

Histamine H_1 -receptors in HL-60 monocytes are coupled to G_i -proteins and pertussis toxin-insensitive G-proteins and mediate activation of Ca^{2+} influx without concomitant Ca^{2+} mobilization from intracellular stores

Roland Seifert, Lore Grünbaum, Günter Schultz

Institut für Pharmakologie, Universitätsklinikum Rudolf Virchow, Freie Universität Berlin, Thielallee 69/73, D-14195 Berlin, Germany

Received: 23 September 1993/Accepted: 18 December 1993

Abstract. The results of binding studies suggest the presence of histamine H₁-receptors in human monocytes, but it is not known whether these receptors are functionally active. This prompted us to study the effects of histamine (HA) on cytosolic Ca²⁺ concentration ([Ca²⁺]_i) and superoxide anion (O₂) formation in HL-60 cells differentiated towards monocytes with 1a,25-dihydroxycholecalciferol. In HL-60 monocytes, HA increased [Ca²⁺]_i with a half-maximal effect at 8 µM and a maximum at $30-100 \mu M$. Pertussis toxin (PTX) partially inhibited the stimulatory effects of HA on [Ca²⁺]_i. Betahistine, a weak partial H₁-receptor agonist, also increased [Ca²⁺]_i, whereas H₂- and H₃-receptor agonists were ineffective. H_1 - but not H_2 - and H_3 -receptor antagonists inhibited HA-induced rises in $[Ca^{2+}]_i$. HA-induced rises in $[Ca^{2+}]_i$ were desensitized in a homologous manner and were also inhibited by the activator of protein kinase C, 4β -phorbol 12-myristate 13-acetate. Various protein kinase C inhibitors did not interfere with homologous desensitization. The stimulatory effects of HA on [Ca²⁺]_i were completely dependent on the presence of extracellular Ca²⁺ and were inhibited by the blocker of non-selective cation (NSC) channels, $1-\{\beta-[3-(4-methoxyphenyl)propoxyl]-$ 4-methoxyphenethyl}-1 H-imidazole hydrochloride (SK & F 96365). HA was much less effective than the chemotactic peptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), to induce rises in [Ca²⁺]_i. Unlike fMLP, HA did not activate O₂ formation. Our data indicate that HL-60 monocytes possess H₁-receptors coupled to heterotrimeric regulatory guanine nucleotidebinding proteins (G-proteins) of the G_i-family and PTXinsensitive G-proteins which mediate activation of NSC channels without concomitant activation of Ca²⁺ mobilization from intracellular stores, that homologous desensitization of HA-induced Ca²⁺ influx is independent of protein kinase C and that the stimulatory effect of HA on Ca^{2+} influx is too small to result in activation of $O_2^$ formation.

Key words: HL-60 monocytes – Histamine H₁-receptors – G-proteins – Pertussis toxin – Non-selective cation channels – Superoxide anion formation

Introduction

Histamine (HA) is an intercellular signal molecule which exerts its effects through H_1 , H_2 - and H_3 -receptors (Buschauer et al. 1989; Hill 1990). It is well known that human phagocytes, i.e., neutrophils and monocytes, possess H_2 -receptors which mediate activation of adenylyl cyclase with subsequent increase in cAMP (Gespach and Abita 1982; Gespach et al. 1982, 1985). The HA-induced increase in cAMP results in inhibition of formyl peptide-induced superoxide anion (O_2^-) formation and in the induction of differentiation (Seligman et al. 1983; Burde et al. 1989, 1990; Nonaka et al. 1992).

Compared to H₂-receptors, little is known about H₁-receptors in human phagocytes. HL-60 cells differentiated towards neutrophils with dibutyryl cAMP possess H₁-receptors coupled to pertussis toxin (PTX)-sensitive heterotrimeric regulatory guanine nucleotide-binding proteins (G-proteins) of the Gi-family and PTX-insensitive G-proteins (Seifert et al. 1992). Occupation with agonist of H₁-receptors in HL-60 neutrophils results in the activation of phospholipase C with subsequent Ca²⁺ mobilization from intracellular stores and Ca²⁺ influx through non-selective cation (NSC) channels (Seifert et al. 1992). The results of binding studies suggest that human monocytes possess H₁-receptors as well, but it is not known whether these receptors are functionally active (Cameron et al. 1986; Driver et al. 1989). This prompted us to study the effects of HA on $[Ca^{2+}]_i$ and O_2^- formation in HL-60 cells differentiated towards monocytes with $1\alpha,25$ -dihydroxycholecalciferol $(1\alpha,25(OH)_2D_3)$ (Ostrem et al. 1987; Hruska et al. 1988). We show here that HL-60 monocytes possess H₁-receptors coupled to G_i-proteins and PTX-insensitive G-proteins which mediate activation of Ca²⁺ influx.

