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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

 

The fitness of an individual and its maximisation are of central importance for evolutionary 

processes. There are different ways how organisms can increase their fitness and pass on their 

genes to the next generation. This thesis deals with two such aspects that might contribute to the 

fitness of an organism: an association with symbionts and sexual selection in courtship 

pheromones. First, the defensive symbiosis between beewolf digger wasps (Hymenoptera, 

Crabronidae) and Streptomyces bacteria is addressed. Another part of this thesis deals with the 

sex pheromone of male beewolves and how it is influenced by the temperature an individual is 

exposed to during development. In addition to these two fitness relevant traits, a reconstruction of 

the phylogenetic relationships among beewolves and closely related species is presented, that 

provides a basis for understanding the evolution of both the symbiosis and the composition of the 

sex pheromones in beewolves. The present chapter summarizes the current knowledge on 

symbioses and pheromones, in particular their relevance for mate choice, and it ends with an 

overview of the biology of beewolves. 

 

 

1.1 Symbioses 

Symbioses have played an important role in the evolution of life on earth, and examples can be 

found in all kingdoms of microorganisms, plants and animals (Margulis 1999). According to the 

original definition of de Bary (1879), the term “symbiosis” encompasses the living together of 

unlike organisms over significant parts of their live span. This definition includes the whole range of 

biological interactions from mutualistic relationships via commensalism to parasitism, without 

specifying costs and benefits for the partners involved in the association (Douglas 2010). However, 

according to the most common definition of “symbiosis” in the current literature (Douglas 2010), in 

the present thesis the term “symbiosis” is used in its stricter sense, including only mutualistic 

associations. 

 

The variety of symbiotic interactions is characterized by different traits and definitions. Regarding 

the degree of interdependence between the symbiotic partners symbioses are either classified as 

facultative or obligate: Associations with a low dependency on the partner are defined as 

facultative, symbioses with a strong interdependence, meaning that a symbiont cannot survive 

without its partner, are defined as obligate (Douglas 2010; Ishikawa 2003). Concerning the 

location of the symbionts two main types are distinguished. When an organism lives on another, 

this association is called ectosymbiosis (Ahmadjian & Paracer 2000). When the symbiont is located 

inside another organism, this is defined as endosymbiosis (Buchner 1965; Kikuchi 2009). 

Furthermore, endosymbionts can live either extracellularly (e.g. inside the intestinal tract) or 

intracellularly, where they often live in specialized cells (Houk & Griffiths 1980; Ishikawa 2003). 
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Insect-bacteria symbioses 

The mutualistic associations between insects and microorganisms encompass an astonishing 

diversity (Buchner 1921), and the bacterial symbionts might have played a significant role for the 

evolutionary success of insects (Margulis & Fester 1991; Maynard-Smith 1989). About half of all 

insects are estimated to be associated with endosymbiotic bacteria (Buchner 1965; Ishikawa 

2003), and some of these endosymbioses have evolved as early as several hundred million years 

ago (Harris et al. 2010). 

 

The benefits for insect hosts and bacterial symbionts are multifaceted. Insects often provide 

nutrients for their bacterial inhabitants, an ecological niche with stable conditions and the safety of 

being passed on to their progeny (Currie 2001; Douglas 1994; Margulis & Fester 1991). In return, 

bacteria provide benefits for their host insects nutritionally by supplying them with essential 

nutrients, especially for blood-sucking, wood-feeding and phloem-sucking insects and by improving 

the host’s digestive functions (Akman et al. 2002; Dettner 1999; Dillon & Dillon 2004; Douglas 

2006; Gaudermann et al. 2006; Moran & Baumann 2000; Shigenobu et al. 2000; Zientz et al. 

2004). Furthermore, the bacterial symbionts may influence the hosts’ reproduction (Zchori-Fein et 

al. 2004) or confer heat tolerance (Russell & Moran 2006). Additionally, bacterial symbionts are 

known for providing their hosts with substances needed as pheromone components (Dillon et al. 

2000; Dillon et al. 2002; Matsuura 2003). Finally, bacteria are known to support the host’s defence 

against parasitoids (Oliver et al. 2003) and pathogens (Currie et al. 1999; Dillon et al. 2005; Hu & 

Webster 2000; Kaltenpoth et al. 2005; Piel 2004; Scarborough et al. 2005; Takatsuka & Kunimi 

2000). 

 

 

Defensive insect-bacteria symbioses 

The role of defensive characteristics in symbiotic associations between insects and bacteria has 

recently attracted increased scientific interest (e.g. Brownlie & Johnson 2009; Crotti et al. 2010; 

Ferrari & Vavre 2011; Kaltenpoth 2009; Oliver & Moran 2009). Symbiotic gut bacteria e.g. are 

known to improve the host’s defence against pathogenic attacks in numerous insect species either 

by efficiently exploiting limiting nutrients and thereby outcompeting pathogens (Dillon & Dillon 

2004; Godfray et al. 1999) or by releasing antimicrobial substances (Currie et al. 1999; Dillon & 

Charnley 1995; Poulsen et al. 2011; Takatsuka & Kunimi 2000). Wolbachia bacteria reduce the 

susceptibility of Drosophila melanogaster against RNA-viruses (Hedges et al. 2008; Teixeira et al. 

2008). Members of the beetle genus Paederus harbour endosymbiotic Pseudomonas bacteria which 

produce the anti-predator toxin pederin (Kellner 2002; Piel 2002). Aphids do not only live in a 

nutritional symbiosis with Buchnera bacteria (Douglas 1998), they also show several fascinating 

defensive associations with vertically (and horizontally) transmitted secondary symbionts, which 

e.g. improve the aphids’ resistance against hymenopteran parasitoids (partly by the involvement of 

a bacteriophage) or provide protection against fungi (Ferrari et al. 2004; Moran et al. 2005; Oliver 

et al. 2010; Oliver & Moran 2009; Oliver et al. 2006; Oliver et al. 2003; Scarborough et al. 2005). 
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Actinobacteria seem to be predisposed for defensive associations because of their potential to 

produce diverse antibiotic substances. Surprisingly, there are only few examples for defensive 

symbioses between insects and members of this clade of bacteria. Two of them concern fungus-

farming insects: The symbiosis between pine beetles and Streptomyces bacteria and the 

association of attine ants and symbiotic actinobacteria of different genera. Southern pine beetles 

(Dendroctonus frontalis; Coleoptera, Curculionidae) excavate galleries between the inner bark and 

the phloem of pine trees. These galleries are inoculated with their symbiotic fungus, providing food 

for the larvae. The growth of this fungus and thus the development of the larvae are endangered 

by antagonistic fungi. Streptomyces symbionts may protect the beetles’ symbiotic fungus against 

these competitors by producing an antifungal molecule termed mycangimycin (Scott et al. 2008). A 

similar defensive symbiosis with diverse genera of bacterial symbionts contained in oral secretions 

has also been described for another Dendroctonus species (Cardoza et al. 2006). 

 

The symbiotic association between leaf-cutter ants (Hymenoptera, Formicidae) and bacteria has 

recently received considerable attention. More than 200 species of attine ants are known for 

cultivating and harvesting fungus gardens on plant material in their subterranean nests, serving as 

food for larvae and adult ants. The ants live in an obligate symbiosis with their specific fungus from 

the family Lepiotaceae, and the association evolved about 50 million years ago (Mueller 2005; 

Mueller et al. 1998; Mueller et al. 2001). Despite intense maintenance and hygienic behaviour, the 

ants’ fungus gardens are endangered by the parasitic fungus Escovopsis (Currie 2001). As defence 

against the fungal threat, the ants are associated with symbiotic bacteria that belong to the genera 

Pseudonocardia, Streptomyces and, possibly, Amycolatopsis. Several of these actinobacteria have 

been shown to produce antiobiotics in vitro (Barke et al. 2010; Currie et al. 1999; Haeder et al. 

2009; Oh et al. 2009a; Schoenian et al. 2011; Sen et al. 2009), and in one case the presence of 

antibiotics has been demonstrated in vivo by mass-spectrometric imaging (Schoenian et al. 2011). 

Some of the bacteria are cultivated on the ants’ cuticle (Currie et al. 1999), and their antibiotics 

have been shown to inhibit the growth of Escovopsis but do not affect the symbiotic fungus (Cafaro 

et al. 2011; Currie et al. 1999; Haeder et al. 2009; Oh et al. 2009a). 

 

 

 

1.2 Sexual selection, pheromones and temperature 

 

Sexual selection and mate choice 

When Charles Darwin (1859) published his theory of evolution by means of natural selection he 

already encountered the evolution of ostentatious male traits like colorful ornaments, bird song 

and weaponry. These conspicuous features in behaviour and outer appearance are expected to 

reduce the males’ chance of survival rather than enhance it, and thus should be eliminated by 

natural selection (Andersson 1994). Darwin explains his paradoxical findings by proposing ‘sexual 

selection’ as an additional selective force besides natural selection (Darwin 1859, 1871). Thus, 
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sexual selection “depends on the advantage which certain individuals have over others of the same 

sex and species solely in respect of reproduction” and “not on a struggle for existence, but on a 

struggle […] for possession of the females; the results is not death to the unsuccessful competitior, 

but few or no offspring” (Darwin 1859). 

 

Sexual selection results from a basal conflict between the sexes concerning reproduction (Darwin 

1871; Thornhill & Alcock 1983): Generally, females are limited by resources like nesting sites or 

food, have low reproduction rates and produce only few and costly germ cells. In contrast, 

reproductive success in males is mainly limited by the number of available mating partners; they 

have high reproduction rates and produce countless small sperm cells (Trivers 1972). Additionally, 

males - in contrast to females - often do not invest any resources in rearing the offspring. These 

asymmetric costs of reproduction in the sexes lead to a conflict of interests: Males can usually 

increase their fitness by maximizing the number of matings (Andersson 1994; Trivers 1972), but 

females should be choosy and select the most suitable genitor for their few and costly offspring 

(Gould & Gould 1997; Trivers 1972).  

 

These circumstances lead to a rivalry between males for the access to females and to an evolution 

of traits which increase the males’ mating success, e.g. signals for attracting females and 

enhancing their willingness for mating (Halliday 1980). Hence, males have evolved numerous 

advertisement signals that might also contain information on mate quality and species affiliation, 

thus providing a basis for an adaptive female mate choice (Droney & Hock 1998; Jones & Hamilton 

1998; López et al. 2003). These signals are often costly and thus constitute a sort of “handicap”, 

thereby representing a good indicator for the male’s fitness, because only a superior, healthy male 

is able to develop and maintain such costly signals (Ahtiainen et al. 2005; McGraw et al. 2002; 

Rantala et al. 2002; Rantala & Kortet 2004; Zahavi 1975). When females choose a male of high 

quality as mating partner on the basis of an honest signal, they can either benefit directly from this 

choice, e.g. by male nuptial gifts or reduced risk of infection (Engqvist & Sauer 2003; Sakaluk 

2000; Stalhandske 2002), or they gain indirect benefits, when the offspring quality depends on the 

mate’s genetic background. Different theories have been proposed to explain the evolution of 

female mate choice (Krebs & Davies 1993): Well known is the “good-genes” model, which predicts 

the existence of some males in a population with an especially high-quality genetic background, 

which constitute the best choice for all females (Andersson 1994; Hine et al. 2002; Møller & Alatalo 

1999). By contrast, the model of the “best compatibility/complementary” predicts that each female 

has an individual male as optimal mating partner (Colegrave et al. 2002; Halliday 1983; Neff & 

Pitcher 2005; Reinhold 2002), thus there is no single best male. 

 

Female mate choice decisions may be based on a variety of morphological, physiological, or 

immunological traits (e.g. size, age or immunocompetence) of the mating partner (Adamo & 

Spiteri 2005; Hasegawa et al. 2011; López et al. 2003). Beyond that, the degree of kinship 

between male and female also can play an important role for mate choice (Charlesworth & 

Charlesworth 1987; Charpentier et al. 2005; Keller & Waller 2002; Lihoreau & Rivault 2010). Many 
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studies demonstrate that individuals of different taxa are able to recognize kin and thus can avoid 

inbreeding (Ehman & Scott 2001; Garner & Schmidt 2003). Especially in aculeate Hymenoptera, 

kin discrimination is of great importance due to their sex determination system, the single-locus 

complementary sex-determination (sl-CSD) (Beye et al. 2003; Cook 1993). Usually, unfertilized, 

haploid eggs develop into males, and fertilized, diploid eggs become females. If diploid eggs are 

homozygous at the sex-determination locus, however, they develop into diploid males that are 

mostly effectively sterile (Cook 1993; Cook & Crozier 1995). Because the probability of 

homozygosity at this locus dramatically increases in cases of matings among close relatives, the 

fitness costs of inbreeding are paticularly high in species with sl-CSD. Hence, selection should 

favour females avoiding to mate with close kin. 

 

 

Pheromones and mate choice 

To avoid cheating in species with female choice, the males’ advertising signals have to be costly, 

resulting in a correlation between male quality and signal development (Zahavi 1975). Numerous 

studies have focused on mate choice decisions on the basis of acoustic and visual signals 

(Andersson 1994; Klappert & Reinhold 2003; Møller & Alatalo 1999). By contrast, the role of 

chemical signals in mate choice has attracted relatively little attention (Ali & Tallamy 2010; Brodt 

et al. 2006; Droney & Hock 1998; Eisner & Meinwald 1995; Kortet & Hedrick 2005; Sappington & 

Taylor 1990a, 1990b; Vainikka et al. 2006). This might be due to the fact that the human sense of 

olfaction is less developed in comparison with insects (Angioy et al. 2003; Kaissling 1971), and 

that olfactory signals are less accessible and require sophisticated chemical-analytical equipment 

for adequate analysis. Due to their complexity and high variability in quantity and quality, 

however, chemical signals often communicate a wealth of information that can be used by 

receivers for an adaptive mate choice (Ayasse et al. 2001; Hölldobler 1995). 

 

Pheromones are chemical signals produced by an organism that can elicit behavioural or 

physiological responses in conspecifics (Karlson & Luescher 1959). In insects, pheromones are the 

predominant modality of communication. Although most insect sex pheromones are released by 

females (Alexander et al. 1997), the existence of male pheromones has been shown for several 

taxa (Jutsum & Gordon 1989; Landolt & Phillips 1997; Shelly & Whittier 1997). Some studies could 

show that male pheromones can reveal mate qualities to females (Droney & Hock 1998; Moore 

1997; Thornhill 1992) and that females choose adaptively on the basis of the male pheromones 

(Hine et al. 2002; Jones & Hamilton 1998; Jones et al. 1998). 
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Temperature and pheromones 

For many biological processes, temperature is the most important environmental factor. It directly 

affects the kinetics of biochemical reactions (Johnston & Wilson 2006) and is known to play a role 

for a variety of morphological, physiological, and life-history traits, e.g. development time (Ratte 

1984), size (Atkinson 1994; Blanckenhorn 1997) or fecundity (Nabeta et al. 2005).  

 

The impact of temperature on the quantity and quality of pheromones has up to now received little 

attention. The studies in this field mainly focus on the effect of ambient temperature in adult 

Lepidoptera (with predominantly female pheromones) and changes in amount or composition are 

ascribed to the immediate influence of temperature on biochemical pathways (Ono 1993; Raina 

2003). Even less is known about the impact of temperature during early larval development on the 

pheromone of imagos (Ono 1993). In theory, environmental conditions should affect the 

composition of sex pheromones only to a limited degree, because the signal would otherwise loose 

important basic information like species affiliation and could not be recognized by potential mating 

partners any more. Thus, a certain level of developmental stability can be expected (Møller & 

Swaddle 1997; Paterson 1985). Nonetheless, environmental conditions during larval development 

may affect pheromone composition and/or amount and, thus, reveal important information for 

potential mating partners relevant for mate choice decisions. 

 

In summary, the relevance of male sex pheromones for female mate choice decisions in insects is 

still largely unknown, despite their importance for mate attraction and their potential as honest 

indicators of male qualities. Beyond that, the factors shaping these chemical signals have hitherto 

received little attention, and especially the effects of environmental conditions during larval 

development on the composition of the adult pheromone are still virtually unknown. 

 

 

 

1.3 The genus Philanthus 

The solitary digger wasp genus Philanthus (Hymenoptera, Crabronidae) is a member of the 

subfamily Philanthinae, one of the largest groups in the family Crabronidae. In the past decades, 

several studies have revealed astonishing behavioural and physiological features of this genus with 

regard to resource allocation, interaction with parasites, mate attraction, chemical communication 

and the defence against pathogenic microorganisms.  

 

 

Geographical distribution and systematic background of Philanthus 

The genus Philanthus (Hymenoptera, Crabronidae) currently comprises 137 described species that 

are distributed almost over the whole world with the exception of Australia, South America and the 

Antarctic. The largest number of species (∼70%) occurs in Africa and Eurasia (Pulawski 2010). 

Despite the high diversity of about 50 species on the African continent, they have unfortunately 

received little attention from entomologists (Pulawski 2010). By contrast, the 34 New World 
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Philanthus species have been studied much more extensively, and especially the studies of Evans 

and O’Neill have advanced our knowledge on the biology of this genus (e.g. Evans 1964; Evans & 

O'Neill 1988, 1991; O'Neill 1983; O'Neill & Evans 1983). However, most studies have undoubtedly 

been published on the European beewolf, P. triangulum (e.g. Herzner et al. 2007; Herzner et al. 

2005; Kaltenpoth et al. 2005; Kroiss et al. 2006; Schmitt et al. 2003; Strohm 2000; Strohm et al. 

2008; Strohm & Linsenmair 1995, 1997, 1998). This species has a wide distribution, reaching from 

Scandinavia to South Africa and from Portugal to the Near and Middle East (Blösch 2000; Bohart & 

Menke 1976; Ebrahimi 2005; Pulawski 2010). Together with the genera Philanthinus and 

Trachypus, Philanthus represents the tribe Philanthini, building the sister group to the clade 

consisting of the Cercerini and Aphilanthopini. Eight genera are included in the three tribes, which 

altogether constitute the subfamily Philanthinae (Alexander 1992). 

 

 

Male behaviour 

Male Philanthus defend small territories which are mostly located in the vicinity of female nest 

aggregations (Kroiss et al. 2010; Simon-Thomas & Poorter 1972, Figure 1). These areas do not 

contain any resources that might be relevant for females and are defended against conspecific 

males (Evans & O'Neill 1988; Strohm 1995). With a clypeal brush the male applies a cephalic gland 

secretion on plant materials within its territory (Evans & O'Neill 1988, Figure 2). Very probably this 

secretion is produced in a mandibular gland (McDaniel et al. 1992; O'Neill & Evans 1983; Schmidt 

et al. 1990; Schmidt et al. 1985), and there is strong evidence that it functions as sex pheromone 

to attract receptive females for mating (Evans & O'Neill 1988, 1991; Schmitt et al. 2003; Simon-

Thomas & Poorter 1972; Strohm 1995; Strohm & Lechner 2000). Chemical analyses of the 

pheromone composition in P. triangulum revealed a complex blend with (Z)-11-eicosen-1-ol as the 

main compound (Kroiss et al. 2006; Schmidt et al. 1985; Schmitt et al. 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Figure 1. Male beewolf watching over its territory 
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The pheromone of male P. triangulum possibly conveys a wealth of information about male 

qualities to the female: Herzner et al. (2006) showed that the male pheromone reflects 

relatedness, finding that the pheromone blends of brothers were more similar than those of non-

related individuals. The study of Kaltenpoth et al. (2007) revealed that the pheromone also mirrors 

population affiliation and geographical distances. Additionally, the pheromone composition contains 

information on the male’s age, and Kaltenpoth & Strohm (2006) hypothesized that physiological 

constraints could explain the reduction in costly substances in the pheromones of older males. All 

these studies show that the males’ pheromone has the potential to provide a useful basis for 

females to choose the optimal mating partner (Herzner et al. 2006; Kaltenpoth et al. 2007; 

Kaltenpoth & Strohm 2006), especially with regard to the lek mating system in Philanthus where 

females visit male clusters for mating (Höglund & Alatalo 1995; Kroiss et al. 2010), and the 

associated multitude of males among which females can choose when searching for a mating 

partner (Evans & O'Neill 1988; Kroiss et al. 2010; Simon-Thomas & Poorter 1972). 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 2. Male beewolf scent-marking its territory 
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Female behaviour 

Philanthus females establish subterranean nests by digging nest burrows in sandy soil. They hunt 

bees or other Hymenoptera and paralyze the prey by stinging it into the thorax (Evans & O'Neill 

1988; Strohm 1995, Figure 3). Then, the prey is carried into the female’s nest in flight (Olberg 

1953). One or several paralyzed prey items are consecutively brought to the nest, and a brood cell 

is provisioned with the prey (Strohm 1995). Subsequently, the female lays an egg on one of the 

prey items and closes the brood cell. After hatching, the Philanthus larva feeds on the paralyzed 

prey and subsequently starts spinning a cocoon which is attached to one narrow side of the 

elliptical brood cell (Strohm 1995; Strohm & Linsenmair 1995). The imago either ecloses later in 

the same year after the completion of the holometabolous development, or the larva overwinters in 

the cocoon and hatches in the following summer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 3. Female European beewolf paralyzing a honey bee 

 

Due to warm and humid conditions in the subterranean brood cells, the prey items and the 

Philanthus offspring are threatened by fungus infestation. Several lines of defence have evolved in 

this genus to maximize the offspring’s survival during its subterranean development period: It was 

shown that female Philanthus triangulum preserve their prey items by embalming them with a 

secretion from a postpharyngeal gland (Herzner et al. 2007; Herzner & Strohm 2007). This 

treatment reduces the risk of fungal infestation of the prey items due to a physical effect: The 

embalming procedure results in a hydrophobic layer on the surface of the prey items. This 

treatment prevents water condensation and thus constrains spore germination (Herzner & Strohm 

2007). The next line of defence is produced by the egg: It has been shown to significantly delay 

the growth of fungi in the brood cell (Strohm 1995) by releasing the gas nitric oxide with its strong 

antimicrobial effects (Engl 2011).  
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During the long-lasting phase of hibernation in the cocoon, the beewolf larva is protected by a 

highly specialized association with symbiotic bacteria. Adult females harbour and grow these 

endosymbionts that belong to the genus Streptomyces in specialized antennal glands (Goettler et 

al. 2007; Kaltenpoth et al. 2005). Before a female oviposits it applies a white secretion from the 

antennal glands containing the symbiotic bacteria to the ceiling of the brood cell (Kaltenpoth et al. 

