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Abstract

In frequency modulation atomic force microscopy, the stiffness, quality
factor and oscillation amplitude of the cantilever are important parameters.
While the first atomic resolution results were obtained with amplitudes of a
few hundred angstrom, it has subsequently been shown that smaller
amplitudes should result in a better signal-to-noise ratio and an increased
sensitivity to the short-range components of the tip—sample interaction.
Stable oscillation at small amplitudes is possible if the product of stiffness
and amplitude and the energy stored in the oscillating cantilever are large
enough. For small amplitudes, stability can be achieved by using stiff
cantilevers. Here, we discuss the physical requirements for small amplitude
operation and present design criteria and technical details of the qPlus
sensor, a self-sensing cantilever with large stiffness that allows small

amplitude operation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Today, atomic force microscopy (AFM) with atomic resolution
is mostly done using the frequency modulation method, going
back to Albrecht et al [1]. Frequency modulation atomic force
microscopy (FM-AFM) [1] is now a standard technique that
allows the imaging of semiconductors, metals and insulators
with true atomic resolution [2, 3]. In this mode, the cantileveris
driven into oscillation by supplying positive feedback. A drive
circuit uses the deflection signal of the cantilever and feeds the
phase-shifted and amplitude-controlled deflection signal back
to an actuator that holds the cantilever. In the first atomic
resolution experiment, a cantilever with a spring constant of
17 N m~', an eigenfrequency of 114 kHz and a quality factor
of 28000 was operated in the frequency-modulation mode
with a constant amplitude of A = 340 A [5]. The tip—
sample interaction caused the operating frequency to drop by
70 Hz. The most remarkable factor in this set of empirical

1 URL:http://www.physik.uni-augsburg.de/exp6
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parameters is the large oscillation amplitude. The chemical
bonding forces responsible for the image contrast have merely
arange of about 1 A, and the amplitude is several hundred times
greater. Intuitively, it seems that smaller amplitudes should
yield better results, and calculations proposed in the first NC-
AFM workshop in 1998 [6] and subsequent studies [4, 7, 8]
predict two advantages of small amplitude operation—reduced
noise and increased short-range-force sensibility. For a tip—
sample force Fis with range A, the signal (frequency shift A f)
is approximately proportional to 1/(1+ (r/2)/2(A/A)*/?) [6].
Precise analytic equations are available for inverse power force
laws [7, 9], power- and exponential laws [7]. For A — 0 and
A — 00, the approximative expression given above merges
into the accurate analytic formulae. The noise in the frequency
measurement has two components: (a) thermal noise and
(b) detector noise [1]. Thermal noise varies as 1/A with
amplitude [1], as well as detector noise [4, 8, 10]. Thus, a
maximum in the signal-to-noise ratio is expected for
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Figure 1. (A) Schematic representation of a sharp tip close to a flat sample. (B) Tip—sample potential, harmonic cantilever potential and
effective cantilever potential for a ‘soft’ cantilever (k = 17 N m~"). Note that for soft cantilevers, the potential is highly anharmonic.
(C) Tip—sample potential, harmonic cantilever potential and effective cantilever potential with k = 17 N m~! is deflected by a large
oscillation amplitude (here A = 340 A). (D) Tip—sample potential, harmonic cantilever potential and effective cantilever potential for a

cantilever with k = 1800 N m~".

(see figure 34 in [4]). The forces responsible for atomic
resolution imaging have a range of A ~ 1 A [11]. Experiments
using relatively soft cantilevers with k &~ 20 N m~! show that
minimal image noise is still obtained for amplitudes of the
order of 100 A. We propose that this contradiction is rooted in
amplitude fluctuations caused by non-conservative parts of the
tip—sample interaction and other instabilities described in the
next section. The theoretical calculation of the noise minimum
implicitly assumes that the amplitude oscillates at a perfectly
constant amplitude. However, dissipative interactions of a
magnitude §E will cause amplitude fluctuations given by
8A = 6SE/kA and these amplitude fluctuations directly
couple into vertical noise. Also, stable cantilever oscillations
that are close to perfect sinusoidal motion are only possible
if the anharmonic contributions of the tip—sample interaction
are small compared to the harmonic cantilever potential.
These stability problems and their solution, a cantilever with
sufficient stiffness, are discussed in the following.