Materials and methods

Materials. Betahistine, dimaprit, impromidine, arpromidine and (R)α-methylhistamine were gifts from Drs. A. Buschauer and W. Schunack (Institut für Pharmazie, Freie Universität Berlin). Thioperamide was obtained from RBI (Natick, MA, USA). 1α,25(OH)₂D₃ was a gift from Drs. A. Kaiser and U. Fischer (Hoffman-La Roche, Basel, Switzerland). 1-{β-[3-(4-Methoxyphenyl)propoxyl]-4-methoxyphenethyl}-1 H-imidazole hydrochloride (SK&F 96365) was kindly provided by Dr. J.E. Merritt (SmithKline Beecham, Welwyn, Herts., U.K.). 12-(2-Cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5 H-indolo [2,3-a] pyrrolo [3,4-c]carbazole (Gö 6976) and 2-(1 H-indol-3-yl)-3-[1-(3-dimethylaminopropyl)-1 H-indol-3-yl]-maleinimide (Gö 6850) were kindly donated by Dr. C. Schächtele (Gödecke AG, Freiburg/Br., Germany). Fura-2-acetoxymethylester was from Calbiochem (Frankfurt/M., Germany). PTX was from List Biological Laboratories (Campbell, CA, USA). Staurosporine was purchased from Fluka (Buchs, Switzerland), (±)-Chlorpheniramine was from Sigma Chemie (Deisenhofen, Germany). [32P]NAD (800 Ci/mmol) was obtained from Dupont/New England Nuclear (Bad Homburg, Germany). Sources of other materials have been described elsewhere (Rosenthal et al. 1986; Seifert etal. 1989, 1992; Burde et al. 1989, 1990; Wenzel-Seifert and Seifert 1990; Krautwurst et al. 1992).

Cell culture. HL-60 cells were grown in suspension culture in RPMI-1640 medium supplemented with 10% (v/v) horse serum, 1% (v/v) non-essential amino acids, 2 mM L-glutamine, 50 U/ml penicillin and 50 µg/ml streptomycin in a humidified atmosphere with 7% CO₂ at 37 °C. To induce monocytic differentiation, HL-60 cells were seeded at 1×10^6 cells/ml and were cultured for 120 h with 10 nM 1α ,25(OH)₂D₃ (Jungblut and Seifert 1990). In some experiments, PTX (1 µg/ml) or carrier (control) were added to the 1α ,25(OH)₂D₃-treated cells 24 h before experiments or membrane preparation.

Membrane preparation. Membranes from $1\alpha,25(OH)_2D_3$ -differentiated HL-60 cells were prepared as described (Seifert and Schultz 1987).

PTX-catalyzed ADP-ribosylation of HL-60 membranes. PTX-catalyzed ADP-ribosylation of HL-60 membranes was performed as described (Rudolph et al. 1989). Briefly, reaction mixtures contained 100 μg of membrane protein of PTX- or carrier-treated HL-60 monocytes, 2 μg of activated PTX, 0.3% (w/v) Lubrol PX and 1 μM [32 P]NAD (2 μCi/tube) in 25 mM Tris/HCl, pH 7.5. Reactions were conducted for 30 min at 30 °C. Separation of precipitated proteins by SDS PAGE and autoradiography were performed as described (Rosenthal et al. 1986). Bands corresponding to 40/41-kDa proteins were excised from gels, and radioactivity was determined by liquid scintillation counting.

Measurement of cytosolic Ca^{2+} concentration ($[Ca^{2+}]_i$). $[Ca^{2+}]_i$ was determined with the dye, Fura-2-acetoxymethylester, according to the protocol described in detail in Seifert et al. (1992). Briefly, HL-60 monocytes were suspended at 5.0×10⁶ cells/ml in a buffer consisting of (mM) 138 NaCl, 6 KCl, 1 MgSO₄, 1 Na₂HPO₄, 5 NaHCO₃, 5.5 glucose, and 20 HEPES/NaOH, pH 7.4, supplemented with 0.1% (w/v) bovine serum albumin. Cells were incubated for 1 h at 37 °C in the presence of 2 µM Fura-2-acetoxymethylester. Subsequently, cells were diluted with the above buffer to a final concentration of 0.5×10^6 cells/ml and were centrifuged for 10 min at 250×g at room temperature. Cells were suspended at 1.0×10^6 cells/ml in the above buffer and were kept at room temperature until measurement of [Ca²⁺]_i. HL-60 monocytes were used for up to 3 h after dye-loading. Fluorescence of HL-60 monocytes $(1.0 \times 10^6 \text{ cells in 2 ml})$ was determined at 37 °C under constant stirring at 10³ rpm using a Ratio II spectrofluorometer (Aminco, Silver, Spring, MD, USA). The excitation and emission wavelengths were 340 and 500 nm, respectively. Basal $[Ca^{2+}]_i$ in freshly loaded HL-60 monocytes was 107 ± 12 nM (mean \pm SD, n=8). Unless stated otherwise, experiments were performed in the presence of 1 mM CaCl₂.

Assay for O_2^- formation. O_2^- formation was monitored by continuous measurement of ferricytochrome C reduction inhibitable by superoxide dismutase, using an Uvikon 810 dual-beam spectrophotometer (Kon-

tron, Eching, Germany) (Seifert et al. 1989). In brief, reaction mixtures (0.5 ml) contained 2.5×10^6 HL-60 monocytes, 100 μ M ferricytochrome C and a buffer consisting of (mM) 138 NaCl, 6 KCl, 1 MgCl₂, 1 CaCl₂, 5.5 glucose and 20 HEPES/NaOH, pH 7.4. Reactions were conducted at 37 °C. The absolute amounts of O_2^- generated were calculated.

Data reproducibility. Data shown in Fig. 1 and Tables 1 and 2 are the means ±SD of four separate experiments. In Figs. 2-4, representative original tracings are shown. Similar results were obtained in at least three experiments with different preparations of HL-60 cells.

