 4.17. In 
particular, the Fourier transform of the first IMF well represents the low ppm range 
of the original spectrum (from 0 to 1 ppm almost perfectly), while the FFTs of the 
second up to the fifth IMF do not provide any recognizable spectral resonances. They 
contain several signal distortions and if they are summed up they allow an almost 
perfect reconstruction of the solute spectrum. The successive IMFs (from the sixth to 
the sixteenth) identify several signals belonging to the solvent artifact. However, they 
also need to be summed up in order to reconstruct the original water signal.  
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Figure 4.17 Fourier transform of some of the extracted IMFs from the one-dimensional 
spectrum measured from a sample containing a mixture of five amino acids: it represents the 
Fourier transform of the first (a), the second (b), the third (c), the fourth (d), the fifth (e), the fifteenth 
(f) and the sixteenth (g) IMF and of the residual (h).   

 

In Fig. 4.18 the sum of the first five time domain IMFs (highlighted in green) and the 
sum of the remaining ones (in red) are overlapped with the original time domain 
signal (blue trace). It is interesting to observe that the fusion of the final IMFs (with a 
low frequency of oscillation) optimally reflects the general trend of the signal 
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behavior due to the solvent artifact, whereas the sum of the first five IMFs 
encompasses the solute time domain signal. 

The Fourier transforms of the extracted IMFs can be easily summed up or fused as 
well in the frequency domain in order to prove the effectiveness of the solute signal 
reconstruction. Equivalently, the Fourier transforms of the two dataset of fused time 
domain IMFs (the first dataset including the first to the fifth IMFs and the second 
dataset from the sixth to the sixteenth IMF) yield the same results. They are described 
in Fig. 4.19 where in particular, the part a shows the overlap (the summation) of the 
first five components in the frequency domain, while the part b identifies the 
superposition of the remaining IMFs (the second dataset). It is evident that many 
distortions are still visible in the solvent area after summing up the first five 
components. Therefore, the fusion of some of the extracted components allows an 
almost perfect reconstruction of the solute signal but does not furnish a reliable 
identification of resonances of interest close to the solvent artifact. 

 

Figure 4.18 IMFs summation in the time domain: the original signal (blue trace) is compared with 
the fusion of the first five components (green trace) and with the sum of the remaining IMFs, from the 
sixth to the sixteenth component (red trace). 
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Figure 4.19 Fourier transforms of two datasets of extracted IMFs: the FFT of the summation of the 
first five components (a); the FFT of the fusion of the latest IMFs, from the sixth to the sixteenth 
component (b). 

 

The validation of the reconstructed spectrum is performed comparing it with the 
original one as shown in Fig. 4.20. The spectral features detected around 1 ppm (red 
box) are zoomed out in Fig. 4.21 (part a) as well as the solvent artifact (part b). It 
demonstrates that the reconstructed intensities of the compound do not differ from 
the original ones and this assertion holds true for all the investigated spectral range. 
This high reconstruction quality is a fundamental prerequisite for a correct protein 
structure determination.  
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Figure 4.20 Comparison of the Fourier transforms of two datasets of extracted IMFs with the 
original spectrum: the FFT of the summation of the first five components (green trace); the FFT of the 
fusion of the last IMFs, from the sixth to the sixteenth component (red trace); the original spectrum 
(blue trace). 

 

 

Figure 4.21 Zoom of the red box depicted in Figure 4.20 and of the solvent artifact: (a) the 
original spectrum (blue trace) compared with reconstructed residue resonances (green trace) 
obtained fusing the first five IMFs; (b) the original solvent spectrum (blue trace) and the reconstructed 
solvent signal (red trace) obtained summing up the IMFs from the sixth to the sixteenth component.  

 

In order to evaluate the correctness of the empirically chosen number of fused IMFs 
used to reconstruct the solute signal, the first five Fourier transformed components 
have been inspected. In Fig. 4.22 a stepwise superimposition of the first five 
components on the original spectrum is described and evaluated peak by peak. In 
particular, it shows that the resonances between 0 to 1 ppm can be reconstructed 
using only the first IMF, as depicted in part a of Fig. 4.23. To correctly rebuild the 
peaks in the range between 1 and 3 ppm, the first and the second IMFs must be 
summed up (see part b of Fig. 4.23). The sum of the second, the third and the fourth 
components is necessary to reconstruct the spectrum in the interval between 3.5 and 
4 ppm, while the first IMF is no more useful in such range. As illustrated in part c of 
Fig. 4.23 the fusion of the second and the third IMFs in this area also reduces the 
baseline distortions. The final resonance at 4.25 ppm close to the solvent signal can 
instead be reconstructed by fusing only the third, the fourth and the fifth IMFs as 
shown in part d of Fig. 4.23.  
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Figure 4.22 Superimposition of the Fourier transform of the first five IMFs with the original 
spectrum:  first (green), second (red), third (purple), fourth (yellow) and fifth (cyan) component 
compared with the original spectrum (blue trace). 
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Figure 4.23 Detailed comparison of the first five IMFs with the original signal:  first (green), 
second (red), third (purple), fourth (yellow) and fifth (cyan) component compared with the original 
spectrum (blue trace). The residue resonances in the interval from 0 to 1 ppm where only the first IMF 
well fits the original data (a); the zoom of the spectral range between 1 and 3 ppm where the 
summation of the first and the second IMFs is needed (b); the residue resonances in the interval 
between 3.5 and 4 ppm where the fusion of the second, the third and the fourth IMFs well fits the 
original resonances (c); the threonine peak at 4.25 ppm is well reconstructed summing up the third, 
the fourth and the fifth IMFs. 

 

The EMD has been demonstrated to be able to decompose the FID into several 
oscillatory modes with physical meanings. An automated inspection and fusion of the 
IMFs of interest may represent one of the further developments of such method as 
described in the discussion section in the last chapter. 

 

4.1.3.1  AUTOMATED PHASE CORRECTION BY MEANS OF EMD 

 

Typically the measured time-domain signals need to be phase corrected after Fourier 
transforming. The following procedure has been developed in order to perform an 
automated phase correction: 

1. EMD of a complex time domain signal (FID) is applied. 
2. The IMFs are visually inspected and those ones containing solute resonances 

are summed up. 
3. The sum of the IMFs of interest is Fourier transformed. 
4. The baseline regions are automatically identified (see par. 3.1.4). 
5. Each non-baseline region is considered as a true peak and a box is built around 

it. The mean value of the surrounding baseline regions of every peak 
constitutes a local threshold σ. 
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6. Ideally all the points in the box should have an intensity value over such 
threshold in order to determine the optimal individual phase correction (in 
absorption mode): 
 
 

max∑ 𝑃𝑖𝐾
𝑖=1                  (4.1) 

 
 
where P defines the point of a peak in a box (containing K points), whose 
intensity value is above the local threshold σ. 

7. The algorithm maximizes the number of points above each local threshold 
simultaneously for all the peaks in the spectrum. 

8. Genetic algorithms [e.g. Holland, 1975] are used to determine the optimal 
combination of zero- and first-order phase correction parameters that verify 
the fitness function described in eq. 4.1 for every peak. A population of two-
thousand individuals is randomly generated. Each individual is made up of two 
random genes, where the first one can have any value between -180 and 180 
(representing the zero-order PHC0 value) and the second one has a value 
range between -500 and 500 (identifying the first-order PHC1 parameter). The 
individuals are sorted in a decreasing order depending on their fitness value. 
Each consecutive couple of individuals produces two children applying the 
one-point crossover (mixing their two genes). The 5% of the generated 
children in the entire population are randomly mutated in both genes. The 
fitness function is then newly computed and the doubled population is 
reduced by an half in accordance to this value. The reproduction procedure is 
repeated for one-hundred generations. The first individual in the final 
population (that one with the highest fitness value) contains the optimal phase 
correction values in its genes [De Sanctis, 2006]. 

The phase correction algorithm cannot be applied on the entire original spectrum 
containing the solvent signal, since this latter would compromises the performance of 
the correction. It is also not possible to apply the algorithm to each IMF separately, 
because as shown in Fig. 4.17 only the first IMF is interpretable, while the others do 
not allow even a visual recognition of the resonances of interest. The limitations of 
this algorithm are discussed in the last chapter. 

The EMD has been initially performed on the one-dimensional time domain signal 
acquired from a sample containing a mixture of five amino acids (par. 2.1.2.6.1). The 
Fourier transform of this signal (without any phase correction) is reported in Fig. 
4.24 (part a). The group delay has been excluded before applying the decomposition. 
The routine has generated sixteen different IMFs. The necessary zero and first order 
phase correction parameters were obtainable from the processing parameter files 
(PHCO = -93.40 and PHC1 = 0.00). They have been used in order to validate the PHC0 
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and PHC1 values, automatically calculated by the algorithm. The first five IMFs have 
been summed up. The baseline regions have been identified in the frequency domain. 
The genetic algorithms have produced a final optimal individual with the following 
genes: -95.80 (PHC0) and 3.20 (PHC1). The application of such values for correcting 
the phase in the original spectrum yields remarkable results as described in part b of 
Fig. 4.24. 

 

  

Figure 4.24 Automated phase correction of the one-dimensional spectrum obtained from a 
sample containing a mixture of five amino acids (par. 2.1.2.6.1): spectrum before (a) and after (b) 
automated phase correction.  

 

The same procedure has been applied starting from the one-dimensional time 
domain signal acquired from a sample containing a mixture of twenty amino acids 
(par. 2.1.2.6.2). The Fourier transform of this signal (with an intentional very large 
phase distortion of PHC0 = 44.00 and PHC1 = -246.00 obtained manually with 
Topspin software) is reported in Fig. 4.25 (low trace). The routine has generated 
sixteen different IMFs. The first six IMFs have been summed up and their Fourier 
transform is shown in the upper trace of Fig. 4.25. The baseline regions of this sum 
have been identified in the frequency domain. The genetic algorithms have produced 
a final optimal individual having the following genes: -57.50 (PHC0) and -246.80 
(PHC1). The spectrum resulting from the automated phase correction is described in 
Fig. 4.26 (blue trace) and it is compared with the spectrum obtainable with a manual 
phase correction (using Topspin software). The better performance of the automated 
method is particularly evident in Fig. 4.27 where several resonances of interest are 
zoomed out.  

(a) (b) 
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Figure 4.25 Intentional phase distortion of a one-dimensional spectrum obtained from a sample 
containing a mixture of twenty amino acids (par. 2.1.2.6.2): the entire intentionally phase 
distorted spectrum (lower trace) manually obtained modifying the PHC0 and PHC1 parameters in the 
Topspin software (with PHC0 = 44 and PHC1 = -246); the spectrum containing the sum of the first six 
IMFs obtained from the inverse Fourier transform of the intentionally phase distorted spectrum 
(upper trace). 