2. Requirements for cantilever stability

Figure 1(A) shows the tip of a cantilever in close vicinity to
a flat sample. The potential between tip and sample can be
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divided into a short-range component that is dominated by the
interaction of the front atom to the sample atom next to it and
a long-range contribution that originates from van-der-Waals
and possibly electrostatic and magnetic forces [12]. When the
tip is mounted on a cantilever, it is also subject to a harmonic
cantilever potential V. The cantilever potential is a quadratic
function of the cantilever’s deflection ¢’:

Vo) = 54
2
where k is the spring constant of the cantilever. The tip—sample
interaction potential is given by Vi(z), where z is the distance
between the centre of the front atom from the centre of the
surface atom next to it. For a silicon tip and a silicon sample,
a Morse potential

@

Vis(2) = Epona(—2e <79 4 e72E9)) )

is a fair approximation for the short-range part of the tip—
sample interaction [11]. Here, Eponq is the bonding energy, « is
the inverse interaction range and o is the equilibrium distance,
for Si tip and samples, Epong ~ 2.15 eV, k ~ 1 A~ and
o ~ 2.35 A [11]. The long-range forces are often even larger
in magnitude than the short-range forces and aggravate the
stability challenges outlined in the following.
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If the cantilever is placed close to the sample such that
the tip—sample distance is zo when the cantilever deflection is
zero, the effective potential is given by

k
Ver (2) = 5 (20 = 2)” + Vs (2). @)

Figure 1(B) shows Vis(z) defined by equation (3), V¢ (z) for
k= 17N m~" and V. (2) forzo = 4 A defined by equation (4).
The effective cantilever potential is strongly anharmonic for
this case, and the cantilever’s motion would have large
unwanted higher-harmonic contributions as calculated by
Diirig [13], and it is doubtful if the self-excitation scheme
sustaining the cantilever oscillation would still be functional.
However, if the same cantilever is placed at zo = 344 A and
oscillates at an amplitude of A = 340 A, the effective potential
is almost perfectly harmonic for the z-range covered by the
oscillating cantilever as shown in figure 1(C). Figure 1(D)
shows the potential for a cantilever with a stiffness of
1800 N m~". Even though z is only 4 A here as in figure 1(B),
Vesr 1s close to a perfectly harmonic potential.

In FM-AFM, the cantilever’s resonance frequency
changes with the tip—sample interaction. The free oscillation
frequency of the cantilever is given by

1 k 5

fo=5-\x (5)

where m* is the effective mass of the cantilever. When the

cantilever gets close to the sample, the tip—sample potential

Vis with k = 9%Vis/dz> has to be taken into account and the
resonance frequency changes to

1 [k+kg

fzg (6)

m*
If ks is small compared to &, the square root can be expanded
into a Taylor series and the frequency shift Af = f — fy is
given by
Af = foﬁ- N
2k

If ks is not constant for the distance range zo— A < z < zp+A
that is covered by the oscillating cantilever, it has to be
replaced by an average tip—sample force gradient (ki) [14]
given by [15]:

A2 — Z/Z

Az Y ®

A
(ki) = / ki(x,y,z+2)
—A
These formulae have been obtained with a perturbation
approach, which is only valid if the perturbation (Vi) is
small compared to the harmonic cantilever potential V(.
For strong perturbations, the Taylor series expansion may
require the inclusion of higher order terms. In typical FM-
AFM experiments, the perturbation is small compared to the
cantilever potential and the approximations above are fully
justified.

Why is it that atomic resolution was initially only obtained
using rather large amplitudes? The reason is that the cantilever
needs to maintain a stable oscillation while it is scanning the
sample. Stability exists if k and A fulfill certain conditions
related to Vs and its derivatives. Two types of instabilities

can occur. Tabor and Winterton [16] already realized in
1969 in static force measurements (no scanning), that when
measuring the force between two bodies by attaching one of
them to a spring with stiffness & and measuring its deflection,
an instability can occur. This ‘jump-to-contact’ instability is
prevented if

k > max(—k) (&)

where k, = 0%Vi/0%z. For a cantilever that oscillates at
amplitude A, this criterion does not have to be fulfilled as long
as

kA > max(—Fi) (10)

for the distance range covered by the oscillating cantilever [17].
Thus, for oscillating cantilevers, jump-to-contact can be
avoided even for very soft cantilevers as long as the product of
k and A is larger than the maximum of the inverted attractive
force max(— Fis). While equation (10) is a necessary condition
for stable oscillation, it is not sufficient. If the tip—sample
interaction is non-conservative (i.e. a hysteresis in the force
versus distance curve), the setup that drives the cantilever into
oscillation needs to be able to provide the energy lost within
every oscillation cycle.