2005; Strohm 1995; Strohm & Linsenmair 1995). When the larva starts spinning the cocoon, it 

locates this secretion, takes it up and incorporates the symbionts into the silk threads of the 

cocoon wall (Kaltenpoth et al. 2005; Strohm & Linsenmair 1995). Kaltenpoth et al. (2005) 

demonstrated that the absence of the symbionts dramatically reduces the survival probability of 

the larvae in P. triangulum by preventing fungal infestation. This is mediated by the production of 

at least nine different antibiotics on the beewolf cocoon, which provide protection against a broad 

range of potential fungal pathogens (Kroiss et al. 2010)  

 

 

 

 

1.4 Outline of the thesis 

 

Symbiosis between beewolves and Streptomyces bacteria 

Chapters 2-3 deal with the unique symbiotic alliance between beewolves of the digger wasp tribe 

Philanthini (Hymenoptera, Crabronidae, including the genera Philanthus, Trachypus and 

Philanthinus) and Streptomyces bacteria:  

 

In chapter 2, the presence of symbiotic Streptomyces bacteria is described for 28 different 

Philanthus species and subspecies. Based on genetic, ultrastructural and morphological data the 

new monophyletic taxon ‘Candidatus Streptomyces philanthi’ is proposed for the bacterial 

symbionts.  

 

In Chapter 3, we reconstructed the phylogenetic relationships among the genera of the subfamily 

Philanthinae to date the origin of the beewolf-Streptomyces symbiosis and to enable future 

investigations on coevolutionary processes in this association. We compiled and analyzed a large 

data set including about 5 kb of sequence data based on six molecular markers. We dated the 

origin of the symbiosis by using a molecular clock approach considering the relevant Philanthinae 

fossil record. Beyond that, we investigated the relationships within the genus Philanthus, because 

up to now no systematic analyses had been conducted within the subfamily Philanthinae. The 

resulting species groups were compared to the current morphological classification, and the 

relation of the genus Philanthus to its sister genus Trachypus, whose systematic position had not 

yet been fully understood, is addressed.  
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Male sex pheromone and temperature during development 

Several studies had already demonstrated the variability of the pheromone in European beewolf 

males: The pheromone blend is known to be shaped by a variety of influencing factors, i.e. 

relatedness (Herzner et al. 2006), age (Kaltenpoth & Strohm 2006), and geographical distance 

(Kaltenpoth et al. 2007). Thus, the male pheromone contains information on the male’s 

characteristics and hence might play an important role for female mate choice decisions. Because 

little is known about the influence of environmental conditions during larval development on the 

adult pheromone, we investigated the impact of different rearing temperatures on the composition 

and amount of the sex pheromone of adult male P. triangulum (Chapter 4). We also discuss the 

relevance of the results with regard to female mate choice decisions. 
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2.1 Summary 

Symbiotic interactions with bacteria are essential for the survival and reproduction of many insects. 

The European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae) engages in a highly 

specific association with bacteria of the genus Streptomyces that appears to protect the beewolf 

offspring against infection by pathogens. Using transmission and scanning electron microscopy, the 

bacteria were located in the antennal glands of female wasps, where they form dense cell clusters. 

Using genetic methods, closely related streptomycetes were found in the antennae of 27 Philanthus 

species (including two subspecies of P. triangulum from distant localities). In contrast, no 

endosymbionts could be detected in the antennae of other genera within the subfamily 

Philanthinae (Aphilanthops, Clypeadon and Cerceris). On the basis of morphological, genetic and 

ecological data, the new taxon ‘Candidatus Streptomyces philanthi’ is proposed. 16S rRNA gene 

sequence data are provided for 28 ecotypes of ‘Candidatus Streptomyces philanthi’ that reside in 

different host species and subspecies of the genus Philanthus. Primers for the selective 

amplification of ‘Candidatus Streptomyces philanthi’ and an oligonucleotide probe for specific 

detection by fluorescence in situ hybridization (FISH) are described.  

 
2.2 Introduction 

Many insects have evolved associations with endosymbiotic bacteria that are essential for 

reproduction or survival of the host (Moran & Baumann 1994). Most of these bacteria are 

intracellular symbionts in specialist feeders, e.g. phloem-feeding, blood-sucking, or wood-feeding 

insects (Baumann & Moran 1997; Priest & Dewar 2000). Since the diets of these insects lack 

essential nutrients, they depend on bacteria that are able to synthesize the necessary compounds 

(Douglas 1998; Bourtzis & Miller 2003). In many cases, symbiotic bacteria are transmitted 

vertically from one generation to the next, resulting in coevolution and cospeciation of hosts and 
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symbionts which is reflected in congruent phylogenies (Moran et al. 1993; Bandi et al. 1995; 

Baumann et al. 1997; Chen et al. 1999; Sauer et al. 2000; Lo et al. 2003).  

 

The European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae) engages in a unique 

and highly specific symbiosis with bacteria of the genus Streptomyces (Kaltenpoth et al. 2005). 

Female beewolves construct nest burrows in sandy soil, hunt honeybees (Apis mellifera), paralyze 

them by stinging and provision one to five honeybees as larval food in each brood cell (Strohm 

1995; Strohm and Linsenmair 1995). After feeding on the provisioned prey, larvae spin a cocoon in 

which they usually overwinter and emerge the following summer (Strohm & Linsenmair 1995). 

Since the conditions in the brood cells are humid and warm, there is a continuous threat that the 

female's investment could be destroyed due to fungal or bacterial infection of the provisions or the 

immature wasp (Strohm &Linsenmair 2001). Recent studies have shown that symbiotic bacteria 

protect beewolf offspring against fungal infection at the cocoon stage (Kaltenpoth et al. 2005).  

 

The symbionts are cultivated in specialized antennal glands of the beewolf female and are secreted 

into the brood cell prior to oviposition (Strohm &Linsenmair 1995; Kaltenpoth et al. 2005). Later, 

they are taken up by the larva and applied to the outside of the cocoon, where they seem to serve 

as a protection against fungal infection, presumably by producing antifungal secondary metabolites 

(Kaltenpoth et al. 2005). A second function of the secretion is to direct the cocoon-spinning of the 

larva which facilitates its eventual emergence (Strohm &Linsenmair 1995). The bacteria certainly 

benefit from the association by obtaining an unoccupied and competition-free ecological niche and 

a reliable route of transmission into the next generation. They may also receive nutrients from the 

beewolf (M. Kaltenpoth and E. Strohm, unpubl. data). A similar symbiotic relationship for pathogen 

defence between insects and actinomycetes has been described for leaf-cutter ants (Currie et al. 

1999): A species of the family Pseudonocardiaceae protects the ants’ fungus gardens against a 

parasitic fungus by producing antibiotic substances (Currie et al. 1999; Cafaro &Currie 2005).  

 

In the present study, we investigated 28 different Philanthus species and subspecies and several 

closely related genera for the presence of endosymbiotic Streptomyces bacteria in their antennae. 

Ultrastructural and genetic data (16S rRNA gene sequences) are presented that support the 

description of ‘Candidatus Streptomyces philanthi’, including 28 ecotypes in different host species 

and subspecies.  

 

 

2.3 Methods 

 
Specimens 

Specimens of 27 Philanthus species including two subspecies of P. triangulum, two Cerceris 

species, Aphilanthops frigidus, and two Clypeadon species were collected in Germany, Greece, 

Oman, South Africa, Ukraine, and the USA (Table 1). The South African specimens were identified 

by comparison with voucher specimens in the collection of the Albany Museum in Grahamstown, 
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South Africa, and the South African Museum in Cape Town, South Africa. The US species were 

identified according to Bohart and Grissell (1975) and Ferguson (1983a,b). Because males lack the 

relevant glands (Strohm &Linsenmair 1995) and the endosymbiotic bacteria have so far only been 

found in females (M. Kaltenpoth, unpubl. data), only antennae from female specimens were used 

for electron microscopy and genetic analyses. 

 

Electron microscopy 

For scanning electron microscopy (SEM), specimens were fixed in alcoholic Bouin’s fixative for 3 h 

and dehydrated in a graded acetone series. The objects were then critical point dried (CPD 030; 

BALTEC), sputtered with Pt/Pd (SCD 005; BAL-TEC) and examined with a digital scanning electron 

microscope (DSM 962; Zeiss). To investigate their interior ultrastructure, preserved antennae were 

cut with a razor blade before sputtering. Specimens for transmission electron microscopy (TEM) 

were fixed for 2 h in a cold solution of 2% glutaraldehyde, 2.5% formaldehyde and 5% sucrose 

buffered in 50 mM sodium cacodylate, pH 7.2. After postfixation in 2% OsO4 and dehydration in an 

ethanol series, the specimens were embedded in Epon 812. Ultrathin sections of about 70 nm 

thickness (MT- 7000 microtome; RMC; 45° diamond knife) were stained with 2% uranyl acetate 

and Reynolds’ lead citrate. Electron micrographs were taken with a transmission electron 

microscope (EM10; Zeiss) at 80 kV.  

 

DNA extraction, PCR and sequencing 

DNA was extracted from whole beewolf antennae according to a standard phenol/chloroform 

extraction protocol (Sambrook et al. 1989). The following primer pairs were used for amplification 

of Streptomyces 16S rRNA gene: fD1 (forward) (Weisburg et al. 1991) and StrepF (reverse) 

(Rintala et al. 2001), Act-S20 (forward) (Stach et al. 2003) and rP2 (reverse) (Weisburg et al. 

1991). While fD1 and rP2 can be used to amplify a wide range of eubacterial 16S rRNA gene, the 

combination with StrepF and Act-S20 ensured that the PCR was specific for actinomycete 16S 

rRNA. PCR amplification was performed on Eppendorf Mastercyclers in a total reaction volume of 

25 µl [containing 2 µl of template, 1x PCR buffer (10 mM Tris-HCl, pH 8.8; 50 mM KCl; 0.08% NP-

40), 2.5 mM MgCl2, 240 µM dNTPs, 20 pmol each primer, and 1 U Taq DNA polymerase (MBI 

Fermentas)]. Cycle parameters were as follows: 3 min at 94°C, followed by 32 cycles of 94°C for 

40 s, 65°C for 1 min and 72°C for 1 min, and a final extension time of 4 min at 72°C. For 

sequencing, the following primers were used: fD1 (forward), Act-S20 (forward), Act-A19 (reverse) 

(Stach et al. 2003), StrepF (reverse), rP2 (reverse).  
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For the selective amplification of the Philanthus endosymbionts, the following forward primers were 

designed on the basis of the 16S rRNA gene sequences of the endosymbiotic Streptomyces and 

reference strains from the GenBank database:  

Strep_phil_fwd1: 5’-TACCGATCGCATGGTTGGTG-3’, 

Strep_phil_fwd2: 5’-TATGACTACYGAYCGCATGG-3’, 

Strep_phil_fwd3: 5’-CATGGTTRGTGGTGGAAAGC-3’, 

Strep_phil_fwd4: 5’-GTGGTGGAAAGCTCCGGC-3’ 

[binding to nucleotide positions 177-196, 170-188, 184-203, and 192-209, respectively, following 

the Streptomyces ambofaciens nomenclature (Pernodet et al. 1989)]. The forward primers 

Strep_phil_fwd1-4 were used in combination with the general actinomycete reverse primer Act-

A19. Temperature gradient PCRs were performed for all primer combinations and two Mg2+ 

concentrations were used to adjust the stringency of the reaction (1.5 and 2.5 mM). Final PCR 

conditions were the same as described above, except that 1.5 mM MgCl2 was used for 

Strep_phil_fwd4/Act-A19. The annealing temperature was set to 65°C for Strept_phil_fwd2/Act-

A19, and to 68°C for the three other primer combinations. DNA extracts from the antennae of 27 

Philanthus species and one subspecies, two Cerceris species, Aphilanthops frigidus, and two 

Clypeadon species (Table 1) were used as templates. Extracted DNA from cultures of Streptomyces 

rimosus DSM 40260T, S. aureofaciens DSM 40631, and S. venezuelae DSM 40230T was included to 

assess the specificity of the primers for Philanthus endosymbiont DNA.  

 

Fluorescence in situ hybridization (FISH) 

The general eubacterial probe EUB 338 (Amann et al. 1990) and the specific oligonucleotide probe 

SPT 177 (5`-Cy3-CACCAACCATGCGATCGGTA-3`) (Kaltenpoth et al. 2005) were used for FISH. S. 

aureofaciens DSM 40631, S. venezuelae DSM 40230T, S. rimosus DSM 40260T and Bacillus subtilis 

DSM 402 served as negative controls for the specific probe. The SPT177 probe is complementary 

to positions 177-196 of the P. triangulum endosymbiont 16S rRNA gene sequence (S. ambofaciens 

nomenclature; Pernodet et al. 1989). Secretions of the white substance from beewolf females were 

harvested from brood cells and spread onto six-field microscope slides. Fixation and hybridization 

were carried out as described previously (Grimm et al. 1998), with minor modifications: the 

hybridization buffer contained only 50 ng labeled probe, and samples were incubated for 90 min. at 

45°C for hybridization. For hybridization within the antennae, fresh female antennae were cut into 

sections with a razor blade and glued onto microscope slides. Fixation and pre-treatment of the 

samples was performed following a previously described protocol (Sauer et al. 2002). Hybridization 

was carried out as for the bacterial samples, but with 3 h incubation with the labeled probe.  

 

Phylogenetic analysis 

BioEdit 7.0.4.1 software was used to assemble and align sequences and to calculate DNA distances 

with the DNADIST 3.5c algorithm by Joseph Felsenstein. The alignment was checked by eye, and 

arbitrary alignment regions were excluded from further analysis. The aligned sequences were 

imported into PAUP 4.0. Phylogenetic trees were constructed based on 1324 bp of 16S rRNA gene 

sequences in a full heuristic search with tree bisection and reconnection (TBR) branch swapping 
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and 10 random addition sequence replicates, saving no more than 100 trees with a score ≥ 100 

per replicate. Gaps were treated as a fifth character state, and Arthrobacter globiformis DSM 

20124T was defined as the outgroup. Using the same settings, bootstrap values were obtained 

from a search with 1000 replicates. 

 

 

2.4 Results 

 
Localization of endosymbionts 

Scanning electron micrographs of the antennal surface of Philanthus triangulum, P. loefflingi, and 

P. fuscipennis females revealed that the bacteria are present at the openings of the antennal 

glands from which they are secreted into the brood cell (Kaltenpoth et al. 2005; Figure 1). The 

appearance of symbiotic bacteria on the outer surface of the antennae is probably due to 

accidental compressions of the antennae prior to or during preservation; under natural conditions 

they are unlikely to be found on the antennal surface, except during the secretion process in the 

brood cell.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. SEM image of an antenna of a female European beewolf (P. triangulum) with symbiotic Streptomyces 
bacteria being secreted from the antennal glands. Scale bar = 100 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



______________________________________________________________________CHAPTER 2 

 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. SEM image of the interior of an antennal segment of a female P. loefflingi. (A) Longitudinal section of 
a flagellomer. The reservoir of the antennal gland is indicated by arrows. (B) Symbiotic Streptomyces bacteria 
forming a dense cluster within the antennal gland. Scale bars = 200 µm (A) and 10 µm (B). 

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. TEM image of a cross-section through the antennal gland of a female P. triangulum. Some 
endosymbiotic Streptomyces are indicated by arrows. Scale bar = 1 µm.  
 
 
 
When a flagellomer was cut open, filamentous bacteria were clearly visible in large numbers within 

the gland reservoir (Figure 2A), where they formed a dense cluster of cells (Figure 2B). 

Transmission electron micrographs confirmed the presence of endosymbiotic bacteria within the 

antennal gland reservoir and suggest that the endosymbionts constitute the main component of 

the antennal gland content in female beewolves (Figure 3). The bacteria showed a filamentous 

morphology with long and sometimes branched cells and were embedded in a matrix containing 

numerous vesicles in the gland reservoir. Bacterial cells were 0.38 – 0.62 µm wide and highly 

variable in length (5 – 20 µm). The bacteria were clearly stained by the specific fluorescent probe 
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SPT 177 both within female beewolf antennae and in the antennal gland secretion after it had been 

applied to the brood cell (Figure 4).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. FISH of antennal Streptomyces endosymbionts. Phase-contrast micrograph of symbiotic bacteria in 
the antennal gland secretion of a female beewolf (A) and of a negative control strain of Streptomyces rimosus 
DSM 40260T (B). (C, D) Epifluorescence micrographs of the same areas after staining with the specific Cy3- 
labeled probe SPT177. Scale bar = 10 µm. 
 
 
 
Reference strains of S. aureofaciens, S. venezuelae, S. rimosus and B. subtilis were not stained by 

the probe. The general eubacterial probe EUB 338 gave positive results in all cases. The bacteria 

were clearly stained by the specific fluorescent probe SPT 177 both within female beewolf antennae 

and in the antennal gland secretion after it had been applied to the brood cell (Figure 4). Reference 

strains of S. aureofaciens, S. venezuelae, S. rimosus and B. subtilis were not stained by the probe. 

The general eubacterial probe EUB 338 gave positive results in all cases.  
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Distribution of symbionts among philanthine wasps 

All 28 Philanthus species including the two subspecies of P. triangulum yielded amplicons of the 

expected length in at least three of the four PCR reactions with the specific 16S rRNA primers 

Strep_phil_fwd1-4 in combination with the general actinomycete primer Act-A19 (Stach et al. 

2003) (Table 1). One species, Philanthus psyche, generally yielded only weak amplicons and failed 

to amplify altogether in one of the four specific PCRs. Philanthus crabroniformis and Philanthus 

lepidus also yielded no amplicons in one of the PCR reactions, but gave strong amplicons in all 

other PCRs.  