Results

Figure 1 shows the concentration/response curve for the stimulatory effect of HA on $[Ca^{2+}]_i$ in HL-60 monocytes. HA increased $[Ca^{2+}]_i$ with a half-maximal effect at 8 µM and a maximum at 30-100 µM. PTX abolished the stimulatory effect of HA (3 μ M) on [Ca²⁺]_i and diminished those of HA at higher concentrations. The chemotactic peptide, N-formyl-L-methionyl-L-leucyl-Lphenylalanine (fMLP), at a maximally effective concentration $(1 \mu M)$, increased $[Ca^{2+}]_i$ by $923 \pm 64 \text{ nM}$ (mean \pm SD, n = 4). PTX abolished rises in $[Ca^{2+}]_i$ induced by fMLP (1 µM) (data not shown). In order to answer the question how effectively PTX ADP-ribosylated G_i-protein α-subunits in intact HL-60 monocytes, membranes of PTX- and carrier-treated HL-60 monocytes were subjected to an additional PTX-catalyzed ADPribosylation in vitro, using [32P]NAD as substrate. Radioactivity in 40/41-kDa proteins (corresponding to the α-subunits of G_i-proteins) in membranes from PTXtreated and carrier-treated cells amounted to 0 ± 0 and $219 \pm 50 \text{ counts/min (means} \pm \text{SD}, n = 4), \text{ respectively.}$ These data show that PTX had completely ADPribosylated G_i -protein α -subunits in intact cells.

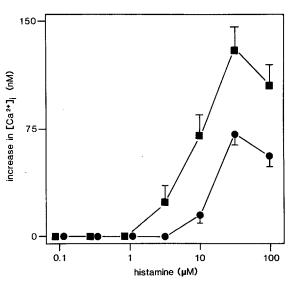


Fig. 1. Concentration/response curves for HA-induced rises in $[CA^{2+}]_i$ in HL-60 monocytes: Effect of PTX. $1\alpha,25(OH)_2D_3$ -differentiated HL-60 cells were treated with PTX (1 µg/ml) or carrier (control) for 24 h. Thereafter, cells were harvested, loaded with Fura-2-acetoxymethylester, and the effects of HA at various concentrations on $[Ca^{2+}]_i$ were assessed. \blacksquare , control cells; \bullet , PTX-treated cells. PTX had no effect on basal $[Ca^{2+}]_i$ in HL-60 monocytes

Table 1. Effects of H_1 -, H_2 - and H_3 -receptor agonists on $[Ca^{2+}]_i$ in HL-60 monocytes

Addition	Increase in [Ca2+] _i (nM)
Histamine (100 μM)	112±13
Betahistine (100 µM)	38 ± 15
Dimaprit (100 µM)	0
Impromidine (100 µM)	0
Apromidine (100 µM)	0
(R) - α -Methylhistamine (100 μ M)	0

HL-60 cells were harvested, loaded with Fura-2-acetoxymethylester, and the effects of various $\rm H_1$ -, $\rm H_2$ - and $\rm H_3$ -receptor agonists on $\rm [Ca^{2+}]_i$ were assessed

The effects of H_1 -, H_2 - and H_3 -receptor agonists on $[Ca^{2+}]_i$ in HL-60 monocytes were studied (Table 1). The weak partial H_1 -receptor agonist, betathistine (100 μ M) (Zingel and Schunack 1993), increased $[Ca^{2+}]_i$ with an effectiveness amounting to 34% of that of HA (100 μ M). By contrast, the H_2 -receptor agonists, dimaprit, impromidine and arpromidine (Buschauer 1989; Buschauer et al. 1989; Hill 1990), and the H_3 -receptor agonist, (R)- α -methylhistamine (Buschauer et al. 1989; Hill 1990) did not induce rises in $[Ca^{2+}]_i$ in HL-60 monocytes.

Table 2 shows the effects of H_1 -, H_2 - and H_3 -receptor antagonists on HA-induced rises in $[Ca^{2+}]_i$ in HL-60 monocytes. The H_1 -receptor antagonists, diphenhydramine, (\pm)-chlorpheniramine and clemastine (10 μ M each) (Buschauer et al. 1989; Hill 1990), inhibited rises in $[Ca^{2+}]_i$ induced by HA (10 μ M). By contrast, the H_2 -receptor antagonists, cimetidine and famotidine (10 μ M each) (Schunack 1987; Buschauer et al. 1989; Hill 1990), and the H_3 -receptor antagonist, thioperamide (10 μ M) (Hill 1990), had no inhibitory effect on HA-induced rises in $[Ca^{2+}]_i$.

Desensitization of HA-induced rises in $[Ca^{2+}]_i$ was studied according to the procedure described by Schwaner et al. (1992), i.e., agonist was re-added to cells 3 min after its first addition. HA (100 μ M) caused a rapid increase in $[Ca^{2+}]_i$ in HL-60 monocytes which returned to basal values within less than 2 min (Fig. 2A). Re-addition of HA (100 μ M or 1 mM) did not result in another rise in $[Ca^{2+}]_i$ (see Fig. 2A). Pretreatment of HL-60

Table 2. Effects of H_1 , H_2 and H_3 -receptor antagonists on HA-induced rises in $[Ca^{2+}]_i$ in HL-60 monocytes

Addition	Increase in [Ca ²⁺] _i (nM)
Solvent (control)	69±12
Diphenhydramine (10 uM)	6 ± 5
(±)-Chlorpheniramine (10 μM)	7 ± 3
Clemastine (10 µM)	9±7
Cimetidine (10 µM)	70 ± 5
Famotidine (10 µM)	75 ± 13
Thioperamide (10 µM)	68 ± 15

HL-60 cells were harvested, loaded with Fura-2-acetoxymethylester, and the effects of HA (10 μ M) on [CA²⁺]_i were assessed in the absence or presence of various H₁-, H₂- or H₃-receptor antagonists. H₁-, H₂- or H₃-receptor antagonists were added to cells 3 min before HA. H₁-, H₂- and H₃-receptor antagonists by themselves had no effect on [Ca²⁺]_i

