DIFFERENTIAL EXPRESSION OF CYTOSOLIC ACTIVATION FACTORS FOR NADPH OXIDASE IN HL-60 LEUKEMIC CELLS

Roland Seifert1*, Peter Jungblut2 and Günter Schultz1

1Institut für Pharmakologie, Freie Universität Berlin,
2Institut für Humangenetik, Freie Universität Berlin,
Thielallee 69-73, D-1000 Berlin 33, FRG

Received May 19, 1989

Activation of NADPH oxidase in undifferentiated HL-60 leukemic cells and in HL-60 cells differentiated along the myeloid pathway with dibutylryl cyclic AMP (dbcAMP) or dimethyl sulfoxide (Me2SO) was studied. Upon stimulation with a calcium ionophore, a phorbol ester, arachidonic acid or γ-hexachlorocyclohexane, Me2SO-differentiated HL-60 cells generated superoxide (O2−) at higher rates than dbcAMP-differentiated cells. Undifferentiated cells generated O2− only at low rates upon stimulation with the above agents. In cell-free systems, NADPH oxidase activity was reconstituted by combining membranes of undifferentiated or dbcAMP- or Me2SO-differentiated HL-60 cells, cytosol of Me2SO-differentiated cells and arachidonic acid. This basal O2− formation was enhanced several-fold by guanosine 5′-O-(3-thiotriphosphate) (GTP[γS]), a potent activator of guanine nucleotide-binding proteins. In contrast, cytosol of dbcAMP-differentiated cells reconstituted O2− formation only in the presence of GTP[γS], and cytosol of undifferentiated cells was inactive. Submaximally stimulatory amounts of cytosolic protein of Me2SO- and dbcAMP-differentiated cells synergistically stimulated O2− formation in the presence but not in the absence of GTP[γS]. We conclude that differentiations of HL-60 cells with Me2SO and dbcAMP are not equivalent with respect to activation of NADPH oxidase and that two cytosolic activation factors are involved in the regulation of this effector system.

Human neutrophils and HL-60 leukemic cells possess an NADPH oxidase which catalyzes O2− formation and is activated by the chemotactic peptide, fMet-Leu-Phe. Chemotactic peptides activate phospholipases C and A2 via G proteins [1-3], leading to the release of diacylglycerol and arachidonic acid.

* To whom correspondence should be addressed.

ABBREVIATIONS

dbcAMP, dibutylryl cyclic AMP; G protein, guanine nucleotide-binding protein; GTP[γS], guanosine 5′-O-(3-thiotriphosphate); fMet-Leu-Phe, N-formyl-L-methionyl-L-leucyl-L-phenylalanine; Me2SO, dimethyl sulfoxide; NBT, nitroblue tetrazolium; O2−, superoxide anion; PMA, phorbol myristate acetate.

0006-291X/89 $1.50
Copyright © 1989 by Academic Press, Inc.
1109 All rights of reproduction in any form reserved.
Activation of NADPH oxidase by fMet-Leu-Phe has been suggested to involve protein kinase C, calcium mobilization and more direct regulation by G proteins [3]. PMA activates NADPH oxidase via protein kinase C, and activation of \(O_2^- \) formation by the calcium ionophore, A 23187, involves various calcium-dependent processes [3]. Arachidonic acid may activate NADPH oxidase by changing the lipid environment of the enzyme or by stimulating protein kinase C [3,4]. In addition, the insectizide, \(\gamma \)-hexachlorocyclohexane, has been suggested to stimulate \(O_2^- \) formation by activating phospholipase C [5].

In cell-free systems, NADPH oxidase activity is reconstituted by combining membranes and cytosol of neutrophils and fatty acids or SDS [6-17]. Fatty acid-induced \(O_2^- \) formation is enhanced several-fold by the stable GTP analogue, GTP[\(\gamma \)S] [6-11], suggesting the involvement of a G protein in the regulation of NADPH oxidase [18]. Cytosols of neutrophils, macrophages and HL-60 cells differentiated with Me2SO or vitamin D3 contain a cytosolic activation factor for NADPH oxidase [6-17]. In contrast, neutrophil cytosols of patients with an autosomal recessive form of chronic granulomatous disease and cytosols of undifferentiated HL-60 cells are devoid of this factor [8,16,19]. The cytosolic activation factor is different from protein kinase C or a lipoxygenase but its identity is still unknown [7-11,17].

