Pathogenesis of Parkinson’s disease

Peter Riederer and Klaus W. Lange

Department of Clinical Neurochemistry, University Hospital for Nervous Diseases,
University of Wirzburg, Wirzburg, Germany

The importance of genetic aspects, ageing, environmental factors, head
trauma, defective mitochondrial respiration, altered iron metabolism,
oxidative stress and glutamatergic overactivity of the basal ganglia in the
pathogenesis of Parkinson’s disease (PD) are considered in this review.
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Introduction

The cause of Parkinson’s disease (PD) is still unknown.
The reinterpretation of twin studies had led to an in-
creased interest in the possible role of heredity in the
aetiology of PD. Selective destruction of dopaminergic
neurones in the substantia nigra (SN) of humans and
other primates is caused by 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP); it has therefore been hy-
pothesized that a similar environmental toxin may play
a role in the pathogenesis of PD. No such agent, how-
ever, has yet been identified. It is possible that a com-
bination of genetic and environmental factors is the un-
derlying cause of PD. Research on the neurotoxicity of
MPTP has shown that the biochemical changes occur-
ring in the brain in PD are similar to those produced
by MPTP, namely inhibition of mitochondrial function.
Furthermore, an increased iron load in the SN may con-
tribute to the neuronal damage occurring in PD.

Genetic factors in Parkinson’s disease

The search for evidence supporting a genetic aetiology
for PD has long been hampered by uncertainties re-
garding nosology and neuropathology of the disease.
Twin studies showing similar concordance rates between
monozygotic and dizygotic twins with PD suggested that
inheritance plays little or no part in the aetiology of the
disease [1-3]. A reappraisal of the twin study by Ward
et al (1] concluded that a genetic component of PD
cannot be ruled out [4]. Two large kindreds of famil-
ial PD have shown an autosomal dominant mode of
transmission of clinically rather atypical, but pathologi-
cally classical PD [S]. A recent study using strict diag-
nostic criteria has shown that familial PD exists and is
clinically indistinguishable from sporadic PD [Ge*]. If it

is assumed that familial PD has a genetic basis, pedigree
and segregation analysis in this study suggest autosomal
dominant inheritance of a gene or genes with reduced
penetrance as the most likely explanation. The similar
sex ratio of patients and the excess of paternal trans-
mission in the study by Maraganore et al [6¢*] argue
against X-linked inheritance. This is contrary to the hypo-
thesis of a major genetic susceptibility to PD conferred
by mitochondrial genes [7].

The role of genetic factors in the aetiology of sporadic
cases of PD remains to be determined. Recent stud-
ies confirming the existence of familial PD suggest that
the genetic hypothesis of PD should be explored further.
Clinically unaffected twins of patients with PD should be
carefully examined for signs of parkinsonism over a pro-
longed period of time as a large range of variation in age
of onset and clinical features may occur within families. In
view of this, [18F]tfluorodopa positron emission tomog-
raphy scanning in asymptomatic siblings of patients with
PD may detect the preclinical stage of the disease and
genetic linkage studies should be performed in large
kindreds consisting of a sufficient number of affected
cases.

Ageing and Parkinson’s disease

The hypothesis that PD is the result of an interac-
tion between age-related nigrostriatal dopamine loss and
secondary insults has recently been challenged. Post-
mortem measurement of striatal dopamine uptake ter-
minals demonstrated decreasing striatal innervation with
ageing, but no difference in the rate of terminal loss be-
tween young and old patients was found [8]. Positron
emission tomography studies produced conflicting re-
sults with regard to alterations of striatal [18F]fluorodopa
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uptake with age. In cross-sectional studies of normal vol-
unteers both a decrease [9] and no change [10] in striatal
dopamine uptake have been found. The failure to show
an age-related dopamine depletion in normal subjects
makes an acute event as the cause of PD more likely. In a
longitudinal study, a reduction in dopamine uptake was
observed in both normal subjects and PD patients, and
the rate of change was comparable in both groups [11°e].
This data suggest that PD results from sudden damage of
unknown origin in the past rather than from a gradual ac-
celeration of dopamine loss. The suggestion that ageing
does not contribute significantly to the evolution of PD is
supported by histological studies showing that in normal
brains the number of pigmented SN cells is reduced by
only 4.7 t0 6.0% per decade from the fifth to the ninth
decade of life [12¢¢].