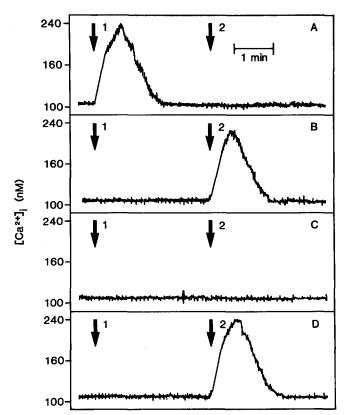


Fig. 2A–D. Desensitization of HA-induced rises in $[Ca^{2+}]_i$ in HL-60 monocytes. HL-60 cells were harvested, loaded with Fura-2-acetoxymethylester, and the effects of HA on $[Ca^{2+}]_i$ under various experimental conditions were assessed. A *I*, addition of HA (100 μ M); 2, addition of HA (100 μ M or 1 mM). B *I*, addition of solvent (control); 2, addition of HA (100 μ M). C *I*, addition of PMA (100 μ M); 2, addition of HA (100 μ M). D *I*, addition of PDD (100 μ M); 2, addition of HA (100 μ M). Original fluorescence tracings are shown

monocytes with the inhibitor of various protein kinases including protein kinase C, staurosporine (1 μ M) (Tamaoki et al. 1986), the inhibitor of Ca²⁺-dependent protein kinase C isoenzymes, Gö 6976 (0.1 and 1 μ M) (Martiny-Baron et al. 1993), or with the inhibitor of Ca²⁺-dependent and Ca²⁺-independent protein kinase C isoenzymes, Gö 6850 (0.1 and 1 μ M) (Martiny-Baron et al. 1993), did not affect the stimulatory effect of HA on [Ca²⁺]_i (first addition of stimulus) and did also not result in appearance of a stimulatory effect of HA on [Ca²⁺]_i (second addition of stimulus) (data not shown).

The activator of protein kinase C, 4β -phorbol 12-myristate 13-acetate (PMA), did not induce a rise in $[Ca^{2+}]_i$ but abolished the stimulatory effect of HA on $[Ca^{2+}]_i$ (see Fig. 2B, C). By contrast, a phorbol ester which does not activate protein kinase C, 4α -phorbol-12,13,-didecanoate (PDD), did not affect HA-induced rises in $[Ca^{2+}]_i$ (see Fig. 2D).

The effects of extracellular Ca^{2+} and of the NSC

The effects of extracellular Ca²⁺ and of the NSC channel blocker, SK&F 96365 (Merritt et al. 1990; Krautwurst et al. 1992), on fMLP- and HA-induced rises in [Ca²⁺]_i in HL-60 monocytes are shown in Fig. 3. The fMLP-induced incrase in [Ca²⁺]_i in the presence of extracellular Ca²⁺ was much greater and more sustained than the one induced by HA. In the absence of extracellu-

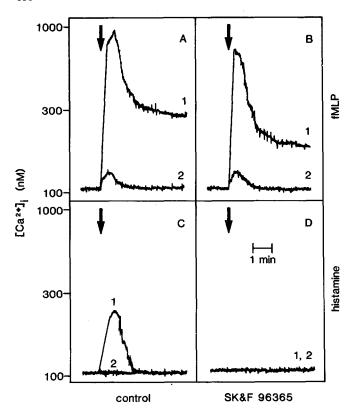


Fig. 3A–D. Effects of extracellular Ca^{2+} and of SK&F 96365 on fMLP- and HA-induced rises in $[Ca^{2+}]_i$ in HL-60 monocytes. HL-60 cells were harvested, loaded with Fura-2-acetoxymethylester, and the effects of fMLP (1 μ M, A, B) and HA (100 μ M, C, D) on $[Ca^{2+}]_i$ were assessed. *Arrows* indicate the addition of stimuli. Three min before the addition of stimuli, solvent (control, A, C) or SK&F 96365 (30 μ M, B, D) were added to cells. Trace *I*, presence of CaCl₂ (1 mM); trace 2, presence of EGTA (1 mM) without added CaCl₂. Superimposed original fluorescence tracings are shown

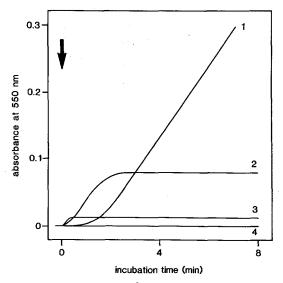


Fig. 4. Time courses of O^{2-} formation in HL-60 monocytes. HL-60 cells were harvested and O_2^- formation was assessed under various experimental conditions. The *arrow* indicates the addition of stimuli. In some experiments, cytochalasin B (1 µg/ml) was added to cells 3 min before the addition of stimuli. Trace *I*, PMA (100 ng/ml); trace 2, fMLP (1 µM) with cytochalasin B; trace 3, fMLP (1 µM) without cytochalasin B; trace 4, HA (100 µM) with or without cytochalasin B

lar Ca^{2+} , fMLP induced only a very small increase in $[Ca^{2+}]_i$. SK&F 96365 (30 μ M) partially inhibited the stimulatory effect of fMLP on $[Ca^{2+}]_i$ in the presence of extracellular Ca^{2+} (39±15% inhibition of peak $[Ca^{2+}]_i$ values, mean±SD, n=5, P<0.05 as assessed by the Wilcoxon test). SK&F 96365 did not inhibit the stimulatory effect of fMLP on $[Ca^{2+}]_i$ in the absence of extracellular Ca^{2+} . The HA-induced rise in $[Ca^{2+}]_i$ was completely dependent on the presence of extracellular Ca^{2+} . SK&F 96365 (30 μ M) abolished the stimulatory effect of HA on $[Ca^{2+}]_i$ in the presence of extracellular Ca^{2+} .