Myeloid differentiation of HL-60 cells is induced by a variety of compounds such as Me2SO and dbcAMP. The differentiation programs induced by these agents are not equivalent with respect to expression of formyl peptide receptors [20,21]. All these findings prompted us to study the differentiation-dependent activation of NADPH oxidase in HL-60 cells. We report here on differential activation of NADPH oxidase in HL-60 cells differentiated with dbcAMP and Me2SO. Evidence is presented that two cytosolic activation factors are involved in the regulation of NADPH oxidase.

MATERIALS AND METHODS

\(\gamma \)-Hexachlorocyclohexane, A 23187 and NBT were obtained from Sigma Chemie (Deisenhofen, FRG). A 23187 (10 mM) and \(\gamma \)-hexachlorocyclohexane (50 mM) were dissolved in Me2SO. Reagents for measurement of \(O_2^- \) generation and cell culture media have been described elsewhere [6-9,22].
HL-60 cells were cultured in suspension culture as described recently [8,9,22]. To induce differentiation, HL-60 cells were seeded at a density of 10^6 cells/ml and were cultured for 48 h with 0.2 mM dbcAMP or for 120 h with 160 mM Me2SO [8,9,20-22]. Cell viability after differentiation was 90-95% as revealed by trypan blue dye exclusion. Undifferentiated HL-60 cells consisted of 89% promyelocytes, 10% myelocytes and 1% myelocytes, 8% of the cells being NBT-positive following stimulation with PMA. DbcAMP-differentiated cells consisted of 2% promyelocytes, 54% myelocytes, 38% metamyelocytes and 6% neutrophils, 84% of the cells being NBT-positive. Me2SO-differentiated cells consisted of 1% promyelocytes, 56% myelocytes, 26% metamyelocytes and 17% neutrophils, 96% of the cells being NBT-positive. HL-60 membranes and cytosol were prepared as described [8]. Protein determination was performed according to Lowry et al. [23], using bovine serum albumin as standard.

NADPH oxidase-catalyzed O_2^- formation was monitored by continuous measurement of ferricytochrome C reduction inhibitable by superoxide dismutase, using a Uvikon 810 dual beam spectrophotometer (Kontron, Eching, FRG) [6-9,22]. Reference cuvettes contained the components listed below plus 50 μg of superoxide dismutase. Reaction mixtures for determination of O_2^- formation in the cell-free system (500 μl) contained 50 μg of membrane protein, various amounts of cytosolic protein, 10 μM FAD, 500 μM NADPH, 100 μM ferricytochrome C, 2 mM MgCl_2, 20 mM KH_2PO_4, 40 mM KCl and 20 mM triethanolamine/HCl, pH 7.0. Reaction mixtures were preincubated for 2 min at 25°C. O_2^- formation was initiated by the addition of arachidonic acid (200 μM). Assay mixtures for measurement of O_2^- formation in intact cells (1 ml) contained 5 x 10^6 HL-60 cells, 100 μM ferricytochrome C and a buffer consisting of (mM) 138 NaCl, 6 KCl, 1 MgCl_2, 1 CaCl_2, 5.5 glucose and 20 Hepes, pH 7.4. Cells were incubated for 3 min at 37°C prior to addition of the stimuli. V_max of O_2^- formation was calculated from the linear parts of absorbance curves.