Epidemiology of Parkinson’s disease

Two recent studies [13+,14¢] and the majority of pre-
vious investigations show that the incidence of PD is
greater in men than in women. A recent Canadian study
[14¢ ] based on hospital stays compared the geographic
distribution of PD. The disease displayed an uneven re-
gional distribution in the average annual prevalence rates
with a higher prevalence in the westernmost provinces of
Canada. This offers support for environmental influences
in the aetiology of PD and a starting point for a more in-
volved survey comparing environmental differences be-
tween high and low prevalence provinces.

The discovery that the neurotoxin MPTP induces
neuropathological and neurochemical alterations as well
as clinical signs very similar to those of PD suggests that
a similar chemical compound may cause PD [15,16]. The
chemical structure of MPTP is similar to that of many
pyridines found in the environment and, in particular,
to that of chemicals commonly used in agriculture [17].
Several case-control studies have shown associations be-
tween PD and rural living, well-water drinking and ex-
posure to herbicides and pesticides [18]. A recent case
control study from Kansas, USA of 19 families having two
or more siblings with PD has shown that rural residence
and drinking well-water, but not farming and herbicide
exposure, were increased in 38 patients with PD com-
pared with 38 control subjects [19+¢]. Another case-con-
trol study from Calgary compared 130 patients with PD
with 260 randomly selected community controls and did
not find an increased risk for the development of PD as-
sociated with a history of rural residence, farm living or
well-water drinking in early childhood or at any time dur-
ing the first 45 years of life [20¢]. Possible explanations
for the conflicting findings are difficulties with regard to
the diagnosis of PD, different definitions of positive ex-
posure or length and timing of the exposure period. An
alternative explanation is that geographic variation exists
in the relationship between rural environmental factors
and risk of developing PD.

Head trauma in Parkinson’s disease

Significant head trauma as a possible cause of PD has
been established. Head trauma does not, however, ap-
pear to be a primary aetiologic agent in PD and the syn-
drome of post-traumatic parkinsonism is rare [21]. Re-
cently the relationship between head trauma and PD has
been investigated [22¢]. PD patients reported a higher
frequency of head trauma or of head injury associated
with alterations of consciousness in the past than con-
trol subjects. The duration of time between head injury
and the year of the survey was approximately 30 years in
both groups.

Head trauma may be a risk factor in the aetiology of PD.
A major possible flaw of retrospective survey studies is
recall bias. Patients with chronic disease are more likely
to ponder the possible connections between life events
and disease onset. This view is supported by the fact that
increased incidence of head trauma has been reported
in other neurological disorders. The role of head trauma
in the pathogenesis of PD remains unclear. Prospective
studies are therefore needed.

Defective mitochondrial respiration

The discovery that the neurotoxin MPTP destroys
dopamine-containing neurones in the SN and causes
parkinsonian motor deficits in humans and other primate
species has led to further insights into the pathogenetic
processes involved in PD. MPTP itself is not the active
toxin but has to be converted by monoamine oxidase
B into 1-methyl-4-phenyl-pyridinium (MPP+). MPP* is
concentrated in mitochondria where it poisons com-
plex I of the mitochondrial respiratory chain [23]. MPP*
svnthesis from MPTP may also induce the formation of
free radical species, imposing oxidative stress with con-
sequent lipid membrane peroxidation [24).

The recent discovery of complex I deficiency in the SN of
idiopathic PD [25] raised the possibility that the disease
may be caused by a similar mechanism to MPTP-induced
parkinsonism. Complex I deficiency in PD appears to be
anatomically specific for the SN [26°] and probably re-
flects some active process selectively affecting this area.
The absence of complex 1 deficiency in multple sys-
tem atrophy [26¢] indicates that this defect is not the
result of neuronal degeneration in the SN. An MPTP-like
substance may inhibit complex I of mitochondrial energy
metabolism. Alternatively, complex I deficiency could re-
sult from a defective gene encoding abnormal complex
1 proteins or a factor that regulates gene transcription.
Using immunoblotting analysis, mitochondrial DNA has
been reported to be normal in the SN, putamen and
cortex of patients with PD [27]. Studies using the poly-
merase chain reaction have shown an increase in deletion
of striatal mitochondrial DNA in both PD and senescence
(28,29¢]. The deleted genome may therefore not be a
specific property in PD but rather the result of ageing.
Further investigations are required to clarify whether the
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observed mitochondrial dysfunction is the result of en-

zyme inhibition by toxins, gene deletion or reduced gene
expression.