Finally, we studied activation of the O_2^- -forming NADPH oxidase in HL-60 monocytes (Fig. 4). After a lag time of about 1 min, PMA effectively activated O_2^- formation (14.8±1.5 nmol of O_2^- /min/10⁶ cells, mean±SD, n=3). By contrast to PMA, fMLP at a maximally stimulatory concentration (1 μ M) induced only a small and very short-lasting formation of O_2^- (0.12±0.04 nmol of O_2^- /10⁶ cells, mean±SD, n=3). Cytochalasin B potentiated this O_2^- formation several-fold (0.83±0.15 nmol of O_2^- /10⁶ cells, mean±SD, n=3). HA (100 μ M) did not activate O_2^- formation, regardless or whether cytochalasin B was present or not.

Discussion

The results of binding studies suggest that human monocytes possess H₁-receptors (Cameron et al. 1986; Driver et al. 1989). H₁-receptors mediate activation of phospholipase C with subsequent Ca²⁺ mobilization from intracellular stores (Hill 1990). These findings prompted us to study the effects of HA on [Ca²⁺]; and O₂ formation in HL-60 monocytes. HA, in a concentration-dependent manner, increased [Ca²⁺]_i in HL-60 monocytes, and the effects of HA were inhibited by H₁-receptor antagonists but not by H₂- and H₃-receptor antagonists (see Fig. 1, Table 2). In addition, a partial H₁-receptor agonist (betahistine) had a small stimulatory effect on [Ca2+]i, whereas various H2-receptor agonists and an H₃-receptor agonist failed to increase [Ca²⁺]; (see Table 1). These data show that HL-60 monocytes possess functionally active H₁-receptors which mediate increases in $[Ca^{2+}]_i$.

The finding that the cDNAs of H₁-receptors from various species possess several potential phosphorylation sites for protein kinases including protein kinase C (Yamashita et al. 1991; Fujimoto et al. 1993; Horio et al. 1993) prompted us to study desensitization of HA-induced rises in [Ca²⁺]; in HL-60 monocytes. Repeated addition of HA to HL-60 monocytes did not result in another rise in [Ca²⁺]; (see Fig. 2A). These findings show that H₁-receptors in phagocytes undergo homologous desensitization as is the case for formyl peptide receptors (Seifert et al. 1989; Didsbury et al. 1991). Protein kinase C is apparently not involved in homologous desensitization as various protein kinase C inhibitors failed to prevent this process. Thus, by analogy to other G-protein-coupled receptors (Lefkowitz 1993), a specific receptor kinase may mediate homologous desensitization of HA-induced rises in [Ca²⁺]_i in HL-60 monocytes. However, heterologous desensitization (Didsbury et al. 1991) of HA-induced rises in $[Ca^{2+}]_i$ in HL-60 monocytes C may be mediated through protein kinase C. This notion is supported by the finding that the protein kinase C-activating phorbol ester, PMA, inhibited HA-induced rises in $[Ca^{2+}]_i$, whereas an inactive phorbol ester, PDD, was ineffective (see Fig. 2B-D).

The sequence analysis of the cDNAs of H₁-receptors shows that they possess seven putative membrane-spanning domains, i.e., they belong to the superfamily of Gprotein-coupled receptors (Yamashita et al. 1991; Fujimoto et al. 1993; Horio et al. 1993). In order to characterize the G-proteins coupled to H₁-receptors in HL-60 monocytes, the effect of PTX on HA-induced rises in $[Ca^{2+}]_i$ was studied. As is the case for neutrophils, G_{i2} is the most abundant PTX-sensitive G-protein in monocytes (Murphy et al. 1987; Pollock et al. 1990). Under the conditions employed, PTX completley ADP-ribosylated Giprotein α-subunits in intact HL-60 monocytes. PTX abolished rises in [Ca²⁺]_i induced by fMLP at a maximally stimulatory concentration in HL-60 monocytes, indicating that they are fully mediated through Gi-proteins. By comparison, HA-induced rises in [Ca²⁺]_i were only partially inhibited by PTX. Thus, in addition to G_i-proteins, PTX-insensitive G-proteins are involed in the signal transduction pathway activated by HA (see Fig. 1). The identify of the PTX-insensitive G-protein(s) in presently unknown, but a candidate in this regard is G₁₆ which is expressed exclusively in white blood cells (Amatruda et al. 1991). Alternatively, the more widely distributed PTX-insensitive G-proteins, G_{12} and G_{13} , may be involed in the signal transduction pathway (Strathmann and Simon 1991).

Usually, H₁-receptor-mediated rises in [Ca²⁺]_i are due to mobilization of Ca²⁺ from intracellular stores as a consequence of phospholipase C activation (Hill 1990). In addition, agonist-occupied H₁-receptors may cause activation of Ca²⁺ influx from the extracellular space (Hill 1990). In HL-60 monocytes, HA-induced rises in [Ca²⁺]_i are exclusively due to Ca²⁺ influx without concomitant Ca²⁺ mobilization as its stimulatory effects were completely dependent on the presence of extracellular Ca²⁺ (see Fig. 3). By analogy to HL-60 neutrophils, the effects of HA on Ca²⁺ influx in HL-60 moncytes were inhibited by SK & F 96365, indicating that Ca²⁺ influx is mediated through NSC channels (see Fig. 3) (Seifert et al. 1992).