‘Jump-to-contact’ causes a complete breakdown of the
oscillation. An additional dynamic stability criterion relates to
acomparison between the energy losses that occur when the tip
of the cantilever approaches and retracts from the sample and
the internal energy losses in the cantilever. In the following,
we analyse the energetics of constant amplitude control in
dissipative environments and discuss their links to the dynamic
stability criterion.

FM-AFM involves several nested feedback loops
for distance regulation, amplitude control and frequency
detection. In a recent study, Gauthier et al [18] performed
numerical simulations of the interplay of these feedback
circuits. Gauthier et al have found a compelling explanation
for lateral shifts of the dissipation signals with respect
to the sample topography as a consequence of the time
constants within the FM-AFM components. As they point
out, the complete analysis of the amplitude control problem
involves the solution of a set of complicated integrodifferential
equations that can only be tackled by numerical methods.
Because of the large number of input parameters, numerical
methods do not yield an immediate insight into the sensitivity
of the solution to input parameters. Here, we focus on
the interplay of amplitude feedback and local variations in
the hysteretic part of the tip—sample interaction and look
for analytic relations connecting experimental parameters and
image noise.

Figure 2 shows the excitation scheme for constant-
amplitude AFM operation. The input signal of the
amplitude regulator is the cantilever deflection output from
the cantilever’s deflection sensor.  This signal is split
into two channels. One channel goes into a device that
measures the actual amplitude, usually a rms-to-dc converter
(e.g. AD536A?). The rms-to-dc converter uses an averaging
capacitor or an output filter with a time constant Tyng-o-dc
in order to provide a smooth output with small ripple Ay
and for enabling precise amplitude measurements. The noise
in the amplitude measurement is given by ny//\/Tims-to-dcs

2 Analog Devices, Norwood, MA, USA, www.analog.com (2003).

S81


www.analog.com

F J Giessibl et al

an;pﬁrudc'se(wmf
rms-to-dc P+ : dampi
converter e controller + g e)
4 v
bandpass " analog
fler | m" multiplier
4 (+90°)
|dcﬂocﬂon|
N sensor
TH
§ s '
S |54 [Cactuator ]
= il
= cantilever
gz |0
g,

Figure 2. Block diagram of the amplitude regulator in FM-AFM.

where n, is the cantilever deflection noise density. For
ng = 100 fm Hz 2, Tyne-to-dc Needs to be at least 10 ms
if the amplitude is to be measured with an accuracy of 0.01 A.
Practical values for 7yps-to-gc range from 10/fy to 1000/ fp.
In the amplitude regulator, A is divided by the amplitude
setpoint A, and the amplitude error signal €4 = 1—As/ Aset
is input to a P (proportional) or a PI (proportional + integral)
controller to compute the gain signal g that is multiplied by
the phase-shifted cantilever deflection signal and fed back
to a piezoelectric actuator that excites the cantilever with an
amplitude Agive. Further details of the amplitude controller
are given in [18] and [8]—here it is only important to note
that measuring the actual amplitude involves a settling time
Trms-to-de- A further time delay is caused by the response time
of the cantilever. When the driving amplitude of the actuator
changes by A Agiive, it takes an additional time tcp, = Q/ (7 fo)
before the cantilever amplitude settles [1].

Figure 3 shows the flow of energy into and out of the
oscillating cantilever. When the cantilever is far from the
sample, amplitude control is simple and the dissipation and
drive energies are easy to compute. The internal dissipation in
the cantilever can be described well by a velocity-dependent
friction force given by —2m fm*/Q dq’/dt. For a cantilever
that oscillates at frequency f = 1/T according to ¢'(t) =
Acos(2rt/T), the internal energy loss is given by