RESULTS

Activation of NADPH oxidase was studied in intact HL-60 cells. In preliminary experiments, the concentrations of stimuli given in Table 1 were found to be maximally effective to activate O_2^- formation (data not shown). In

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>O_2^- generation (nmol x 10^6 cells^-1 x min^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>none</td>
</tr>
<tr>
<td>PMA (100 ng/ml)</td>
<td>0.5 ± 0.3</td>
</tr>
<tr>
<td>A 23187 (50 μM)</td>
<td>0.7 ± 0.5</td>
</tr>
<tr>
<td>AA (160 μM)</td>
<td>0.6 ± 0.5</td>
</tr>
<tr>
<td>HCCH (500 μM)</td>
<td>0</td>
</tr>
<tr>
<td>fMet-Leu-Phe (1 μM)</td>
<td>1.7 ± 0.4</td>
</tr>
</tbody>
</table>

Arachidonic acid (AA), γ-hexachlorocyclohexane (HCCH). Cells stimulated with fMet-Leu-Phe were pretreated with cytochalasin B (1 μg/ml) for 3 min. Data shown represent the mean ± SD of eight experiments performed with different cell preparations.
Table 2: Differentiation-dependent activation of NADPH oxidase in cell-free systems of HL-60 cells

<table>
<thead>
<tr>
<th>Differentiation-inducing agent</th>
<th>NADPH oxidase activity (nmol x mg⁻¹ x min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>none (GTP[γS] (1 μM))</td>
</tr>
<tr>
<td>none</td>
<td>0.5 ± 0.1 1.1 ± 1.0</td>
</tr>
<tr>
<td>dbcAMP</td>
<td>0.7 ± 0.5 10.5 ± 1.0</td>
</tr>
<tr>
<td>Me₂SO</td>
<td>10.1 ± 1.1 31.5 ± 2.3</td>
</tr>
</tbody>
</table>

Assays contained 50 μg of membrane protein and 125 μg of cytosolic protein. GTP[γS] or solvent (control) was added to assay mixtures 2 min prior to arachidonic acid (200 μM). Data shown represent the mean ± SEM of three experiments performed with one preparation of HL-60 cells. Experiments with three different preparations of HL-60 cells gave similar results.

In the absence of stimuli, HL-60 cells did not generate O₂⁻. Upon exposure to PMA, arachidonic acid, γ-hexachlorocyclohexane or fMet-Leu-Phe plus cytochalasin B, dbcAMP-differentiated cells generated O₂⁻ at rates at least 12-fold higher than those of undifferentiated cells. In Me₂SO-differentiated cells, PMA, A 23187, arachidonic acid and γ-hexachlorocyclohexane induced O₂⁻ generation at rates up to 5-fold higher than those observed in dbcAMP-differentiated cells. In contrast, Me₂SO-differentiated cells generated O₂⁻ at rates half of those of dbcAMP-differentiated cells upon exposure to fMet-Leu-Phe plus cytochalasin B, possibly due to the expression of lower numbers of formyl peptide receptors in the latter cells [21].

Activation of NADPH oxidase was studied in cell-free systems (Table 2). Basal, arachidonic acid-induced O₂⁻ formation in cell-free systems of undifferentiated and dbcAMP-differentiated HL-60 cells was very low in comparison to that of Me₂SO-differentiated cells. GTP[γS] substantially enhanced O₂⁻ formation in cell-free systems of Me₂SO- and dbcAMP-differentiated cells but not in cell-free systems of undifferentiated HL-60 cells. Trypsin-treated cytosols of dbcAMP- and Me₂SO-differentiated cells did not reconstitute NADPH oxidase activity (data not shown), indicating that trypsin-sensitive proteins were involved in reconstitution of O₂⁻ formation. Cross-mixing experiments with membranes of undifferentiated or dbcAMP-differentiated cells and cytosol of
Fig. 1: Differentiation-dependent expression of cytosolic activation factors for NADPH oxidase in HL-60 cells. NADPH oxidase activity was measured in the absence (closed symbols) or presence (open symbols) of GTP[γS] (1 μM) and different amounts of cytosolic protein (0-150 μg of protein/assay). Assays contained 50 μg of membrane protein of undifferentiated HL-60 cells and cytosol of Me2SO-differentiated HL-60 cells (Δ, ▲), cytosol of dbcAMP-differentiated cells (□, ■) or cytosol of undifferentiated cells (○, ●). Data shown represent the mean ± SD of three to five experiments performed with one preparation of HL-60 cells. Experiments with three different preparations of HL-60 cells gave similar results.

