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Terahertz light helicity sensitive photoresponse in GaAs/AlGaAs high electron mobility transistors.

The helicity dependent detection mechanism is interpreted as an interference of plasma oscillations

in the channel of the field-effect-transistors (generalized Dyakonov-Shur model). The observed

helicity dependent photoresponse is by several orders of magnitude higher than any earlier reported

one. Also, linear polarization sensitive photoresponse was registered by the same transistors. The

results provide the basis for a new sensitive, all-electric, room-temperature, and fast (better than 1 ns)

characterisation of all polarization parameters (Stokes parameters) of terahertz radiation. It paves the

way towards terahertz ellipsometry and polarization sensitive imaging based on plasma effects in

field-effect-transistors. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729043]

I. INTRODUCTION

Terahertz (THz) science and technology hold a great

promise for progress in diverse scientific areas and have a

wide application potential in environmental monitoring,

security, biomedical imaging, and material characteriza-

tion, see, e.g., Refs. 1–8. Most of the potential THz applica-

tions require sensitive, but robust room temperature THz

detectors with fast response time. Recently, field-effect-

transistors (FETs) as well as low dimensional structures

made of different semiconductor materials have been dem-

onstrated as promising detectors of THz radiation.9–24 The

operation principle is based on the use of nonlinear proper-

ties of the two-dimensional (2D) plasma in the transistor

channel.9 Both resonant10,12 and nonresonant11 regimes of

THz detection have been studied. Plasmonic effects can

serve for room temperature detection from tens of gigahertz

up to terahertz, enabling the combination of individual

detectors in a matrix. While plasma nonlinearities based

compact THz receivers are in focus of current research, the

dependence of the voltage response on the radiation’s

polarization state is not yet exhaustively studied. The prob-

lem of radiation coupling and angular response to the line-

arly polarized radiation has been recently addressed by

several groups.17–19,25 It was found that the response is pro-

portional to the squared cosine of the azimuth angle and is

attributed to the radiation coupling to the transistor via an

antenna formed mainly by the bonding wires and metalliza-

tion of contact pads.17,25 However, no studies on the detec-

tor’s response to circularly polarized radiation have been

carried out so far.

Here we report on the observation of the helicity

dependent photoresponse of FETs. We demonstrate that for

a certain design of GaAs/AlGaAs high electron mobility

transistors (HEMTs) and silicon modulation-doped field

effect transistors (Si-MODFETs), the photosignal has a

substantial contribution proportional to the degree of circu-

lar polarization of the incident radiation. In particular, the

photoresponse may change its sign when the light’s helicity

is switched from the right- to the left-handed circularly

polarized state. The observed photoresponse is at least

by three orders of magnitude higher than that known for

the circular photogalvanic26–28 and the spin-galvanic

effect.27,29 While the fact that terahertz plasmonic broad-

band detectors are sensitive to linear polarization is rela-

tively well established,17–19 a photoresponse proportional

to the degree of circular polarization has not been

observed. We show that the generation of the photores-

ponse as well as its polarization dependence can be well

described in the frame of the Dyakonov-Shur (DS) model

of rectification by FETs.9 Our results demonstrate that in

HEMTs of particular design an access to the photon’s hel-

icity can be obtained through the interference of two ac
currents generated on opposite sides of the transistor chan-

nel. The observed helicity dependent photoresponse in

FETs provides the basis for a sensitive all-electric charac-

terization of THz radiation’s polarization state and, there-

fore, can be used for the development of new methods of

THz ellipsometry applying FET detectors. We emphasize

that such room temperature FET detectors may have a very

high sensitivity (5 kV/W) and low noise equivalent power

below 10 pW=
ffiffiffiffiffiffi
Hz
p

.24 They can also be integrated on chip

electronics and combined into matrices using standard III-V

or silicon complementary metal–oxide–semiconductor

(CMOS) technology.18,30–32

II. EXPERIMENT

We studied commercially available GaAs/AlGaAs

HEMTs with a gate length Lg of 150 nm and a gate width Wg
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of 280 lm. Figure 1 shows the design of the transistors,

where the disposition of source (S), drain (D), and two gate

(G) pads is sketched. The transistor’s threshold voltage Uth is

obtained from the transfer characteristics, shown in Fig. 1, to

approximately �440 mV. More detailed description of

HEMT layers can be found in Ref. 33. We also investigated

Si-MODFETs with Lg � 150 nm and Wg � 100 lm.

