Methods II

a)
- Label: Signal (a.u.)
- Diagram: Excitation pulse
- Equations: $\hat{\theta}_z$, B_x, j_x, $\mathbf{x}_{\parallel}[1\bar{1}0]$, S_y
- Oscilloscope: $50\,\Omega$

b)
- Graphs: σ_+, σ_-
- Time (10−7s)

c)
The diagram illustrates the behavior of a 2DEG (Two-Dimensional Electron Gas) under the influence of an external magnetic field B_x and a current j_x. The vectors \hat{e}_z, S_0z, and ω_{Larmor} are also depicted, indicating the orientation and rotation angles. The notation $j_x = 0$ applies to a scenario where there is no current in the x direction, while j_x indicates a current flowing in the x direction.
Intra-band Excitation

\[j_x \propto \omega_L \tau_s \]

\[j_x \sim \omega \tau_s \]

\[j_x = 0 \quad j_x \neq 0 \]

2DEG

\[\hat{e}_z \]

\[S_0, S_y \]

\[\omega_{\text{Larmor}} \]

\[B_x \]

\[j_{SGE} / P (10^{-10} A/W) \]

\[n-\text{InAs QWs, } T = 293 K, \lambda = 148 \mu m \]

\[\text{right circularly polarized light} \]

\[\text{left circularly polarized light} \]

\[B (\text{mT}) \]

\[-800 \quad -400 \quad 0 \quad 400 \quad 800 \]
Intra-band and Inter-band Excitation

\[\frac{j}{P} (10^{-9} \text{ A/W}) \]

\[B_x (\text{mT}) \]

\[T = 296 \text{ K} \]

\[\lambda = 0.777 \mu \text{m} \]

\[\lambda = 148 \mu \text{m} \]
Hanle Effect in Spin-Galvanic Effect

\[j_x \propto S_y = S_{oz} \frac{\omega_L \tau_S}{1 + (\omega_L \tau_S)^2} \]

\[j_x \propto S_y = S_{oz} \frac{\omega_L \tau_S}{1 + (\omega_L \tau_S)^2} \]

- n-GaAs/AlGaAs
- \(\lambda = 148 \mu m \)
- \(\tau_S = 40 \text{ ps} \)
- \(T = 4.2 \text{ K} \)
Magnetic field induced circular photogalvanic effect

\[j_x = -\mu B_x E_0^2 P_{\text{circ}} \propto B_x \sin 2\phi \]

(001)-grown GaAs QW:

\[j_x = 0 \]

\[j_x \]

\[B = \pm 2 \text{T} \]

(001) n-GaAs/AlGaAs

in the case of QW \(\Rightarrow\) Spin-galvanic effect
Inter-subband Excitation

(001)-grown n-GaAs QWs
$T = 296$ K
Removal of space inversion

In noncentrosymmetrical materials space symmetry is absent: $\varepsilon(k) = \varepsilon(-k)$

(Without magnetic field Kramers doublets are present (time symmetry: $\varepsilon(k) = \varepsilon(-k)$)

Bulk A^3B^5 (Noncentrosymmetric) semiconductors: Bulk Inversion Asymmetry

$$\hat{H}_{SO}^D = \hbar \Omega \cdot \sigma / 2.$$

In the coordinate system $x \parallel [100]$, $y \parallel [010]$, $z \parallel [001]$:

$$\Omega \propto [k_x(k_y^2 - k_z^2)x + k_y(k_z^2 - k_x^2)y + k_z(k_x^2 - k_y^2)z$$

(G. Dresselhaus, Phys. Rev. 1955)

k-cubic terms in the effective Hamiltonian
Removal of space inversion in zinc-blende structure based symmetrical QWs

In two dimensional structures $k_z = 0$ (but not the average k_z^2 !!) (Without magnetic field Kramers doublets are present (time symmetry: $\varepsilon(k) = \varepsilon(-k)$)

$$\Omega \propto \left[k_x (k_y^2 - k_z^2) x + k_y (k_z^2 - k_x^2) y + k_z (k_x^2 - k_y^2) z \right]$$