T E 0
Q
if the amplitude is kept constant by driving the cantilever
externally, causing an energy loss of AEc, = 2w Ey/Q per
oscillation cycle, where Ey = kA?/2 is the average energy
stored in the cantilever and Q is the quality factor. This energy
loss is compensated by the automatic gain control unit in the

amplitude regulator, which supplies a drive energy

Eoss cL (t) =

<—t/T+ Lsin(47n/T)> (11)
4

Ey

2 1
Egrive (1) = (t/T + ym sin(4m/T)). (12)
54
The amplitude controller compensates for the internal loss by
feeding back energy into the cantilever ( Egyive in figure 3). If the
tip-sample interaction is non-conservative and an additional
energy loss of A E per cycle occurs, this energy loss has to be
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Figure 3. Energy variation versus time for a cantilever that
oscillates according to ¢'(t) = A cos(2xt/T). The total energy of
the cantilever is approximately given by E, = kA2 /2 with typical
values of 1-10 keV. The internal friction in the cantilever causes an
energy loss proportional to the velocity, indicated by E} cr.. The
tip—sample interaction is usually also dissipative, schematically
shown by — Vi qiss. The energy losses Ejos ¢ and Vi giss are
compensated by feeding back energy Eg;iy. through an actuator.
Even if Vi 4iss Was zero, the total cantilever energy varies with by

A E o With a magnitude given by E/Q around its average value Ej.

compensated for by a greater energy feedback of the amplitude
control circuit.

The first measurements of dissipative interactions in
dynamic force microscopy go back to Denk and Pohl [19].
They have measured velocity dependent non-conservative
forces between a cantilever with f; = 1 MHz with a resonance
width of 300 Hz and an amplitude of slightly less than
1 nm, thus A Ecp was approximately 0.7 eV. They estimated
and measured the additional energy loss due to displacement
currents that were caused by a tip that was biased by Uy, = 10V
with a similar magnitude. These damping effects caused by
displacement currents are proportional to velocity and the
square of Uys. Because f; and U, are about one order of
magnitude lower in typical FM-AFM experiments, we estimate
that the velocity dependent dissipation energy loss is of the
order of 1 meV/cycle. A potentially much larger dissipation
channel was described by Prandtl in 1928 [20] and one year
later [21] by Tomlinson [22] (‘plucking action of one atom onto
an other’). The Prandtl-Tomlinson process is independent of
velocity and causes a constant energy loss per cycle AEg.
This dissipation process involves an atomic jump-to-contact.
Attaching a strong magnet to a soft coil spring and lowering
this arrangement onto a steel plate serves as a model for this
dissipation channel. When the magnet approaches the steel
plate, it will suddenly snap onto the plate at a fairly close
distance. When lifting the spring from the metal plate, the
coil spring will stretch until the load force overcomes the
attractive force of the magnet, the magnet will snap back
from the plate and oscillate until the stored energy dissipates
in a damped oscillation. For Si tips and Si samples, Sasaki
and Tsukada [23] and Abdurixit et al [24] have performed
theoretical studies regarding dissipative interactions. Sasaki
and Tsukada have estimated an energy loss comparable to
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the bonding energy of ~2 eV /cycle caused by the Prandtl-
Tomlinson process. Abdurixit et al found an energy loss
of approximately 36.5 kcal mol~! ~ 1.6 eV /cycle (figure 4
in [24]). An experimental study involving lateral oscillation
of a cantilever reports an energy loss of 4 eV per oscillation
cycle when the cantilever oscillates between two adatoms [25],
thus the energy loss when making and breaking a single bond
to Si is also 2 eV/cycle.

The contributions to energy fluctuations caused by the tip—
sample interaction are schematically shown in the — Vi giss
graph in figure 3. When the oscillating cantilever enters
the attractive tip—sample potential, it gains a potential energy
given by Vis(zo + Acos (2t/T)) defined by equation (3) for
0 <t < T/2. In figure 3, zo = A + o and the cantilever
has gained the energy Epona of equation (3) at its closest
sample encounter at ¢+ = 7/2. If a Prandtl-Tomlinson loss
process occurs, the attractive potential requires an energy of
AE + Evong as shown by the section of the — Vi 4iss graph of
figure 3 for /2 < t < T. This extra energy loss occurs at
every consecutive oscillation cycle and has to be compensated
for by the amplitude controller. If the energy losses due to non-
conservative tip—sample potentials are constant or changing
very slowly, amplitude control is not a problem. However, if
AE varies strongly from one atomic position to the other,
the oscillation amplitude is affected. What happens to the
cantilever amplitude when the tip scans from a position with
almost zero tip—sample dissipation to an atomic position that
causes a dissipation of a few electronvolt per cycle? Because
the amplitude controller responds slowly as outlined above,
the energy feeding the dissipation channels has to come from
the energy stored in the cantilever, leading to a change of its
amplitude from A to A”:

1kA” = 1kA* — AE. (13)
Thus, for a time given by Tyms-to-de, the amplitude will drop by
AA = A’ — A per cycle with

AE
kA

AA = (14)

A2 —2AE /k— A~
with little change in the measured cantilever amplitude A;ng
because of the time constant of the rms-to-dc converter. In
addition, we have to take into account that changes in the
driving amplitude Agve are reflected in changes of A after
a time delay given by tc. = Q/(7fy) and thus require
approximately Q/m oscillation cycles before A reaches its
original setpoint again. If we demand that the cantilever is
still oscillating after Q /7 cycles with extra damping present,

we find
wkA?