The experiments have been performed applying a cw
methanol laser as well as pulsed NH3, D2O, and CH3 F

lasers34,35 as sources of radiation in the frequency range of

f ¼ 0:6� 2:5 THz. The cw laser operated at f¼ 2.5 THz

(wavelength k¼ 118 lm) with a power of about 20 mW.36

The NH3, D2O, CH3 F lasers provided 100 ns pulses at 2

THz (k¼ 148 lm), 1.1 THz (k¼ 280 lm), 0.8 THz

(k¼ 385 lm), and 0.6 THz (k¼ 496 lm) with an output

power of about 10 kW.37,38 The incident radiation power was

monitored by a photon drag reference detector.39 The laser

beam was focused onto the sample by a parabolic mirror

with a focal length of 65 mm. Typical laser spot diameters

varied, depending on the wavelength, from 1 to 3 mm. The

spatial laser beam distribution had an almost Gaussian pro-

file, checked with a pyroelectric camera.40 In some experi-

ments, we used also a 95.5 GHz (k� 3.15 mm) Gunn diode

as a cw source with a maximum output power of about

20 mW. No special antennas were used and the terahertz/

microwave radiation was coupled to the device directly

through bonding wires or metalization contact pads. The spa-

tial distribution of the microwave radiation at the sample’s

position, and, in particular, the efficiency of the radiation

coupling to the sample, by, e.g., the bonding wires and met-

alization of contact pads, could not be measured. Thus, all

microwave data are given in arbitrary units. Both linear and

circular polarized light experiments were performed. To

study the detector response upon variation of the radiation

polarization state k/4 - and k/2-plates made of x-cut crystal-

line quartz were used. In the pulsed THz experiments, the

photoinduced voltage, USD, was fed through an inverting

input of an amplifier with a voltage amplification of 20 dB

and a bandwidth of 300 MHz (rise time of about 1 ns) to a

digital broadband 1 GHz-oscilloscope. In the cw experiments

with the Gunn diode or gas laser sources, we used standard

lock-in technique with a voltage amplification of 20 dB. The

photoresponse was studied at different values of gate bias,

Ug. All experiments were performed at room temperature.

Results of experiments with linearly polarized light are

summarized in Figs. 2(a) and 3. Figure 2(a) shows a gate

voltage dependence of the HEMT’s photoresponse measured

for different radiation frequencies in the range of 0.1 to 2.5

THz. For all used frequencies, the signal shows a maximum

for a gate bias close to the threshold voltage, Uth¼�440 mV.

With increasing frequency, the magnitude of the maximum

of the response decreases rapidly. The data show also that, at

high frequencies, the signal switches its polarity at a certain

gate bias. Note that the gate-bias of the inversion point

diminishes with raising frequency. While a non-monotonic

behavior of the signal, like observed for lower frequencies,

is well known for FET detectors, the change of the response

sign with increasing radiation frequency has not been

reported so far. Moreover, our experiments revealed a pecu-

liar polarization behavior of the photosignal, in particular, at

high radiation frequencies and large negative voltages.

Sakowicz et al.25 have shown that at low frequencies the

radiation is coupled to the transistor mainly by bonding

wires, whereas at higher frequencies (>100 GHz) the metal-

ization of the contact pads plays the role of efficient anten-

nas. Therefore, to interpret our experiments we represent the

photoinduced signal as a sum of two contributions,

USD ¼ U1ðUg; f Þcos2ðaþ h1Þ þ U2ðUg; f Þcos2ðaþ h2Þ;
(1)

with U1 (Ug, f ) and U2 (Ug, f ) being of opposite sign.

Herein, a is the azimuth angle defined in the inset of Fig. 3,

and hi are the phase angles, depending on the special align-

ment/geometry of bonding wires and metalization pads.

Below we show that this assumption allows to reproduce the

experimental traces, see Fig. 3. At the lowest radiation fre-

quency of 100 GHz, the signal is well described by Eq. (1)
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FIG. 1. Transfer characteristic of GaAs/AlGaAs HEMT measured at

VSD¼ 100 mV. Left inset shows experimental set-up and sketch of the

device with contact pads S (source), D (drain), and G (gate). In optical

experiments, transistors were irradiated by elliptically, circularly, or linearly

polarized radiation at normal incidence. Right inset shows a sketch of the

transistor cross section.
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FIG. 2. (a) Gate voltage dependence of the photovoltage induced in GaAs/

AlGaAs HEMT by linearly polarized radiation. The data for frequencies

f¼ 1.1, 2.0, 2.5 THz are multiplied by factors 5, 2, 10, respectively. Note

that the signals are read out after the inverting amplifier with a voltage

amplification of 20 dB. (b) Gate voltage dependence calculated after Eq. (7)

and assuming CðxÞ ¼ 1. Inset shows fitting parameters bsðf Þ and bdðf Þ as a

function of the radiation frequency.
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with the phase angle h1 ¼ 47� and the second contribution

close to zero. These data are shown in the top left inset in

Fig. 3. Comparison of the photovoltage distribution with the

picture of the HEMT transistor (right inset in Fig. 3) reveals

that the signal achieves a maximum value for the radiation

polarization vector aligned roughly parallel to the line con-

necting the contact wires of the gate and drain. Disregarding

the vanishingly small portion of the signal proportional to

U2ðUg; f Þ, this behavior corresponds to the photoresponse of

conventional FET detectors with the incoming radiation

coupled to the transistor channel only by the bonding wires.