The precise mechanisms by which intercellular signal molecules activate NSC channels in general and in human phagocytes in particular are unknown, but one current hypothesis states that Ca²⁺ mobilization from intracellular stores is a prerequisite for activation of Ca²⁺ influx (Demaurex et al. 1992; Alonso-Torre et al. 1993; Randriamampita and Tsien 1993; Clapham 1993). The data obtained with HA in HL-60 monocytes do not support this hypothesis as Ca²⁺ influx occurred without concomitant Ca²⁺ mobilization (see Fig. 3). In addition, fMLP only very weakly activated Ca²⁺ mobilization in HL-60 monocytes but was quite effective with respect to Ca²⁺ influx (see Fig. 3). Similar to the results obtained with HA in 1α,25(OH)₂D₃-differentiated HL-60 cells,

certain cytokines stimulate Ca2+ influx through NSC channels in human monocytes without activating Ca²⁺ mobilization (see Fig. 3) (Sozzani et al. 1993). Moreover, complement component C3a, unlike complement component C5a, induces only Ca²⁺ influx but not Ca²⁺ mobilization in human neutrophils (Norgauer et al. 1993). Furthermore, complement C5a-induced Ca2+ influx in dibutyryl cAMP-differentiated U937-cells apparently does not depend on prior emptying of intracellular Ca²⁺ stores (Monk and Partridge 1993). Dissociations between receptor agonist-mediated Ca²⁺ mobilization and Ca²⁺ influx were also reported for rat pancreatic acinar cells (Dawra et al. 1993) and rat thyroid cells (Aloj et al. 1993). All these findings support our recent suggestion that NSC channels in human phagocytes are under a more direct control of G-proteins (Krautwurst et al. 1992).

Stimulation of Ca²⁺ influx through NSC channels by receptor agonists in HL-60 neutrophils is involved in the activation of O₂⁻ formation (Krautwurst et al. 1992). By analogy, in HL-60 monocytes, fMLP stimulated Ca²⁺ influx and O₂ formation (see Figs. 3, 4). HA was much less effective than fMLP to stimulate Ca2+ influx and did not activate O₂ formation (see Figs. 3, 4). These data indicate that the HA-induced Ca2+ influx in HL-60 monocytes was too small to result in activation of $O_2^$ formation. Possibly, the HA-induced rises in [Ca²⁺], in HL-60 monocytes play a part in the regulation of gene expression. This assumption is supported by the finding that rises in [Ca²⁺]_i (induced by ionomycin) with similar magnitude and duration as those induced by HA in HL-60 monocytes are sufficent to modulate the expression of various genes in undifferentiated HL-60 cells (Werlen et al. 1993).

There are both similarities and differences in the effects of HA and fMLP in dibutyryl cAMP-differentiated and $1\alpha,25(OH)_2D_3$ -differentiated HL-60 cells. In both cell types, H₁-receptors are coupled to G_i-proteins and PTX-insensitive G-proteins (see Fig. 1) (Seifert et al. 1992). In either cell type, HA-induced rises in $[Ca^{2+}]_i$ are desensitized in homologous and heterologous manners (see Fig. 2) (Seifert et al. 1992; R. Seifert, unpublished results). In addition, HA does not activate O_2^- formation in HL-60 neutrophils and HL-60 monocytes (see Fig. 4) (Seifert et al. 1992). Moreover, the peak $[Ca^{2+}]_i$ values induced by fMLP at maximally effective concentrations in dibutyryl cAMP-differentiated and $1\alpha,25(OH)_2D_3$ -differentiated HL-60 cells are comparable (see Fig. 3) (Wenzel-Seifert and Seifert 1990; Seifert et al. 1992).

With respect to differences, in dibutyryl cAMP-differentiated HL-60 cells, the effectiveness of HA to increase $[Ca^{2+}]_i$ is greater than in HL-60 monocytes, and the duration of the HA-induced rises in $[Ca^{2+}]_i$ in the latter cells is shorter than in the former ones (see Figs. 2, 3) (Seifert et al. 1992). In addition, HA activates both Ca^{2+} mobilization and Ca^{2+} influx in dibutyryl cAMP-differentiated HL-60 cells, whereas in 1α ,25(OH)₂D₃-differentiated HL-60 cells, only Ca^{2+} influx is activated (see Fig. 3) (Seifert et al. 1992). Moreover, in HL-60 monocytes, fMLP increases $[Ca^{2+}]_i$ exclusively through G_i -proteins, whereas in dibutyryl cAMP-differentiated HL-60 cells, fMLP-induced rises in $[Ca^{2+}]_i$ are partially

PTX-insensitive (Wenzel-Seifert and Seifert 1990: Seifert et al. 1992). Furthermore, in HL-60 monocytes, fMLP is a much less effective activator of O₂⁻ formation than in HL-60 neutrophils (see Fig. 4) (Seifert et al. 1989, 1992; Krautwurst et al. 1992). This difference is not due to the lack of a functionally active NADPH oxidase as PMA is an effective activator of O₂ formation in HL-60 monocytes (see Fig. 4). Intriguingly, fMLP-induced Ca²⁺ influx in HL-60 monocytes ceases more rapidly than in HL-60 neutrophils (see Fig. 3) (Seifert et al. 1992; Krautwurst et al. 1992). Thus, the lower effectiveness of fMLP to activate NSC channels in HL-60 monocytes compared to HL-60 neutrophils could account, at least in part, for the differences in effectiveness among these cell types to activate NADPH oxidase. Taken together, the above discussed findings suggest that there are differences in the interaction of H₁-receptors and formyl peptide receptors with G-proteins and/or of G-proteins with effector systems between dibutyryl cAMP-differentiated and $1\alpha,25(OH)_2D_3$ -differentiated HL-60 cells. Interestingly, differences in the interactions for formyl peptide receptors with G_i-proteins have also been observed between dibutyryl cAMP-differentiated and dimethyl sulfoxidedifferentiated HL-60 cells (Tohkin et al. 1991). Dimethyl sulfoxide-differentiated HL-60 cells possess neutrophillike properties as well (Seifert and Schultz 1987; Seifert al. 1989).