Analysis of mitochondrial oxidative phosphorylation en-
zymes from muscle biopsies showed complex I defects
in four out of six PD patients and a complex IV defect
in one out of six [30¢]. Mitochondrial DNA analysis re-
vealed no deletions or insertions in any of the patients.
These findings suggest that PD is a systemic disorder of
oxidative phosphorylation.

Altered iron metabolism and oxidative stress

Free radicals are known to promote membrane fluid-
ity, lipid peroxidation and alteration in cellular calcium
homeostasis. Free radicals generated from oxidation re-
actions may contribute to the pathogenesis of PD by
reacting with membrane lipids and causing lipid per-
oxidation, membrane damage and neuronal death. Lipid
peroxidation is increased in the SN of subjects with PD
[31] suggesting that free radicals are generated.

It is generally accepted that an increase in iron con-
tent occurs in the SN in PD [32¢33%¢—35¢¢]. There is
histochemical and biochemical evidence that in PD the
total iron content and the iron (III) content are se-
lectively increased in the SN pars compacta but not in
the SN pars reticulata {33*¢]. The increased iron content
may contribute to the selective elevation of basal lipid
peroxidation in the SN. Free iron may be available and
may participate in auto-oxidation of dopamine resulting
in generation of H,O, and oxygen free radicals.

Hydrogen peroxide is normally cleared from the brain by
the glutathione system. In the presence of iron or super-
oxide free radical, H,O, can be reduced to form the toxic
hydroxyl free radical. The activity of striatal monoamine
oxidase B, which catalyzes the oxidation of dopamine, in-
creases with age [36]. Increased dopamine metabolism
could increase the formation of H,O, and exceed the
capacity of the glutathione system. Glutathione and glu-
tathione peroxidase activity have been reported to be
decreased in the SN of PD patients [37] and erythrocyte
glutathione peroxidase has been shown to be lower in
advanced cases of PD than at early stages of the disease
[38°]. Evidence supporting a state of oxidative stress in
PD is summarized in Table 1.

The progression of PD may therefore be retarded by neu-
roprotective agents including selective monoamine oxi-
dase B inhibitors, selective calcium-channel antagonists
and iron chelators [44¢¢].

Excitatory amino acids and Parkinson’s disease

Dopamine has been shown in animals to be of less im-
portance in the regulation of psychomotor functions than
was previously believed, for example, clear behavioural

Table 1. Evidence supporting a state of oxidative stress in the
substantia nigra in Parkinson’s disease.

Findings Reference

Disturbed mitochondrial respiratory function with  125,26¢,27,39,40]

reduction in the activity of complexes | and Ill

Altered cellular calcium homeostasis with [41,42]
resulting decrease in calcium-binding protein
Decreased glutathione and glutathione peroxidase (37

activity leading to a reduced ability to
scavenge hydrogen peroxide derived from
oxidative deamination and auto-oxidation
of dopamine
Increased iron content resulting in a potential [32¢,330%-35°¢]
excess of radical-generating free iron

Increased mitochondrial superoxide dismutase {43]
activity, perhaps reflecting an attempt to
compensate for oxidative stress

Increased peroxidation of membrane lipids inducing 131]
membrane damage and cell death

activation can be produced in rodents following sup-
pression of glutamatergic neurotransmission even in the
absence of brain dopamine [45,46¢*]. Cortical excitatory
glutamatergic pathways innervate the putamen, caudate
nucleus and subthalamic nucleus and dopaminergic pro-
jections originating in the SN terminate in the putamen
and caudate nucleus.