 

Several aspects of such application (automated phase correction) may be further 
investigated. In particular, the performance of this method is strictly related to the 
identification of the IMFs of interest, to the automated recognition of baseline points 
and to the initial parameters defined by the genetic algorithms (as the population 
size, the range of the gene values, the selection of the couples, the mutation type, the 
mutation percentage and the number of generations). The weak and strong points of 
these aspects are evaluated in the discussion section in the last chapter.  
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Figure 4.26 Automated phase correction of the one-dimensional spectrum obtained from a 
sample containing a mixture of twenty amino acids: comparison of the automated (blue trace) 
phase correction (PHC0 = -57.50 and PHC1 = -246.80) with the manual phase correction (green trace) 
obtainable with Topspin software (PHC0 = -80.32 and PHC1 = -36.80). 

 

  

Figure 4.27 Zoom of the boxes reported in Figure 4.26: detailed comparison of the automated (blue 
trace) phase correction (PHC0 = -57.50 and PHC1 = -246.80) with the best manual phase correction 
(green trace) obtainable with Topspin software (PHC0 = -80.32 and PHC1 = -36.80). 
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5 Protein structure determination   
 

5.1 PSCD4-DOMAIN OF PLEURALIN PROTEIN 
 

5.1.1  SPECTRAL ASSIGNMENT OF CHEMICAL SHIFTS 

 

The spectra used for the sequential assignment of the atoms in the backbone and in 
the side chains have been described in par. 2.1.3. The assigned 1H15N-NOESY-HSQC 
spectrum of the recombinant His6PSCD4-domain of the pleuralin protein is reported 
in Fig. 5.1. It is evident that the resonances are notably superimposed in the central 
part of the spectrum, namely between 115 to 120 ppm and from 8.2 to 8.7 ppm in the 
15N and 1H dimension respectively. Some residues in the C-terminal reveal split 
signals (as the Ala 106) due to the flexibility of this terminal that can possess different 
conformations. The list of the newly detected chemical shifts and the primary 
sequence are reported in Appendix A. 

 

 

Figure 5.1 Assigned 1H15N-NOESY-HSQC spectrum of the PSCD4-domain of the pleuralin protein: 
the F2-F3 projection of the three-dimensional spectrum. The assignment of the signals is described by 
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the one-letter code of the amino acids and by their position in the primary sequence. The small letters 
d and e define the amide signals of the side chains of glutamine and arginine respectively. The main 
differences with respect to a previous work [Wenzler et al, 2001] are highlighted in red: Val27, Ile28, 
Glu29 and Ala35. 

 

The following residues could not be assigned in any of the measured spectra: serine 1, 
histidine 4, histidine 6, histidine 7, proline 61, threonine 84 and proline 91. Only the 
last three amino acids, among them, are part of the PSCD4-domain. The glutamine 
acid 29, the alanine 35 and the valine 27 have been instead newly assigned. The 
chemical shifts have been analyzed by the TALOS+ software in order to predict the 
presence of canonical secondary structures. In particular an α-helix has been 
predicted to be formed from the residue Cys 49 to the Val 52. Three beta sheets 
should be located instead, from the residue Cys 71 to the Phe 74. The TALOS+ 
software generates a sequence window (Fig. 5.2) where the residues are highlighted 
with different colors depending on the classification: green represents a good shift 
classification, yellow an ambiguous one, blue a dynamic part, while blank defines a 
not possible interpretation. The sequence window obtained from the observed 
chemical shifts (reported in Appendix A) is compared with that one generated with 
the previously observed shifts [Wenzler, 2003], as shown in Fig. 5.2. The residues Ser 
19, Gln 20, Pro 21, Pro 96 and Thr 97 are in both cases identified as dynamical parts. 
Using the newly observed shifts the residues Ser 22, Asp 23, Glu 26, Glu 29, Asp 34, 
Arg 54, Asn 58, Asn 65, Ser 86, Cys 94 are no more ambiguously classified. 

 

      

Figure 5.2 Sequence window of TALOS+ software for predicting structural motives using the 
existing and the newly observed chemical shifts: the residues are differently colored dependently 
on the classification. Green, good; yellow, ambiguous; blue, dynamical; blank, not classified. Sequence 
windows obtained with the observed (Appendix A) and with the existing [Wenzler, 2003] chemical 
shifts in the right and in the left side respectively. 
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5.1.2  EXPERIMENTAL RESTRAINTS 

 

The positions of five disulfide bonds have been determined by Wenzler in 2003: from 
Cys 24 to Cys 94, from Cys 31 to Cys 76, from Cys 36 to Cys 72, from Cys 49 to Cys 71 
and between Cys 57 and Cys 68, as described in Fig. 5.3. All of them have been 
determined by biochemical methods. 

 

Figure 5.3 Disulfide bonds: connections of the ten cysteine residues of the PSCD4-domain.  

 

5.1.2.1 THREE-BOND SCALAR COUPLING RESTRAINTS 

 

The TALOS+ program yields a list of dihedral angle restraints. The Karplus relation 
has been exploited in order to derive 38 3JHNHα coupling constants from the obtained 
φ torsion angles. The A, B and C constants of the Karplus equation (see eq.1.17) have 
been set to 7.13, -1.31 and 1.56 respectively [Habeck et al, 2005]. From the HNCA-
E.COSY 27 3JHNHα coupling restraints have been observed (reported in Appendix B) 
and 8 of them reveal different values with respect to the previous work of Wenzler 
(gray shaded in Appendix B). They have been added or substituted to those ones 
predicted by the TALOS+ software, as reported in Appendix C (obtaining 65 3JHNHα 
coupling restraints totally).  

The routine used to compute the Karplus equation has been introduced in the 
AUREMOL software. In particular, it can be started from the “Calculation” menu as 
shown in Fig. 5.4. The main interface (reported in Fig. 5.5) is launched as the “Karplus 
calculation” submenu is selected. The user must provide the input file containing 
either the dihedral angle or the 3J coupling restraints, whose formats are displayed in 
Fig. 5.6 part a and part b respectively. He must, accordingly to the provided restraints, 
select the direction of conversion. In particular, if the user furnishes the dihedral 
angle restraint file and he wishes to obtain 3J coupling restraints from it, accordingly 



Chapter V                                           Protein structure determination 
 

127 
 

to the Karplus curve [Karplus, 1963] a unique value would be obtained for every 
restraint. If the dihedral angle restraints must be derived from the 3J coupling 
restraints then up to four different values would be produced for each restraint.  
Depending on the bonds involved in the scalar coupling different values of the A, B 
and C constants of the Karplus equation have been empirically obtained [Habeck et al, 
2005]. Therefore, the user must select the atoms involved in the restraints among the 
following ones: HNHα, HNCi−1α , HNCβ and Ci−1α Ciα. 

 

Figure 5.4 Starting the Karplus routine: this module is in the “Karplus calculation” submenu of the 
“Calculation” menu in the AUREMOL software package. 

 
 

Figure 5.5 Main dialog of the Karplus calculation: the restraint file containing either the dihedral 
angles φ or the 3J coupling restraints must be provided with the formats reported in Fig. 5.6 part a and 
part b respectively. The type of the conversion (from 3J coupling to φ torsion angle or vice versa) must 
be selected accordingly to the provided restraint file. The atoms involved in the observed scalar 
coupling must be chosen. 
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Figure 5.6 Karplus file formats: the user provides either the torsion angle φ (a) or the 3J coupling (b) 
restraint file obtaining the corresponding output files (c and d respectively). 

In Fig. 5.6 is reported an example of the input file formats that must be provided by 
the user (part a and part b) and the corresponding output files (part c and part d). 

 

5.1.2.2 HYDROGEN BONDS RESTRAINTS 

 

The hydrogen bonds have been detected from the long-range HNCO experiment (15 
restraints as described in Appendix D). The distance between the proton (H) and the 
acceptor (O) has been defined from 0.18 to 0.25 nm, while it varies from 0.23 to 0.35 
nm between the donor (N) and the acceptor (O) accordingly to Fig. 1.9. 

 

(a) 

(b) 

(c) 

(d) 
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5.1.2.3 RDC RESTRAINTS 

 

The isotropic and the anisotropic coupled 1H15N HSQC experiments have been used to 
identify 50 1H15N RDCs (as reported in Appendix E). In order to use such restraints to 
calculate the three-dimensional structure of the protein, the three components 𝐴𝑖𝑗  of 
the molecular magnitude tensor must be determined. The smallest and the biggest 
measured RDC represent the orientation of the atom connecting vector parallel to the 
y- and to the z-axis of the tensor respectively. The most frequently occurring RDC 
value identifies instead the orientation parallel to the x-axis. In Fig. 5.7 is reported the 
histogram of the distribution of the observed RDCs (from residue Glu 29 to Asp 79) 
where 𝐴𝑦𝑦 = −20, 𝐴𝑧𝑧 = 18 and  𝐴𝑥𝑥 = 2. The rhombicity R (see eq. 1.20) and the 
axiality 𝐴𝑎 (see eq. 1.21) parameters have been computed and introduced in the CNS 
program as  𝑎2

𝑎1
 = 0.814 and 𝑎1=9 respectively. Generally, the 𝐴𝑦𝑦 and 𝐴𝑧𝑧 are 

underestimated thus the latter has been computed accordingly to eq. 1.22 [Wenzler, 
2003]. 

 

 

Figure 5.7 Histogram of the observed RDCs (35 restraints from residue Glu29 to Asp79): the 
three components 𝐴𝑖𝑗  of the molecular magnitude tensor correspond to the extrema (𝐴𝑦𝑦 is the 
minimum and 𝐴𝑧𝑧 is the maximum) and to the most frequently occurring RDC value (𝐴𝑥𝑥). The 
rhombicity R and the axiality 𝐴𝑎 are obtained from these components (eq. 1.20 and eq. 1.21). 
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5.1.2.4 NOE DISTANCE RESTRAINTS 

 

The distance restraints have been obtained applying the REFINE routine [Trenner, 
2006] on the previously assigned (by means of KNOWNOE [Gronwald et al, 2002]) 
two-dimensional NOESY spectrum (par. 2.1.2.2.3). The KNOWNOE routine has been 
applied on the previously existing pdb file of Wenzler imposing 5 iterations for 
performing the assignment. The REFINE routine applies the default values on the 
distance error. The SSA for solvent suppression and the ALS for baseline correction 
have been applied on the spectrum (see Fig. 3.30) before performing the automated 
assignment in order to reveal some resonances lying under the strong solvent artifact 
(Fig. 5.8). However, the large amount of certain amino acids as proline, serine, 
cysteine and aspartic acid in the primary sequence and the lack of aromatic ones as 
phenylalanine lead to many signal overlaps and to multiple assignments of the 
chemical shifts (that have been visually inspected). Therefore, the three-dimensional 
1H15N- and 1H13C-NOESY-HSQC experiments have been additionally used for such 
purpose. Totally, 590 signals have been assigned in the spectrum and 926 NOE 
distance restraints have been obtained with REFINE. 