In conclusion, HL-60 monocytes posses functional H_1 -receptors coupled to G_i -proteins and yet unknown PTX-insensitive G-proteins. H_1 -receptors mediate activation of NSC channels without concomitant Ca^{2+} mobilization from intracellular stores. The stimulatory effects of HA on NSC channels are too small to result in activation of O_2^- formation but may play a role in the regulation of gene expression.

Acknowledgements. We are most grateful to Mrs. E. Glaß for expert technical assistance. This work was supported by grants of the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- Aloj SM, Liguoro D, Klang JG, Smallridge RC (1993) Purinergic (P₂) receptor-operated calcium entry into rat thyroid cells. Biochem Biophys Res Commun 195:1-7
- Alonso-Torre SR, Alvarez J, Montero M, Sanchez A, Garcia-Sancho J (1993) Control of Ca²⁺ entry into HL60 und U937 human leukemia cells by the filling state of the intracellular Ca²⁺ stores. Biochem J 289:761–766
- Amatruda TT, Steele DA, Slepak VZ, Simon MI (1991) G α 16, a G protein α subunit specifically expressed in hemopoietic cells. Proc Natl Acad Sci USA 88:5587-5591
- Burde R, Seifert R, Buschauer A, Schultz G (1989) Histamine inhibits activation of human neutrophils and HL-60 leukemic cells via H₂-receptors. Naunyn Schmiedebergs Arch Pharmacol 340: 671-678
- Burde R, Buschauer A, Seifert R (1990) Characterization of histamine H₂-receptors in human neutrophils with a series of guanidine analogues of impromidine. Are cell type-specific H₂-receptors involved in the regulation of NADPH oxidase? Naunyn Schmiedebergs Arch Pharmacol 341:455 461
- Buschauer A (1989) Synthesis and in vitro pharmacology of arpromidine and related phenyl(pyridylakyl)guanidines, a potential new class of positive inotropic drugs. J Med Chem 32:1963-1970

- Buschauer A, Schunack W, Arrang J-M, Garbarg M, Schwartz J-C, Young JM (1989) Histamine receptors. In: Williams M, Glennon RA, Timmermans PBMWM (eds) Clinical pharmacology, Vol 13. Receptor pharmacology and function. Dekker, New York, pp 293-348
- Cameron W, Doyle K, Rocklin RE (1986) Histamine type I (H_1) receptor radioligand binding studies on normal T cell subsets, B cells and monocytes. J Immunol 136:2116-2120
- Clapham DE (1993) A mysterious new influx factor? Nature 364:763-764
- Dawra R, Saluja AK, Rünzi M, Steer ML (1993) Inositol trisphosphateindependent agonist-stimulated calcium influx in rat pancreatic acinar cells. J Biol Chem 268:20237-20242
- Demaurex N, Lew DP, Krause K-H (1992) Cyclopiazonic acid depletes intracellular Ca²⁺ stores and activates an influx pathway for divalent cations in HL-60 cells. J Biol Chem 267:2318-2324
- Didsbury JR, Uhing RJ, Tomhave E, Gerard C, Gerard N, Snyderman R (1991) Receptor class desensitization of leukocyte chemoattractant receptors. Proc Natl Acad Sci USA 88:11564-11568
- Driver AG, Kukoly CA, Bennett TE (1989) Expression of histamine H₁ receptors on cultured histiocytic lymphoma cells. Biochem Pharmacol 38:3083-3091
- Fujimoto K, Horio Y, Sugama K, Ito S, Liu YQ, Fukui H (1993) Genomic cloning of the rat histamine H₁ receptor. Biochem Biophys Res Commun 190:294-301
- Gespach C, Abita J-P (1982) Human polymorphonuclear neutrophils. Pharmacological characterization of histamine receptors mediating the elevation of cyclic AMP. Mol Pharmacol 21:78-85
- Gespach C, Saal F, Cost H, Abita J-P (1982) Identification and characterization of surface receptors for histamine in the human promyelocytic leukemia cell line HL-60. Comparison with human peripheral neutrophils. Mol Pharmacol 22:547-553
- Gespach C, Cost H, Abita J-P (1985) Histamine H₂ receptor activity during the differentiation of the human monocytic-like cell line U-937. Comparison with prostaglandins and isoproterenol. FEBS Lett 184:207-213
- Hill SJ (1990) Distribution, properties, and functional characteristics of three classes of histamine receptors. Pharmacol Rev 42:45-83
- Horio Y, Mori Y, Higuchi I, Fujimoto K, Ito S, Fukui H (1993) Molecular coloning of the guinea-pig histamine H₁ receptor gene. J Biochem 114:408-414
- Hruska KA, Bar-Shavit Z, Malone JD, Teitelbaum S (1988) Ca²⁺ priming during vitamin D-induced monocytic differentiation of a human leukemia cell line. J Biol Chem 263:16039–16044
- Jungblut PR, Seifert R (1990) Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells. J Biochem Biophys Meth 21:47-58
- Krautwurst D, Seifert R, Hescheler J, Schultz G (1992) Formyl peptides and ATP stimualte Ca^{2+} and Na^+ inward currents through non-selective cation channels via G-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells. Involvement of Ca^{2+} and Na^+ in the activation of β -glucuronidase release and superoxide production. Biochem J 288:1025–1035
- Lefkowitz RJ (1993) G protein-coupled receptor kinases. Cell 74:409-412
- Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, Marmé D, Schächtele C (1993) Selective inhibition of protein kinase C isozymes by the indolcarbazole Gö 6976. J Biol Chem 268:9194–9197
- Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R, Jaxa-Chamiec A, Leigh BK, McCarthy SA, Moores KE, Rink TJ (1990) SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J 271:515-522
- Monk PN, Partridge LJ (1993) Characterization of a complement-fragment-C5a-stimulated calcium-influx mechanism in U937 monocytic cells. Biochem J 295:679–684
- Murphy PM, Eide B, Goldsmith P, Brann M, Gierschik P, Spiegel A, Malech HL (1987) Detection of $G_{i\alpha}$ in HL60 cells. FEBS Lett 221:81–86
- Nonaka T, Mio M, Doi M, Tasaka K (1992) Histamine-induced differ-