 
 
Table 1. Occurrence of endosymbiotic Streptomyces bacteria in antennae of philanthine wasps 
(Hymenoptera, Crabronidae, Philanthinae) and amplification with the specific primers 
Strep_phil_fwd1-4 in combination with the general actinomycete primer Act-A19.  
To assess the specificity of the primers, the DNA of three cultivated Streptomyces species was included in the 
PCRs. ++, Strong amplification; +, weak amplification; -, no amplification; Y, symbionts present; N, symbionts 
not present; NA, not applicable; SA=South Africa, KZN=KwaZulu Natal, WCP=Western Cape Province, 
ECP=Eastern Cape Province. Standard two-letter abbreviations are used for US states.  
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Specimens of the other wasp genera of the subfamily Philantinae (Aphilanthops, Clypeadon and 

Cerceris) yielded no amplicons in any of the specific PCR reactions. In PCRs with general 

actinomycete primers (Act-S20 and Act-A19), antennal DNA from Aphilanthops, Clypeadon, and 

Cerceris yielded no, or very weak, amplicons. The sequences obtained from the weak amplicons 

were not closely related to the Philanthus endosymbionts and were probably due to contamination 

of the antennae from surrounding soil during the life of the digger wasps within subterranean nests 

(data not shown). Thus, the symbiosis with bacteria of the genus Streptomyces seems to be 

widespread among wasps of the genus Philanthus, but appears to be absent in other genera of the 

subfamily. 

 

The Streptomyces control strains yielded no amplicons in most of the PCRs, demonstrating 

specificity of the primers for the Philanthus endosymbionts. However, Strep_phil_fwd2/Act-A19 did 

amplify the 16S rRNA gene of S. rimosus DSM 40260T, a close relative of the Philanthus symbionts 

(Figure 5) which shares around 98.0 to 98.5% of its 16s rRNA gene sequence. Control PCRs with 

general actinomycete 16S rRNA primers (Act-S20/Act-A19) resulted in strong amplicons for all of 

the Streptomyces strains, showing that the lack of amplification in the specific PCRs was not due to 

general problems with the template DNA.  
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Figure 5. Phylogenetic position of Philanthus endosymbionts within the genus Streptomyces based on 1324 bp 
of 16S rRNA gene sequence (104 parsimony-informative characters). First of 600 equally parsimonious trees 
from a full heuristic search with random addition sequence (10 replicates) and TBR branch swapping. 
Arthrobacter globiformis was defined as the outgroup. Bootstrap values at nodes are percentages of 1000 
replicates. GenBank accession numbers are given in parentheses. Scale bar = 5 changes.  
 
 
 

Phylogenetic position of ‘Candidatus Streptomyces philanthi’ 

The partial 16S rRNA gene sequences from the endosymbionts of 27 Philanthus species and one 

subspecies grouped together in a monophyletic clade within the genus Streptomyces (Figure 5). 

The phylogenetic analysis indicates that the symbionts belong to the Streptomyces armeniacus 

group, the closest relatives being Streptomyces kasugaensis and Streptomyces sapporonensis, 

with a mean sequence divergence of about 1.1% and 1.2%, respectively. The similarity among the 

endosymbionts of the 28 different Philanthus taxa was relatively high, ranging from 98.9% to 

100.0% 16S rRNA gene sequence similarity.  
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Almost complete 16S rRNA gene sequences for the 28 ecotypes of ‘Candidatus Streptomyces 

philanthi’ have been deposited in the GenBank database with accession numbers DQ375779- 

DQ375806. The accession numbers for specific ecotypes are shown in Figure 5 and Table 1.  

 
 
 
2.5 Discussion 

Endosymbiotic bacteria of insects are usually localized in the gut or reside within specialized host 

cells, so-called mycetocytes or bacteriocytes, which often form dedicated organ-like structures or 

are associated with the mid-gut epithelium (Buchner 1921; Baumann & Moran 1997; Moran and 

Telang 1998; Ishikawa 2003). The Philanthus-Streptomyces association represents the first case of 

endosymbiotic bacteria being localized in insect antennae. Correspondingly, the specialized 

antennal glands harbouring the symbionts have so far only been found in species of the genus 

Philanthus and appear to be absent even in closely related genera of philanthine wasps (Strohm, 

unpubl. data). As is the case with many other endosymbiotic bacteria, attempts to cultivate the 

Philanthus symbionts using standard cultivation techniques and media were not successful (see 

online supplementary data, chapter 2.7).  

 

The endosymbionts are present in the antennal gland reservoir of Philanthus females in large 

numbers and they can be detected by SEM, TEM, FISH (with a specific oligonucleotide probe) and 

by PCRs with specific primers. Genetic analyses of the 16S rRNA gene sequences of endosymbionts 

from the antennae of different beewolf species revealed that all species investigated so far harbour 

Streptomyces bacteria, and that the Philanthus endosymbionts appear to represent a monophyletic 

clade within the genus Streptomyces. The antennal endosymbionts share on average 98.8-98.9% 

16S rRNA gene sequence with their closest relatives, S. kasugaensis and S. sapporonensis. Despite 

this high sequence similarity, we propose the name ‘Candidatus Streptomyces philanthi’ for the 

endosymbionts of Philanthus species because they are clearly separated from other species by 

their unique ecological niche. Several studies have shown that 16S rRNA gene sequence similarity 

alone is often inappropriate for the distinction of two species, and the general rule of 3% 16S rRNA 

gene sequence divergence between species tends to greatly underestimate the number of species 

(Cohan 2002; Konstantinidis & Tiedje 2005), as has been recently demonstrated for a number of 

Streptomyces groups (Sembiring et al. 2000; Manfio et al. 2003; Liu et al. 2005). Therefore, it is 

desirable to include ecological characteristics in the description of new species (Cohan 2002; 

Konstantinidis & Tiedje 2005). Among Philanthus endosymbionts, the 16S rRNA gene sequence 

similarity is relatively high (98.9% to 100.0%). We propose that the endosymbionts represent a 

single species with different ecotypes that are separated by their ecological niches (i.e. their host 

species).  

 

The high degree of similarity among Philanthus endosymbionts suggests that they are transmitted 

vertically from mother to offspring, as has been described for many other endosymbiotic bacteria 

(Aksoy et al. 1997; Clark et al. 2000; Moran & Baumann 2000; Sauer et al. 2000; Clark et al. 

2001; Ishikawa 2003). Alternatively, the bacteria may be taken up from the environment with 
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certain mechanisms preventing the uptake of non-symbiotic bacteria, a transmission route that has 

been demonstrated for the symbionts of the squid Euprymna scolopes (McFall-Ngai & Ruby 1991; 

Nyholm et al. 2000; Nishiguchi 2002; Nyholm & McFall-Ngai 2004). The following evidence points 

to vertical transmission of the bacteria from mother to offspring in Philanthus: (i) the bacteria are 

secreted into the brood cell and later taken up by the larva and (ii) a female larva that was reared 

in the absence of the white substance in its brood cell apparently lacked the symbiotic bacteria as 

an adult (Kaltenpoth et al. 2005). However, further studies on the phylogenetic relationships of 

beewolves and their endosymbionts are needed to confirm vertical transmission and to determine 

whether horizontal transfer of symbionts between Philanthus species (e.g. via chrysidid parasitoids, 

interspecific nest usurpation or nest reuse) may have played a role in the evolution of the 

symbiosis.  

 

Moran et al. (1993) estimated an evolutionary age of 160-280 million years for the symbiosis 

between aphids and their endosymbiont Buchnera aphidicola, and Bandi et al. (1995) dated the 

origin of the association of cockroaches and termites with bacteria of the Flavobacterium-

Bacteroides group to about 135 to 250 million years ago. Under the assumption of strictly vertical 

transmission of the symbionts, the low 16S rRNA gene sequence divergence among the 

endosymbionts of Philanthus wasps suggests that the symbiosis is of relatively recent origin. 

Assuming a mean rate of 0.008 to 0.02 substitutions per site per 50 million years (Ochman and 

Wilson 1987; Moran et al. 1993; Bandi et al. 1994), the maximum sequence divergence of 1.07% 

indicates that the origin of the symbiosis between beewolves and streptomycetes dates back about 

26-67 million years. Taking into account that all Philanthus species investigated so far harbour the 

symbiotic bacteria, the association with bacteria probably evolved at around the time of origin of 

the genus Philanthus. 

 

The evolution of specialized antennal glands in Philanthus females may have represented a key 

invention and evolutionary preadaptation for a symbiosis with Streptomyces bacteria. Strohm and 

Linsenmair (1995) demonstrated that the antennal gland secretion serves a second function by 

providing directional information to the beewolf larva that is necessary later for successful 

emergence. Thus, we hypothesize that the antennal glands originally evolved in the context of 

directing cocoonspinning and emergence and that they might have been secondarily invaded by 

Streptomyces bacteria from the surrounding soil. In the beginning, the bacteria may have been 

commensals, or even parasites, in the antennal glands. In a sequence of evolutionary steps, 

including the uptake of the bacteria by the larva and their application to the cocoon, the 

antimicrobial activity of the streptomycetes might have been subsequently exploited by the 

beewolf hosts to protect their offspring against pathogen infection. Further studies are needed to 

investigate how related genera of groundnesting digger wasps cope with the threat of pathogenic 

soil microorganisms infecting their progeny.  
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2.6 Description of ‘Candidatus Streptomyces philanthi’ 

‘Candidatus Streptomyces philanthi’ [phi.lan’thi. N.L. n. Philanthus (Hymenoptera, Crabronidae), 

the generic name of the host organism; N.L. gen. n. philanthi of Philanthus, referring to the 

association with digger wasps of the genus Philanthus].  

The reference strain is ‘Candidatus Streptomyces philanthi triangulum’. 

 

Uncultured, Gram-positive, non-motile, possibly sporulating, filamentous bacteria with sometimes 

branched cells that can be assigned to the genus Streptomyces on the basis of their 16S rRNA 

gene sequence. A detailed description of the methods used in an attempt to cultivate the 

endosymbionts can be found as supplementary material in IJSEM Online. Cells are 0.38 – 0.62 µm 

wide and of highly variable length (5 – 20 µm). The bacteria live as symbionts within specialized 

antennal glands of female digger wasps of the genus Philanthus. They are secreted into the brood 

cells, taken up by the larva and applied to the cocoon, where they appear to protect the beewolf 

offspring against fungal infection (Kaltenpoth et al. 2005). Bacteria of different Philanthus species 

differ in their 16S rRNA gene sequence, but sequence divergence is relatively low (0-1.1%). We 

propose that endosymbionts of different Philanthus species should be treated as ecotypes of 

‘Candidatus Streptomyces philanthi’ and named according to the host species. The 16S rRNA gene 

sequences of all ecotypes found so far can be amplified selectively by the specific forward primer 

Strep_phil_fwd3 (5’- CATGGTTRGTGGTGGAAAGC-3’) in combination with the general actinomycete 

reverse primer Act-A19 (Stach et al., 2003). The ecotype ‘Candidatus Streptomyces philanthi 

triangulum’ can be stained with the fluorescent probe SPT 177: 5`-Cy3-

CACCAACCATGCGATCGGTA-3` (Kaltenpoth et al., 2005).  

 

[(Streptomyces) NC; G+; F; NAS (GenBank accession number DQ375802), oligonucleotide 

sequence of unique region of the 16S rRNA gene is 5’-TACCGATCGCATGGTTGGTG-3’; S 

(Philanthus, antennal glands); M]. Kaltenpoth et al., this study.  
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2.7 Online supplementary data 

 
Attempts to cultivate ‘Candidatus Streptomyces philanthi’ 

In a first attempt to cultivate the Philanthus antennal symbionts, secretions from Philanthus 

triangulum female antennal glands were harvested from the brood cells and suspended in 100 µl of 

sterile water. 10-100 µl of the suspensions were spread onto a range of different solid media. 

Additionally, whole antennae of freshly killed female P. triangulum were plated out on the same 

media.  

 

The following media were tested: LB agar (DSM Medium 381), Streptomyces Medium (DSM 

Medium 65), Streptomyces Medium supplemented with streptomycin (100 µg/ml) and kanamycin 

(50 µg/ml), Streptomyces Medium supplemented with homogenized bees from beewolf brood cells 

(12 bees per 500 ml medium), Streptomyces Medium supplemented with homogenized P. 

triangulum females (eight females per 20 ml medium), Powdered Chitin Agar (Hsu and Lockwood, 

1975), Powdered Chitin Agar supplemented with cycloheximide (100 µg/ml), and beewolf cocoon 

agar (a medium containing 30 empty P. triangulum cocoons per 250 ml agar medium). Plates were 

incubated at 25°C and 30°C under aerobic conditions for six to eight weeks.  

 

Bacteria from culture plates were spread onto six-field microscope slides for fluorescence in-situ 

hybridization (FISH). The specific probe SPT 177 (Kaltenpoth et al. 2005) was used to screen for 

‘Candidatus Streptomyces philanthi’, and the general eubacterial probe EUB 338 (Amann et al. 

1990) served as a positive control. Although bacterial colonies grew on all media tested and 

several of the colonies showed actinomycete morphology, none of the colonies was stained by the 

specific probe SPT 177. Amplification and sequencing of partial 16s rDNA sequences from some of 

the colonies with general eubacterial primers fD1 and rP2 (Weisburg et al. 1991) revealed the 

presence of Acinetobacter sp. and Streptomyces sp.  

 

In a second cultivation attempt, female beewolf antennae were surface sterilized before cultivation. 

Therefore, four antennae were removed from live adult wasps and rinsed for 5 minutes in 1 ml of a 

sterile solution of 0.5% Triton X-100 to remove surface debris. The antennae were then surface 

sterilized by immersion in 1 ml of a freshly made sodium hypochlorite solution with 0.6 % available 

chlorine for 2 minutes. The antennae were then rinsed five times in 1 ml sterile water and 

transferred aseptically to a Dounce ground glass subcellular homogenizer (Kontes Scientific 

Glassware, Vineland, NJ) along with 1 ml sterile Mitsuhashi-Maramorosch (MM) basal medium (ICN 

Biomedicals). The antennae were then homogenized for 2 min to release bacteria and the 

homogenate was used as inoculum in a range of culture attempts.  

 

Culture attempts were made using a range of solid media formulations under aerobic, anaerobic 

and microaerobic conditions. The media formulations tested included Streptomyces Medium 

(Sigma), supplemented with 0.2% (w/v) casamino acids (Difco), Potato Dextrose agar (Difco), MM 
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agar (Dale et al., 2005), and Medium 199 (Gibco), solidified by addition of molten low-melt 

agarose (1% w/v final concentration) at 55 °C.  

 

Cultures were initiated on solid phase media by streaking 20 µl of the antennal homogenate onto 

plates. Plates were incubated at 25 °C under an air atmosphere (to provide aerobic conditions) or 

in sealed gas jars flushed with at least 20 volumes of either nitrogen (for anaerobic conditions) or a 

mixture of 5% oxygen, 10% carbon dioxide and 85% nitrogen (for microaerophilic conditions). 

Plates were maintained for 7 days and then removed and inspected under a stereo microscope. 

Bacterial colonies were removed and inoculated directly into PCR tubes. PCR was performed using 

universal bacterial 16S rDNA primers (Hugenholtz et al. 1998). The 16S rDNA amplicons were 

cloned into TOPO vectors, and sequenced using vector specific primers. The resulting sequences 

were then submitted to BLAST at the NCBI database. Unfortunately, no Philanthus endosymbiont 

16S rDNA sequences were detected; the 16S rDNA sequences obtained were all closely related to 

the genus Serratia.  

 

Media Formulations 

LB Agar 

Trypone   10.0 g 
Yeast extract   5.0 g 
NaCl    10.0 g 
Agar    15.0 g 
Distilled water   1000.0 ml 
 

pH adjusted to 7.0 with KOH before addition of agar and autoclaving. 

 

Powdered Chitin Agar 

Colloidal Chitin   4.0 g 
K2HPO4   0.7 g 
KH2PO4   0.3 g 
MgSO4 • 5 H2O  0.5 g 
FeSO4 • 7 H2O   0.01 g 
ZnSO4    0.001 g 
MnCl2    0.001 g 
Agar    20.0 g 
Distilled water   1000.0 ml 
 

Streptomyces medium 

Glucose   4.0 g 
Yeast extract   4.0 g 
Malt extract   10.0 g 
CaCO3   2.0 g 
Agar    12.0 g 
Distilled water   1000.0 ml 
 

pH adjusted to 7.2 with KOH before addition of agar and autoclaving. 
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MM agar 

Sodium Chloride   7.0 g 
Lactalbumin hydrolysate  6.5 g 
Yeast extract    5.0 g 
Glucose    4.0 g 
CaCl2     0.15 g 
MgCl2     0.05 g 
KCl     0.2 g 
NaHPO4    0.17 g 
 

Make up in 800 ml of water, add 0.12 g sodium bicarbonate, adjust pH to 6.9 and filter sterilize. 

Equilibrate the sterile media in a 55 °C water bath and then add 200 ml of autoclaved (and still 

molten) 5% agarose. Pour plates and pre-equilibrate in a gas jar, if necessary.  
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CHAPTER 3 

 
65 MILLION YEARS OF DEFENSIVE ALLIANCE: MOLECULAR PHYLOGENY OF BEEWOLVES 
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Abbreviations: 

cds: coding sequence 
ncs: non-coding sequence 
bp: base pairs 
wnt-1: Wingless 
LWRh: long-wavelength rhodopsin 
ArgK: arginine kinase  
EF1α: elongation factor 1α   
COI: cytochrome oxidase subunit 1 
ML: maximum likelihood 
BI: Bayesian inference 
MP: Maximum parsimony 

 
 
 
 
3.1 Abstract 

Beewolf digger wasps of the genera Philanthus, Trachypus, and Philanthinus (Hymenoptera, 

Crabronidae) engage in a unique defensive symbiosis with Streptomyces bacteria. The symbionts 

are located inside antennal glands and transferred to the larval cocoon by the larvae, where they 

provide protection against detrimental fungi by producing a complex cocktail of at least nine 

different antibiotic substances. In order to date the origin of the symbiotic association with 

Streptomyces we set up a data set of more than 5 kb DNA sequences per taxon, including six 

molecular markers (wingless, long-wavelength rhodopsin, arginine kinase, cytochrome oxidase 

subunit 1, 28S rRNA, and elongation factor 1α) for a reconstruction of the phylogenetic 

relationships within the Crabronid subfamily Philanthinae. Maximum likelihood, Bayesian inference, 

and maximum parsimony analyses revealed congruent phylogenetic relationships with high support 

values in all reconstructions among 43 species and subspecies of Philanthus, six species of 

Trachypus, one Philanthinus species, and several outgroup taxa. Philanthinus was found to be the 
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most basal genus that is associated with protective symbionts and the genus Philanthus was found 

to be paraphyletic with respect to the morphologically well-defined South American genus 

Trachypus. Molecular clock analyses placed the origin of the symbiosis between beewolves and 

Streptomyces to 65-97 million years. This study is the first estimate of the evolutionary age for 

any protective insect-bacteria symbiosis and provides the basis for understanding the evolution of 

this association as well as of other traits of beewolf digger wasps. 

 

 

3.2 Introduction 

Beewolves of the digger wasp tribe Philanthini (Hymenoptera, Crabronidae, including the genera 

Philanthus, Trachypus and Philanthinus) represent a small group of solitary digger wasps comprising 

about 173 species worldwide. Several characteristics of this group are unusual or even unique 

among insects and render the Philanthini especially interesting model organisms for ecological and 

evolutionary research. Male beewolves establish small territories, defend them against intruding 

males and scent mark them with a sex pheromone from cephalic glands to attract receptive females 

(Evans & O'Neill 1988; Kroiss et al. 2010; Simon-Thomas & Poorter 1972; Strohm 1995). The 

pheromone has been shown to contain information about relatedness, population affiliation, and 

age, which may be used by females for adaptive mate choice (Herzner et al. 2006; Kaltenpoth et al. 

2007; Kaltenpoth & Strohm 2006).  

 

As in many other solitary wasps, female beewolves dig nest burrows and mass-provision their larvae 

with Hymenopteran prey (Bohart & Menke 1976; Evans 1964; Koedam et al. 2009; Polidori et al. 