AA% < A= AEg < (15)
We have neglected the slow buildup of the driving amplitude
by the amplitude controller, therefore equation (15) is only
an approximative criterion. Reductions in amplitude need to
be minimized because they will also lead to a change in the
frequency shift, leading to a coupling of the distance regulator
and the amplitude controller. It is interesting to note that the
conclusion in equation (15) is exactly the same criterion that
was proposed as a conjecture in [4, 8]. In the earlier derivation,
the conclusion in equation (15) was based on the requirement

that the gain factor in the amplitude controller should not vary
by more than 100% from its value when the sample is far
from the oscillating tip. Finally, it is important to add a short
discussion about the optimal value of the cantilever’s quality
factor Q. One implication of equation (15) is that the Q-factor
should not be too large. This appears to be in contradiction with
the findings of Albrecht et al [1] that the noise in the frequency
measurement in AFM is proportional to 1/4/Q. However, it
has to be considered that the damping of the cantilever and
thus its Q-value change when dissipative sample interaction is
present. Since Q is given by 2 times the energy stored in the
cantilever divided by the energy loss per cycle, the effective Q
value is

1
Qetr = (16)

1, AE "
0 " 2nE,

Thus Q. does not increase much if Q is chosen to be larger
than % and values of Q ~ 5000 should be sufficient for
most practical applications.

3. The qPlus sensor

By the time we realized the potential benefits of small
amplitude operation and the requirement of very stiff
cantilevers with k ~ 1 kN m~!, standard silicon cantilevers
with such a high stiffness were not available. This was
a good opportunity to take a fresh look at the problem of
minimizing noise in frequency modulation AFM. Equation (7)
connects the measurement of small forces to a measurement
of frequencies. The measurement of time and frequency has
been pursued by ‘physicists’ for at least a few millennia and
research into chronology with its implications for navigation
and land surveying is probably the first example for large-scale
government funding of fundamental research [26]. With the
invention of atomic clocks, of all physical measurements time
and frequency can be measured with the greatest precision.
While it is doubtful that utilizing atomic clocks in force
microscopy is practical, it is worthwhile to look at the second
best solution for frequency standards: quartz oscillators.
Unlike silicon with its cubic crystal symmetry, quartz is highly
anisotropic with a hexagonal crystal symmetry. The variation
of the oscillation frequency of mechanical oscillators made
of quartz depends on the crystal orientation and a number of
crystal orientations with low temperature dependence have
been found [27]. For tuning fork geometries, the ‘X + 5°
cut’ [28] has a very low temperature variation given by
Af/f =~ ¢(® — )% with ¢ = —=3.5 x 1078/°C £ 10%
and ¥y = 25°C 4+ 5°C.3 In frequency modulation AFM,
thermal variations of cantilever frequency are a source of
noise. Figure 4 shows the frequency shift coefficient of
quartz and silicon cantilevers. The quartz data are fitted
to experimental measurements published in [29], the silicon
data is calculated from the materials properties of silicon in
the [110] crystal direction [30]. For a temperature range of
room temperature 10 °C, the frequency of a standard silicon
cantilever (cantilever extends along the [110] crystal direction)
with fo = 100 kHz would change by £35 Hz, while the
frequency of a quartz cantilever (X + 5° cut) would change

3 Micro Crystal, Miihlestrasse 14, CH-2540 Grenchen, Switzerland,
www.microcrystal.ch (2002).
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Figure 4. Frequency shift coefficient as a function of temperature
for quartz and silicon cantilevers (see text).