 

  

(a) (b) 
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Figure 5.8 SSA and ALS on the two-dimensional NOESY spectrum of the PSCD4-domain: zoom in 
the range between 5.4 and 4.9 ppm in 𝜔2and between 4.1 and 1.5 ppm in 𝜔1. The original spectrum 
(a), the spectrum after SSA (b) and after ALS in cascade with SSA (c). 

 

In Fig. 5.8 is reported a detailed comparison among the original acquired NOESY 
spectrum (part a), the same spectrum after suppressing the solvent by means of SSA 
(part b) and the same spectrum after SSA and ALS for baseline correction (part c). 
The developed algorithm allows a better identification of the resonances of interest. 

 

5.1.3  STRUCTURE DETERMINATION 

 

The standard simulated annealing [Kirkpatrick et al, 1983] protocol of CNS 1.21 has 
been used in order to calculate the structure of the PSCD4-domain. 

Five different calculations have been performed in the following manner: 

1) Using only the previously existing restraint files of Wenzler [Wenzler, 2003]. 
2) Modifying the upper and lower bounds of the NOE distances of Wenzler 

[Wenzler, 2003] accordingly to Kalbitzer and Hengstenberg, 1992. 
3) Substituting the 3JHNHα coupling restraints of Wenzler with those ones obtained 

from TALOS+. 
4) Using the above described restraints (without those ones of Wenzler) and 

merging (as described in par. 5.1.2.1) the detected 3JHNHα coupling restraints 
with those ones obtained from TALOS+. In particular, five disulfide bonds, 65 
3JHNHα coupling, 35 RDCs (from Glu 29 to Asp 79), 15 hydrogen bonds and 926 
NOE distance restraints have been used.  

(c) 
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5) Using all the above (without those ones of Wenzler) described restraints 
without considering those ones obtained from TALOS+ (see par. 5.1.2.1): five 
disulfide bonds, 27 3JHNHα coupling, 35 RDCs (from Glu 29 to Asp 79), 15 
hydrogen bonds and 926 NOE distance restraints. 

In the first three cases, the molecular dynamics simulation has been performed from 
residue Pro15 to Ser103, while in the last two cases it has been performed up to the 
residue Thr112 since several additional NOE restraints have been detected in this 
range. From the third to the fifth case, the newly detected chemical shifts (see 
Appendix A) have been used. 

In particular, the number of restraints and the chemical shifts (existing and newly 
detected) used for each described case is reported in table 5.1. 

 

 1 2 3 4 5 
Disulfide bonds 5 5 5 5 5 
3JHNHα couplings 29 29 0 27 27 
TALOS angles 0 0 38 38 0 
RDCs 32 32 32 35 35 
H_bonds 2 2 2 15 15 
NOE 460 460 460 926 926 
TOT 530 530 539 1046 1008 
CHEMICAL 
SHIFTS 

OLD OLD NEW NEW NEW 

Table 5.1 Number of restraints used in the five different computations of the PSCD4-domain 
structures: the numbers on the first row identify the different structure calculation. (1) using only the 
previously existing restraint files of Wenzler; (2) modifying the upper and lower limits of the existing 
NOE distance restraint file of Wenzler [Kalbitzer and Hengstenberg, 1992]; (3) substituting the existing 
J coupling restraint file of Wenzler with that one obtained with TALOS+; (4) using only the completely 
new detected restraints (different from those ones of Wenzler), including the observed J coupling and 
the TALOS+ dihedral angle restraints; (5) using only the new detected restraints (different from those 
ones of Wenzler) without including the TALOS+ dihedral angle restraints. Five disulfide bonds have 
been used in all the cases, while different amounts of 3JHNHα coupling, RDC, hydrogen bond and NOE 
restraints have been detected. The spectral assignment led to new (different from those ones of 
Wenzler) chemical shifts that have been used from the third to the fifth case.  

 

Moreover, 1024 structures have been obtained for each case and the first 10 have 
been retained (those ones with the minimal energy). Every bundle of 10 structures 
has been investigated separately with MolMol and it has been compared with the 
previously determined structure of Wenzler, as reported in Fig. 5.9. In particular, the 
a part of this figure shows the first described case, the b part contains the result of the 
second case, the c part represents the third one, the d part shows the fourth obtained 
structure, while the e part describes the structure generated in accordance to the fifth 
case. 
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The RMSD of each bundle of structures has been computed fitting the first model with 
the successive nine structures of the bundle (using MolMol). In particular, the RMSD 
has the following values starting from the first to the fifth case: 1.887, 1.576, 1.447, 
1.291 and 1.276 (see table 5.2). 

The violation files of the first ten structures of every bundle generated by CNS have 
been inspected. The largest violations of the detected NOE distances (> 0.5 Ȧ ) have 
been evaluated in order to correct overlapping assignment of chemical shifts. 

       

(a) 
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(b) 

(c) 
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Figure 5.9 PSCD4-domain structure determination (from residue 30 to 80) without water 
refinement: structures obtained with different restraints: using only the previously existing restraint 
files of Wenzler (a); modifying the upper and lower limits of the existing NOE distance restraint file of 
Wenzler [Kalbitzer and Hengstenberg, 1992] (b); substituting the existing J coupling restraint file of 
Wenzler with that one obtained with TALOS+ (c); using only the completely new detected restraints, 
including the observed J coupling and the TALOS+ dihedral angle restraints (d); using only the new 

(d) 

(e) 
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detected restraints without including the TALOS+ J coupling restraints (e). For a detailed description 
see Table 5.1. 

 

The first structure contains two α-helices in the residue ranges from Cys 49 to Gly 53 
and from Pro 55 to Asn 58. The first α-helix is kept through all the calculated 
structures, as was originally predicted by the TALOS+ program (par. 5.1.1). In the 
second case another α-helix is defined in the residue range from Phe 74 to Ser 77, 
while in the third structure there are no other structural motives. In the fourth and in 
the fifth cases two additional α-helices (to the two α-helices found in the first 
structure) have been detected in the residue ranges from Ile 33 to Cys 36 and from 
Pro 39 to Asp 42. 

 

5.1.4  STRUCTURE VALIDATION 

 

The Ramachandran plots of the PSCD4-domain have been generated with PROCHECK 
for each evaluated case and they have been compared with the previously 
determined one of Wenzler. In particular, in Fig. 5.10 the Ramachandran plot related 
to the structure obtained accordingly to the first case (described in par. 5.1.3) is 
shown in the a part of the figure, the second case is reported in the b part, the third 
result is represented in the c part, the fourth case is described in the d part, while the 
e part shows the Ramachandran plot of the fifth case. 

 

 

(a) 
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(b) 

(c) 
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Figure 5.10 PSCD4-domain structure validation (from residue 30 to 80) without water 
refinement: the Ramachandran plots related to different structures obtained with different restraints. 
Using only the previously existing restraint files of Wenzler (a); modifying the upper and lower limits 
of the existing NOE distance restraint file of Wenzler [Kalbitzer and Hengstenberg, 1992] (b); 
substituting the existing J coupling restraint file of Wenzler with that one obtained with TALOS+ (c); 
using only the completely new detected restraints, adding the observed J coupling with the TALOS+ 
dihedral angle restraints (d); using only the new detected restraints without including the TALOS+ J 
coupling restraints (e). For a detailed description see Table 5.1. 

 

(d) 

(e) 
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The Ramachandran plots of the second and the third structures reveal that the 
majority of the residues are positioned in the most favorable regions.  All the 
described Ramachandran plots have been analyzed with the PROCHECK software in 
order to determine the percentage of residues located in the most favored regions, in 
the strictly and generously allowed regions and in the disallowed regions (see table 
5.2). 

 

 1 2 3 4 5 
𝐄𝐭𝐨𝐭 132.139 811.044 1537.69 8175.63 6464.66 
𝐄𝐛𝐨𝐧𝐝 5.14995 19.6276 40.7299 262.59 263.313 
𝐄𝐚𝐧𝐠𝐥𝐞 51.7283 104.467 235.661 1214.06 1214.66 

𝐄𝐢𝐦𝐩 4.9956 22.6409 119.141 620.587 620.477 

𝐄𝐯𝐝𝐰 32.6574 86.6475 138.608 952.559 948.825 
𝐄𝐞𝐥𝐞𝐜 4.673186E-05 3.223294E-

04 
6.702447E-

05 
2.898619E-

04 
9.820044E-

04 
𝐄𝐧𝐨𝐞 17.7141 82.9034 388.895 2138.93 2135.89 
𝐄𝐜𝐨𝐮𝐩 10.5527 53.1972 40.3706 2390.25 685.02 

𝐄𝐬𝐚𝐧𝐢 9.34075 20.4002 17.8155 10.8139 10.8292 
NOE violations > 

0.05nm 
0 0 3  18 18 

RDC violations 30 29 29 0 0 
vdw violations 0 9 13 0 0 

dihed violations 35 716 727 856 854 
H_Bond 

violations > 
0.05nm 

0 0 0 0 0 

RMSD 1.887 1.576 1.447 1.291 1.276 
Residues in the 

most favored 
regions 

42.9% 60.3% 47.6% 25.7% 22.4% 

Residues in the 
strictly allowed 
regions 

38.1% 27.0% 39.7% 41.4% 44.3% 

Residues in the 
generously 
allowed regions 

12.7% 11.1% 9.5% 22.9% 21.9% 

Residues in the 
disallowed 
regions 

6.3% 1.6% 3.2% 10.0% 11.4% 

R-factor 
(interresidual 
signals) 

0.290826 0.246233 0.326509 0.234169 0.245834 

R-factor (all 
experimental 
and calculated 
signals) 

0.88 0.83 0.73 0.67 0.64 

Table 5.2 Energy contributions, RMSD values and Ramachandran plot results of the five 
different computations (see table 5.1) without water refinement: several energy terms are 
reported as well as the total energy and the number of NOE and hydrogen bonds violations with 
respect to the total amount of restraints. The average RMSD of each bundle of structures is described. 
The results of the Ramachandran plots are visualized as percentage of residues located in the most 
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favored, in the strictly and generously allowed and in the disallowed regions. The R-factor (for inter-
residual signals and for all experimental and calculated signals) is reported as well. 