2009; Strohm 1995; Strohm & Linsenmair 1995). Due to the warm and humid conditions in the 

beewolf brood cells, both the offspring and the provisions are endangered by fungal or bacterial 

infections from the surrounding soil (Strohm & Linsenmair 2001). To reduce the risk of microbial 

attack, beewolves have evolved a number of efficient defence mechanisms: Females of the genus 

Philanthus have been shown to preserve their prey items by embalming them with a secretion from 

a postpharyngeal gland (Herzner et al. 2007; Herzner & Strohm 2007). Interestingly, the secretion 

reduces fungal infestation by a physical rather than a chemical effect. The treatment of the prey 

strongly reduces water condensation on the bees and thereby hinders spore germination and growth 

(Herzner & Strohm 2007). The second line of defence is mediated by a specialized association with 

endosymbiotic bacteria of the genus Streptomyces that beewolf females cultivate in unique antennal 

gland reservoirs and secrete into the brood cell prior to oviposition (Goettler et al. 2007; Kaltenpoth 

et al. 2006; Kaltenpoth et al. 2005). The symbionts are later taken up by the larva and incorporated 

into the cocoon silk (Kaltenpoth et al. 2010a), where they provide protection against a broad range 

of potentially harmful microorganisms by producing a complex cocktail of at least nine different 

antibiotic substances (Kaltenpoth et al. 2005; Kroiss et al. 2010). The symbiotic Streptomyces have 

been detected in the antennae of all Philanthus, Trachypus, and Philanthinus species investigated so 

far, but not in any other genera of closely related wasps (i.e. Cerceris, Aphilanthops, Clypeadon, 

Kaltenpoth et al. 2006, 2010b; Kaltenpoth et al. submitted), suggesting that the symbiosis evolved 

somewhere along the branch leading to the tribe Philanthini (Kaltenpoth et al. submitted). Although 
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the symbionts of different species form a monophyletic group within the genus Streptomyces, 

horizontal transmission among host species also seems to occur (Kaltenpoth et al. 2010a; 

Kaltenpoth et al. submitted). 

 

At present, the phylogenetic relationships within and among genera of the Crabronid subfamily 

Philanthinae are poorly understood. The most detailed phylogenetic study thus far was based on 37 

morphological characters and yielded insights into genus-level relationships (Alexander 1992). The 

results revealed three monophyletic tribes within the Philanthinae: the Aphilanthopini (Aphilanthops 

+ Clypeadon), the Cercerini (Pseudoscolia + (Cerceris + Eucerceris)), and the Philanthini 

(Philanthinus + (Philanthus + Trachypus)) (Alexander 1992). However, no systematic analyses have 

so far been published on the intrageneric level, although several authors classified species from the 

same geographical regions into subgroups based on morphological traits (Arnold 1925; Bohart & 

Grissell 1975; de Beaumont 1961; Evans & O'Neill 1988; Ferguson 1983b). Additionally, the 

systematic classification of the genera Trachypus and Philanthus is still unclear: Currently, they are 

treated as sister genera. However, several authors suggested that Philanthus is paraphyletic with 

respect to Trachypus, but did not formally synonymize the two genera (Alexander 1992; de 

Beaumont 1961). 

 

Here we used molecular markers to reconstruct the phylogenetic relationships among and within 

genera of the Philanthini. On the basis of 5040 bp of sequence data from six different nuclear and 

mitochondrial genes, we reconstructed a well-supported phylogenetic tree of 43 species and 

subspecies of Philanthus, six Trachypus species, and one species each from the genera Philanthinus, 

Aphilanthops, Clypeadon, Cerceris, respectively, as well as several outgroup genera. The phylogeny 

allowed us to date the origin of the symbiotic association between Philanthini and their defensive 

Streptomyces symbionts by using a molecular clock approach, and it lays the foundation for 

comparative phylogenetic analyses of hosts and symbionts to test for co-diversification. Beyond 

that, the phylogeny provides a basis for reconstructing the evolution of the male pheromone, the 

evolution of the other defence mechanisms and of different ecological characteristics of beewolves. 

 

 

 

3.3 Materials and methods 

 

Insect samples 

Specimens of 43 Philanthus species and subspecies from North America, Europe, India, and South 

Africa, six Trachypus species from South America, and one Philanthinus species from Turkey were 

collected (Suppl. Table 1). As outgroup taxa, Crabronid species of the closely related genera 

Aphilanthops, Clypeadon, Cerceris, Bembix, and Bicyrtes, as well as the more distantly related Apis 

mellifera (Apidae) were used (Suppl. Table 1).  
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Molecular methods 

DNA was extracted either from insect thoraces or, to allow for later morphological determination of 

single specimens, from three legs. The MasterPure Complete DNA and RNA Purification Kit 

(Epicentre, Madison, WI, USA) was used for DNA isolation according to the manufacturer’s 

instructions. PCR amplifications were performed on a TGradient Thermocycler (Biometra, Göttingen, 

Germany). The PCR master mix with a final reaction volume of 12.5 µl was composed of 1 µl 

genomic DNA extract, 1 µl of each primer (10 µM), 1.5 µl dNTP-Mix (2 mM; Fermentas, St. Leon-

Rot, Germany), 1.25 µl Peqlab reaction buffer (200 mM Tris-HCl (pH 8.55 at 25 °C), 160 mM 

(NH4)2SO4, 0.1% Tween 20 and 20 mM MgCl2) and 0.5 units SAWADY Taq DNA polymerase (Peqlab, 

Erlangen, Germany). Cycle parameters were as follows: 3 min initial denaturation at 94°C, followed 

by 35 cycles of 94°C for 40 sec, the primer-specific annealing temperature for 40 sec, and 72°C for 

40 sec (or 90 sec for longer fragments), and a final extension of 4 min at 72°C. Primer sequences 

and references are listed in Table 1, details on primer combinations, annealing temperatures and 

the corresponding fragment lengths are summarised in Table 2. Prior to sequencing, PCR products 

were purified with the peqGOLD MicroSpin Cycle-Pure Kit (Peqlab Biotechnologie GmbH, Erlangen, 

Germany) following the manufacturer’s protocol. Sequencing was done commercially at Seqlab 

Sequence Laboratories (Göttingen, Germany).  

 

Table 1. Sequences and references of the PCR primers used in this study  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Partial sequences of six different genes were obtained, all of which have previously been shown to 

be useful for phylogenetic analyses in Hymenoptera (Cameron & Mardulyn 2001; Danforth et al. 

2004; Kawakita et al. 2003; Ramirez et al. 2010): A fragment of the subunit 1 of the mitochondrial 

cytochrome oxidase gene (COI; 841 bp) was amplified and sequenced, as well as a fragment of the 

ribosomal 28S gene (28S; 865 bp). Additionally, the following four single-copy nuclear genes were 

used: Wingless (wnt-1, comprising of 378 bp cds), long-wavelength rhodopsin (LWRh, comprising of 

Gene Primer Sequence Reference
Wingless beewgfor TGCACNGTSAAGACCTGYTGGATGAG Danforth et al. 2004

Lepwg2a ACTICGCARCACCARTGGAATGTRCA Brower & DeSalle 1998, Danforth et al. 2004
Long LWRH_Rev1744 GCDGCTCGRTAYTTHGGATG this study
Wavelength LWRhFor4_N GAGAARAAYATGCGNGARCAAGC this study (modified from Danforth et al. 2004)
Rhodopsin LWRhFor1 AATTGCTATTAYGARACNTGGGT Mardulyn & Cameron 1999, Danforth et al. 2004

LWRhRev1 ATATGGAGTCCANGCCATRAACCA Mardulyn & Cameron 1999, Danforth et al. 2004

EF1a For1deg GYATCGACAARCGTACSATYG Danforth et al. 2003

F2Rev1 AATCAGCAGCACCTTTAGGTGG Danforth et al. 2003

HaF2for GGGYAAAGGWTCCTTCAARTATGC Danforth et al. 1999

Cho10 ACRGCVACKGTYTGHCKCATGTC Danforth et al. 2003
Arginine ArgK_Loretta TGATCGATGATCACTTCCTTTTCAA this study

kinase ArgK_fwd2 GACAGCAARTCTCTGCTGAAGAA Kawakita et al. 2003

ArgK_KLTrev2 GATKCCATCRTDCATYTCCTTSACRGC www.danforthlab.entomology.cornell.edu/resources.html 
CO fwd1 TGGAGCHTCWTTYAGATTAATAATYCG this study

rev2 TCCWCCAATWGTRAATAATAARAYA this study
LCO GGTCAACAAATCATAAAGATATTGG Folmer et al. 1994
Ben GCWACWACRTAATAKGTATCATG Kronauer et al. 2004

28s 3665F AGAGAGAGTTCAAGAGTACGTG Cameron & Mardulyn 2001

4749R GTTACACACTCCTTAGCGGA Danforth et al. 2006
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608 bp of cds and 156 bp ncs), arginine kinase (ArgK, with 825 bp cds and 111 bp ncs) and 

elongation factor 1α (EF1a, including 1041 bp cds and 696 bp ncs). The listed fragment lengths are 

those of the processed sequences used for the phylogenetic analyses. Some outgroup sequences for 

Apis, Bembix, and Bicyrtes could be obtained from the NCBI database.  

 

 

Table 2. Primer pairs with corresponding fragment lengths and PCR annealing temperatures 

 

 

 

 

 

 

 

 

 

 

 

Phylogenetic analyses  

Sequences were aligned using the programs BioEdit 7.0.5.3 (Hall 1999) and SeaView 4.2.6 (Gouy et 

al. 2010). All alignments were checked and improved manually. Open reading frames and 

intron/exon boundaries were identified by comparison with published coding sequences for Apis 

mellifera (LWRh: BK005514.1; ArgK AF023619.1; EF1a: NM_001014993.1) or via a blast search 

against non-redundant sequences in the Genbank database. Coding sequences and introns should 

be treated as separate data sets due to a differing sequence evolution. Thus, we differentiated 

between coding (cds) and non-coding (n-cds) sequence parts within a single locus. We determined 

nine individual partitions: 28S, COI, wnt-1, LWRh-cds, LWRh-ncs, ArgK-cds, ArgK-ncs, EF1a-cds, 

and EF1a-ncs. Unfortunately, all non-coding sequences could only be reliably aligned among the 

Philanthini species. Therefore, we recoded the intron sequences of all outgroup taxa to missing data 

and thus excluded them from the analyses.  

 

In a first step we built nine gene trees using fast likelihood inferences with the software RAxML 

v7.0.4 (Stamatakis 2006; Stamatakis et al. 2008; Stamatakis et al. 2005) corresponding to the nine 

partitions determined above. Maximum likelihood (ML) searches were conducted with the rapid hill-

climbing algorithm (Stamatakis et al. 2005) under the General Time-Reversible model with four 

gamma parameters GTR+G (Tavaré 1986; Yang 1993, 1994). Support values (100 bootstrap steps) 

were calculated for each node and topologies were manually compared among the gene trees. 

Because none of the strongly supported nodes were different, we combined all loci in one 

supermatrix. 

 

Primer pair Gene Annealing temperature in °C approx. f ragment lentgh

beewgfor / Lepwg2a Wingless 65.6 450 bp
LWRhFor1 / LWRhRev1 Opsin 58.5 650 bp
LWRhFor1 / LWRH_Rev1744 Opsin 53.8 1200 bp
LWRhFor4_N / LWRH_Rev1744 Opsin 53.8 800 bp
ArgK_fwd2 / ArgK_KLTrev2 ArgK 50.5 1200 bp
ArgK_Loretta / ArgK_KLTrev2 ArgK 53.0 700 bp
For1deg / F2Rev1 EF1α 56.8 1300 bp
HaF2for / Cho10 EF1α 58.0 1700 bp
28s_3665F / 28s_4749R 28s 62.9 1000 bp
LCO / Ben CO 49.0 1100 bp
fwd1 / rev2 CO 52.8 1000 bp
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Additionally, searches for a saturation effect within one of the three codon positions were conducted 

for the genes wnt-1, COI, LWRh, ArgK, and EF1a by calculating homoplasy indices (HI) for each 

codon position and gene separately. The software PAUP* 4.0 beta (Swofford 2003) was used for 

these analyses. The homoplasy index of the third codon position of the genes COI and LWRh 

(HI(COI)=0.66, HI(LWRh)=0.46) were higher compared to the first and second positions (HI: CO-

1st=0.52, COI-2nd=0.25, LWRh-1st=0.34, LWRh-2nd=0.18). Therefore, we excluded the third codon 

positions of the genes COI and LWRh for further analyses, or we used the translated amino acid 

sequences (stated for each analysis). 

 

In a next step, multiple independent analyses with different data partitioning strategies (1-4) were 

performed to test for the robustness of the phylogenetic reconstructions: (1) unpartitioned, (2) four 

partitions with combined nuclear introns, exons and mitochondrial sequences separately, plus 28S 

sequences, (3) nine partitions with single genes separately and splitting coding and non-coding 

sequence parts, (4) complete random partitioning in 9 partitions; all analyses were conducted with 

excluded third codon positions of the genes COI and LWRh and also with base sequences translated 

into amino acid sequences. The best fitting evolutionary model for the amino acid-translated 

sequences (COI, LWRh) was inferred with ProtTest v1.4 (Abascal et al. 2005). The CPREV model 

showed the highest fit for LWRh, and the MTREV for COI; both are empirical models of amino acid 

substitution that indicate relative rates of amino acid replacement. Out of these different runs we 

chose the tree with the highest likelihood for presentation. Bootstrap support values were obtained 

through a full non-parametric bootstrap inference with 10000 replicates, carried out separately with 

RAxML.  

Bayesian inferences were run with the program MrBayes 3.1.2 (Huelsenbeck & Ronquist 2001; 

Ronquist & Huelsenbeck 2003). The searches were also conducted under the GTR+G model with 

four rate categories. We ran each analysis for 10,000,000 generations and sampled trees every 

1000 generations. A “Burnin” of 20% was used, i.e. the first 20% of the sampled trees are 

discarded. We checked if the standard deviation of split frequencies consistently was less than 0.01 

and discarded all runs not meeting this criterion. We computed 50% majority rule consensus trees 

for each analysis with posterior probability values for every node. Different partition schemes (1-4) 

were analyzed as well (see above). However, combined data sets of DNA and protein sequences 

cannot be used in MrBayes, so only the nucleotide sequences of the first and second codon positions 

were taken for COI and LWRh. 

 

Equal weighted maximum-parsimony (MP) analyses were performed using the program PAUP* 4.0 

beta (Swofford 2003). We used a heuristic search and TBR (tree-bisection-reconnection) for branch 

swapping. Bootstrap supports were obtained from 1000 independent replicates. The third codon 

positions of COI and LWRh were excluded for all MP analysis as well. Further, MP analyses were only 

conducted for the partition schemes (1) and (3). 
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Dating of the symbiosis 

Divergence time estimations were inferred using BEAST v1.6.1 (Drummond & Rambaut 2007). 

Bayesian analyses were conducted under a strict clock (using a single rate of sequence evolution 

across the phylogeny) and two relaxed clock (allowing variable substitution rates) models 

(uncorrelated lognormal, random local clock model; Drummond et al. 2006). In each analysis 25 

million steps were performed. To estimate the influence of partitioning, analyses were conducted 

with a partitioned (9 partitions) as well as with the unpartitioned dataset.  

 

Four calibrations points were included in the dating analysis: (A) The age of the Bembicinae with 

oldest fossils known from lower Oligocene (∼37 Mya) Florissant beds in Florida (Cockerell 1906; 

Pulawski & Rasnitsyn 1980), (B) the age of the oldest Cerceris fossil from Late Stampian (∼30 Mya) 

shales in France (Timon-David 1944), and (C) the age of the oldest Philanthus fossil (P. saxigenus) 

from Florissant shales (∼37 Mya) in Florida (Rohwer 1909), and (D) the root age was calibrated with 

the bee fossil Cretotrigona prisca from Maastrichtian amber (∼65 Mya) in New Jersey/USA (Engel 

2000; Michener & Grimaldi 1988). Because of their unclear systematic position, the fossils of 

Philanthus annulatus (~30 Mya, Theobald 1937) and Prophilanthus destructus (~35 Mya, Cockerell 

1906) were not considered in the analysis. Minimum age constraints were modelled with lognormal 

distributions. Maximum age constraints were set to 125 Mya (A-C), the estimate of the crabronid-

bee divergence based on the Apoidea fossil record (Ohl & Engel 2007). A maximum constraint for 

the root age was set to 140 Mya, the estimated rise of the angiosperms. Due to their dependence 

on and tight association with angiosperms, bees and the closely related crabronid wasps have very 

likely evolved after the origin of angiosperms (Brady et al. 2009). 

 

Further, one analysis was conducted without sequence data and fixed topology (ML topology) to 

account for a possible bias imposed through the calibrations alone without considering the DNA 

information. Additional analyses were conducted to examine the influence of the root age 

calibration. Here, two analyses were performed, one without constraining the root age as well as 

another with only the root age as calibration point. Evaluation and comparison of the results were 

performed using Tracer v 1.5, TreeAnnotator, LogCombiner (Drummond & Rambaut 2007), and 

FigTree v1.3.1 (Rambaut 2010). Confidence intervals were estimated as 95% highest posterior 

density intervals (HPD). The clock model producing the smallest confidence intervals summed over 

all analyzed parameters was considered as most appropriate for the data (Drummond et al. 2006). 

The uncorrelated lognormal model outperformed the random local clock model in this respect. 

Therefore, we used the uncorrelated lognormal model with 25 million replicates and a sample 

frequency of 2500 steps for the final divergence time estimation. Three independent runs were 

performed. We used the ML tree (see Figure 2) as starting tree for these analyses. The first 1000 

trees (10%) were discarded as burnin for each sample and then the three runs were combined into 

one single file. The maximum clade credibility tree was inferred with TreeAnnotator and visualized 

with FigTree. The combined log file was analyzed with the software Tracer. 
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3.4 Results 

 

Phylogenetic analysis 

The final concatenated alignment consisted of 5521 aligned nucleotides, comprising 1378 parsimony 

informative sites (excluding third position of COI/LWRh: 5040 bp, 1077 parsimony informative 

sites). Maximum likelihood analyses, Bayesian inference analyses and maximum parsimony 

analyses based on the full and partitioned dataset showed highly congruent topologies (Figure 1; for 

MP tree see Suppl. Figure 1). Likewise, most of the different analytical scenarios and partitions 

yielded similar results. Some discrepancies were observed for the analyses including the third codon 

position of LWRh and COI, which were likely caused by the saturation of the third positions.  

 

In all analyses, the genus Philanthinus was positioned at the base of the Philanthini with high 

statistical support. However, the genus Trachypus grouped deeply within the genus Philanthus and 

represented the sister group to all North American Philanthus species. This was supported by the 

combined dataset as well as all single-gene analyses with the exception of the LWRh intron and the 

– probably misleading – analyses including the 3rd positions of LWRh or COI. However, in the LWRh 

intron analysis based on only 156 bp of aligned sequence data, there was only weak statistical 

support for the genera Philanthus and Trachypus being monophyletic sister clades. The strong 

support for the paraphyly of Philanthus with respect to Trachypus in all other single-gene trees and, 

most notably, the analyses based on the combined dataset strongly suggest that the genera 

Philanthus and Trachypus should be taxonomically treated as one genus.  

 

The reconstruction of the phylogenetic affiliations within the genera Philanthus and Trachypus were 

highly congruent across the different ML, BI and MP analyses. Separate analyses based on single-

gene coding sequences and on introns yielded similar intrageneric relationships, respectively, 

indicating that the results were not biased by selective pressures acting on the coding sequences. 

The species groups recovered in this study as well as the present morphological classification are 

listed in Table 3. Due to the extensive studies of Evans and O’Neill (1988), the best investigated 

Philanthus species are those of the North American continent. Based on morphological and 

behavioural characters, they were classified into four species groups (Table 3): the zebratus group, 

gibbosus group, pacificus group and politus group (Evans & O'Neill 1988). The species P. ventilabris, 

P. lepidus, P. bilunatus, P. solivagus and P. albopilosus were considered as separate species, not 

clearly fitting the traits of one of the four groups. In the molecular phylogenies, the zebratus group 

agreed with the composition proposed by Evans & O’Neill, and P. solivagus could be added to this 

group. Based on the molecular data, the gibbosus group proposed by Evans & O’Neill (1988) was 

split into two separate groups, the second one of which is here called “inversus group”. Additionally, 

the two species P. barbiger and P. bilunatus could be assigned to the gibbosus group in our 

analyses. There were some discrepancies between molecular and morphological data with regard to 

the placements of P. psyche, P. serrulatae, and P. pulcher within the pacificus and the politus group, 

which is unsurprising as these groups comprise the species that are both the smallest and the 

morphologically most difficult to identify among North American Philanthus.  
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As suggested by Evans & O’Neill (1988), P. ventilabris is quite distinct in the phylogenetic analyses, 

but with close affinity to the zebratus group. P. albopilosus and P. lepidus could also not clearly be 

assigned to one of the four groups, but in our analyses the two species were positioned at the base 

of the pacificus/politus species complex. 
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Figure 1. Maximum-likelihood phylogeny of Philanthinae. Best maximum-likelihood tree obtained with RAxML 
v7.04, including 43 species of Philanthus, six species of the genus Trachypus, one species of each of the genera 
Philanthinus, Cerceris, Aphilanthops, and Clypeadon, two other Crabronid genera (Bembix and Bicyrtes) as well 
as Apis mellifera as outgroups. Values at the nodes represent ML bootstrap support values (obtained by a full 
non-parametric bootstrap search with 10000 iterations) and Bayesian posterior probabilities of the Bayesian 
analysis. The data set consisted of a partitioned 5040bp alignment including nucleotide sequences of six genes 
(wnt-1, 28s, ArgK, EF1a, LWRh and COI [excluding 3rd positions in the cds]). 
 