Me2SO-differentiated cells revealed that their specific activities amounted to 60-95% of those of Me2SO-differentiated cells (data not shown), indicating that the membrane component of NADPH oxidase was not defective in HL-60 cells.

The above findings suggested that differentiation of HL-60 cells was associated with changes in the activity of cytosolic activation factors for NADPH oxidase. In order to prevent interference with residual membrane-bound cytosolic activation factors, in all further experiments membranes of undifferentiated HL-60 cells were used. Reconstitution of NADPH oxidase activity was studied as a function of the amount of cytosolic protein added (Fig. 1). Cytosol of undifferentiated HL-60 cells did not reconstitute basal and
GTP[γS]-stimulated \(O_2^-\) formation. In contrast, cytosolic protein of Me\(_2\)SO-differentiated cells concentration-dependently reconstituted basal and GTP[γS]-stimulated \(O_2^-\) formation, reaching saturation at a ratio of cytosolic protein to membrane protein of 3. In addition, GTP[γS] shifted the concentration response function to cytosolic protein of Me\(_2\)SO-differentiated cells to the left. Cytosolic protein of dbcAMP-differentiated cells concentration-dependently reconstituted GTP[γS]-stimulated but not basal \(O_2^-\) generation. Reconstitution of GTP[γS]-stimulated \(O_2^-\) formation by cytosol of dbcAMP-differentiated cells required higher amounts of cytosolic protein than the one with cytosolic protein of Me\(_2\)SO-differentiated cells. In addition, the absolute stimulatory effects of GTP[γS] with cytosol of dbcAMP-differentiated were smaller than those with Me\(_2\)SO-differentiated cells.

Cross-mixing experiments with cytosols of HL-60 cells were performed. A three-fold excess of cytosolic protein of undifferentiated cells in relation to cytosolic protein of dbcAMP- or Me\(_2\)SO-differentiated cells did not inhibit \(O_2^-\) formation (data not shown), suggesting that cytosol of undifferentiated cells did not contain inhibitory factors. Cytosolic protein of dbcAMP-differentiated cells did not enhance basal NADPH oxidase activity reconstituted by submaximally and maximally stimulatory amounts of cytosolic protein of Me\(_2\)SO-differentiated cells (Fig. 2). The combination of submaximally stimulatory amounts of cytosolic protein of Me\(_2\)SO-differentiated cells and of dbcAMP-differentiated cells synergistically enhanced GTP[γS]-stimulated \(O_2^-\) formation (see Fig. 2). With cytosolic proteins of Me\(_2\)SO- and dbcAMP-differentiated cells being present at maximally stimulatory amounts, no synergism was observed, indicating that both cytosols acted by a mechanism they had in common.

DISCUSSION

Our results suggest that two cytosolic activation factors are involved in the regulation of \(O_2^-\) formation. The first factor reconstitutes basal, arachidonic acid-induced \(O_2^-\) formation and is present in Me\(_2\)SO-differentiated HL-60 cells but not in dbcAMP-differentiated and undifferentiated cells. Basal,
Fig. 2: Interaction of cytosolic activation factors for NADPH oxidase of dibutyryl cyclic AMP-differentiated HL-60 cells with those of dimethyl sulfoxide-differentiated cells. NADPH oxidase activity was determined in the absence (closed symbols) or presence (open symbols) of GTP[γS] (1 μM) and different amounts of cytosolic protein of dbcAMP-differentiated cells (0-150 μg of protein/assay). Reaction mixtures contained 50 μg of membrane protein of undifferentiated cells and three fixed amounts of cytosolic protein of Me2SO-differentiated cells: 0 μg (○), 20 μg (□, ■), 50 μg (△, ▲), 100 μg (▼, ▼). O2⁻ formation was initiated by the addition of arachidonic acid. Data shown represent the mean ± SD of three to five experiments performed with one preparation of HL-60 cells. Similar results were obtained with three different cell preparations.