In table 5.2 the specific energy contributions (the energy values of the every first 
structure obtained from the five different computations), the NOE violations, the 
RMSD values and the PROCHECK results of all the five datasets of generated 
structures are reported. The numbers on the top of every column identify the 
differently generated bundles of structures in accordance to the description reported 
in par. 5.1.3. 

 

The first three datasets of structures reveal an overall lower energy contribution due 
to the smaller amount of restraints used to calculate the structure and to the shorter 
considered sequence (from Pro15 to Ser103). In particular, only 460 NOE-contacts, 2 
hydrogen bonds and 29 3JHNHα coupling restraints were detected. 

The R-factor [Gronwald et al, 2000] has been calculated from the two-dimensional 
NOESY spectrum of the PSCD4-domain of the pleuralin protein (par. 2.1.2.2.3). It 
decreases from the first to the last computation. 
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6 Discussions and Conclusions   
 

6.1  General considerations 
The time-domain measured NMR experiments typically need to be accurately 
processed both before and after the Fourier transformation (par. 1.2). They can be 
multiplied by a weighting window function (exponential, Gaussian, etc.) in the time 
domain, whereas phase correction are usually performed in the frequency domain 
(par. 1.2.1 and par.1.2.2). Baseline correction can be applied in both domains. An 
interactive baseline and phase correction is generally required, but it is not 
acceptable for a fast and completely automated procedure of protein structure 
determination. 

Some algorithms have been developed during this work in order to consent a reliable 
automated phase (EMD in the time domain combined with GA, par. 4.1.3.1) and 
baseline correction (ALS in the frequency domain, par. 3.1.4) of multi-dimensional 
NMR data. The former has been tested on strong phase-distorted one-dimensional 
NMR spectra obtained from samples containing mixtures of various amino acids (par. 
2.1.2.6). The latter has been instead applied to metabolomics (human urine) NMR 
one-dimensional spectra with a strong baseline distortion (par. 2.1.2.4.1), to a two-
dimensional back-calculated NOESY spectrum of the HPr protein from Staphylococcus 
aureus (par. 2.1.1.1) and to the experimental three-dimensional 1H13C HCCH-TOCSY 
spectrum of Trx protein from Plasmodium falciparum (par. 2.1.2.1).  

Several experimental (during the acquisition of the data) and post-processing (in 
both domains) methods for suppressing the solvent artifact (par. 1.2.3) are generally 
used for a more reliable detection of the resonances of interest in the investigated 
spectra. The existing procedures typically are not able to recover the solute signals 
hidden by the solvent artifact.  

In this work, some algorithms have been developed and compared (SSA and ICA in 
the time and in frequency domain respectively, par. 2.2.2 and par. 2.2.3) in order to 
establish the most efficient automated method. The SSA has been chosen due to its 
ability in recovering the resonances of interest in spectra severely affected by the 
solvent artifact.  

In particular, the SSA has been successfully applied to experimental NMR data (three-
dimensional 1H13C HCCH-TOCSY spectrum of Trx protein from Plasmodium 
falciparum (par. 2.1.2.1), two-dimensional NOESY and TOCSY spectra of HPr protein 
from Staphylococcus aureus (par. 2.1.2.2.1 and par. 2.1.2.2.2), one-dimensional 
metabolomics data as blood, urine and cell spectra (par. 2.1.2.3.2, par. 2.1.2.3.3 and 
par. 2.1.2.4.1) and to back-calculated (RELAX-JT2 algorithm) NMR spectra (one- and 
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two-dimensional NOESY spectra of HPr protein from Staphylococcus aureus, par. 
2.1.1). 

The application of the SSA followed by ALS (AUREMOL_SSA/ALS) is mathematically 
rather simple and provides as good results as those ones obtained with more 
complicated methods. In particular, the SSA has been totally automated and 
introduced in the AUREMOL package followed by the ALS that is applied in cascade in 
the investigated data for an automated baseline correction. This latter can be also 
used out of the SSA algorithm (par. 3.1.4).   

The AUREMOL_SSA/ALS has been tested successfully for higher-dimensional NMR 
spectra earlier [Malloni et al, 2009]. In this work, it has been shown that some 
modifications had to be introduced (as the number of extracted components in the 
SSA and the window size in the ALS) in order to apply it properly also to one-
dimensional spectra. In particular, it has been demonstrated that the higher digital 
resolution of one-dimensional spectra involves the extraction of a larger amount of 
components (par. 3.1.2) in order to better distinguish the solvent signal (represented 
by the component with the highest variance) from the rest. In principle, it could be 
useful to nullify more than one component before reconstructing the signal, an idea 
that will be worked out in the future.  

It is clear that using modern NMR spectrometers an excellent water suppression and 
almost perfect baselines can be achieved with selective excitation techniques such as 
WET [Smallcombe et al, 1995], watergate [Piotto et al, 1992; Sklenar et al, 1993; 
Saudek et al, 1994; Liu et al, 1998] and excitation sculpting [Hwang et al, 1995] or by 
applying more complicated selective pre-saturation sequences such as PURGE 
[Simpson and Brown, 2005] instead of the simple NOESY-type pre-saturation 
sequence used here. Selective excitation methods have always the disadvantage, that 
a rather large spectral range around the water signal is attenuated or not visible at all 
that may contain valuable information. In addition, the quality of the water 
suppression also depends on the concentration of solute under consideration. At mM 
concentrations these methods can attenuate the water signal to such a degree that it 
is not stronger than a typical resonance of the solute. In contrast at µM concentrations 
often relevant in biology these methods fail and the application of SSA/ALS would 
lead to a significant improvement of the spectral quality. 

The complete AUREMOL_SSA/ALS algorithm has been tested on the two-dimensional 
NOESY spectrum of the PSCD4-domain of the pleuralin protein (par. 1.3.2, par. 
2.1.2.2.3 and par. 3.1.4) in order to perform a more reliable signal assignment 
(KNOWNOE algorithm) and consequently to extrapolate more and better defined 
distance restraints (REFINE algorithm) from the spectrum. These and some other 
restraints (par. 2.1.3 and par. 5.1.2) have been used to calculate (CNS) the three-
dimensional structure of the considered domain. 
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The limitations of the SSA have been investigated (par. 3.1.1.3) and the ICA has been 
proposed as a valid alternative to properly deal with such unfavorable cases (par. 
4.1.2.2.1 and par. 4.1.2.2.2). Since the ICA needs in input at least as many different 
spectra as the number of desired components (solute and solvent components) the 
definition of a suitable protocol for generating the dataset of ICA-tailored data is 
straightforward (par. 4.1.2.2.2). Some specific pulse sequences have been designed 
and successfully applied to one-dimensional NMR spectra of HPr protein from 
Staphylococcus carnosus demonstrating even a better performance of the SSA. 

Advantages and disadvantages of both methods have been described (par. 4.1.2). The 
ICA will become part of the AUREMOL package as well, with the advantage of 
recovering resonances of interest, especially in those SSA non-manageable cases 
(where the solvent signal is not the dominant one in the spectrum). 

 
6.1.1 SOLVENT SUPPRESSION BY MEANS OF SINGULAR SPECTRUM 

ANALYSIS 

The SSA has been developed in order to remove the solvent artifact from NMR 
spectra of any dimensionality, digitally and analogically acquired, decomposing every 
time-domain signal (FID) into one solvent and several solute related components. 
Time signal embedding (par. 2.2.2) in the space of time-delayed coordinates (building 
one trajectory matrix for each investigated FID) is applied and the eigenvalue 
decomposition is performed on these data (par. 2.2.1). The embedding dimension (i.e. 
the number of components) has been determined empirically in accordance to a 
qualitative and quantitative analysis of the extracted components (par. 3.1.2). The 
projection of the eigenvector related to the largest eigenvalue (describing the highest 
variance in the data, i.e. the solvent signal) is nullified and the embedding process is 
then reverted. The pre-processing and the post-processing of the time-domain and 
the frequency domain data are mandatory. The former includes the automated 
management of the group delay data points (par. 3.1.1.1) and the signal normalization 
(par. 3.1.1.2). The latter is instead related to the phase correction according to the 
group delay and to the baseline correction (par. 3.1.4). 

The SSA cannot satisfactorily be applied on spectra whose dominant signal is not the 
solvent (as in case of watergate experimental solvent suppression and in case of 
artificial data not including the experimental solvent signal, par. 3.1.1.3). The optimal 
solvent-to-solute ratio for a reliable solvent suppression has been investigated by 
means of a quantitative analysis of the resulting spectra (after SSA) compared with 
the corresponding one-dimensional back-calculate one of the HPr protein from 
Staphylococcus aureus (par. 3.1.1.3). 

The application of certain experimental solvent suppression methods (par. 1.2.3.2) 
during the measurement could lead to multi-dimensional spectra whose solvent 
signal is still the dominant one only in some rows of the spectrum. If the SSA were 
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conducted over such data, it would yield unsatisfactory results (vertical stripes of 
artifacts would appear in the spectrum). It should be selectively applied only along 
specific rows that should be automatically identified. Therefore, this additional 
application could be taken into account for a further development of the method that 
must be able to deal with this type of data. For instance, the spectrum could be 
automatically evaluated row by row in order to determine if the solvent artifact is the 
dominant signal in the considered row. This task could be easily performed in the 
frequency domain, where typically the solvent signal is recognized in the middle of 
the spectrum. The SSA algorithm is applied in the time domain, thus an initial Fourier 
transform of each FID would be automatically performed. At this point, the algorithm 
should verify if the strongest intensity of the spectrum is located in the middle of this 
latter and in such case the FID corresponding to the considered row could undergo 
the SSA for solvent suppression. The entire procedure would require a previously 
applied phase correction to do not compromise the recognition of the strongest 
intensity in every row of the spectrum. Moreover, a specific range of the solvent 
region could be interactively defined. 

Actually, the ICA has revealed to be a valid alternative to suppress the solvent signal 
in spectra whose dominant signal is not the water artifact, but a further improvement 
of the SSA in not to exclude. 