 

Earlier studies on Palearctic and African Philanthus species are scarce and less detailed (Arnold 

1925; de Beaumont 1949, 1951, 1961). Our phylogenetic analyses indicate that the rutilus and 

coarctatus groups proposed earlier (de Beaumont 1961; Gayubo 1991) should be combined. 

Furthermore, the triangulum group was extended by five more members, and the fuscipennis 

species group by four other species. 

 

 

Age of the symbiosis between beewolves and Streptomyces bacteria 

Model comparison in Tracer with pairwise Bayes factor analyses on the tree likelihood clearly 

revealed the relaxed uncorrelated lognormal model as most appropriate in comparison to the strict 

clock and the random local clock model. Comparing the analyses regarding partitioning, the 9-

partition data set was preferred over the unpartitioned data set in the Bayes factor analyses, but 

due to a trade off between computational power and time and comparable results of the analyses of 

both partitioning data sets regarding topology and branch lengths the unpartitioned data set was 

used for the final analysis. In the analyses where the root date was the only calibration point, the 

results for the estimated age of the symbiosis were similar to the analyses without root calibration. 

The same was true for the analyses with and without consideration of the alignment, indicating that 

the analysis was robust. The relaxed clock assumption that branches differ in their substitution rates 

was confirmed: with a value of 0.508 the coefficient of variation indicated a moderate rate variation 

(Drummond et al. 2007). The common ancestor of the Philanthinae that is supposed to live in 

symbiosis with Streptomyces bacteria was dated to 65 mya, with a 95% confidence interval of 48-

88 mya. 
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Table 3. Species groups according to this and earlier studies (only species investigated in this study are listed). 
Species differing from earlier species group classifications are highlighted in bold letters. 
 
 

 

 

 

 

 

 

 

 

 

THIS STUDY EVANS & O'NEILL 1988 THIS STUDY DE BEAUMONT  1961

rutilus group: rutilus group:

P. basilaris P. basilaris P. rutilus P. rutilus
P. zebratus P. zebratus P. pulcherrimus
P. sanbornii P. sanbornii coarctatus group:
P. bicinctus P. bicinctus P. coarctatus P. coarctatus
P. gloriosus P. gloriosus P. venustus P. venustus
P. solivagus P. pulchellus P. pulchellus (Gayubo 1991)

gibbosus group: gibbosus group:
P. barbatus P. barbatus P. triangulum P. triangulum
P. gibbosus P. gibbosus P. tr. diadema
P. crotoniphilus P. crotoniphilus P. spec (India)
P. barbiger P. basalis
P. bilunatus P. capensis

inversus group: P. loefflingi
P. crabroniformis P. crabroniformis

P. multimaculatus P. multimaculatus P. fuscipennis P. fuscipennis (Arnold 1925)

P. inversus P. inversus P. histrio
P. occidentalis P. occidentalis P. rugosus

P. melanderi
P. pacificus P. pacificus P. turneri
P. psyche P.pulcher
P. serrulatae P. barbiger

P. politus P. politus
P. parkeri P. parkeri
P. tarsatus P. tarsatus
P. pulcher P. psyche

P. serrulatae

P. ventilabris P. ventilabris
P. albopilosus P. albopilosus
P. lepidus P. lepidus

P. solivagus
P. bilunatus

triangulum group:

fuscipennis group:

zebratus group:

pacificus group:

politus group:

Other species:
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Figure 2. Dated phylogeny of the Philanthinae. Phylogenetic tree with the highest clade credibility resulting from 
BEAST analyses under the uncorrelated lognormal model, basing on the combined, unpartitioned 6-gene-data 
set. Node ages are shown in million years ago (mya) with their 95% HPD interval bars (equivalent to 95% 
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confidence intervals). Taxa with symbiotic Streptomyces bacteria in the antennae are highlighted with grey 
background, and an arrow indicates the reconstructed origin of the symbiosis. 
 

 

3.5 Discussion 

 

Phylogenetic relationships within Philanthinae 

In the present study, we provide the first molecular phylogeny of the Crabronid wasp subfamily 

Philanthinae based on specimens of 43 species of Philanthus, six species of Trachypus, and one 

species each from the genera Philanthinus, Cerceris, Aphilanthus, and Clypeadon, respectively. 

Various phylogenetic analyses with the concatenated dataset of about 5 kb from two mitochondrial 

and four nuclear genes as well as subsets of single genes consistently yielded the same phylogenetic 

relationships within and among genera. Our results confirm earlier findings of a monophyletic tribe 

Philanthini comprising the genera Philanthus, Trachypus, and Philanthinus (Alexander 1992), which 

is inconsistent with an earlier placement of the genus Philanthinus within the tribe Aphilanthopini 

(Bohart & Menke 1976). 

 

Interestingly, the results of this study also correspond with the suggestion of Alexander (1992) to 

combine the genera Trachypus and Philanthus into a single genus. Up to now, the two genera had 

been treated as separate genera (e.g. see Bohart & Menke 1976; Evans & O'Neill 1988; Pulawski 

2010), which was mainly based on two distinct morphological characters of Trachypus: the truncate 

distal antennal segment and the petiolate gaster. However, there are some described Southeast 

Asian Philanthus species with a petiolate gaster (Bohart & Menke 1976), so this character has 

evolved independently at least twice in the tribe Philanthini and therefore likely represents a 

comparatively simple transition from a non-petiolate state. Still, according to Bohart and Menke 

(1976), the antennal difference between Philanthus and Trachypus alone “seems to be adequate for 

generic separation”. However, the phylogenetic analyses of the present study agree with other 

authors who describe the monophyletic genus Trachypus as a group derived from the paraphyletic 

Philanthus (Alexander 1992; de Beaumont 1961). 

 

The division of the North American Philanthus species groups overall corresponded reasonably well 

with the classification of Evans & O’Neill (1988). There were some discrepancies between molecular 

and morphological data, but the main groups were recovered by both methods (Table 3). However, 

the molecular phylogeny allowed for more detailed classifications and for the assignment of species 

with ambiguous morphological characters to distinct species groups.  

 

The molecular phylogeny of the Philanthinae allows for some interesting speculations on the 

geographic origin of this group. According to Ohl & Engel (2007) and Engel (2001), bees and 

spheciform wasps most probably originated in the Southern hemisphere, as an analysis of the 

preferred habitats of basal taxa suggested semi-arid regions of Gondwana (Engel 2001). 

Additionally, the majority of very ancient bee lineages can be found in the southern hemisphere 

(Danforth 2007), and Danforth et al. (2006) trace the origin of the bees to Africa. Likewise, the rise 
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of angiosperms most probably occurred in Gondwana (Raven & Axelrod 1974; Taylor & Hickey 

1992), and their adaptive radiation is tightly interwoven with the evolution of their probably most 

important pollinators, the bees. The results of the present study suggest that the Philanthini – as 

predators of bees – have their origin in the Palearctic or Paleotropics, possibly in Africa, with the 

earliest branches in the trees consisting of the Palearctic genus Philanthinus and the African and 

Palearctic Philanthus species. All derived species, including those of Trachypus, are from the 

Americas.  

 

Following the molecular data contained in this study, the most probable scenario is that South 

America has most probably been colonized from Africa and then split into the North American 

Philanthus and the South American Trachypus clade. The exchange between Africa and South 

America has already been described for many plant (e.g. Morley 2000, 2003) and animal taxa (e.g. 

de Queiroz 2005; Rowe et al. 2010). These exchanges either were long-distance dispersal events or 

enabled by land bridges between Africa and South America. The Thulean bridge existed until about 

50 million years ago and is considered an important dispersal route for temperate taxa (Kuhlmann 

2009; Sanmartin et al. 2001; Tiffney 1985; Tiffney & Manchester 2001). The northern land bridge 

Beringia was usable for warm-adapted taxa during a later period in the Eocene with higher global 

temperatures (about 55–35 mya, Wolfe 1975) and might be another possibility for the colonization 

of the Americas. The colonization of South America also might have happenend by transoceanic 

dispersal events, which are known for a broad variety of different taxa (de Queiroz 2005), even for 

vertebrates (e.g. transatlantic dispersal in worm lizards, ca. 40 mya; Vidal et al. 2008). The 

exchange between South and North America probably occurred via land bridges, because already 

before the formation of the Panamanian Isthmus ca. 3 Mio years ago there had been land bridges 

between the Americas: A fragmented bridge including the proto Antilles existed during the Middle 

Eocene (Graham 2003; Pennington & Dick 2004) and a later, brief connection involving the 

submerged Aves ridge – a part of an extinct volcanic arc – in the Eocene-Oligocene boundary, fitting 

the time of the estimated splitt-off between Trachypus and the north American Philanthus clade (ca. 

31 mya, see Figure 2; Iturralde-Vincent & MacPhee 1999). Interestingly, the South Indian 

Philanthus species were interspersed among Asian and African taxa in our phylogeny, suggesting 

that the Indian subcontinent was colonized repeatedly from Africa (P. basalis and P. spec.) and from 

Asia (P. pulcherrimus).  

 

Age of the symbiosis between beewolves and Streptomyces bacteria 

Our analyses allow estimating the origin of the symbiosis between beewolves and protective 

Streptomyces bacteria. Earlier studies indicated that the symbionts probably occur in all species of 

Philanthus, Trachypus, and Philanthinus (the tribe Philanthini), but are likely absent from all other 

genera of Crabronid wasps (Kaltenpoth et al. 2006; Kaltenpoth et al. submitted). Based on our 

molecular phylogeny, the split of the Philanthini from the other tribes in the subfamily happened 

around 97 mya (95% confidence limits 74 and 122 mya), and the most recent common ancestor of 

the three genera in the Philanthini probably lived about 65 million years ago (95% confidence limits 

48 and 88 mya, respectively). Thus, the protective symbiosis between beewolves and Streptomyces 
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bacteria likely evolved 65-97 mya. Incidentally, this estimate for the age of the beewolf-

Streptomyces symbiosis overlaps with an earlier analysis by Kaltenpoth et al. (2006), who used DNA 

sequences of the Streptomyces symbionts and estimated substitution rates to date the symbiosis 

back to about 26-67 mya. However, the latter estimate was based on the erroneous assumptions 

that the symbiosis is limited to the genus Philanthus and that hosts and symbionts have co-

diversified (but see Kaltenpoth et al. 2010a; Kaltenpoth et al. submitted). In comparison with other 

insect-bacteria symbioses for which the evolutionary origin has been dated so far, the beewolf-

Streptomyces association is of relatively recent origin: the symbiosis of aphids and their 

endosymbiotic Buchnera bacteria has been estimated to be 160-280 million years old (Moran et al. 

1993) and the origin of the symbiotic alliance between cockroaches or termites and Flavobacterium-

Bacteroides bacteria dates back 135-280 million years (Bandi et al. 1995). The associations between 

cicadas and their endosymbiotic bacteria probably evolved in the period from 170 to more than 270 

million years ago (Gosalbes et al. 2010). However, all of these symbioses represent intimate and 

obligate associations between insects and intracellular symbionts that are strictly vertically 

transmitted. By contrast, the evolutionary histories are likely to be different for extracellular 

symbionts that are transmitted outside of the host’s body and can also experience horizontal 

transfer (Kaltenpoth et al. 2010a; Kaltenpoth et al. submitted). 

 

To date, only two protective symbioses that are similar to the beewolf-Streptomyces association 

have been described, and both involve fungus-farming insects: the symbiosis of leaf-cutter ants 

with Pseudonocardia bacteria (Currie et al. 1999), and the association between bark beetles and 

Streptomyces (Scott et al. 2008). While little is known about the intimacy and evolutionary stability 

of the association between bark beetles and Streptomyces, the leaf-cutter ants and their protective 

bacterial symbionts have recently received considerable attention. The ants’ fungus gardens are 

defended against the parasitic fungus Escovopsis by antibiotic secretions of bacteria belonging to 

the genera Pseudonocardia, Streptomyces, and, possibly, Amycolatopsis (Barke et al. 2010; Currie 

et al. 1999; Haeder et al. 2009; Oh et al. 2009a; Schoenian et al. 2011; Sen et al. 2009). Although 

at least the Pseudonocardia symbionts are transmitted vertically and there is some degree of 

specificity between hosts and symbionts, horizontal transmission and/or de novo uptake of 

symbionts from the environment appears to happen frequently (Cafaro et al. 2011). The presence of 

symbiotic bacteria on a leaf-cutter ant from Dominican amber provides a minimum age estimate of 

15-20 mya for the age of the ant-Actinobacteria symbiosis (mentioned in Cafaro et al. 2011). Since 

the original form of ant agriculture by growing fungi for nutrition evolved about 50 million years ago 

(Schultz & Brady 2008), the association with bacteria is probably of similar or more recent 

evolutionary origin. Thus, this symbiosis appears to be slightly younger than the association 

between Philanthini and Streptomyces bacteria. 
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Evolution of the symbiosis 

The early evolution of the beewolf-Streptomyces symbiosis remains enigmatic. Since the bacteria-

containing antennal gland secretion also provides a directional information to the beewolf larva that 

is later necessary for successful emergence (Strohm & Linsenmair 1995), previous studies 

suggested that the antennal gland reservoirs evolved for this purpose (Strohm & Linsenmair 1995) 

and that the glands were secondarily invaded by the symbiotic bacteria (Goettler et al. 2007). 

However, the lack of basal Philanthini with morphologically simple bacteria-free gland reservoirs is 

in favour of a tight link between the evolution of the gland reservoirs and the origin of the symbiosis 

(Kaltenpoth et al. submitted). Interestingly, the symbiont cultivation organs in beewolf antennae are 

more complex than the cuticular crypts of attine ants (Currie et al. 2006). Possibly, the availability 

of alternative defence mechanisms in the social leaf-cutter ants by means of metapleural gland 

secretions (Yek & Mueller 2010) or hygienic behaviour (Currie & Stuart 2001) reduced the selection 

pressure to increase the investments in the symbiotic association with Pseudonocardia. Because the 

solitary Philanthini have no further contact with the developing brood after oviposition, the 

protective mechanisms must be long-lasting and more efficient than in attine ants. Thus, symbiotic 

bacteria are ideal allies to combat potential pathogens of the beewolf offspring during the long 

phase of hibernation in the soil, and increased investment in cultivation of such defensive symbionts 

is likely to provide a selective advantage. As these traits should be adaptive for other ground-

nesting Hymenoptera as well, it seems unlikely that symbiotic interactions with Actinobacteria are 

restricted to beewolves, leaf-cutter ants and pine beetles. Future research on the microbial 

communities associated with ground-dwelling insects will undoubtedly yield fascinating insights into 

possible defensive alliances with bacteria. 
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Suppl. Figure 1. Phylogenetic relationships in Philanthus inferred from maximum parsimony analysis (PAUP 
v4.0 beta) as indicated by a 50% majority rule consensus tree of 2 trees. Numbers represent bootsrap values 
(1000 replicates). The data set consisted of a partitioned 5040 bp alignment, including DNA sequences of six 
genes (wnt-1, 28s, ArgK, EF1α , LWRh and COI (excluding 3d position in the cds). 
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Suppl. Table 1: Information on the specimens used in this study, including collection localities and GenBank 
accession numbers for each of the genes (wnt-1, LWRh, ArgK, EF1a, 28s, COI; - : no sequence data available 
due to problems with PCR amplification, NYK = not yet known)      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collection Gen Bank Nr

Species Sample no. locality Wingless Opsin EF1a 28s ArgK COI

P. albopilosus USA-E56 USA JN674198 NYK NYK JN674251 NYK NYK

P. barbatus USA-E18 USA JN674199 NYK NYK JN674252 NYK NYK

P. barbiger UT-E15 USA JN674200 NYK NYK JN674253 NYK NYK

P. basalis IN-E035 India JN674201 NYK NYK JN674254 NYK NYK

P. basilaris UT-E6 USA JN74202 NYK NYK JN674255 NYK NYK

P. bicinctus USA-E29 USA JN74203 NYK NYK JN674256 NYK -

P. bilunatus USA-BS34 USA JN74204 NYK NYK JN674257 NYK -

P. capensis SA-E62 South Africa JN74205 NYK NYK JN674258 NYK NYK

P. coarctatus MO-1 Oman JN74206 NYK NYK JN674259 NYK -

P. coronatus m1 Germany JN74207 NYK NYK JN674260 NYK NYK

P. crabroniformis USA-E10 USA JN74208 NYK NYK JN674261 NYK NYK

P. crotoniphilus USA-E39 USA JN74209 NYK NYK JN674262 NYK -

P. fuscipennis SA-E69 South Africa JN74210 NYK NYK JN674263 NYK NYK

P. gibbosus USA-E188 USA JN74211 NYK NYK JN674264 NYK -

P. gloriosus USA-E60f USA JN74212 NYK NYK JN674265 NYK NYK

P. histrio SA-E58 South Africa JN74213 NYK NYK JN674266 NYK NYK

P. inversus USA-E53b USA JN74214 NYK NYK JN674267 NYK -

P. lepidus CAN-E1 Canada JN74215 NYK NYK JN674268 NYK -

P. loefflingi SA-E13 South Africa JN74216 NYK NYK JN674269 NYK NYK

P. melanderi SA-E79 South Africa JN74217 NYK NYK JN674270 NYK NYK

P. multimaculatus UT-E76 USA JN74218 NYK NYK JN674271 NYK NYK

P. occidentalis CAL-Eth4 USA JN74219 NYK NYK JN674272 NYK NYK

P. pacificus USA-E19 USA JN74220 NYK NYK JN674273 NYK NYK

P. parkeri UT-E45 USA JN74221 NYK NYK JN674274 NYK NYK

P. politus JS-32a USA JN74222 NYK NYK JN674275 NYK -

P. psyche UT-E154/ *JS-A USA JN74223 NYK NYK * JN674276 NYK NYK

P. pulchellus SP-001 Spain JN74224 NYK NYK JN674277 NYK NYK

P. pulcher USA-E8b USA JN74225 NYK NYK JN674278 NYK NYK

P. pulcherrimus IN-E064 India JN74226 NYK NYK JN674279 NYK NYK

P. rugosus SA-E23 South Africa JN74227 NYK NYK JN674280 NYK NYK

P. rutilus JS-32 - JN74228 NYK NYK JN674281 NYK -

P. sanbornii m28 USA JN74229 NYK NYK JN674282 NYK NYK

P. serrulatae JS-63 USA JN74230 NYK NYK JN674283 - -

P. solivagus USA-BS36 USA JN74231 NYK NYK JN674284 NYK -

P. spec IN-E010 India JN74232 NYK NYK JN674285 NYK NYK

P. spec CAL-Eth14 USA JN74233 NYK NYK JN674286 NYK -

P. tarsatus JS-44 USA JN74234 NYK NYK JN674287 NYK -

P. triangulum N14/ *JS-B Germany JN74235 NYK NYK * JN674288 NYK NYK

P. triangulum diadema SA-E8 South Africa JN74236 NYK NYK JN674289 NYK NYK

P. turneri SA-E116 South Africa JN74237 NYK NYK JN674290 NYK NYK

P. ventilabris USA-E50 USA JN74238 NYK NYK JN674291 NYK NYK

P. venustus Ph02 Greece JN74239 NYK NYK JN674292 NYK -

P. zebratus USA-E25 USA JN74240 NYK NYK JN674293 NYK NYK

Trachypus boharti BR-002 Brasil JN74250 NYK NYK JN674294 NYK NYK

Trachypus denticollis JS-11 Chile JN74241 NYK NYK JN674295 NYK -

Trachypus elongatus BR-E032 Brasil JN74242 NYK NYK JN674296 NYK NYK

Trachypus flavidus BR-E067 Brasil JN74243 NYK NYK JN674297 NYK NYK

Trachypus patagonensis BR-E092 Brasil JN74244 NYK NYK JN674298 NYK NYK

Trachypus spec JS-52 Chile JN74245 NYK NYK JN674299 NYK -

Philanthinus quattuordecimp. TU-EY-E027 Turkey JN74246 NYK NYK JN674300 NYK NYK

Aphilanthops foxi CAL-Eth10 USA JN74247 NYK NYK JN674301 NYK NYK

Bembix amoena/ *B. troglodytes - - EU367331.1 - EU367212.1 EU367154.1 - EF203767.1 *

Bicyrtes ventralis - - - DQ116701.1 AY585161 AY654458.1 - -

Cerceris rybiensis/Eucerceris *Cerc1/**Cerc2/***JS-C USA * JN74248 NYK ** NYK *** AY654460.1 NYK ** -

Clypeadon laticinctus UT-E177/ *BS32a/ **JS-D USA JN74249 NYK * NYK ** JN674302 NYK NYK

Apis mellifera - - AY703618.1 U26026.1 NM_001014993.1 AY703551.1 NM_001011603.1 AF214668.1
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4.1 Abstract 

Pheromones play an important role for courtship and mating in many insect species, and they are 

shaped by a complex interaction of genetic and environmental factors. Developmental temperature 

is known to have a strong influence on adult life history, morphology, and physiology, but little is 

known about its effect on pheromone characteristics. In the present study, the influence of 

temperature during larval development on the amount and composition of the complex marking 

pheromone from the cephalic glands of adult male European beewolves (Philanthus triangulum, 

Hymenoptera, Crabronidae) was investigated. Additionally, we examined temperature effects on 

several life-history traits. European beewolf larvae were reared at three different constant 

temperatures (20°C, 25°C, and 30°C). Males reared at 20°C showed longer development times 

and higher mortality, suggesting that low temperatures constitute stressful conditions for 

developing larvae. After eclosion, the amount and composition of the scent marking secretion of 

the adult males was analyzed by coupled gas chromatography – mass spectrometry. Males that 

had been reared at 20°C had significantly less secretion than individuals reared under warmer 

conditions (25°C and 30°C). Furthermore, larval rearing temperature had a significant effect on the 

composition of the adult males’ pheromone gland content, with warmer rearing conditions leading 

to higher relative amounts of compounds with high molecular weight. Our results show that the 

temperature during larval development significantly affects the amount and composition of the 

content of the male beewolf pheromone glands, probably due to physiological constraints and 

competing processes for limited energetic resources. Thus, the pheromone gland content may 

contain information on developmental conditions of male beewolves, which may have 

consequences for female mate choice decisions and male reproductive success. 
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4.2 Introduction 

In many organisms, communication between mating partners is mediated by pheromones (e.g. 