The degeneration of the dopaminergic nigrostrial neuro-
nes in PD leads to profound alterations in the neuronal
activity within the basal ganglia—thalamo-cortical circuit.
The ultimate result of dopamine loss appears 10 be an
increased inhibitory output from the basal ganglia to
the thalamus. The action of dopamine seems to be dif-
ferent on two subpopulations of striatal output neurones;
dopamine depletion therefore leads to different effects. In
the MPTP model of PD in the monkey, there is a tonic in-
crease in the neuronal activity of the globus pallidus inter-
nus, the subthalamic nucleus and the SN pars reticulata,
whereas the activity of the globus pallidus externus, de-
creases [47]. Overactivity of the glutamatergic projection
neurones in the subthalamic further enhances neuronal
activity in the basal ganglia output nuclei, globus pallidus
internus and SN pars reticulata. The increased globus pal-
lidus internus output results in an increased inhibition of
the ventrolateral thalamus and thalamocortical neurones.
The resulting reduction of cortical activation accounts for
akinesia and rigidity (Fig. 1).

According to the simplified functional model of the mo-
tor circuit, an equilibrium exists between the glutamater-
gic system projecting from the cortex via the subtha-
lamic nucleus to the basal ganglia output nuclei and
the y-aminobutyric acid (GABA)ergic striatopallidal and
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Fig. 1. Simplified diagram of the basal ganglia-thalamo-cortical circuit, with black arrows indicating excitatory connections and shaded
arrows representing inhibitory connections. Alterations in the activity of connections are indicated by changes of arrow width. (a) Normal:
the nigrostriatal projections are postulated to have differential effects on the two striatal output systems. The putamen is connected
with the globus pallidus internus (GPi) by direct and indirect projections. (b} Alterations after 1-methyl-4-phenyl-1,2,3 6-tetrahydropyridine
treatment: the substantia nigra pars compacta (SNC) is damaged, the result of which is increased subthalamic nucleus (STN) and GPi
activity leading to increased inhibition of the thalamo-cortical projection and ultimately parkinsonian motor deficits. GPe, globus pallidus
externus; SNR, substantia nigra pars reticulata; VLT, ventrolateral thalamus. Published with permission [48].

striatonigral projections to these nuclei. In PD the equi-
librium is shifted towards the side of the glutamatergic
system. In this model, excessive output from the subtha-
lamic nucleus is postulated to play a critical role in the
pathophysiology of PD. This hypothesis was recently con-
firmed by the finding that both lesions of the subthalamic
nucleus [48] and local blockade of excitatory amino acid
transmission in the globus pallidas internus [49+*] can re-
verse parkinsonism in MPTP-treated monkeys.

Systemic administration of glutamate antagonists may
also be effective in the treatment of PD. The synaptic
responses of glutamate are mediated by different recep-
tor subtypes, three of which are coupled to ionophores.
They are activated preferentially by N-methyl-pD-aspartate
(NMDA), kainate, quisqualate or «-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA). The selective
AMPA antagonist 6-nitro-7-sulphamobenzo|f]quinoxa-
line-2,3-dione (NBQX) and the competitive NMDA antag-
onist ( + )-2-carboxypiperazine-4-yl-propyl-1-phosphonic
acid (CPP) are not effective in animal models of PD when
given alone but ameliorate the parkinsonian symptoms
when co-administered with a threshold dose of levo-
dopa [49*¢]. These synergistic effects of NBQX and CPP
were observed both in the rat with unilateral 6-hydroxy-
dopamine lesions of the SN and in MPTP-treated com-
mon marmosets [50e¢].

The finding that antiglutamatergic treatment improves the
parkinsonian state in experimental animals supports the
hypothesis that glutamatergic overactivity in the basal
ganglia as a result of striatal dopamine loss is an im-
portant pathogenetic mechanism during the course of
the disease. This indicates the potential efficacy of new

pharmacological strategies for the treatment of patients
with PD [51°,52¢].

Conclusion

Research on MPTP neurotoxicity has identified a mech-
anism bv which selective destruction of the dopamine-
containing neurones in the SN can be brought about and
this process may be responsible for the neuropathologi-
cal alterations occurring in PD. Further investigations are
needed to establish whether changes of the mitochon-
drial energy metabolism and oxidative stress are specific
to PD, whether they occur at early stages of the disease
and whether they can be influenced by drug therapy. No-
vel pharmacological strategies may be introduced aimed
at preventing or slowing the rate of progression of the
disease, protecting against free radical damage and an-
tagonizing central overactivity of excitatory amino acids.
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