- entiation of HL-60 cells. The role of cAMP and protein kinase A. Biochem Pharmacol 44:1115-1121
- Norgauer J, Dobos G, Kownatzki E, Dahinden C, Burger R, Kupper R, Gierschik P (1993) Complement C3a stimulates Ca²⁺ influx in neutrophils via a pertussis-toxin-sensitive G protein. Eur J Biochem 217:289–294
- Ostrem VK, Tanaka Y, Prahl J, DeLuca HF, Ikekawa N (1987) 24- and 26-homo-1,25-dihydroxyvitamin D₃: Preferential activity in inducing differentiation of human leukemia cells HL-60 in vitro. Proc Natl Acad Sci USA 84:2610-2614
- Pollock K, Creba J, Mitchell F, Milligan G (1990) Stimulus-response coupling in FMLP-stimulated U937 monocytes: Effect of differentiation on G_i2 expression. Biochim Biophys Acta 1051:71–77
- Randriamampita C, Tsien TY (1993) Emptying of intracellular Ca²⁺ stores releases a novel small messenger that stimulates Ca²⁺ influx. Nature 364:809–814
- Rosenthal W, Koesling D, Rudolph U, Kleuss C, Pallast M, Yajima M, Schultz G (1986) Identification of the 35-kDa β-subunit of guanine-nucleotide-binding proteins by an antiserum raised against transducin. Eur J Biochem 158:255–263
- Rudolph U, Koesling D, Hinsch K-D, Seifert R, Bigalke M, Schultz G, Rosenthal W (1989) G-protein α -subunits in cytosolic and membranous fractions of human neutrophils. Mol Cell Endocrinol 63:143-153
- Schunack W (1987) What are the differences between H₂-receptor antagonists? Aliment Pharmacol Therap 1:493S-503S
- Schwaner I, Seifert R, Schultz G (1992) Receptor-mediated increases in cytosolic Ca²⁺ in the human erythroleukemia cell line involve pertussis toxin-sensitive and -insensitive pathways. Biochem J 281: 301 307
- Seligmann BE, Flechter MP, Gallin JI (1983) Histamine modulation of human neutrophil oxidative metabolism, locomotion, degranulation, and membrane potential changes. J Immunol 130:1902–1909
- Seifert R, Schultz G (1987) Reversible activation of NADPH oxidase in membranes of HL-60 leukemic cells. Biochem Biophys Res Commun 146:1296-1302

- Seifert R, Burde R, Schultz G (1989) Activation of NADPH oxidase by purine and pyrimidine nucleotides involves G proteins and is potentiated by chemotactic peptides. Biochem J 259:813-819
- Seifert R, Höer A, Offermanns S, Buschauer A, Schunack W (1992) Histamine increases cytosolic Ca²⁺ in dibutyryl-cAMP-differentiated HL-60 cells via H₁ receptors and is an incomplete secretagogue. Mol Pharmacol 42:227–234
- Sozzani S, Molino M, Locati M, Luini W, Cerletti C, Vecchi A, Mantovani A (1993) Receptor-activated calcium influx in human monocytes exposed to monocyte chemotactic protein-1 and related cytokines. J Immunol 150:1544-1553
- Strathmann MP, Simon MI (1991) Gα12 and Gα13 subunits define a fourth class of G-protein α subunits. Proc Natl Acad Sci USA 88:5582-5586
- Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F (1986) Staurosporine, a potent inhibitor of phospholipid/Ca⁺⁺ dependent protein kinase. Biochem Biophys Res Commun 135: 397-402
- Tohkin M, Morishima N, Iiri T, Takahashi K, Ui M, Katada T (1991) Interaction of guanine-nucleotide-binding regulatory proteins with chemotactic peptide receptors in differentiated human leukemic HL-60 cells. Eur J Biochem 195:527-533
- Wenzel-Seifert K, Seifert R (1990) Nucleotide-, chemotactic peptideand phorbol ester-induced exocytosis in HL-60 leukemic cells. Immunobiology 181:298-316
- Werlen G, Belin D, Conne B, Roche E, Lew DP, Prentki M (1993) Intracellular Ca²⁺ and the regulation of early response gene expression in HL-60 myeloid leukemia cells. J Biol Chem 268:16596–16601
- Yamashita M, Fukui H, Sugama K, Horio Y, Ito S, Mizuguchi H, Wada H (1991) Expression cloning of a cDNA encoding the bovine histamine H₁ receptor. Proc Natl Acad Sci USA 88:11515-11519
- Zingel V, Schunack W (1993) Agonisten des Histamin H₁-Rezeptors: Struktur und Pharmakologie. Pharmazie 48:483-493