 

6.1.1.1 AUTOMATED BASELINE CORRECTION BY MEANS OF 
LINEAR SPLINE 

 

The automated recognition of baseline points (par. 3.1.4) in the spectra has been 
obtained with a method similar to FLATT [Güntert and Wüthrich, 1991]. It searches 
for contiguous pieces of row or column that can be well fitted by a straight line (as it 
happens in baseline regions). A sliding window must be used to look for such regions 
and it must be larger than the line width of the protein peaks. As originally proposed 
by Güntert and Wüthrich, the fixed window size of 75 Hz has revealed to do not be 
suitable for all the types and all the dimensionalities of experiments. Therefore, the 
method has been modified in such a way that the window size is automatically 
adapted in dependence on the considered spectrum. In particular, if two- and three- 
dimensional data are analyzed the maximal values of the line width of the peaks are 
computed in each direction separately (e.g. row by row) and some histograms are 
built containing the occurrence of the line width values in each direction. The most 
frequently occurring line width value is used to establish the window size. In one-
dimensional spectra (with a larger degree of signal overlap) this definition does not 
properly work (e.g. in case of biological sample with large variations of line width 
values) thus the method has been re-arranged (for such cases) in a way that the 
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window size is determined as the maximal occurring line width (not the most 
frequent one).  

The Automated Linear Spline (ALS) has been developed and introduced in the 
AUREMOL package in order to perform an automated baseline correction with an 
automated identification of the baseline points (differently determined in 
dependence on the dimensionality of the data) and a consequent linear spline 
interpolation of these points that is subtracted from the original data row- and 
column-wise. 

In particular, in the AUREMOL package it is used in a fully automated way in cascade 
after the application of the SSA without any user intervention. Considering the 
simplicity and the efficiency of this automated implementation, the 
AUREMOL_SSA/ALS should become a widely diffused tool for the treatment of multi-
dimensional spectra. 

 
 

6.1.2 SOLVENT SUPRRESSION BY MEANS OF INDEPENDENT 
COMPONENT ANALYSIS 
 

The SSA cannot be properly applied (to suppress the water signal) to spectra whose 
solvent artifact is not the dominant signal (par. 3.1.1.3). Therefore, the ICA has been 
investigated as a valid alternative to properly manage these cases. The latter 
decomposes the overlapping signals in the frequency domain and it needs at least as 
many different inputs or mixtures (spectra with different weights for each underlying 
signal) as the number of source signals (solvent and solute components). Dealing 
with one-dimensional data implies the creation of a set of at least two spectra tailored 
for the application of the ICA. A proper protocol with a specific pulse sequence must 
be followed in order to generate suitable ICA-tailored data (par. 4.1.2.2.2).  

The ICA (par. 2.2.3) determines the components maximizing the non-Gaussianity of 
the sources. In particular, several cost functions can measure the non-Gaussianity 
(e.g. kurtosis, negentropy) of the components, thus several algorithms (e.g. FastICA, 
JADE, InfoMax) are generally used. The FastICA algorithm has been chosen being fast 
and reliable. It has been applied to the ICA-tailored one-dimensional spectra of the 
HPr from Staphylococcus carnosus in order to recover resonances of interest showing 
a better performance than the SSA (par. 4.1.2.2.2). 

Both methods could be combined with the aim to overcome the limitations of every 
one of them. 

The SSA provides an easily interpretable set of components as output. In particular, 
they are directly disposed in a decreasing order in accordance to the variance of the 
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contained signal (par. 2.2.1). This is useful for an automated and fast recognition of 
the solvent artifact that has the highest variance in all the cases that it represents the 
dominant signal in the spectrum. Using ICA does not furnish a specific order, scale 
and sign of the extracted components (par. 2.2.3). This fact involves the 
spectroscopist to the direct visual inspection of the components and it is not 
acceptable for a complete automation of the structure determination procedure.  

A further development of the ICA algorithm could include an automated evaluation of 
the two extracted components. The recognition of the solvent component could be 
performed either as described in the case of the SSA applied only to some specific 
rows (par. 6.1.1) or with a method similar to those ones previously proposed by Joyce 
[Joyce et al, 2004] or by Nicolaou [Nicolaou and Nasuto, 2004]. In the former case, the 
algorithm should consider that the highest intensity of the data is typically located in 
the middle of the spectrum or alternatively that the spectrum of interest (between the 
components) contains significant intensity values only outside the solvent region.  

 
6.1.3 AUTOMATED PHASE CORRECTION BY MEANS OF EMPIRICAL 

MODE DECOMPOSITION 

 

The Empirical Mode Decomposition (EMD) combined with genetic algorithms (GA) 
has been proposed as a reliable method to perform an automated phase correction 
(par. 4.1.3.1) and it has shown to be able to properly deal with strongly phase 
distorted data.  

The AUREMOL_SSA/ALS for practical applications has the advantage of a complete 
automation. Phase correction must be typically performed interactively since still no 
stable methods exist. The EMD_GA combination has shown to be a promising tool for 
such purposes. 

The EMD relies on a process called sifting which allows the decomposition of the 
signal into a finite set of oscillatory components (with a decreasing frequency of 
oscillation from the first to the last component). The sum of the first Intrinsic Mode 
Functions (IMFs) extracted from the time-domain signal is Fourier transformed and 
the non-baseline region are determined. The genetic algorithms are applied in order 
to optimize the fitness function that maximizes the number of points whose intensity 
value is over a locally defined threshold in every non-baseline region separately. The 
individuals of the random population are identified by two random genes 
representing the zero- and first-order values of phase correction. The individual 
optimizing the fitness function after a previously determined number of generations 
contains the correct phase correction values in its genes. 

The EMD method does not allow the recovery of resonance of interest hidden 
underneath the solvent signal since several baseline distortions and artifacts appear 
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in the solvent region (par. 4.1.3). Further investigation of the method could lead to 
more satisfactory results in this field of application. The EMD has anyway shown to 
be useful to deal with a spectrum containing all the relevant resonances of interest 
that can be used to properly correct the phase of the investigated spectrum. The 
amount of the extracted IMFs may differ depending on the size and on the type of 
considered data, thus the amount of IMFs to be summed can differ.  

An automated recognition of the necessary IMFs could be further developed in order 
to improve the performance of the phase correction. In particular, an automated 
comparison of the original spectrum with that one obtained summing some of the 
extracted IMFs should yield a maximal overlap (e.g. comparing the intensity of the 
signals) except in the solvent region, where it must be minimal. The choice to apply 
the genetic algorithms on the sum of the first IMFs (instead of applying them 
separately to each IMF) has come from the investigation of the components. The first 
one (with the highest frequency of oscillation) could be used to detect only some of 
the solute resonances that need to be phase corrected. The second IMF allows a 
similar analysis over some other resonances in the spectrum but due to the presence 
of baseline distortions and noise, the identification of the signals of interest start to be 
more complex with the risk to compromise the complete automation of the method. 
This problem becomes particularly relevant on the successive IMFs (see Fig. 4.17). 
The sum of certain IMFs provides instead a well-defined solute spectrum without 
remarkable distortions except in the solvent region. This condition is sufficient to 
properly recognize all the non-baseline regions that need to be phase corrected. 

The performance of the phase correction is not only related to the ability of selecting 
the correct amount of IMFs to be summed, but it also depends on the capability of 
identifying true signals and baseline points (par. 3.1.4), that may represent an hard 
task in very distorted spectra. The genetic algorithm application (par. 4.1.3.1) 
involves the definition of some initial parameters: the population size, the allowed 
range of gene values (PHCO and PHC1, zero- and first-order phase correction 
respectively) representing each individual, the method for selecting the reproducing 
couples, the type of mutation (either both values or only one and in which range), the 
percentage of mutation (the amount of mutated individuals in each generation) and 
the number of generations. The modification of these parameters could lead to 
different performances of the phase correction.  

 

6.2 PSCD4-domain of the pleuralin protein 
 

6.2.1 PROTEIN STRUCTURE DETERMINATION 
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The pleuralin cell wall protein is obtained from the diatom Cylindrotheca fusiformis 
organism [Kröger et al, 1997; Wenzler et al, 2001]. In particular, the HEP200 has a 
modular construction with an N-terminal, a proline-rich domain, five proline-rich 
conserved PSCD-domains (with 87 or 89 amino acids in each domain) ad a C-
terminal. The PDSC-domains share the 73-91% of the sequence with ten cysteine 
residues at exactly the same positions in all the domains. They are separated by 
different short sequences of amino acids. The recombinant His6PSCD4 (with 112 
amino acids) contains the PSCD4-domain and it has been newly investigated (in 
accordance to the previous work of Wenzler, 2003). 

Several spectra (triple resonance experiments) have been used for the sequential 
assignment of the backbone and side chain atoms (par. 2.1.3). The SSA and the ALS 
have been applied on the two-dimensional NOESY spectrum that has been 
automatically assigned (KNOWNOE algorithm) and it has been evaluated to 
automatically determine distance restraints (REFINE algorithm). They have 
incremented the number of those previously detected ones [Wenzler, 2003]. The 
TALOS+ software has produced a list of dihedral angle restraints from the new 
chemical shifts (Appendix A). The routine to convert the 3JHNHα  coupling to torsion 
angle restraints and vice versa has been introduced in the AUREMOL package (par. 
5.1.2). The TALOS+ restraints have been investigated and integrated with the new 
detected 3JHNHα coupling restraints (Appendices B and C).  The newly determined 
hydrogen bonds and residual dipolar coupling restraints (Appendices D and E) have 
been also used to calculate (CNS) several three-dimensional structures of the PSCD4-
domain.  

In particular, five different calculations of the PSCD4-domain structure have been 
performed using different restraints (par. 5.1.3). Comparing the results reported in 
Table 5.2 (par. 5.1.4), the Ramachandran plots, the RMSD values and the R-factors, 
the best structures have been obtained using the newly detected chemical shifts 
(Appendix A) and either the existing restraints [Wenzler, 2003] with the addition of 
the TALOS+ torsion angle restraints (third case in par. 5.1.3) or using only the newly 
detected restraints (RDC, H_Bond, 3JHNHα  coupling and NOE) with or without those 
ones obtained with TALOS+ (fourth and fifth cases in par. 5.1.3).  

All the calculated structures have been obtained without water refinement. The 
percentage of residues lying in the not allowed region has increased from the first to 
the last case (with completely new determined restraints), whereas the R-factor and 
the RMSD have decreased. The water refinement could lead to better performances 
improving the Ramachandran plot of the last evaluated structures. 