Almost the same result has been obtained for higher frequen-

cies and relatively small gate voltages, see, e.g., the data for

f¼ 1.1 THz and Ug¼ –500 mV shown in top left inset of

Fig. 3. For higher frequencies and large bias voltages, how-

ever, we observed that the magnitudes of jU1ðUg; f Þj and

jU2ðUg; f Þj become comparable. An example of such a

behavior is shown in Fig. 3 for f¼ 1.1 THz and

Ug¼�650 mV, together with the corresponding fits to Eq.

(1). Note that the sign of U1ðUg; f Þ and the value of the phase

angle h1 ¼ 47� remain unchanged. The best fit is obtained

for negative value of U2ðUg; f Þ and h2 ¼ �50�, i.e., the max-

imum of this contribution is obtained for the polarization

vector oriented almost perpendicular to the line connecting

the contact wires of the gate and drain. Thus, the contribu-

tion to the photosignal given by the voltage U2ðUg; f Þ could

not result from the antenna coupling to the connecting wires

and can be only attributed to the radiation coupling through

the contact pads.

Besides the complex polarization dependence upon rota-

tion of the linear polarization plane, we observed that the

photoresponse depends on the radiation’s helicity. Fig. 4(a)

shows USD versus the gate voltage measured for right-(rþ)

and left-(r�) handed circularly polarized radiation with fre-

quencies f¼ 0.8 and 1.1 THz. The data show that at rela-

tively low bias voltages, for which the dominating

contribution of the signal proportional to U1ðUg; f Þ is

detected, the photoresponse is insensitive to the radiation

helicity. At higher negative bias voltages, however, the val-

ues and even the sign of the signal becomes different for rþ
and r� polarized radiation. By varying the radiation elliptic-

ity we obtain a polarization behavior of the signal as shown

in Fig. 4(b) which can be well reproduced by the following

equation:

USD ¼ UAðUg; f Þsinð2uÞ þ UBðUg; f Þcos2ð2uþ hÞ þ UC;

(2)

with UA, UB, UC, and h as the fitting parameters. This equa-

tion shows that the photoresponse is caused by a superposi-

tion of (i) the signal proportional to the degree of circular

polarization Pcirc ¼ iðEyE�x � ExE�yÞ=jEj
2 ¼ sin 2u (first

term) and (ii) signals determined by the degree of linear

polarization of elliptically polarized light (second and third

terms). Here, E is the radiation electric field. The inset in

Fig. 4(b) shows the typical photoresponse pulses for right-

and left-handed circularly polarized radiation. A helicity de-

pendent photoresponse was also observed for Si-MODFETs

of similar design but the discussion of this data is out of

scope of this paper.

III. THEORETICAL BACKGROUND AND DISCUSSION

In the following, we show that the observed photores-

ponse as well as its polarisation dependence can be well

described in the frame of the generalized model of THz

detection by FETs.9 The operation regime of the FET as a

THz detector depends on the parameter xs, which deter-

mines whether plasma waves are excited (xs > 1) or not
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together with the corresponding fits to Eq. (1). Note that the maxima signals

for f¼ 0.1 THz and 1.1 THz are normalized to 1 and 0.5, respectively. The

right inset shows the picture of the transistor with bonding wires and defines

the angle a. On top the polarization direction corresponding to various

azimuth angles is plotted. For zero angle a the radiation electric field vector

is parallel to the y-axis.
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(xs < 1). In our experimental conditions the value of xs is

between 0.04 and 1 so that plasma oscillations are over-

damped and the FET operates as a broadband detector. The

channel length in the investigated transistors is much shorter

than the wavelength, and the channel is mostly covered by

the metallic gate. Hence, there is no direct interaction of the

electromagnetic radiation with the electron gas in the chan-

nel. Therefore, the radiation is coupled to the channel

through the source-gate and drain-gate contacts by effective

antennas formed by the metallic contact pads and/or bonding

wires. An ac current induced by the radiation at the source

(or at the drain) will leak to the gate at a distance on the

order of the leakage length,

l ¼
ffiffiffiffiffiffiffi
2r
xC

r
; (3)

where r is the conductivity of the channel and C is the gate-

to-channel capacitance per unit length. If the Lg is much

larger than the leakage length l, the photovoltage is gener-

ated in a region on the order of l near the contact.