Johansson & Jones 2007; e.g. Jones & Hamilton 1998). These chemical signals do not only 

facilitate the localization and identification of conspecific individuals (Johansson & Jones 2007), 

they may also contain information on the morphological and/or physiological condition of the 

potential mating partner, e.g. size, age, symmetry, fertility, or immunocompetence (Jones et al. 

1998; Marco et al. 1998; Martín & López 2000; Reusch et al. 2001). This information may provide 

a potential partner with cues for an adaptive mate choice. Mating with a high-quality partner might 

provide direct (e.g. reduced risk of parasite infection, higher chances of receiving fertile gametes, 

defence, brood care) and/or indirect benefits (e.g. “good genes” for the offspring) to choosy 

individuals (Andersson & Iwasa 1996; Eisner & Meinwald 1995; Penn & Potts 1998; Wagner & 

Harper 2003).  

 

For a number of species, a genetic basis for the variation in pheromone characteristics has been 

shown (Collins & Cardé 1985; Herzner et al. 2006; Roelofs & Rooney 2003; Sappington & Taylor 

1990a; Sheck et al. 2006). Some authors also found that the amount and/or composition of sex 

pheromones is influenced by environmental factors (Clark et al. 1997; Moore 1997; Sappington & 

Taylor 1990b). However, most of these studies investigated the effect of environmental conditions 

on pheromone characteristics during the adult stage. The impact of conditions during larval 

development has as yet received little attention (but see e.g. Conner et al. 1990; Ono 1993; 

Tillman et al. 1999).  

 

Temperature is one of the most important environmental factors since it influences many 

morphological, physiological, and life-history traits, e.g. size, fecundity, and development time 

(Atkinson 1994; Blanckenhorn 1997; Nabeta et al. 2005; Ratte 1984). In some adult Lepidoptera, 

ambient temperature has an immediate impact on pheromone amount and/or composition 

probably by directly affecting biochemical pathways (Ono 1994; Raina 2003). In potato tuberworm 

moths, different rearing temperatures during larval development resulted in changes in the amount 

and composition of the females’ sex pheromone (Ono 1993).  

 

The effect of environmental conditions on pheromone composition may reduce the efficiency of 

communication processes or even result in the loss of signal function. Thus, a certain degree of 

developmental stability has to be expected to retain the signal’s information content for 

conspecifics (Møller & Swaddle 1997; Paterson 1985). On the other hand, variation in pheromone 

composition due to environmental effects might also increase the information content of a signal. 

Assuming that a male pheromone varies in response to different environmental conditions in a 

defined way and that these changes have some fitness implications, a female might be able to 

assess some indicator for quality from pheromone composition. For example, if the temperature 

during development depends on decisions and/ or competitive abilities of a male’s mother (e.g. by 

choosing and defending suitable oviposition or nesting sites), a male that developed at optimal 

temperatures might be more attractive to females. If these maternal characteristics are heritable, 
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choosing a son of such a female as mating partner should be beneficial for a female (Andersson 

1994; Møller & Alatalo 1999). Here we investigated one precondition for this scenario and asked 

whether developmental temperatures affect quantity and composition of the male pheromone of a 

hymenopteran species, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae). 

 

European beewolves are solitary digger wasps that live in warm and sandy areas (Strohm & 

Linsenmair 1995). Females excavate a nest burrow with several separate brood cells, each of 

which is provisioned with one to five paralysed honeybees (Apis mellifera) as food for the 

developing larva (Strohm & Linsenmair 1995, 1997, 2000, 2001). To prevent fungal infestation in 

the warm and humid brood cell, the prey is preserved by the females by embalmment with a gland 

secretion (Herzner & Strohm 2007). Moreover, beewolf females provide the brood cell with a 

whitish substance that originates from specialized antennal glands (Göttler et al. 2007) and that 

contains symbiotic bacteria which protect the cocoon from fungal infestation (Kaltenpoth et al. 

2005, 2006).  

 

Male beewolves establish and defend small territories (about 0.25 m2) in the vicinity of female nest 

aggregations (Simon-Thomas & Poorter 1972; Strohm 1995). They scent-mark these territories 

with a pheromone from cephalic glands to attract receptive females (Evans & O'Neill 1988; Schmitt 

et al. 2003; Simon-Thomas & Poorter 1972; Strohm 1995; Strohm & Lechner 2000). Territories of 

different males are often aggregated, thereby forming a lek that might facilitate female choice on 

the basis of pheromone quality and quantity of the competing males (Evans & O'Neill 1988; 

Strohm and Kroiss, submitted; Simon-Thomas & Poorter 1972). Females approach these territories 

from the downwind side in a zig-zagging flight pattern, probably orienting towards the windborne 

pheromone (Evans & O'Neill 1988). Since the copulation is not preceded by any kind of visual 

display, female choice appears to be, at least predominately, based on information obtained from 

the male’s secretion (E. Strohm & M. Kaltenpoth, unpubl. obs.). Although the components are 

rather long chained and, thus, intuitively seem not to be volatile, we have ample evidence that at 

least most of the compounds are volatile enough to be detected by olfaction (Herzner et al. 2005; 

Schmitt et al. 2007), i.e. without contact. There is no conspicuous antennation of the territory by 

females, and there is no visual courtship by males. Females simply alight in a territory, the male 

approaches her, sits on her back and inserts its genitalia. The scent marking secretion consists of 

at least 55 components, including long-chain aliphatic hydrocarbons and some compounds with 

functional groups (Kroiss et al. 2006; Schmitt et al. 2003). These components are also found in 

extracts from male territories (E. Strohm, T. Schmitt, G. Herzner, J. Kroiss and M. Kaltenpoth, 

unpubl. data). It is already known, that the amount and composition of the male marking 

pheromone is influenced by family affiliation (Herzner et al. 2006; Kaltenpoth et al. 2007), age 

(Kaltenpoth & Strohm 2006), and geographical origin (Kaltenpoth et al. 2007).  

 

We reared male European beewolves at different temperatures and, using coupled gas 

chromatography and mass spectrometry, analysed pheromone quantity and composition of the 

mature males as well as several life-history traits (survival probability of the larva, development 
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time, and adult weight). Moreover, it was assessed whether there were predictable trends in the 

temperature dependent variation of the pheromone composition regarding the chain length of the 

individual pheromone substances. The results are discussed with regard to possible physiological 

and ecological constraints and their relevance for mate choice. 

 
 
 
 
4.3 Materials and methods 

 

Specimens and rearing conditions  

Female European beewolves were taken from a laboratory population that represented the F1 

generation of females caught from populations in the vicinity of Würzburg (Germany). They were 

kept individually in observation cages which consisted of a flight compartment and an attached 

nesting area where the females could establish their nests (see Strohm & Linsenmair 1995). The 

cages were kept in a greenhouse at an average temperature of 25°C (with a range from 20°C to 

30°C caused by external conditions), and an average humidity of 45% (range: 30-80 %), with 

additional illumination of the flight cage by neon lamps for 14 hours a day. The females were 

provided with honey and live honeybees ad libitum, and each cage was checked several times each 

day for new brood cells. The content of brood cells with two bees was transferred to artificial brood 

cells in Petri dishes: Each Petri dish was filled with a fixed amount (130 g) of autoclaved sand, and 

an artificial, cylindrical brood cell with a standardized diameter of about 2.6 cm and a depth of 1 

cm was formed. The paralyzed bees with the beewolf egg as well as the white antennal gland 

secretion which contains the symbiotic bacteria (Kaltenpoth et al. 2005, 2006) were transferred to 

the artificial brood cell. The humidity in the brood cell was kept constant at 4% H2O (w/w) by 

weighing brood cells every other day and replacing evaporated water through four small holes in 

the lid of the Petri dish.  

 

Each brood cell was randomly assigned to one temperature treatment. Experimental brood cells 

were stored in three conditioning cabinets (ATS1373 So, Ehret GmbH) at 20°C, 25°C, and 30°C, 

respectively. The eggs and larvae respectively were examined every day, and life-history 

parameters were recorded (hatching date, cocoon spinning, eclosion from the cocoon, occurrence 

of mould infestations, and death of the larva). 

 

Each emerged adult male was weighed (Mettler AE 160; +/- 0.1g), individually marked on the 

thorax with dots of acrylic paint and released into a climate chamber (2.4 m x 1.8 m x 2.1 m, 

25/20°C day/night and 12h/12h light/dark cycles) containing sand-filled buckets (for digging 

sleeping burrows) and provided with honey ad libitum. Since P. triangulum males need about 5-9 

days to develop the complete pheromone blend (Kaltenpoth & Strohm 2006), they were left in the 

climate chamber until the age of 12 days. Then they were caught and transferred into small 

polystyrol vials (height: 80 mm, diameter: 35 mm) provided with moist sand and honey for 

another two days. During this time, males that had depleted their pheromone in the climate 
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chamber by scent marking could replenish their pheromone glands. Finally, the males were 

anesthetized with CO2, killed by freezing and kept at -30°C until chemical analysis. 

 

Chemical analysis  

The frozen males were thawed, decapitated and their heads were incised on both sides below the 

eyes to open up the postpharyngeal gland, which is the storage organ of the male sex pheromone 

(Herzner et al. 2007; Kroiss et al. 2006). Heads were placed individually in glass vials (1.5 ml), 

and 20 µl of a solution of 1 µg/µl octadecane in hexane (equivalent to a final amount of 20 µg of 

octadecane) was added as an internal standard to each vial to allow absolute quantification of the 

pheromone. The heads were then submerged in approximately 1 ml of distilled hexane, and the 

gland contents were extracted for four hours. The extracts were immediately analyzed by coupled 

capillary gas chromatography-mass spectrometry (GC-MS) with an Agilent 6890N Series gas 

chromatograph (Agilent Technologies, Böblingen, Germany) coupled to an Agilent 5973 mass 

selective detector. The GC was equipped with a DB-5ms+ fused silica capillary column (J&W, 30 m 

x 0.25 mm ID; df = 0.25 µm; temperature program: from 60°C to 300°C at 5°C/min, held 

constant for 1 min at 60°C and for 10 min at 300°C). Helium was used as the carrier gas with a 

constant flow of 1 ml/min. A split/splitless injector (250°C) was used with the purge valve opened 

after 60 sec. The electron impact mass spectra (EI-MS) were recorded with an ionization voltage of 

70 eV, a source temperature of 230°C and an interface temperature of 315°C. Since preliminary 

analyses had revealed that the total amount of chemicals in the sample has an effect on the 

detection and quantification of certain components, samples in which the concentration of the 

gland extract was either too high (overlapping peaks) or too low (with compounds below detection 

threshold) were rerun after adjusting the pheromone concentration by addition or evaporation of 

hexane. 

 

In the pheromone gland extracts, 21 components could be reliably detected in all samples, and 

their peaks were manually integrated with MSD ChemStation software (Agilent Technologies). The 

substances were identified by comparison of mass spectra and retention times with earlier analyses 

(Kroiss et al. 2006; Schmitt et al. 2003). Not all substances described as components of the 

pheromone by Kroiss et al. (2006) could be detected due to the low concentrations of the gland 

content extracted from single males. The peaks of (Z)-11-eicosen-1-ol and (Z)-9-tricosene were 

not fully separated in all chromatograms and were therefore pooled and treated as one peak for 

the statistical analyses. Because of the by far higher eicosenol fraction (Schmitt et al. 2003) the 

peak is labelled as “eicosenol” in the following. This procedure is conservative with regard to the 

hypotheses tested. For each sample, the total peak area was standardized to 100%, and the 

relative amount of each peak was calculated. Since the relative peak areas represent compositional 

data, they were transformed to logcontrasts prior to statistical analyses (Aitchison 1986). Using 

the octadecane peak as an internal standard, the total amount of the gland content was estimated. 
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Statistical analysis 

The influence of the rearing temperature on development time and adult weight was analyzed by 

Kruskal-Wallis tests. χ2-tests were used to evaluate the survival rate, and analyses of variance and 

covariance (with adult weight as the covariate) were conducted to assess the influence of 

temperature on the quantity of the pheromone gland content (including post hoc tests with 

Scheffe's multiple comparisons). Tests were calculated using BIAS 8.1 and SPSS 11.0. 

 

Multivariate analyses were conducted to test for differences in the chemical profiles of males 

reared at different temperatures: The peaks were subjected to a principal component analysis (PCA 

with varimax rotation, principal components with eigenvalues > 1 were included in the subsequent 

analyses) to reduce the number of describing variables. The extracted PCA factors were then 

subjected to a discriminant analysis (DA) to assess whether males confronted with different rearing 

temperatures exhibit differences in their pheromone profiles. To investigate the influence of the 

rearing temperature on individual components of the pheromone gland, a multivariate analysis of 

variance (MANOVA) was conducted. Additionally, a correlation analysis was used to test for an 

influence of temperature on the relative amounts of the substances depending on molecule size 

(chain lengths or molecular weights respectively). SPSS 11.0 was used for the calculation of all 

tests. 

 

Earlier studies revealed a distinct chemical dimorphism in the pheromone blend of P. triangulum 

males (Kroiss et al. 2006), with either Z-(9)-pentacosene (C25-type) or Z-(9)-heptacosene 

(C25/C27-type) as the major component. Therefore, all analyses on the composition of the 

pheromone gland extracts were conducted with the data of the C25-chemotype only, in addition to 

the analysis including both chemotypes. The sample size of C27-type individuals was too small to 

allow separate analyses. Since the analyses including both types and those including only C25-type 

males yielded qualitatively identical results, only the data based on the complete dataset are 

presented here. 

 

 

4.4 Results 

 

Life history traits 

Development time of males differed significantly between temperature groups (Kruskal-Wallis test, 

H = 39.7, df = 2, p < 0.001; Figure 1). On average, males reared at 30°C needed 20 days from 

the egg stage until eclosion from the cocoon, whereas males reared at 20°C had just started 

cocoon spinning at that point of time (Q10 value of average development times = 3.33). Male adult 

weight was not significantly affected by rearing temperature (Kruskal-Wallis test, H = 0.441, df = 

2, p = 0.802). Survival probability of developing males, however, was strongly influenced by 

rearing temperature (contingency test, χ2 = 9.24, p = 0.01). Males reared at 20°C had a 

significantly higher mortality rate (74%) than males in any of the other two temperature groups 
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(25°C: 39% mortality, 30°C: 43% mortality; pairwise comparisons: 20°C versus 25°C: χ2 = 7.435, 

p = 0.006; 20°C versus 30°C: χ2 = 4.795, p = 0.029, 25°C versus 30°C: χ2 = 0.015, p = 0.904).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure1. Median development time (oviposition to eclosion of imago) of beewolf males at different rearing 
temperatures (N20°C = 7, N25°C = 24, N30°C = 17; ** significant at p < 0.01, *** significant at p < 0.001). Bold 
lines represent medians, boxes comprise the interquartile range, and whiskers indicate minimum and maximum 
values, except outliers, these are represented by circles. 
 
 
 
 
Quantity of the pheromone gland content 

The total amount of the content of the pheromone gland from male heads ranged from 165 to 659 

µg (mean ± SD = 387 ± 125 µg). The temperature during larval development had a significant 

influence on the quantity of marking pheromone of adult males (ANOVA, F2,40 = 4.86, p = 0.013, N 

= 43). Since body weight might be a confounding factor for the amount of gland content 

(Pearson’s regression, regression coefficient r = 0.354; p = 0.020), we also conducted an analysis 

of covariance with body weight as covariate, but the temperature effect persisted (ANCOVA; F2,39 = 

4.189, p = 0.022, N = 43): Adult males reared at 20°C had significantly less marking pheromone 

than males reared at either 25°C or 30°C (Scheffe's multiple comparisons, p < 0.05; Figure 2).  
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Figure2. Absolute marking pheromone amount (in µg) of adult beewolf males reared at different temperatures 
(N20°C = 7, N25°C = 22, N30°C = 14; * significant at p < 0.05). Bold lines represent medians, boxes comprise the 
interquartile range, and whiskers indicate minimum and maximum values, except outliers, these are 
represented by circles. 

 
 
 
Composition of the pheromone gland content 

In the extracts of male beewolf heads, 21 compounds were found in all samples and were, thus, 

included in the analysis (Table 1), with (Z)-11-eicosen-1-ol (including minor amounts of (Z)-9-

tricosene) constituting the component with by far the highest relative amount (mean ± SD = 61.21 

± 3.83 %). The PCA produced five principal components with eigenvalues larger than 1 

(eigenvalues: 5.8, 3.8, 3.5, 2.1, 1.5), explaining 79.9% of the total variance. The DA on these 

principal components significantly separated the three temperature groups (Wilks λ = 0.541, χ2 = 

24.3, df = 4, p < 0.001, N = 43; Figure 3). Between 57 and 64% (on average 60.5%) of the males 

were correctly assigned to the temperature treatment by the DA - only 33% correct classifications 

would be expected by chance. 
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Figure 3. Discriminant analysis of the marking pheromone composition of males with different rearing 

temperatures (squares: 20°C, N = 7; circles: 25°C, N = 22; triangles: 30°C, N = 14). 

 

 

A multivariate analysis of variance (MANOVA) was conducted with the 21 components of the 

pheromone gland extracts to elucidate the contribution of the individual components of the 

pheromone blend to the differences between rearing temperatures (Table 1). Since several 

components differ significantly in their relative amount between the two chemotypes (Kroiss et al. 

2006), only males of the C25-type (N = 82) were included in this analysis. The MANOVA revealed a 

significant temperature effect on the composition of the marking pheromone (p = 0.035, Pillai’s 

trace = 1.453, F = 1.896). Ten of the 21 components (five with and five without functional groups) 

differed significantly in their relative amounts among temperature groups (Table 1).  