The potential model of all the five PSCD-domains of the pleuralin protein has been 
described by Wenzler. Those domains are separated by different sequences of 
residues of various lengths. The disulfide bridges are conserved over the five 
domains, thus they can be used as restraints for the computation of the other 
domains. The NOE restraints of the PSCD4-domain are instead kept through the 
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domains if the involved amino acids are identical between the sequence of the PSCD4 
and the other considered domains. Using such information it could possible to 
calculate the bundle of structures of the entire pleuralin protein (from the amino acid 
88 to the 581) with CNS. In particular, the residues lying in the sequences connecting 
the domains do not possess any restraints, but a refined structure could be obtained 
adding some no-NOE-contacts between the single PSCD-domains.  
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RESIDUE ID RESIDUE NAME ATOM NAME SHIFT 
2 Y CA 57.75 
2 Y CB 40.12 
2 Y C 175.42 
3 Y N 115.11 
3 Y HN 7.64 
3 Y CA 59.30 
3 Y HA 4.77 
3 Y C 176.1 
5 H CA 56.70 
5 H HA 3.97 
5 H CB 30.07 
5 H HB3 3.20 
5 H HB2 3.11 
5 H C 176.39 
8 H CA 55.82 
8 H HA 4.57 
8 H CB 30.60 
8 H HB 2.98 
8 H C 173.92 
9 H N 120.44 
9 H HN 8.35 
9 H CA 56.17 
9 H CB 30.74 
9 H C 175.59 
9 H HA 4.65 
9 H HB 3.08 

10 T N 114.95 
10 T HN 8.12 
10 T CA 61.36 
10 T HA 4.12 
10 T CB 70.00 
10 T HB 4.02 
10 T CG2 21.20 
10 T HG2 1.20 
10 T C 172.91 
11 M N 120.41 
11 M HN 7.91 
11 M CA 58.74 
11 M C 175.61 
12 M N 123.73 
12 M HN 8.08 
12 M CA 52.83 
13 P CA 63.04 
13 P HA 4.38 
13 P CB 32.15 
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13 P HB3 2.19 
13 P HB2 1.89 
13 P CG 26.98 
13 P HG 1.92 
13 P CD 50.57 
13 P HD3 3.77 
13 P HD2 3.65 
14 S N 114.78 
14 S HN 7.98 
14 S CA 55.28 
14 S HA 4.39 
14 S CB 65.53 
15 P CA 62.94 
15 P HA 4.40 
15 P CB 32.2 
15 P HB3 2.24 
15 P HB2 1.88 
15 P CG 26.92 
15 P HG 1.98 
15 P CD 50.69 
15 P HD3 3.70 
15 P HD2 3.64 
15 P C 177.97 
16 E N 115.59 
16 E HN 8.08 
16 E CA 55.18 
16 E HA 3.80 
16 E CB 31.00 
16 E HB3 2.18 
16 E HB2 2.11 
16 E CG 31.79 
16 E HG 2.63 
16 E CD 177.06 
17 P CA 63.35 
17 P HA 4.46 
17 P CB 32.27 
17 P HB3 2.32 
17 P HB2 1.95 
17 P CG 26.89 
17 P HG 1.91 
17 P CD 48.88 
17 P HD3 3.85 
17 P HD2 3.75 
17 P C 176.94 
18 S N 115.75 
18 S HN 8.43 
18 S CA 58.12 
18 S HA 4.34 
18 S CB 63.43 
18 S HB 3.80 
18 S C 172.88 
19 S N 117.04 
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19 S HN 8.32 
19 S CA 58.28 
19 S HA 4.40 
19 S CB 63.82 
19 S HB 3.75 
19 S C 174.30 
20 Q N 122.5 
20 Q HN 8.30 
20 Q CA 53.35 
20 Q HA 4.71 
20 Q CB 29.13 
20 Q HB3 2.14 
20 Q HB2 1.98 
20 Q CG 33.29 
20 Q HG 2.40 
20 Q CD 180.45 
20 Q NE2 111.74 
20 Q HE21 7.56 
20 Q HE22 6.86 
20 Q C 174.09 
21 P CA 63.03 
21 P HA 4.80 
21 P CB 32.20 
21 P HB3 2.27 
21 P HB2 1.95 
21 P CG 27.12 
21 P HG 1.85 
21 P CD 49.15 
21 P HD1 3.80 
21 P HD2 3.70 
21 P C 177.07 
22 S N 116.72 
22 S HN 8.58 
22 S CA 58.66 
22 S HA 4.40 
22 S CB 63.87 
22 S HB3 3.93 
22 S HB2 3.84 
22 S C 174.28 
23 D N 121.85 
23 D HN 8.44 
23 D CA 54.32 
23 D HA 4.57 
23 D CB 41.03 
23 D HB3 2.64 
23 D HB2 2.51 
23 D CG 180.07 
23 D C 176.72 
24 C N 118.16 
24 C HN 8.32 
24 C CA 56.88 
24 C HA 4.52 
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24 C CB 40.83 
24 C HB3 3.17 
24 C HB2 3.04 
24 C C 175.26 
25 G N 109.17 
25 G HN 8.50 
25 G CA 45.87 
25 G HA 3.86 
25 G C 174.86 
26 E N 120.24 
26 E HN 8.00 
26 E CA 55.83 
26 E HA 4.34 
26 E CB 33.13 
26 E HB 2.08 
26 E CG 35.9 
26 E HG 2.18 
26 E C 174.98 
27 V N 120.7 
27 V HN 8.09 
27 V CA 63.44 
27 V HA 4.15 
27 V CB 32.07 
27 V HB 2.14 
27 V CG1 20.85 
27 V HG1 0.97 
27 V CG2 18.72 
27 V HG2 0.84 
27 V C 176.19 
28 I N 121.5 
28 I HN 8.02 
28 I CA 60.15 
28 I HA 4.27 
28 I CB 38.59 
28 I HB 1.81 
28 I CG1 26.79 
28 I HG13 1.46 
28 I HG12 1.18 
28 I CG2 17.65 
28 I HG2 0.90 
28 I CD1 12.04 
28 I HD1 0.84 
28 I C 175.97 
29 E N 130.5 
29 E HN 8.97 
29 E CA 57.8 
29 E HA 4.35 
29 E CB 31.17 
29 E HB 2.18 
29 E HG 2.20 
29 E C 176.68 
30 E N 122.2 
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30 E HN 8.37 
30 E CA 55.16 
30 E HA 4.35 
30 E CB 33.08 
30 E HB3 2.01 
30 E HB2 1.94 
30 E HG 2.28 
30 E C 173.97 
31 C N 123.94 
31 C HN 8.05 
31 C CA 52.70 
31 C HA 4.48 
31 C CB 40.60 
31 C HB3 2.85 
31 C HB2 2.80 
31 C C 174.95 
32 P CA 63.70 
32 P HA 4.47 
32 P CB 32.60 
32 P HB3 2.27 
32 P HB2 1.97 
32 P CG 26.91 
32 P HG 1.92 
32 P CD 50.70 
32 P HD3 3.82 
32 P HD2 3.70 
32 P C 175.71 
33 I N 120.41 
33 I HN 8.02 
33 I CA 59.45 
33 I HA 4.31 
33 I CB 39.37 
33 I HB 1.76 
33 I CG1 26.54 
33 I HG13 1.32 
33 I HG12 0.95 
33 I CG2 17.38 
33 I HG2 0.85 
33 I CD1 13.10 
33 I HD1 0.78 
33 I C 176.24 
34 D N 130.69 
34 D HN 9.00 
34 D CA 54.24 
34 D HA 4.74 
34 D CB 43.76 
34 D HB3 3.01 
34 D HB2 2.40 
34 D CG 184.11 
34 D C 178.05 
35 A N 124.42 
35 A HN 8.90 