arachidonic acid-induced O2⁻ formation is also reconstituted by cytosol of macrophages, neutrophils, HL-60 cells differentiated with vitamin D₃ [6-17,19, 20] and HL-60 cells differentiated with retinoic acid (unpublished results). The second factor mediates G protein regulation of NADPH oxidase in cell-free systems. This factor is present in dbcAMP- and Me2SO-differentiated cells, in neutrophils [6-10] and in HL-60 cells differentiated with vitamin D₃ or retinoic acid (unpublished results) but not in cytosol of undifferentiated HL-60 cells. Each factor per se is sufficient to activate NADPH oxidase in the absence or presence of GTP[γS]. In addition, both factors interact synergistically to reconstitute O2⁻ formation in the presence of GTP[γS]. This interpretation is supported by the finding that the absolute stimulatory effects of
GTP[γS] were substantially greater with cytosol of Me2SO-differentiated cells than with cytosol of dbcAMP-differentiated cells. In addition, lower amounts of cytosolic protein of Me2SO-differentiated cells than of dbcAMP-differentiated cells were required to reconstitute GTP[γS]-stimulated O2− formation. Furthermore, cytosols of dbcAMP- and Me2SO- differentiated HL-60 cells synergistically reconstituted GTP[γS]-stimulated O2− formation.

In contrast to differentiated HL-60 cells, undifferentiated HL-60 cells generated O2− at very low rates upon exposure to PMA, A 23187, arachidonic acid or γ-hexachlorocyclohexane. The mechanisms by which these agents activate NADPH oxidase may involve activation of protein kinase C, calcium mobilization, interaction with the membrane component of NADPH oxidase and stimulation of phospholipase C [3-5]. Undifferentiated cells possess substantial activities of the membrane component of NADPH oxidase, phospholipase C [24] and protein kinase C [25]. In cell-free systems, cytosol of undifferentiated cells did neither reconstitute basal nor GTP[γS]-stimulated enzyme activity. These data suggest that cytosolic activation factors for NADPH oxidase are also involved in the activation of O2− formation in intact HL-60 cells by A 23187, PMA, arachidonic acid and γ-hexachlorocyclohexane. However, dbcAMP-differentiated HL-60 cells possess only the cytosolic activation factor mediating G protein regulation of NADPH oxidase but generate O2− at substantial rates upon stimulation with PMA, γ-hexachlorocyclohexane or arachidonic acid which circumvent activation of G proteins. Therefore, the precise role of cytosolic activation factors in the activation of NADPH oxidase in intact cells remains to be established.

Intact neutrophils of patients with an autosomal recessive form of chronic granulomatous disease do not generate O2− upon stimulation with various stimuli [15,19]. In addition, neutrophil cytosol of these patients fails to reconstitute O2− formation in cell-free systems [19]. Similarly to undifferentiated HL-60 cells, the defect of the cytosolic activation factor in chronic granulomatous disease is not due to the presence of inhibitory components. Intact dbcAMP-differentiated HL-60 cells generated O2− at substantial
rates upon stimulation with various agents but failed to reconstitute basal \(\text{O}_2^- \) formation in cell-free systems. This type of defect in dbcAMP-differentiated HL-60 cells has no known equivalent in pathology of human neutrophils. In conclusion, the analysis of differentiation-dependent activation of NADPH oxidase in HL-60 cells provides a promising approach to analyze the regulation of this effector system.

ACKNOWLEDGMENTS: The authors are grateful to Mrs. E. Glaß and Mrs. A. Schaubitzer for excellent technical assistance and to Mrs. R. Krüger for help in the preparation of the manuscript. This work was supported by grants of the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie to G.S.

REFERENCES