Figure 5. (A) Transparent quartz watch, (B) time-keeping element
of the watch; a quartz tuning fork in an evacuated metal case (left)
and opened case (right).

only by —0.35 Hz. For operation atliquid helium temperatures,
the magnitude of the frequency shift with temperature is
comparable for Si[110] and quartz. However, it has to be
noted that the deflection of traditional Si cantilevers has to
be measured by optical means, typically shining light onto
the cantilever with a power of the order of 1 mW, so that
the actual cantilever temperature might be considerably higher
than the temperature of the other parts of the microscope. With
piezoelectric detection, the energy losses due to deflection
detection are a few orders of magnitude lower, therefore lower
cantilever temperatures are expected for quartz sensors with
piezoelectric detection.

Figure 5(A) shows a transparent SWATCH™ wristwatch
where the metal can that holds the tuning fork is clearly visible.
Figure 5(B) shows a magnified view of an enclosed (left)
and an open tuning fork (right). The whole tuning forks
have a length of 4 mm, the individual prongs have a length
of 2.4 mm (vertical in figure 5(B)), a thickness of 214 pum
(horizontal) and a width of 130 pum (perpendicular to the
paper plane). In the mounted version shown in figure 5(B),
the gold metallization is removed in a rectangular region at the
electrically inactive end sections of the prongs and a fine line
below by laser trimming (indicated by the arrows in figure 5(B),
compare with figure 6(A) for reference). This laser trimming
reduces the effective mass of the prongs and tunes them to
an eigenfrequency of exactly 2'5 Hz. We have measured the
thickness of the gold layer to be 220 nm and estimate a laser
spot size of roughly (10 «m)?, thus the prongs are trimmed with
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Figure 6. (A) Section of a wafer of tuning forks type E158

from (see footnote 3). (B) Alumina substrate (bottom) and tuning
fork glued to the substrate (top). (C) Three assembled qPlus sensors
with tips made from tungsten (left), silicon (centre) and iridium
(right). (D) Wiring and electronic scheme for simultaneous STM
and AFM operation with qPlus sensor.

a precision of §m/m* = 1077 corresponding to a frequency
precision of 3 mHz. The prongs form two coupled oscillators
and the mode with the highest Q-factor is the antiparallel
motion where both prongs move in opposite directions. The
tuning forks we use have a quality factor of Q ~ 55000 when
they are enclosed in the evacuated metal can (see footnote 3). If
the eigenfrequency of the two prongs does not match, a ringing
mode with low Q results. Quartz watch crystals in tuning
fork geometry have been used before in acoustic [31] and
optical near field microscopy [32]. In these first applications
of tuning forks as force sensors, a tip was attached to one of
the prongs, resulting in an arrangement where the prong that
carries the probe has a significantly lower eigenfrequency. To
solve the problem of the resulting ringing mode, Dransfeld ez al
[33] have proposed attaching a counterweight on the prong
without a tip. However, tip—sample interactions also break
the symmetry of the two prongs. In the ‘qPlus’ configuration,
one prong is fixed to a substrate with high mass, rendering the
tuning fork into a cantilever geometry. The advantage is that
Q remains constant even when the eigenfrequency of the free
prong changes due to (conservative) tip—sample interactions.
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The quality of the attachment of the tuning forks to the alumina
substrate is critical for obtaining high Q values. We attach the
forks to the substrate with Torr-Seal, a vacuum compatible
epoxy resin* and obtain a Q value of about 4000 in vacuum
at room temperature and 20 000 in vacuum at liquid helium
temperature [34]. King et al [35] use a different type of glue
and obtain a Q value of about 5000 in air at room temperature.

Figure 6(A) depicts a section of a wafer of tuning forks
of the type we are using (E158 as used in crystals DS26 from
Micro Crystal (see footnote 3)). Figure 6(B) displays a custom
made alumina substrate (bottom) and a tuning fork glued to it
(top), and figure 6(C) three assembled qPlus sensors with tips
made from tungsten (left), silicon (centre) and iridium (right).
In the unmounted tuning forks shown in figure 6(A), the gold
metallization in the end sections of the prongs is a closed layer.

Figure 6(D) shows the electronic circuitry for simultane-
ous STM/AFM operation. The tuning forks have two elec-
trodes. The electrode at the end of the free prong connects the
tip of the sensor to the tip bias voltage. The other electrode is
connected to a current-to-voltage converter—the output of this
circuit is proportional to the derivative of the sensor deflection
with respect to time [36]. The tunnelling current is collected at
the sample. Both current-to-voltage converters should have a
high bandwidth and low noise (e.g. AD711 or AD744 from (see
footnote 2)), using resistors with a low parasitic capacitance
and typical values of 100 M.