 

To test whether the temperature dependent changes in pheromone composition show a trend with 

regard to the size of the molecules, a correlation analysis of the molecular weight of each 

component and the ratio of its relative amounts at 20°C and 30°C was conducted (Figure 4). The 

analysis showed a significant negative correlation (Pearson correlation, correlation coefficient r = -

0.67; p = 0.001). Thus, males reared at a low temperature (20°C) exhibited significantly higher 

relative amounts of components with low molecular weights, while the blend of males reared at a 

high temperature (30°C) contained higher amounts of the hydrocarbons with high molecular 
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weights. The same effect was found if the hydrocarbon chain length (number of C atoms) was used 

instead of the molecular weights (Pearson correlation, correlation coefficient r = -0.72; p < 0.001).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Correlation between the molecular weight of each component and the ratio of its mean relative 
amounts at 20°C and 30°C. 
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Table 1: Compounds of the males' scent marking secretion. Given are retention indices, length of C-backbone, 
molecular weight (MW), and the relative amount (mean values +/- SD) of each component. The results of the 
MANOVA of the effect of larval rearing temperature are shown for all blend components (C25-type males only, 
N = 82). Significant differences among temperature groups are highlighted in bold. 

 
 
 
4.5 Discussion 

 

Life history traits 

Larvae reared under higher ambient temperatures exhibited significantly shorter development 

times and lower mortalities than those kept under low-temperature conditions. Such negative 

correlations between temperature and development time have been described for numerous insect 

species (Ratte 1984) and have also been found in earlier studies on European beewolves (Strohm 

2000). This effect is generally ascribed to the temperature-dependence of basal biochemical 

processes (Schmidt-Nielsen 1999). The temperature tolerance of an organism follows an optimum 

curve (Ratte 1984; Schmidt-Nielsen 1999) and deviations from the ideal temperature range lead to 

developmental stress or can even be lethal. Generally, a short development time is advantageous, 

because it might reduce the mortality risk in the vulnerable larval stage (Sibly & Calow 1986). 

Selection for a fast development is likely to be particularly strong in beewolves, because the larvae 

are exposed to a high density of pathogenic microorganisms in their subterranean brood cells and, 

thus, face a high risk of bacterial or fungal infestation (Herzner & Strohm 2007; Kaltenpoth et al. 

2005; Strohm & Linsenmair 1998, 2001). To reduce larval development times and enhance the 

survival probability of the offspring, P. triangulum females in Central Europe strongly prefer areas 

Retention Length of MW
index C-backbone  (g/mol) Mean SD F p

(S )-2,3-Dihydrofarnesoic acid 1767 18 238 4.92 3.31 2.249 0.121

(Z )-9-Octadecen-1-ol 2061 18 268 0.35 0.18 8.691 0.001
(Z )-10-Nonadecen-2-one 2079 19 280 6.37 0.93 4.615 0.017

1-Octadecanol 2085 18 270 2.43 0.70 10.722 <0.001

Heneicosane 2100 21 296 0.17 0.05 0.210 0.811

Unidentified substance 2168 22 308 0.15 0.06 1.322 0.280

Docosane 2200 22 310 0.12 0.05 4.238 0.023
(Z )-11-Eicosen-1-ol+(Z )-9-Tricosene 2271 20 296 61.21 3.83 4.014 0.027

1-Eicosanol 2287 20 298 2.69 0.39 15.639 <0.001

Tricosane 2300 23 324 4.34 0.72 1.252 0.299

(Z )-9-Tetracosene 2372 24 336 0.67 0.22 3.361 0.047

Tetracosane 2400 24 338 0.78 0.25 0.830 0.444

(Z )-9-Pentacosene 2477 25 350 12.06 3.21 2.192 0.127

Pentacosane 2500 25 352 1.49 0.29 3.713 0.035
(Z )-9-Hexacosene 2573 26 364 0.10 0.09 15.217 <0.001

Hexacosane 2600 26 366 0.04 0.02 2.713 0.081

 ∆-16-Pentacosen-8-one 2656 25 363 0.10 0.05 0.452 0.640

(Z )-9-Heptacosene 2674 27 378 0.91 1.51 13.082 <0.001

Heptacosane 2700 27 380 0.70 0.15 0.951 0.396

Nonacosane 2900 29 408 0.35 0.08 0.570 0.571

Hentriacontane 3100 31 436 0.06 0.02 0.318 0.730

Relative amount (%)

Compound name

MANOVA
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with favourable climatic conditions, i.e. warm places with high solar irradiation, for nesting (Olberg 

1953; Rathmayer 1962). Additionally, short larval development times may allow the emergence of 

a second generation in one flight season.  

 

Amount of pheromone gland content  

Our results show that low larval rearing temperatures cause a reduction in the quantity of 

pheromone gland contents of adult European beewolf males. Males reared at 20°C possessed 

significantly less marking pheromone than those reared at 25°C and 30°C, and this effect was not 

caused by differences in body size. Suboptimal developmental conditions probably lead to 

competing processes for limited energetic resources causing a higher investment into traits 

important for current survival (like e.g. immunocompetence) at the expense of future reproductive 

traits (Buchanan et al. 2003; Kemp & Rutowski 2007; Landete-Castillejos et al. 2002; Ratte 1984; 

Zwaan et al. 1992). For example, the number of pheromone gland cells (Göttler & Strohm 2008) 

could be reduced when males are confronted with developmental stress, resulting in a reduced 

pheromone production.  

 

In European beewolves, the characteristics of the male sex pheromone and the gland morphology 

suggest that pheromone quantity probably is a crucial factor for male reproductive success: First, 

regarding the huge amount of gland content applied to the territory the pheromone constitutes an 

exaggerated signal targeted at the females’ sensory sensitivity (Herzner et al. 2005). The 

conspicuousness of a male territory for females is most probably positively correlated with the 

amount of secretion applied to the territory. Thus, sexual selection may promote a high rate of 

pheromone production. Second, the gland tissues involved in the production and the storage of the 

pheromone are greatly enlarged, and details of their morphology suggest a high level of metabolic 

activity (Göttler & Strohm 2008). There is evidence that territory owners deplete most of their 

marking pheromone over their daily activity period and that they replenish the stores over night 

(E. Strohm unpubl. data). Thus, the amount of gland content available to a male probably limits its 

ability to scent mark its territory and to attract receptive females. Most substances applied to the 

substrate are quite long-lasting (J. Kroiss, unpubl. data), but independent of the degree of 

volatilization of different components males that are able to produce larger amounts of pheromone 

within a given time probably have a selective advantage because the more pheromone is applied 

the more conspicuous or attractive will it be for females. Correlations between pheromone 

production and male reproductive success have been shown for several other insect taxa (e.g. 

Droney & Hock 1998; e.g. Löfstedt et al. 1990).  

 

Composition of the pheromone gland content 

There was a significant influence of the larval rearing temperature on the composition of the 

pheromone gland content of adult male European beewolves. These changes in composition were 

gradual and there was no loss or addition of components. Although there was a broad overlap 

between the blends of males reared at 20°C, 25°C, and 30°C, the three groups were significantly 

separated by a discriminant analysis (Figure 3). The relative amounts of about half of the 
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components of the marking pheromone differed significantly among groups (Table 1). 

Interestingly, changes in the relative amounts of the components with the rearing temperature 

were correlated with the molecule size of the substances with higher temperatures leading to an 

increase in the proportions of long chained components (Figure 4). Thus, there is a predictable 

trend in the temperature dependent variation of the composition of the marking pheromone. 

 

Changes in the ratio of pheromone components due to different larval rearing temperatures have 

been described for the moth Phtorimaea operculella (Lepidoptera: Gelechiidae; Ono 1993). This 

effect has been ascribed to physiological limitations and different temperature dependencies of 

enzymes involved. In contrast to the European beewolf, however, in P. operculella the females are 

the pheromone-producing sex, as it is the case in most moth species (Svensson 1996).  

 

Since sexual signals produced by males and females are subjected to considerably different 

selection pressures (Phelan 1992, 1997), the fitness consequences of temperature-induced 

changes in pheromone composition are expected to differ between the sexes as well. Due to 

asymmetric parental investment (Andersson 1994) females should be more discriminating than 

males when choosing a mating partner. The influence of larval conditions on the composition of the 

male sex pheromone potentially provides information for female choice. There are several 

possibilities why it might be beneficial for a female to choose a male with regard to its rearing 

temperatures. First, a male that developed at an optimal temperature might be healthier and more 

fertile than others, thereby potentially providing direct benefits (like more viable sperm) to 

females. Second, assuming that ideal nesting sites are limited (Strohm et al. 2001) only 

competitively superior females might be able to defend such sites. Thus, choosing a male whose 

pheromone indicates optimal temperatures during development might be beneficial for a female 

since this male may carry high quality alleles that it inherited from its mother.  

 

The results of the present study show that the temperature during larval development has a 

significant effect on the amount and composition of the marking pheromone of adult male 

European beewolves. These changes may reflect physiological constraints and competing processes 

for limited energetic resources during early development. To our knowledge, this is the first study 

on the effects of developmental temperature on amount and composition of the pheromone gland 

content in a species with a male sex pheromone. The enormous importance and widespread 

distribution of chemical signals as well as the potentially high information content of male sex 

pheromones and its implications for female mate choice decisions call for further studies on the 

impact of developmental conditions on pheromone characteristics. 
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CHAPTER 5 

 

GENERAL DISCUSSION 

 

 

 

5.1 Symbiosis between beewolves and Streptomyces bacteria 

 

Chapters 2-3 deal with the unique symbiotic interaction between members of the digger wasps 

tribe Philanthini (Hymenoptera, Crabronidae) and Streptomyces bacteria located in special 

reservoirs in female antennae. In these chapters, a new monophyletic taxon was proposed for the 

symbiotic bacteria, and phylogenetic studies on hosts and symbionts were presented.  Additionally, 

the age of the symbiotic association has been estimated. Because the analyses of the systematic 

relations within the genus Philanthus in comparison to the current morphological classification and 

its relation to the genus Trachypus as well as the dating of the symbiosis have already been 

discussed in detail in chapter three, these points will be omitted here. In the following, different 

facets of the evolution of this fascinating association are discussed in the context of similar 

symbioses found in insects. 

 

 

Systematic position of beewolf symbionts 

In general, insects are associated with an enormous variety of symbiotic microorganisms (Buchner 

1965). The systematic diversity of endosymbiotic bacteria found in insects ranges from 

Proteobacteria (Chen et al. 1996; Clark et al. 1992; Moran et al. 2005a), Mollicutes (Hurst et al. 

1999; Williamson et al. 1999), Spirochetes (Breznak 2002; Hongoh et al. 2003) to the 

Flavobacteria/Bacteroidetes group (Bandi et al. 1995; Moran et al. 2005b). Members of the 

Actinobacteria have up to now been comparatively rarely described as symbiotic partners (see 

Kaltenpoth 2009 for review), but they were e.g. found in pine beetles (Scott et al. 2008), leaf-

cutter ants (Currie et al. 1999; Haeder et al. 2009; Oh et al. 2009a; Schoenian et al. 2011), 

termite guts (Bignell et al. 1991) or in true bugs (Hill et al. 1976). Especially regarding defensive 

associations Actinobacteria are predestined as symbiotic partners, because this group is famous for 

producing a large number of antibiotics. Members of the genus Streptomyces alone produce 75% 

of all antibiotics used in human and veterinary medicine (Miyadoh 1993). 

 

As humans, beewolves also use antibiotics produced by their symbiotic Actinobacteria for defence 

against pathogens: Nine antibiotics are used as combination prophylaxis to defend the offspring in 

the brood cells (Kroiss et al. 2010), and thus represent an example for the effectiveness of such a 

symbiosis with Actinobacteria. The actinobacterial Philanthus symbionts were shown to form a 

monophyletic clade and could clearly be ascribed to the genus Streptomyces by genetic methods 

(diagnostic PCR and fluorescence in-situ hybridization; chapter 2). This genus is also known to be 
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involved in symbioses with attine ants (Barke et al. 2010; Haeder et al. 2009; Schoenian et al. 

2011), pine beetles (Scott et al. 2008) and, possibly, other arthropods (Gebhardt et al. 2002). 

Thus, actinomycetes as bacterial symbionts in insects seem to be more common than previously 

thought (Kaltenpoth 2009).  

 

 

Distribution of symbiotic Streptomyces among Philanthinae (Hymenoptera, Crabronidae) 

In the second chapter we could show that all investigated species of the genus Philanthus harbour 

the symbiotic bacteria. The paraphyly of the genus Philanthus with respect to Trachypus had 

already been proposed by Alexander (1992) and could be confirmed by genetic data (chapter 3). 

Taken together these findings suggest that the genus Trachypus should harbour the endosymbiotic 

bacteria as well, which was confirmed by Kaltenpoth et al. (2010) for two South American 

Trachypus species. The genus Philanthinus was proposed as closest relative to the 

Philanthus/Trachypus complex (chapter 3), following the morphologically based phylogeny of 

Alexander (1992), but hitherto it was not yet known if this rare genus is cosely related enough to 

harbour the endosymbiotic bacteria as well. However, Kaltenpoth et al. (submitted) recently 

demonstrated the existence of the Streptomyces symbionts in the species Philanthinus 

quattuordecimpunctatus. 

 

All others members of Philanthinae except the genera Eucerceris and Pseudoscolia have been 

investigated with regard to Streptomyces symbionts, but they all lack the bacteria (chapter 2; 

Kaltenpoth et al. submitted; Figure 1a). The two missing genera Eucerceris and Pseudoscolia are 

not expected to harbour the symbionts due to the close relationship to Cerceris (Alexander 1992), 

which already have been shown to lack the endosymbionts (chapter 2) and then must have lost 

the symbionts secondarily. Thus, the symbiosis must have evolved somewhere along the branch 

leading to the tribe Philanthini (chapter 3, Kaltenpoth et al. submitted). Assuming the most 

parsimonious scenario that the emergence of the symbiosis was a unique event, the placement of 

Philanthinus as a sister group of Philanthus and Trachypus (Alexander 1992) is preferred over 

Bohart & Menke’s (1976) placement of the genus within the tribe Aphilanthopini (see Figure 1b). 

Additionally, the former scenario is strongly supported by the molecular phylogeny (chapter 3). 
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Figure 1a: Distribution of antennal Streptomyces bacteria in wasps of the Crabronid subfamily Philanthinae. 
The schematic phylogeny was reconstructed by Alexander (1992) based on morphological data. Taxa with 
symbiont-containing antennal gland reservoirs are highlighted in bold red, those that have not been 
investigated for the presence of antennal symbionts yet are given in light blue.      (from Kaltenpoth et al, subm.) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1b: Dendrogramm suggesting relationships in the Philanthinae (from Bohart & Menke 1976)   
The position of the genus Philanthinus is highlighted in orange. 
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Evolution and co-evolution 

During the past years, the knowledge on defensive mutualistic interactions for saving host or food 

resources from pathogens, parasitoids or predators has been growing steadily (Brownlie & Johnson 

2009; Douglas 2010; Jaenike et al. 2010; Kaltenpoth 2009; Kroiss et al. 2010; Schoenian et al. 

2011; Vorburger & Gouskov 2011). Especially insects with underground nesting sites experience a 

high selection pressure for developing defensive mechanisms against pathogen attack. The 

existence of this high pressure is reflected in the three lines of defence that evolved in the genus 

Philanthus: First, the provisioned prey items are embalmed with a hydrocarbon-containing 

secretion from a postpharyngeal gland to reduce the risk of spore germination (Herzner & Strohm 

2007, 2008), the second line of defence consists of an antimicrobial gas released by the beewolf 

egg (Engl 2011). Finally, the cocoon stage of the larva is protected by the highly specialized 

symbiosis with Streptomyces bacteria that produce at least nine antibiotic substances for defence 

against pathogenic fungi (Kaltenpoth et al. 2005; Kroiss et al. 2010).  

 

As already mentioned above, the symbiosis between beewolves and Streptomyces bacteria must 

have evolved somewhere along the branch to the tribe Philanthini, but one only can speculate 

about the initial steps leading to this highly specialized association. Originally, the glands might 

have served for providing directional information for the offspring on where to exit the brood cell, 

locate the open main tunnel, and successfully leave the nest, a function that is still relevant today 

(Strohm & Linsenmair 1995). Streptomyces bacteria, which are known to be very common in the 

soil (Dari et al. 1995; Kutzner 1981), then could have secondarily colonized the glands as 

commensals or even parasites, with the gland secretions serving as potential nutrients. 

Alternatively, the symbiotic bacteria could first have been cultivated on the cuticle of the beewolf, 

like it is the case in the similar and also highly specialized symbiotic association between attine 

ants and their actinobacterial symbionts (Currie et al. 2006). The recently described association of 

Streptomyces bacteria and two species of solitary sphecid mud dauber wasps (Poulsen et al. 2011) 

comprises another stage with regard to the evolution of such a symbiosis: This potentially might 

constitute the primary stage of a symbiotic association, comparable to an early stage of the 

evolution of the beewolf-Streptomyces association. In the beginning, a high diversity of different 

Streptomyces strains might have been located on the beewolf cuticle as it is the case in mud 

dauber wasps (Poulsen et al. 2011). Then this loose association could have developed from a 

commensalism or an unspecific ectosymbiosis to a highly specialized endosymbiosis by the 

colonization of cuticular cavities in the antennae, which then could have developed into the present 

complex symbiont cultivation organs. In this coevolutionary process the bacteria gained safe and 

increasing space to grow and a secured transmission to the next wasp generation. The wasps 

profited by the antibiotics produced by the bacteria to save their offspring during development. 

That symbiotic associations can develop very quickly when a strong selection pressure is present 

was shown recently in Drosophila, where the pressure is carried out by a parasitic nematode that 

destroys an individual’s fitness by a sterilizing effect (Jaenike et al. 2010). Jaenike et al. could 

show a major adaptive change to a symbiont-based mode of defence, which rapidly spreads its 

profound defensive effects in the Drosophila population to fend off the parasitic nematode. 
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Regarding the investigation of coevolutionary processes in the evolutionary history of the beewolf-

Streptomyces association this thesis has provided a molecular phylogeny of the host species. 

Regarding the mode of transmission, both vertical and horizontal transmission have been described 

to occur in this symbiosis: After the exclusion of a possible transovarial transfer of the symbionts 

(Kaltenpoth 2006), vertical transmission from mother to daughter via the cocoon of the larva was 

shown to be likely (Kaltenpoth et al. 2005; Kaltenpoth et al. 2010a). Vertical transmission from 

mother to offspring seems to be the prevalent mode of symbiont transfer in insects (e.g. Baumann 

& Moran 1997; Bourtzis & Miller 2003; Buchner 1965). During subsequent molecular symbiont 

screening studies, the exchange of symbiont strains between species most probably via predator-

prey relations within the genus Philanthus was suggested (M. Kaltenpoth, pers. comm.). Other 

possibilities could be symbiont transmissions by chrysidid wasp parsitoids and by the reuse or 

usurpation of other females’ nests. In addition, it was shown that Philanthinus symbionts cluster 

deep within the monophyletic clade of beewolf symbionts, also suggesting transmission events via 

horizontal transfer (Kaltenpoth et al. submitted), what also had been proposed for Trachypus 

symbionts, which in contrast to their hosts do not form a monophyletic clade (Kaltenpoth et al. 

2010b). Thus, in addition to the predominant vertical mode of symbiont transmission there also 

seems to occur horizontal transfer or even de novo uptake from the environment occasionally 

(Kaltenpoth et al. 2010b), which is also known from the bacterial symbiosis in leaf-cutter ants 

(Cafaro & Currie 2005; Cafaro et al. 2011; Kost et al. 2007; Mueller et al. 2008; Poulsen et al. 

2005).  

 

Most endosymbiotic bacteria in insects are located in the gut or in specialized cells in abdominal 

organs, e.g. in specialized bacteriomes in the digestive tract, in the fat body or in the ovaries 

(Blochmann 1892; Buchner 1921; Dillon & Dillon 2004; Ishikawa 2003; McLean & Houk 1973). In 

beewolves, the symbionts are harbored in unique antennal gland reservoirs constituting 

invaginations of the outer cuticle (chapter 2; Goettler et al. 2007). The association between 

beewolves and Streptomyces bacteria is the first known symbiosis located in insect antennae. 