For QWs system grown in $z \parallel [001]$ direction by setting $k_z \to \langle k_z \rangle = 0$ and $k_z^2 \to \langle k_z^2 \rangle \approx (\pi/L_z)^2$:

$$\hat{H}_{SO}^D = \beta (\sigma_x k_x - \sigma_y k_y) .$$

Interface Inversion Asymmetry:
no-common-atom system (InAs/GaSb). IIA vanishes for (110)–grown structures.

$$\text{BIA} + \text{IIA} \rightarrow \text{Dresselhaus term}$$

k-linear terms in the effective Hamiltonian
Removal of space inversion in asymmetrical QWs
(Without magnetic field Kramers doublets are stil present (time symmetry: $\varepsilon (k) = \varepsilon (-k)$)

Structure Inversion Asymmetry
(absence of inversion in the growth direction):
z is non-equal to $-z$

$$\hat{H}_{SO}^R = \alpha [\sigma \times k]_z = \alpha (\sigma_x k_y - \sigma_y k_x).$$

SIA \rightarrow Rashba term

TOTAL:

$$\hat{H}_{SO} = \alpha (\sigma_x k_y - \sigma_y k_x) + \beta (\sigma_x k_x - \sigma_y k_y)$$

In the coordinate system $1 \parallel [\overline{1}0], 2 \parallel [110], z \parallel [001]:$

$$\hat{H}_{SO} = \alpha (\sigma_1 k_2 - \sigma_2 k_1) + \beta (\sigma_1 k_2 + \sigma_2 k_1)$$

k-linear terms in the effective Hamiltonian
2D band structure

$\varepsilon_{kx} \parallel [100]$
$\varepsilon_{ky} \parallel [010]$

$|k_y| = |k_x|$

BIA=0
SIA≠0

BIA≠0
SIA=0

BIA = SIA

BIA ≠ SIA
Experiments on the details of the band structure

\[H = \hbar^2 k^2 / 2m^* + \hat{H}_{SO} \]

Cubic axes: \(x, y\)

\[\hat{H}_{SO} = \alpha(\sigma_x k_y - \sigma_y k_x) + \beta(\sigma_x k_x - \sigma_y k_y) \]

\(\alpha\) - Rashba term

\(\beta\) - Dresselhaus term

\[\alpha \neq \beta \]
Experiments on the details of the band structure

\[\hat{H} = \hbar^2 k^2 / 2m^* + \hat{H}_{SO} \]

Cubic axes: \(x, y \)

\[\hat{H}_{SO} = \alpha (\sigma_x k_y - \sigma_y k_x) + \beta (\sigma_x k_x - \sigma_y k_y) \]

\(\alpha \) - Rashba term

\(\beta \) - Dresselhaus term

Spin-galvanic current:

\[\vec{j}_{SGE} \propto \begin{pmatrix} \beta & -\alpha \\ \alpha & -\beta \end{pmatrix} \hat{S} \]

Direct measurement of the ratio \(\alpha / \beta \)

(\(\alpha \) - Rashba term, \(\beta \) - Dresselhaus term)
Experiments on the details of the band structure

Spin-galvanic current:

\[
\mathbf{j}_{SGE} \propto \begin{pmatrix} \beta & -\alpha \\ \alpha & -\beta \end{pmatrix} \mathbf{S}
\]

\[
j_R/j_D = \frac{\alpha}{\beta}
\]

\[
j(\Theta) = j_D \cos(\Theta + \phi) + j_R \sin(\Theta - \phi)
\]
Experiments on the details of the band structure

Spin-galvanic current: \[j_{SGE} \propto (\beta - \alpha) \vec{S}, \quad j_R/j_D = \alpha / \beta \]

InAs: \[\frac{\alpha}{\beta} = 2.15 \]