In order to make full use of the high frequency stability
of the sensor, we use a digital, quartz stabilized phase-locked-
loop detector”.

In summary, the qPlus sensor has four additional benefits
over standard silicon cantilevers:

(1) Tuning forks are available with a stiffness close to the
desired value of 1 kN m~!.

(2) The forks are large, allowing the mounting of various types
of tips on them. Most tip preparation methods known from
scanning tunnelling microscopy can be utilized. The large
size also allows the sensor to be oriented parallel to the
sample surface and oscillate it exactly perpendicular to the
sample surface—traditional silicon cantilevers have to be
tilted by about 10°. Also, the qPlus sensor can be tilted
by 90° to allow lateral force detection [25].

(3) Quartz, the material of the tuning forks is far superior to
silicon with respect to frequency stability.

(4) Because of the piezoelectricity of quartz, the deflection
of quartz cantilevers produces charges at electrodes
on the surfaces of the oscillators. The deflection
measurement is easily done electrically without the need
for optical components, simplifying the implementation
considerably.

4. Discussion

In summary, we have confirmed a previously suggested
stability criterion stating that within one oscillation cycle, the
intrinsic energy loss in the cantilever should be comparable in

4 Varian Torr Seal Varian, Inc., Hansen Way, Palo Alto, CA 94304-1030,
USA (2003).

5 Nanosurf easyPLL, easyPLL Sensor Controller Nanosurf AG, Grammet-
straf3e 14, CH-8804 Liestal, Switzerland (2003).

magnitude to the tip—sample dissipation AEy. Empirically,
this criterion is fulfilled in most atomic resolution experiments
(see table 1 in [4]). Exceptions are low-temperature
experiments [37, 38] with extremely low scanning speeds,
and spectroscopy experiments where the z-distance is varied
very slowly [39]. If AE| varies sufficiently slowly with time,
the amplitude regulator has enough time to adjust to strong
variations in dissipation.

Meeting this criterion also means decreasing AEy. It is
likely that not only the front atom of the tip, but in particular
tip atoms close to the apex that are loosely bonded to the tip,
contribute to AE. The smallest amplitudes where stable
imaging was performed were obtained with tips that were
annealed at high temperature. Eguchi and Hasegawa [10] have
performed experiments with A = 28 A with a cantilever with
k = 48 Nm~! that was annealed at 900 °C, and we have
reached amplitudes down to A = 2.5 A with a gPlus sensor
with & = 1800 N m~! where the Si tip was heated close to the
melting temperature [40]. We therefore speculate that high-
temperature annealing of tips removes weakly bound atoms
that are expected to favour the Prandtl-Tomlinson dissipation
process.

Because AEj increases strongly with decreasing tip—
sample distance [41-43], imaging at very small tip—sample
distances is only possible if the cantilever oscillation remains
stable for large AE;. On the other hand, the resolution
of scanning probe microscopes increases with smaller tip—
sample distances [44—46]. Probing samples at very small tip—
sample distances thus requires the use of very stiff cantilevers
with spring constants of the order of 1 kN m~!'. The qPlus
sensor is an implementation of such a stiff cantilever and
has been described in detail above. Using this stiff sensor,
‘subatomic’ structures, attributed to two 3sp3—like orbitals
originating from a single atom could be made visible [40, 45].
Also, subatomic features in a single atom, attributed to 4f-like
states on Sm [47] could be imaged using this technique. Small
amplitude operation also simplifies combined STM/AFM
imaging, enabling experiments where both «- and B-atoms
in graphite could be made visible in the force signal while
simultaneously imaging the S-atoms in the current signal [34]
using a 5 K STM/AFM. The small amplitude/stiff cantilever
technique has also enabled true atomic resolution in lateral
force microscopy [25].

In principle, increased resolution should also be possible
with conventional silicon cantilevers and optical detection. We
therefore suggest to perform experiments with conventional
FM-AFMs using cantilevers with much greater stiffness. In
contrast to self-sensing arrangements like the qPlus sensor and
piezoresistive cantilevers [48], conventional optical detection
does not gain in signal-to-noise ratio of the cantilever deflection
measurement with increasing cantilever stiffness. However,
the decrease in force sensitivity should be greatly offset by the
expected gain in resolution, in particular for low-temperature
microscopes where detector noise can be minimized by low
scanning speeds and bandwidth reductions.
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