Appendix A 
 

173 
 

35 A CA 53.60 
35 A HA 4.78  
35 A CB 19.32 
35 A HB 1.33 
35 A C 177.94 
36 C N 114.47 
36 C HN 7.65 
36 C CA 57.85 
36 C HA 4.25 
36 C CB 38.53 
36 C HB3 3.30 
36 C HB2 2.35 
36 C C 174.93 
37 F N 117.04 
37 F HN 8.06 
37 F CA 59.50 
37 F HA 4.08 
37 F CB 37.54 
37 F HB3 3.27 
37 F HB2 2.75 
37 F HD 7.16 
37 F C 174.6 
38 L N 120.89 
38 L HN 7.15 
38 L CA 53.64 
38 L HA 4.42 
38 L CB 40.87 
38 L HB3 1.72 
38 L HB2 1.46 
38 L CG 26.45 
38 L HG 1.17 
38 L CD 24.85 
38 L HD 0.84 
39 P CA 62.30 
39 P HA 4.33 
39 P CB 32.20 
39 P HB3 2.35 
39 P HB2 1.83 
39 P CG 27.65 
39 P HG 2.09 
39 P CD 49.5 
39 P HD3 3.84 
39 P HD2 3.63 
39 P C 177.95 
40 K N 118.96 
40 K HN 8.67 
40 K CA 59.32 
40 K HA 3.86 
40 K CB 31.67 
40 K HB3 1.89 
40 K HB2 1.75 
40 K CG 26.45 
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40 K HG3 1.60 
40 K HG2 1.27 
40 K CD 28.35 
40 K HD 1.70 
40 K CE 41.41 
40 K HE 2.96 
40 K HZ 8.29 
40 K C 176.92 
41 S N 109.65 
41 S HN 7.57 
41 S CA 57.86 
41 S HA 4.23 
41 S CB 63.21 
41 S HB3 4.07 
41 S HB2 3.76 
41 S HG 4.74 
41 S C 174.09 
42 D N 125.71 
42 D HN 7.98 
42 D CA 54.52 
42 D HA 4.55 
42 D CB 43.90 
42 D HB3 3.01 
42 D HB2 2.40 
42 D CG 178.96 
42 D C 178.16 
43 S N 125.07 
43 S HN 8.95 
43 S CA 60.8 
43 S HA 4.17 
43 S CB 63.06 
43 S HB 3.95 
43 S C 174.5 
44 A N 124.1 
44 A HN 9.40 
44 A CA 51.75 
44 A HA 4.26 
44 A CB 19.34 
44 A HB 1.31 
44 A C 177.63 
45 R N 122.82 
45 R HN 7.65 
45 R CA 54.98 
45 R HA 4.16 
45 R CB 30.73 
45 R HB3 1.77 
45 R HB2 1.57 
45 R CG 27.52 
45 R HG3 2.28 
45 R HG2 1.87 
45 R CD 43.01 
45 R HD 2.98 
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45 R NE 127.48 
45 R HE 6.75 
45 R CZ 159.21 
45 R C 174.80 
46 P CA 61.17 
46 P HA 4.52 
46 P CB 29.12 
46 P HB3 2.28 
46 P HB2 1.88 
46 P CD 50.49 
46 P HD3 3.92 
46 P HD2 2.94 
47 P CA 61.13 
47 P HA 4.39 
47 P CB 31.95 
47 P HB3 2.21 
47 P HB2 1.85 
47 P CG 26.99 
47 P HG 1.95 
47 P CD 48.88 
47 P HD3 3.75 
47 P HD2 3.59 
47 P C 177.36 
48 D N 120.73 
48 D HN 8.75 
48 D CA 54.92 
48 D HA 5.15 
48 D CB 39.64 
48 D HB3 2.89 
48 D HB2 2.44 
48 D CG 178.35 
48 D C 178.45 
49 C N 122.34 
49 C HN 8.03 
49 C CA 57.54 
49 C HA 4.25 
49 C CB 39.95 
49 C HB3 3.31 
49 C HB2 2.33 
49 C C 176.84 
50 T N 109.49 
50 T HN 8.57 
50 T CA 65.00 
50 T HA 3.63 
50 T CB 66.64 
50 T HB 4.27 
50 T CG2 22.18 
50 T HG2 1.27 
50 T C 176.75 
51 A N 124.26 
51 A HN 7.15 
51 A CA 53.98 
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51 A HA 4.39 
51 A CB 19.63 
51 A HB 1.65 
51 A C 178.70 
52 V N 108.20 
52 V HN 7.01 
52 V CA 59.81 
52 V HA 4.69 
52 V CB 30.65 
52 V HB 2.59 
52 V CG1 21.14 
52 V HG1 0.94 
52 V CG2 18.44 
52 V HG2 0.92 
52 V C 176.06 
53 G N 106.92 
53 G HN 7.50 
53 G CA 46.22 
53 G HA3 4.01 
53 G HA2 3.88 
53 G C 174.07 
54 R N 113.66 
54 R HN 7.69 
54 R CA 49.45 
54 R HA 5.12 
54 R CB 28.06 
54 R HB3 1.80 
54 R HB2 1.51 
54 R CG 24.32 
54 R HG 1.43 
54 R CD 39.27 
54 R HD 3.41 
54 R NE 124.58 
54 R HE 9.27 
54 R CZ 159.054 
54 R C 174.22 
55 P CA 64.97 
55 P HA 4.09 
55 P CB 31.07 
55 P HB3 2.28 
55 P HB2 2.14 
55 P CG 26.95 
55 P HG3 2.03 
55 P HG2 1.98 
55 P CD 49.95 
55 P HD3 3.81 
55 P HD2 3.74 
55 P C 177.98 
56 D N 116.72 
56 D HN 9.55 
56 D CA 54.62 
56 D HA 4.14 
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56 D CB 37.10 
56 D HB3 2.74 
56 D HB2 2.50 
56 D CG 181.70 
56 D C 175.48 
57 C N 115.11 
57 C HN 7.41 
57 C CA 56.90 
57 C HA 4.28 
57 C CB 43.6 
57 C HB3 3.30 
57 C HB2 3.02 
57 C C 172.65 
58 N N 118.00 
58 N HN 7.30 
58 N CA 52.25 
58 N HA 4.70 
58 N CB 37.68 
58 N HB3 3.28 
58 N HB2 2.19 
58 N CG 177.30 
58 N ND2 113.34 
58 N HD21 7.97 
58 N HD22 6.71 
58 N C 177.50 
59 V N 119.28 
59 V HN 8.06 
59 V CA 60.54 
59 V HA 4.34 
59 V CB 35.50 
59 V HB 1.91 
59 V CG1 20.05 
59 V HG1 0.83 
59 V CG2 20.05 
59 V HG2 0.78 
60 L N 118.32 
60 L HN 7.65 
60 L CA 51.42 
60 L HA 4.77 
60 L CB 43.54 
60 L HB3 1.64 
60 L HB2 1.28 
60 L CG 26.99 
60 L HG 1.70 
60 L CD1 23.78 
60 L HD1 0.95 
60 L CD2 25.39 
60 L HD2 0.89 
62 F CA 55.29 
62 F HA 5.29 
62 F CB 39.8 
62 F HB3 3.21 
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62 F HB2 3.03 
62 F HD 7.52 
62 F HE 7.58 
62 F HZ 7.87 
62 F C 174.91 
63 P CA 63.03 
63 P HA 4.28 
63 P CB 33.04 
63 P HB3 2.17 
63 P HB2 1.74 
63 P CG 27.52 
63 P HG3 2.20 
63 P HG2 1.80 
63 P CD 50.49 
63 P HD3 4.10 
63 P HD2 2.95 
63 P C 177.44 
64 N N 120.25 
64 N HN 8.50 
64 N CA 53.02 
64 N HA 4.76 
64 N CB 39.5 
64 N HB3 3.10 
64 N HB2 2.90 
64 N CG 176.82 
64 N ND2 111.74 
64 N HD21 7.64 
64 N HD22 6.90 
64 N C 176.92 
65 N N 115.59 
65 N HN 8.41 
65 N CA 53.30 
65 N HA 4.97 
65 N CB 38.28 
65 N HB3 3.02 
65 N HB2 2.80 
65 N CG 178.04 
65 N ND2 111.09 
65 N HD21 7.57 
65 N HD22 6.77 
65 N C 175.89 
66 I N 111.58 
66 I HN 7.76 
66 I CA 60.60 
66 I HA 4.76 
66 I CB 38.50 
66 I HB 2.12 
66 I CG1 26.45 
66 I HG13 1.28 
66 I HG12 0.65 
66 I CG2 16.84 
66 I HG2 0.78 
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66 I CD1 13.64 
66 I HD1 0.63 
66 I C 177.01 
67 G N 113.82 
67 G HN 8.70 
67 G CA 46.86 
67 G HA2 3.79 
67 G HA3 3.85 
67 G C 176.42 
68 C N 119.61 
68 C HN 9.01 
68 C CA 56.26 
68 C HA 4.39 
68 C CB 41.94 
68 C HB3 3.19 
68 C HB2 2.72 
68 C C 173.48 
69 P CA 61.75 
69 P HA 4.78 
69 P CB 32.20 
69 P HB3 2.26 
69 P HB2 2.00 
69 P CG 25.92 
69 P HG3 2.19 
69 P HG2 1.50 
69 P CD 49.95 
69 P HD 3.80 
69 P C 174.35 
70 S N 111.9 
70 S HN 8.26 
70 S CA 58.21 
70 S HA 4.4  
70 S CB 61.63 
70 S HB 3.8 
70 S C 173.14 
71 C N 121.53 
71 C HN 7.69 
71 C CA 53.35 
71 C HA 5.28 
71 C CB 43.24 
71 C HB3 3.03 
71 C HB2 2.94 
71 C C 170.8 
72 C N 117.04 
72 C HN 9.16 
72 C CA 52.06 
72 C HA 5.14 
72 C CB 41.94 
72 C HB3 3.18 
72 C HB2 2.89 
72 C C 172.78 
73 P CA 62.73 
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73 P HA 4.77 
73 P CB 33.40 
73 P HB3 2.73 
73 P HB2 1.84 
73 P CG 28.05 
73 P HG3 2.91 
73 P HG2 2.32 
73 P CD 52.09 
73 P HD3 4.35 
73 P HD2 3.61 
73 P C 176.93 
74 F N 127.47 
74 F HN 9.32 
74 F CA 60.78 
74 F HA 4.21 
74 F CB 38.98 
74 F HB3 3.40 
74 F HB2 3.14 
74 F HD 7.23 
74 F HE 7.37 
74 F HZ 7.32 
74 F C 176.47 
75 E N 114.79 
75 E HN 9.27 
75 E CA 58.51 
75 E HA 3.88 
75 E CB 31.04 
75 E HB3 2.18 
75 E HB2 1.89 
75 E CG 37.13 
75 E HG3 2.39 
75 E HG2 2.33 
75 E CD 177.22 
75 E C 177.43 
76 C N 118.00 
76 C HN 7.43 
76 C CA 51.76 
76 C HA 4.42 
76 C CB 37.14 
76 C HB3 2.91 
76 C HB2 2.33 
76 C C 170.8 
77 S N 113.5 
77 S HN 6.98 
77 S CA 53.66 
77 S HA 4.85  
77 S CB 64.62 
77 S HB3 3.89 
77 S HB2 3.36 
77 S C 176.93 
78 P CA 63.7 
78 P HA 4.53 
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78 P CB 31.4 
78 P HB3 2.28 
78 P HB2 1.99 
78 P CG 26.57 
78 P HG 1.70 
78 P CD 50.34 
78 P HD3 3.80 
78 P HD2 3.71 
78 P C 175.64 
79 D N 117.04 
79 D HN 7.90 
79 D CA 53.06 
79 D HA 4.63 
79 D CB 40.16 
79 D HB3 2.74 
79 D HB2 2.46 
79 D CG 179.85 
79 D C 175.9 
80 N N 122.18 
80 N HN 7.40 
80 N CA 51.57 
80 N HA 4.67 
80 N CB 38.11 
80 N HB 2.78 
80 N ND2 112.06 
80 N HD21 7.56 
80 N HD22 6.93 
80 N C 173.51 
81 P CA 62.9 
81 P HA 4.41 
81 P CB 32.30 
81 P HB3 2.28 
81 P HB2 1.93 
81 P CG 27.03 
81 P HG3 2.04 
81 P HG2 1.98 
81 P CD 50.89 
81 P HD3 3.85 
81 P HD2 3.68 
81 P C 176.67 
82 M N 123.14 
82 M HN 8.40 
82 M CA 55.3 
82 M HA 4.33 
82 M HB3 2.00 
82 M HB2 1.88 
83 F CA 56.28 
83 F HA 4.34 
83 F CB 39.23 
83 F HB3 2.74 
83 F HB2 2.71 
83 F C 176.38 
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85 P CA 62.82 
85 P HA 4.45 
85 P CB 32.1 
85 P HB3 2.27 
85 P HB2 1.95 
85 P CG 24.85 
85 P HG 1.92 
85 P CD 50.27 
85 P HD3 3.80 
85 P HD2 3.70 
85 P C 175.46 
86 S N 115.45 
86 S HN 8.02 
86 S CA 55.28 
86 S HA 4.53 
86 S HB 3.68 
87 P CA 65.00 
87 P HA 4.40 
87 P CB 31.74 
87 P HB3 2.31 
87 P HB2 1.97 
87 P CG 27.26 
87 P HG 2.06 
87 P CD 50.96 
87 P HD 3.67 
87 P C 176.84 
88 D N 115.11 
88 D HN 7.86 
88 D CA 53.88 
88 D HA 4.58 
88 D CB 40.36 
88 D HB3 2.87 
88 D HB2 2.68 
88 D CG 180.56 
88 D C 176.86 
89 G N 108.69 
89 G HN 8.25 
89 G CA 45.06 
89 G HA2 3.66 
89 G HA3 4.26 
89 G C 174.7 
90 S N 118.51 
90 S HN 8.10 
90 S CA 57.67 
90 S HA 4.65 
90 S CB 62.22 
90 S HB 3.87 
92 P CA 63.40 
92 P HA 4.43 
92 P CB 32.18 
92 P HB3 2.23 
92 P HB2 1.91 
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92 P CG 26.86 
92 P HG 1.98 
92 P CD 50.65 
92 P HD 3.69 
92 P C 176.41 
93 N N 121.53 
93 N HN 8.26 
93 N CA 54.01 
93 N HA 4.62 
93 N CB 40.93 
93 N HB 2.72 
93 N CG 176.42 
93 N ND2 112.06 
93 N HD21 7.42 
93 N HD22 6.98 
93 N C 176.73 
94 C N 118.82 
94 C HN 8.32 
94 C CA 54.14 
94 C HA 4.72 
94 C CB 41.02 
94 C HB3 3.26 
94 C HB2 3.00 
94 C C 173.92 
95 S N 118.32 
95 S HN 8.43 
95 S CA 56.26 
95 S HA 4.76 
95 S CB 63.24 
95 S HB3 3.88 
95 S HB2 3.78 
96 P CA 63.58 
96 P HA 4.43 
96 P CB 32.24 
96 P HB3 2.24 
96 P HB2 1.90 
96 P CG 27.06 
96 P CD 50.65 
96 P C 177.06 
97 T N 114.15 
97 T HN 8.18 
97 T CA 62.40 
97 T HA 4.50 
97 T CB 69.28 
97 T HB 4.17 
97 T C 174.27 
98 M N 122.5 
98 M HN 8.27 
98 M CA 55.27 
98 M HA 4.43 
98 M CB 32.98 
98 M HB 1.95 
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98 M CG 31.62 
98 M HG 2.47 
98 M C 174.26 
99 L N 122.18 
99 L HN 7.88 
99 L CA 52.33 
99 L HA 4.76 
99 L CB 41.2 
99 L HB 1.68 
99 L CG 26.35 
99 L HG 1.68 
99 L CD1 23.32 
99 L HD1 1.06 
99 L CD2 25.09 
99 L HD2 0.93 