In the case when the radiation produces an ac voltage

with an amplitude Us between the source and gate contacts,

the photoresponse DU is given by41

DU ¼ U2
s � FðUgÞ; (4)

FðUgÞ ¼
1

4ðUg � UthÞ 1� 1

2
exp � 2Lg

l

� �� �
: (5)

The prefactor in the expression for FðUgÞ is valid for positive

values of the gate voltage swing, Ug � Uth, which are not too

close to zero. In the vicinity of the threshold and in the sub-

threshold region this prefactor was calculated in Ref. 9. It

depends on the dc gate leakage current as well as on the tran-

sistor impedance. The dependence on Lg=l is universal.

Experimentally, the photoresponse as a function of Ug has a

broad maximum around the threshold. The amplitude of the

input ac voltage Us is related to the incoming radiation inten-

sity I and the antenna’s sensitivity bsðxÞ as U2
s ¼ bsðxÞ � I.

Thus, the photoresponse can be presented in the form,41

DU ¼ bsðxÞ � FsðUgÞ � I: (6)

In order to interpret the experimental results, we assume that

the radiation is fed to both, the source-gate and the gate-

drain contacts. In other words, the coupling of the radiation

to the transistor channel can be modeled by two effective

antennas, one of them producing an ac voltage between

source and gate (Us), and the other one between drain and

gate (Ud). As long as l is much smaller than Lg, there is no

interference between the currents induced at opposite sides

of the channel, and the corresponding contributions to the

total photoresponse are independent. These contributions are

obviously of opposite signs, resulting in a vanishing photo-

response for equal ac amplitudes. The total photoresponse is

given by

DUðUgÞ ¼ ½bsðxÞFsðUgÞ þ bdðxÞFdðUgÞ� � CðxÞ � I; (7)

where CðxÞ is the parameter describing the frequency de-

pendence of the photoresponse, whereas bs and bd are fre-

quency dependent sensitivities of the source-gate and drain-

gate effective antennas, respectively. The functions FsðUgÞ
and FdðUgÞ describe the gate bias dependences of the photo-

response generated at the source and drain sides of the

channel.

The role of antennas can be played by contact wires as

well as metallic contact pads. Our results show that at

f¼ 95.5 GHz the incoming radiation is coupled to the transis-

tor channel by contact wires. This fact is in agreement with

Refs. 17 and 25, where similar devices were studied. Indeed,

we find that the photoresponse is optimal when the radiation

polarization is aligned along the line connecting the gate and

drain contact wires (see the right inset in Fig. 3). This dem-

onstrates that at low frequencies the radiation is mostly

coupled to the drain side of the channel. Hence, the upper

curve in Fig. 2(a) can be attributed to the photoresponse gen-

erated at the drain side only, FdðUgÞ, i.e., bd (0.1 THz)¼ 1

and bs (0.1 THz)¼ 0. In contrast, at high frequencies, the

radiation is expected to be coupled to the channel primarily

through the contact metallic pads.25 This enables coupling to

the source side of the channel which, obviously, should lead

to an opposite sign of the signal. Indeed, the photoresponse

at 2.5 THz is negative in most of the gate voltage range.

Figure 2(b) shows DUðUgÞ calculated for different fitting

parameters bsðxÞ and bdðxÞ. In order to determine the func-

tion FdðUgÞ, we used the experimental dependence of the

photoresponse on the gate voltage measured at f � 0:1 THz.

Function FsðUgÞ is presented by the dashed line in Fig. 2(b).

In agreement with the above discussion, it is assumed to be

negative in the whole range of the gate voltage.