Despite the unique localization, the symbiosis shows a high similarity to the leaf-cutter ant 

association, a defensive symbiosis with elaborate cuticular crypts supported by specialized exocrine 

glands (Currie et al. 2006; Currie et al. 1999). As in the ant-Pseudonocarida symbiosis (Currie et 

al. 2006), there is some evidence for differences in the structure and complexity of the antennal 

symbiont cultivation organs involved in the Philanthini symbiosis: Kaltenpoth et al (submitted) 

showed that the investigated species of the genus Philanthinus possesses antennal gland reservoirs 

in six antennal segments, as opposed to only five in the genera Philanthus and Trachypus (Goettler 

et al. 2007; Kaltenpoth et al. 2010b). Additionally, the Philanthinus glands are structurally slightly 

less complex than in most Trachypus and Philanthus species (Kaltenpoth et al. submitted). Thus, 

the complexity of the antennal gland reservoirs may have increased during the evolution of the 

association (Kaltenpoth et al. submitted). A reason for that could be that with more complex 

structure the gland reservoirs provide more space. Thus, there are more bacteria in the reservoirs 

and a stable defence can be warranted for the offspring (Kaltenpoth et al. submitted). The 

question, why the more derived Philanthini species have glands in fewer antennal segments than 
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Philanthinus has, is more difficult to answer: The fact that the symbionts are released by an 

increased hemolymph pressure caused by the female by pressing the antennae against the wall of 

the brood cell might be relevant in this context. Maybe the sixth reservoir could not be fully 

exploited because the female is not able to apply enough pressure to all reservoirs. If the 

contribution made by the sixth reservoir is not significant for the offspring’s fitness, this reservoir 

could have got lost secondarily during evolution. Even though this hypothesis still has to be tested 

by analysing the amount of symbionts released from the different antennal segments, the recent 

findings on the evolution of this symbiosis suggest an increasing complexity of the symbiont-

cultivation organs during its past, and show that the association between hosts and symbionts is 

characterised by predominantly vertical and occasional horizontal transmission events or de novo 

uptake from the environment. 

 

 

 

5.2 The male pheromone and the impact of rearing temperature 

 

Chapter three deals with the pheromone of European Beewolves (P. triangulum, Hymenoptera, 

Crabronidae) which males apply to their territories to attract females for mating. In the following, 

the role of the sex pheromone as an indicator of male quality for female mate choice decisions and 

the relevance of larval rearing temperature as an environmental factor influencing the adult male 

pheromone are discussed. 

 

Relevance of the male marking pheromone for female mate choice decisions 

Due to the asymmetry regarding the costs of reproduction in the sexes, females in general should 

be choosier than males (Andersson 1994; Gould & Gould 1997; Trivers 1972). Through their 

choice, females either can profit directly e.g. by receiving resources from the male (Bateson 1983; 

Halliday 1983; Hamilton & Zuk 1982) or indirectly e.g. by ensuring that their offspring inherits 

“good genes” from the high-quality mating partner (Andersson 1994; Møller & Alatalo 1999). As 

Philanthus females do not seem to gain any direct benefits from the mating partner (Kroiss et al. 

2010; Strohm 1995), only indirect benefits are considered in the discussion below. 

 

Following  Fisher’s (1930) ‘runaway process’ (also known as ‘sexy-son-hypothesis’, Weatherhead & 

Robertson 1979), there is a correlation between female choice traits and male attractiveness traits 

(Bakker 1993; Brooks & Couldridge 1999; Gwinner & Schwabl 2005; Hine et al. 2002; Houde 

1994). If a female mates with an attractive male, the sons will be attractive as well and their 

daughters will inherit the choosiness. The trait underlying the male’s attractiveness can be linked 

to the male’s fitness, but that is not a prerequisite for the process to work. In beewolves, males do 

not have sons because unfertilized eggs develop into males. But here another mechanism, so to 

speak a ‘fit-daughter’ effect, could play a role: Females of this species prefer sun-exposed areas to 

construct their nests. Because these sites are limited, females compete for the best nesting sites 

(Evans & O'Neill 1988; Simon-Thomas & Simon-Thomas 1972; Strohm 1995). Females of low 
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competitiveness have to nest in suboptimal areas, where the offspring has to develop at lower 

temperatures, which affects the sons’ sex pheromone composition (chapter 3). Thus, the 

pheromone of these males reflects the low-quality conditions during larval development and thus 

the poor competitiveness of the male’s mother. Hence, females may gain fitness benefits by 

choosing the son of a ‘competitive mother-in-law’, because this might possibly lead to daughters 

with similar qualities.  

 

The ‘good genes’ model hypothesizes that a male’s signal conveys honest information on its 

genetic quality and thus makes it possible for females to choose a mate of high quality and hence 

increases the fitness of their progeny (Andersson 1994; Hamilton & Zuk 1982). It has been 

considered an alternative to Fisher’s hypothesis in the past, but meanwhile the two models are 

seen as two points on a continuum of sexual selection (Kokko et al. 2002; Mead & Arnold 2004). 

As for Fisher’s model there also are several studies supporting the ‘good genes’ model, showing 

positive fitness consequences of mate choice for the offspring (Barber et al. 2001; Doty & Welch 

2001; Partridge 1983; Tallamy et al. 2002). Studies investigating adaptive female choice based on 

olfactory signals are rare (Jones et al. 2000; Jones & Hamilton 1998; Jones et al. 1998; Vainikka et 

al. 2006), but there are several publications showing the transmission of mate quality aspects to 

females in insects (Droney & Hock 1998; Kortet & Hedrick 2005; Moore 1997; Thornhill 1992), 

salamanders (Marco et al. 1998), fish (Milinski 2003), reptiles (Martín & López 2000) and 

mammals (Kavaliers et al. 2003). In beewolf males, the pheromone might have resulted from 

selection pressures caused by female selection for an honest signal of male quality: Males with 

lower rearing temperature had less pheromone, reflecting a developmental trade-off between basal 

physiological processes for development and the formation of a trait relevant for reproduction, thus 

representing an honest signal due to the fact that it causes costs (Zahavi 1975). This form of 

trade-off caused by developmental conditions is known from numerous other taxa (Buchanan et al. 

2003; Gimenez & Anger 2005; Landete-Castillejos et al. 2002; Ratte 1984; Soma et al. 2006; 

Woodgate et al. 2010; Zwaan et al. 1992). A higher pheromone amount is supposed to be of 

advantage for a male, because it can apply more pheromone to its territory, thus attract more 

females and gain more matings than other males (Droney & Hock 1998; Lloyd 1979; Otte 1974). 

This is supported by the observation that in P. triangulum females seem to prefer mating with 

bigger males (E. Strohm, J. Kroiss, M, Kaltenpoth, G. Herzner, unpubl. data). The effect of 

different factors influencing the pheromone amount have been investigated in several species 

(Abernathy et al. 1994; Jones & Hamilton 1998; Subchev & Jurenka 2001), but only little is known 

about the impact of rearing temperature on pheromone quantity (Ono 1993). The effect of rearing 

temperature on the composition of a male’s pheromone as it is the case in male Philanthus, 

hitherto has only been investigated in moth (Ono 1994). Just as the relevance of pheromone 

amount discussed above the composition as well constitutes an honest signal and can be used by 

females for mate choice. Thus, the pheromone in Philanthus with its high information content 

might be a good indicator for a male’s fitness and provides optimal preconditions for an adaptive 

female choice. 



______________________________________________________________________CHAPTER 5 

 71 

5.3 Final conclusions and future prospects 

The beewolf-Streptomyces association is the first example of a symbiosis with microorganisms 

located inside specialized antennal glands. To complement previous studies on the ecology of the 

symbiosis and the morphology of the symbiont-cultivation organs, genetic and systematic 

background information was collected to yield insights into the taxonomic distribution and the 

evolutionary history of this extraordinary association between insects and bacteria. With these data 

it was also possibly to date the origin of this extraordinary symbiosis. Thus, the studies presented 

in this thesis provide a basis for future investigations on co-evolutionary processes in this insect-

bacteria symbiosis. Additionally, it is very likely that other defensive symbioses with actinomycetes 

will be discovered in the future, since other Hymenoptera and ground-nesting insects are 

confronted with similar problems to cope with pathogen infestations in underground brood cells. 

Moreover, the growing knowledge on the variety of antibiotic substances involved in this symbiosis 

might also become relevant in the field of human medicine. 

 

In addition to several factors that were already known to influence the pheromone of male 

beewolves, we could show that conditions during larval development also play an important role in 

shaping the pheromone of adult males. Pheromone quantity and quality can convey information on 

the quality of a male’s mother to receptive females. These findings show that not only the genetic 

background or immediate environmental factors, but also conditions during early development can 

influence the properties of an insect’s sex pheromone and thereby may play an important role in 

female mate choice decisions. 

 

The reconstruction of the phylogenetic relationships within the Philanthinae provides the basis for 

future comparative studies on different aspects of beewolf biology. The prey spectrum of different 

Philanthus species (groups) and other Philanthini could be mapped onto the beewolf phylogeny and 

thus deliver insights into the evolution of prey specialization in this tribe. Another fascinating 

aspect in the biology of P. triangulum is the defence of the beewolf egg against fungal growth in 

the brood cell, which is mediated by the release of the gas nitric oxide and its strong antimicrobial 

effects. Comparative studies on this protective trait could reveal the range of beewolf species that 

employ this defence, and in combination with the beewolf phylogeny the evolutionary history of the 

nitric oxide defence could be investigated. Regarding the pheromone of male Philanthus and the 

knowledge on the diverse factors influencing this chemical signal, a next step could be to 

reconstruct the evolutionary history of this sexually selected trait by mapping a chemotaxonomy of 

the male pheromone onto the phylogenetic tree. This could also be done with the chemical profiles 

of the prey-embalming secretion of beewolf females, which increases the offspring’s survival 

chances and thus is subject to natural selection. Thereby, the effects of the different selection 

pressures of natural vs. sexual selection could be investigated and yield insights into the evolution 

of chemical traits. Thus, the findings presented in this thesis provide the basis for understanding 

the evolutionary history of different ecological and behavioural aspects in beewolves, most 

importantly the defensive symbiosis with Streptomyces bacteria and the male beewolf sex 

pheromone.
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CHAPTER 6 

 

SUMMARY 

 

 

6.1 Symbiosis between beewolves and Streptomyces bacteria 

Symbiotic associations basically contributed to the evolution of life on earth. In insects, most 

symbionts provide their hosts with important nutrients. However, during the past years an 

increasing number of defensive symbioses has been discovered, where symbionts protect their 

hosts against predators, parasitoids or pathogens. Beewolf digger wasps (Hymenoptera, 

Crabronidae, Philanthini) engage in a highly specialized defensive symbiosis with Streptomyces 

bacteria that are cultivated in glands within the females’ antennae, a location which has not yet 

been described for any other symbiosis. Females apply these symbionts to their subterranean 

brood cells, and when the larva starts spinning the cocoon, the symbionts are incorporated into the 

cocoon wall. There the symbionts protect the cocoon against fungal infestation by producing an 

antimicrobial cocktail.  

 

Here, the presence of symbiotic bacteria was detected in 28 different Philanthus species and 

subspecies by using different genetic, ultrastructural and morphological methods. Systematic 

analyses showed that the investigated symbiont is an as yet undescribed species belonging to the 

genus Streptomyces, and the new monophyletic taxon ‘Candidatus Streptomyces philanthi’ is 

proposed for the bacterial symbionts. 

 

Besides phylogenetic analyses of the symbionts a large data set of six molecular markers of the 

hosts was analyzed. A molecular phylogeny of the subfamily Philanthinae was reconstructed, which 

provided the basis to date the origin of the symbiotic association between Streptomyces and 

Philanthini digger wasps. The origin of the beewolf-Streptomyces association must most probably 

have evolved somewhere along the branch leading to the tribe Philanthini, and molecular clock 

analyses placed the origin of the symbiosis between beewolves and Streptomyces to 65-97 million 

years, thus constituting the oldest dated defensive symbiosis known at present. Additionally, the 

phylogenetic relationships within the genus Philanthus were investigated. The results roughly 

corresponded with a previous morphological classification into species groups. Beyond that, the 

controversial relationship between the sister genera Philanthus and Trachypus was examined 

closer, with results clearly indicating paraphyly of Philanthus with respect to Trachypus, thus 

contradicting the current division in two discrete genera. The reconstruction of the phylogenetic 

relationships within the Philanthinae additionally provides the basis for future comparative studies 

on different aspects of beewolf biology like the pheromone blend of males or the prey spectrum of 

different beewolf species. 
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The new insights into the phylogenetic relationships within hosts and symbionts involved in the 

beewolf-Streptomyces association presented in this thesis provide a profound basis for future 

investigations on coevolutionary processes in the history of this symbiosis. Additionally, further 

studies on this exceptional symbiotic association may yield valuable knowledge on the relevance of 

actinomycete bacteria for pathogen defence in other insects and might lead to the discovery of 

unknown antibiotic substances that could be useful for human medicine. 

 

 

6.2 Male pheromone and temperature effects during larval development 

The role of sexual selection and female mate choice decisions based on male visual ornaments and 

acoustic signals has been studied extensively. However, little is known on the role of pheromones 

for adaptive female choice, despite their large potential for communicating information on mate 

qualities by variations in quantity and quality. Only few studies focus on the factors that influence 

the shape of insect pheromones, like the effect of environmental conditions on the amount and 

composition of adult sex pheromones and the conditions during larval development in particular. 

 

In this thesis we focused on the male marking pheromone of the digger wasps species Philanthus 

triangulum (Hymenoptera, Crabronidae). The males defend small territories and mark them with a 

pheromone blend from cephalic glands to attract receptive females for mating. Because these 

territories are concentrated in the vicinity of female nest aggregations, females can choose the 

mating partner from numerous males. Previous studies had shown that the pheromone varies with 

kinship, geographical distance, size and age, but the effect of developmental conditions on the 

male pheromone had not yet been studied. We could show that the temperature during a male’s 

larval development strongly affects pheromone quantity and quality of the imago. Thus, the 

information comprised in a male’s pheromone blend may provide a solid basis for female mate 

choice decisions, not only reflecting the condition of the adult but also early developmental 

conditions of a potential mating partner. 
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CHAPTER 7 

 

ZUSAMMENFASSUNG 

 

7.1 Symbiose zwischen Bienenwölfen und Streptomyceten 

Symbiontische Interaktionen haben einen essentiellen Beitrag zur Evolution des Lebens auf der 

Erde geleistet. Symbionten von Insekten versorgen ihre Wirte in demeisten Fällen mit essentiellen 

Nährstoffen, aber in den letzten Jahren wuchs auch die Zahl an beschriebenen 

Verteidigungssymbiosen, bei denen die Symbionten ihre Wirte vor Beutegreifern, Parasitoiden oder 

Pathogenen schützen.  Bienenwölfe (Hymenoptera, Crabronidae, Philanthini), die zu den 

Grabwespen gehören, leben in einer hochspezialisierten Verteidigungs-Symbiose mit Bakterien der 

Gattung Streptomyces: Die Symbionten werden von den Weibchen in speziellen Drüsen in ihren 

Antennen kultiviert, ein Ort, für den bisher keine anderen Symbiosen beschrieben sind. Die 

Weibchen geben diese Bakterien bei der Verproviantierung mit in ihre unterirdischen Brutzellen. 

Wenn die Larve später beginnt, einen Kokon zu spinnen, werden die Symbionten mit in die 

Kokonwand eingearbeitet, wo sie den Kokon durch Abgabe eines antimikrobiellen Cocktails vor 

Pilzbefall schützen. 

 

Die Anwesenheit von symbiontischen Bakterien bei 28 verschiedenen Philanthus-Arten und 

Unterarten konnte hier mit verschiedenen genetischen, ultrastrukturellen und morphologischen 

Methoden festgestellt werden. Anschließende systematische Analysen zeigten, dass der bakterielle 

Symbiont zu einer bisher unbeschriebenen Art der Gattung Streptomyces gehört und für die 

Symbionten wird das neue, monophyletische Taxon ‚Candidatus Strepotmyces philanthi’ 

vorgeschlagen. 

 

Neben einer phylogenetischen Analyse der Symbionten wurde auch ein umfassender Datensatz 

basierend auf sechs genetischen Markern der Wirte untersucht. Eine molekulare Phylogenie der 

Unterfamilie Philanthinae wurde rekonstruiert, welche die Grundlage für eine Datierung der 

Symbiose zwischen Streptomyces und den Philanthini darstellte. Die Enstehung der Bienenwolf-

Streptomyces Assoziation hat sich höchstwahrscheinlich an irgendeinem Punkt des Astes 

entwickelt, der zu der Unterfamilie der Philanthini führt. Analysen auf der Basis molekularer Uhren 

haben den Ursprung der Symbiose auf einen Zeitraum von vor 65 bis 97 Millionen Jahren datiert, 

womit diese Assoziation die älteste aller bisher datierten Verteidigungssymbiosen darstellt. 

Zusätzlich wurden die phylogenetischen Beziehungen innerhalb der Gattung Philanthus untersucht. 

Die Ergebnisse decken sich weitgehend mit einer früheren morphologischen Einteilung in 

verschiedene Artengruppen. Des Weiteren wurde die kontroverse Beziehung zwischen den beiden 

Schwestergattungen Philanthus und Trachypus genauer untersucht. Die Ergebnisse sprechen für 

eine deutliche Paraphylie von Philanthus bezüglich Trachypus, was der derzeitigen Einteilung in 

zwei getrennte Gattungen widerspricht.  Neben ihrer Relevanz für Symbiose und Systematik ist die 

molekulare Phylogenie der Philanthinae auch eine Grundlage für vergleichende Studien in anderen 



______________________________________________________________________CHAPTER 7 

 75 

Bereichen der Biologie der Bienenwölfe, wie z.B. des Pheromons der Männchen oder der 

Beutespektren verschiedener Bienenwolfarten. 

 

Die neuen Einsichten der vorliegenden Arbeit in die phylogenetischen Beziehungen innerhalb der 

Wirte und der Symbionten, die an der Bienenwolf-Streptomyces Assoziation beteiligt sind, bilden 

eine solide Grundlage für die weitere Erforschung koevolutionärer Prozesse in der Geschichte 

dieser Symbiose. Darüber hinaus können weitere Studien dieser außergewöhnlichen 

symbiontischen Assoziation wertvolle Einsichten in die Relevanz der bakteriellen Actinomyceten für 

die Pathogenabwehr bei anderen Insekten liefern und zur Entdeckung unbekannter antibiotischer 

Substanzen beitragen, die vielleicht auch in der Humanmedizin Anwendung finden könnten. 

 
 
7.2 Männchenpheromon und Temperatureinfluss während der Larvalentwicklung 

Die Rolle der sexuellen Selektion und der Weibchenwahl anhand optischer Ornamente und 

akustischer Signale von Männchen wurde in der Vergangenheit in zahlreichen Studien untersucht. 

Über die Bedeutung von Pheromonen für eine adaptive Weibchenwahl dagegen ist sehr wenig 

bekannt, obwohl Pheromone durch ihre hohe Variabilität in Qualität und Quantität über ein hohes 

Potential zur Vermittlung von Männchen-Qualitäten verfügen. Es gibt nur wenige Studien, die sich 

mit den Einflussfaktoren auf Pheromone beschäftigen, wie beispielsweise die Bedeutung von 

Umweltbedingungen für die Menge und Zusammensetzung des Sexualpheromons adulter Insekten, 

im speziellen während der Larvalentwicklung. 

 

Der Schwerpunkt dieser Arbeit war das Männchen-Pheromon der Grabwespenart Philanthus 

triangulum (Hymenoptera, Crabronidae): Männchen dieser Art verteidigen kleine Territorien und 

markieren diese mit einem Pheromongemisch aus Kopfdrüsen, um damit paarungsbereite 

Weibchen anzulocken. Da diese Territorien geballt in der Nähe von Nestaggregationen der 

Weibchen auftreten, haben die Weibchen die Möglichkeit, ihren Paarungspartner aus einer Vielzahl 

verschiedener Männchen auszuwählen. Frühere Studien haben gezeigt, dass das Pheromon von 

verschiedenen Faktoren wie dem Verwandtschaftsgrad, geographischer Distanz, von Größe und 

Alter beeinflusst wird, aber die Bedeutung der Entwicklungsbedingungen für das 

Männchenpheromon wurde bisher nicht untersucht.  Hier konnten wir zeigen, dass die Temperatur 

während der Larvalentwicklung eines Männchens sowohl die Pheromon-Qualität als auch die 

Pheromonmenge des Adulttiers erheblich beeinflusst. Daher könnten die Informationen, die in dem 

Männchenpheromon enthalten sind, eine solide Basis für die Weibchenwahl darstellen, da sie nicht 

nur die augenblickliche Verfassung eines Adulttieres, sondern auch die larvalen 

Entwicklungsbedingungen eines potentiellen Paarungspartners widerspiegeln. 
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