100 P CA 62.76 
100 P HA 4.41 
100 P CB 32.11 
100 P HB3 2.22 
100 P HB2 1.86 
100 P CG 27.04 
100 P HG 1.98 
100 P CD 50.49 
100 P HD3 3.78 
100 P HD2 3.66 
100 P C 176.00 
101 S N 116.72 
101 S HN 8.35 
101 S CA 55.95 
101 S HA 4.68 
101 S CB 63.93 
101 S HB 3.78 
101 S C 173.42 
102 P CA 62.77 
102 P HA 4.16 
102 P CB 34.14 
102 P HB3 2.36 
102 P HB2 2.08 
102 P CG 24.85 
102 P HG 1.91 
102 P CD 49.47 
102 P HD 3.53 
102 P C 177.18 
103 S N 117.04 
103 S HN 8.34 
103 S CA 58.52 
103 S HA 4.71 
103 S HB3 3.87 
103 S HB2 3.80 
104 P CA 63.55 
104 P HA 4.77 
104 P CB 32.20 
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104 P HB3 2.25 
104 P HB2 1.99 
104 P CG 27.03 
104 P HG 1.95 
104 P CD 50.49 
104 P HD 3.69 
104 P C 176.93 
105 S N 115.43 
105 S HN 8.43 
105 S CA 58.21 
105 S HA 4.43 
105 S CB 63.24 
105 S HB 3.87 
105 S C 174.26 
106 A N 126.03 
106 A HN 8.27 
106 A CA 52.38 
106 A HA 4.16 
106 A CB 19.8 
106 A HB 1.38 
106 A C 173.63 
107 V N 119.28 
107 V HN 8.09 
107 V CA 62.06 
107 V HA 4.10 
107 V CB 32.90 
107 V HB 2.06 
107 V CG1 20.35 
107 V HG1 0.93 
107 V CG2 20.35 
107 V HG2 0.88 
107 V C 176.35 
108 T N 118.96 
108 T HN 8.27 
108 T CA 61.75 
108 T HA 4.33 
108 T CB 69.65 
108 T HB 4.11 
108 T HG2 1.18 
108 T C 174.07 
109 V N 124.42 
109 V HN 8.19 
109 V CA 59.80 
109 V HA 4.43 
109 V HB 2.09 
109 V HG2 0.91 
110 P CA 62.73 
110 P HA 4.42 
110 P CB 33.46 
110 P HB3 2.46 
110 P HB2 2.00 
110 P CG 25.43 
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110 P HG 1.89 
110 P CD 50.34 
110 P HD 3.50 
110 P C 175.45 
111 L N 127.64 
111 L HN 9.35 
111 L CA 55.9 
111 L HA 4.42 
111 L CB 42.27 
111 L HB3 1.78 
111 L HB2 1.65 
111 L CG 26.92 
111 L CD1 24.58 
111 L HD1 1.02 
111 L CD2 23.61 
111 L HD2 0.94 
111 L C 176.95 
112 T N 119.28 
112 T HN 7.64 
112 T CA 62.75 
112 T HA 4.13 
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Appendix B 
 

RESIDUE 3JHNHα  COUPLING in Hz 
Ser 19 4.7 
Asp 23 5.5 
Cys 36 4.3 
Leu 38 4.8 
Lys 40 2.8 
Ser 41 6.0 
Asp 42 5.4 
Ser 43 2.6 
Arg 45 3.3 
Asp 48 3.5 
Cys 49 2.4 
Thr 50 3.9 
Ala 51 5.1 
Val 52 8.7 
Arg 54 5.9 
Asp 56 3.9 
Cys 57 7.4 
Val 59 5.6 
Ile 66 8.2 
Cys 68 1.8 
Cys 71 6.0 
Cys 72 7.2 
Phe 74 2.0 
Glu 75 3.8 
Asp 79 8.1 
Ser 90 4.2 
Asn 93 5.5 
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Appendix C 
 

RESIDUE 3JHNHα  COUPLING in Hz 
Tyr 2 7.7 

Pro 13 4.9 
Pro 15 5.4 
Ser 18 8.7 
Ser 19 4.7 
Gln 20 8.6 
Pro 21 4.8 
Asp 23 5.5 
Ile 28 8.6 
Glu 29 8.1 
Pro 32 5.6 
Asp 34 6.9 
Ala 35 8.2 
Cys 36 4.3 
Leu 38 4.8 
Pro 39 4.9 
Lys 40 2.8 
Ser 41 6.0 
Asp 42 5.4 
Ser 43 2.6 
Arg 45 3.3 
Pro 46 5.6 
Pro 47 5.1 
Asp 48 3.5 
Cys 49 2.4 
Thr 50 3.9 
Ala 51 5.1 
Val 52 8.7 
Gly 53 6.8 
Arg 54 5.9 
Asp 56 3.9 
Cys 57 7.4 
Asn 58 7.5 
Val 59 5.6 
Pro 61 5.7 
Phe 62 8.5 
Pro 63 4.6 
Ile 66 8.2 
Gly 67 7.1 
Cys 68 1.8 
Pro 69 5.6 
Cys 71 6.0 
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Cys 72 7.2 
Pro 73 5.6 
Phe 74 2.0 
Glu 75 3.8 
Pro 78 5.3 
Asp 79 8.1 
Asn 80 5.7 
Thr 84 7.9 
Pro 85 4.8 
Pro 87 4.4 
Asp 88 7.2 
Ser 90 4.2 
Pro 91 5.4 
Pro 92 4.6 
Asn 93 7.4 
Leu 99 7.7 

Pro 100 4.8 
Ser 101 8.5 
Pro 102 4.9 
Ser 103 8.4 
Pro 104 4.4 
Ser 105 8.0 
Pro 110 5.1 
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Appendix D 
 

RESIDUE ATOM RESIDUE ATOM H_Bond  in 
nm 

Cys 71 O Phe 62 HZ 2.0 
Asp 42 O Ser 86 HN 2.0 
Asp 42 O Ser 86 N 3.0 
Asp 34 O Phe 37 HN 2.0 
Asp 34 O Phe 37 N 3.0 
Pro 47 O Cys 49 HN 2.0 
Pro 47 O Cys 49 N 3.0 
Lys 40 O Arg 45 HN 2.0 
Lys 40 O Arg 45 N 3.0 
Pro 96 O Asn 93 HN 2.0 
Pro 96 O Asn 93 N 3.0 
Ile 33 O Phe 37 HN 2.0 
Ile 33 O Phe 37 N 3.0 

Asp 56 O Val 59 HN 2.0 
Asp 56 O Val 59 N 3.0 
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Appendix E 
 

RESIDUE RDC in Hz 
Ser 19 -3.5 
Ser 22 -6.9 
Asp 23 -0.4 
Glu 29 -20.1 
Ile 33 -0.4 

Asp 34 -15.0 
Cys 36 -7.15 
Leu 38 2.0 
Lys 40 2.8 
Ser 41 8.2 
Asp 42 13.79 
Ser 43 3.3 
Ala 44 2.8 
Arg 45 1.0 
Asp 48 -5.6 
Cys 49 12.4 
Thr 50 6.7 
Ala 51 -1.5 
Val 52 10.1 
Gly 53 -6.2 
Arg 54 2.4 
Asp 56 14.2 
Cys 57 1.2 
Asn 58 -3.8 
Val 59 -3.8 
Leu 60 -6 
Asn 65 -2.1 
Ile 66 6.5 
Gly 67 -7.9 
Cys 68 6.7 
Ser 70 10.0 
Cys 71 2.0 
Cys 72 3.9 
Phe 74 4.3 
Glu 75 1.6 
Cys 76 5.6 
Ser 77 -3.4 
Asp 79 7.4 
Met 82 -7.7 
Ser 86 -1.9 
Ser 90 -4.0 
Ser 95 -14.0 
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Met 98 -0.9 
Ser 105 -3.8 
Ala 106 -7.5 
Val 107 -9.3 
Thr 108 -7.0 
Val 109 -7.2 
Leu 111 -8.2 
Thr 112 -3.4 
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