This choice of the functions FsðUgÞ and FdðUgÞ allows a

good fit of photoresponse curves for all frequencies, see

Fig. 2. The inset in Fig. 2 demonstrates that the increase of

the radiation frequency consistently decreases the efficiency

of the gate-drain antenna, bdðxÞ, and increases the coupling

by the source-gate antenna, bsðxÞ.42 Thus, at intermediate

frequencies the photoresponse is a superposition of two sig-

nals generated at the drain and the source sides of the chan-

nel. This becomes also apparent in experiments with linear

polarization of radiation. As seen in Fig. 3, at a frequency of

1.1 THz and Ug¼ –650 mV, the polarization dependence of

the photoresponse is well fitted by the sum of dotted-dashed

and dashed curves.43

Now we turn to the observed helicity dependent photo-

response, and we show that it can just as well be understood

using the described model of two effective antennas. So far

we have assumed that the ac currents generated on both sides

of the channel do not interfere. This corresponds to the case

when the leakage length l is sufficiently small compared to

Lg=2. If l is of the order of Lg=2 there would be a region

where the ac currents generated at the source and drain coex-

ist. Then the resulting ac current will depend on their phase

difference, n. Such a phase difference appears when source

and drain are excited by mutually orthogonal components of

circularly (or elliptically) polarized radiation. As we have

seen above this is the case in our experimental setup,

where source and drain effective antennas show maximal
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sensitivity for polarization directions differing by about 90�.
Consequently, the ac currents generated at source and drain

will have phase shift n. It can be shown44 that, if Lg is com-

parable to l, Eq. (7) should be modified as follows:

DU ¼
h
bsðxÞFsðUgÞ þ bdðxÞFdðUgÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bsðxÞFsðUgÞbdðxÞFdðUgÞ

q
sinðnÞexpð�Lg=lÞ

i
� I;

(8)

where the last interference term is sensitive to the radiation’s

helicity (sign of n). For linear polarization and n ¼ 0, Eq. (8)

reduces to Eq. (7). The characteristic length is frequency

dependent, see Eq. (3), and can be estimated to 76 nm

(0.8 THz) and 89 nm (1.1 THz). Thus, it is of the same order

as the gate length, and the induced ac currents at the drain

and source sides can interfere. As it follows from Fig. 2, for

f ¼ 1:1 THz the contributions of source-gate and drain-gate

antenna become equal at Ug ¼ �565 mV, where

bsðxÞFsðUgÞ � bdðxÞFdðUgÞ. Thus, for this gate voltage

only the interference term remains and the photoresponse

should change its sign when the helicity of radiation is

reversed. This is indeed what we observe, see Fig. 4(a). The

pulse traces obtained for right- and left-handed circularly

polarized radiation demonstrate that the transistor allows the

time resolved detection of a fine structure of the laser pulses

with short spikes of the order of nanoseconds, see the inset

in Fig. 4(b). The response time of the transistor is determined

by the time resolution of our setup, but it is 2 ns or less. The

same response times were observed at Ug ¼ Uth. The time

constant is given by the cut-off frequency which is 10 GHz.

The practically achievable time resolution, however, is

RC-limited by the design of the electric circuitry and by the

bandwidth of cables and amplifiers.

IV. SUMMARY

To summarize, we demonstrate that for certain condi-

tions high electron mobility transistors excited by terahertz

laser radiation yield a photoresponse which depends on the

radiation handedness, in particular may change its sign by

reversing the circular polarization of radiation from right to

left handed. The helicity dependent detection mechanism is

interpreted in the frame of the generalized Dyakonov-Shur

model, by taking into account the interference of the ac cur-

rents in the transistor channel and specific antenna design.

We show that (i) optimization of the transistor design and

(ii) the proper choice of the gate voltage, for which response

to the linear polarization vanishes, should allow constructing

a detector element with the responsivity just proportional to

the radiation helicity, i.e., to the corresponding Stokes pa-

rameter. Combining such a detector element with two con-

ventional FETs yielding a response to the linearly polarized

radiation and, consequently, to the two remaining Stokes pa-

rameters should permit the complete characterization of radi-

ation polarization in an all-electric manner. By the proper

choice of the gate voltage, such room temperature detectors

can be tuned to any radiation frequency in the THz range

and are characterized by a nanosecond time resolution.

Finally, we would like to emphasize that the observed

transistor photoresponse is by several orders of magnitude

higher than that one observed for the photogalvanic effect

considered for the all-electric detection of the radiation’s

polarization state.45,46 Thus, the field effect transistor is a

valuable candidate as a polarization detector.
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31A. Lisauskas, U. Pfeiffer, E. Öjefors, P. H. Bolivar, D. Glaab, and H. G.

Roskos, J. Appl. Phys. 105, 114511 (2009).
32W. Knap, G. Valusis, J. Lusakowski, D. Coquillat, F. Teppe, N. Dyako-

nova, S. Nadar, K. Karpierz, M. Bialek, D. Seliuta, I. Kasalynas, and A. E.

Fatimy, Phys. Status Solidi C 6, 2828–2833 (2009).
33Fujitsu Microwave Semiconductor Databook (1999), Fujitsu Compound

Semiconductor, Inc., 2355 Zanker Rd., San Jose, CA 95131-1138, USA.
34S. D. Ganichev, S. A. Emel’yanov, and I. D. Yaroshetskii, Pisma Zh.
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