
 

 

Regulation of T cell differentiation by the TGF-β 

inhibitor Smad7 and non-Smad pathways 

 

 

 

 

 

Dissertation 

Zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat) 

der naturwissenschaftlichen Fakultät III 

-Biologie und Vorklinische Medizin- 

der Universität Regensburg 

 

 

Durchgeführt am Lehrstuhl für Neurologie 

der Universität Regensburg 

 

Vorgelegt von 

Md. Maruf Hasan 

Rangpur, Bangladesh 

im April 2012 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diese Arbeit wurde angeleitet von Prof. Dr. Ernst R. Tamm 

 

Promotionsgesuch eingereicht am 12. April 2012 

 

Prüfungsausschuss: 

Vorsitzender: Prof. Dr. Stephan Schneuwly 

1. Gutachter: Prof. Dr. Ernst R. Tamm 

2. Gutachter: Jun. Prof. Dr. med Ingo Kleiter 

3. Prüfer:       Prof. Dr. Peter J. Flor 

 

 

 

........................................... 

Signature 

Md. Maruf Hasan 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

My family 

 

 

 

 

 

 



Contents   

 

1. Introduction                                                                               1

               

1.1 The immune system - an overview         1 

1.1.1 Generation and maturation of T cells         2 

1.1.2 T cell subsets and their role in the adaptive immune system     3 

1.1.2.1 Transdifferentiation of T cell subsets         7 

 
1.2 The Transforming growth factor-β (TGF-β)        9 

1.2.1 Control of TGF-β production and activation       10     

1.2.2 TGF-β super family signalling         10 

1.2.2.1 The Smad family of signal transducers        12 

1.2.2.2 The canonical Smad signalling pathway       13 

1.2.2.3 The alternative non-Smad signalling pathways      16 

 
1.3 Regulation of T cell mediated immunity by TGF-β      20 

1.3.1 TGF-β signalling during T cell proliferation and T cell survival       21 

1.3.2 TGF-β and T helper cell differentiation        21 

1.3.2.1 Smad dependent and independent regulation of T helper cell  

differentiation by TGF-β           24 

            
1.4 Role of TGF-β and Smad7 in experimental autoimmune  

encephalomyelitis            24 

 

2. Objectives            27 

 

3. Materials and Methods           28

            

3.1 Materials            28 

 
3.2. Methods in cell biology          38 

3.2.1 Animals            38 

3.2.2 Preparation of single cell suspensions       38 

 



3.2.3 Cell sorting and analysis          38 

3.2.3.1 Magnetic cell sorting          38 

3.2.3.2 FACS cell sorting           39 

3.2.4 Flow cytometry           40 

3.2.4.1 Surface marker staining          40 

3.2.4.2 Intracellular and intranuclear marker staining       40 

3.2.5 Carboxyfluorescein succinimidyl ester staining      41 

3.2.6 T helper cell subset differentiation in vitro       42 

3.2.6.1 Th1 cell differentiation          42 

3.2.6.2 Th2 cell differentiation          42 

3.2.6.3 Th17 cell differentiation          42 

3.2.6.4 Treg cell differentiation          42 

3.2.7 Mixed lymphocyte reaction         43 

3.2.7.1 Cell suspension           43 

3.2.7.2 Cell sorting procedure          43 

3.2.7.3 Co-culture procedure          45 

 
3.3. Methods in molecular biology         46 

3.3.1 Genomic DNA extraction          46 

3.3.2 Polymerase chain reaction         46 

3.3.2.1 Typing of CD4Cre-Smad7fl/fl, Smad7 Tg and TGFβRIIfl/fl mice    47  

3.3.2.2 Agarose gel electrophoresis         48 

3.3.3 Gene expression analysis         49 

3.3.3.1 Preparation of ribonucleic acid         49 

3.3.3.2 Ribonucleic acid isolation          49  

3.3.3.3 Complementary deoxyribonucleic acid synthesis      50 

3.3.3.4 Quantitative Real Time PCR         51 

3.3.4 Western blot analysis          52 

3.3.4.1 Protein extraction            52 

3.3.4.2 Measurement of protein concentration        52 

3.3.4.3 SDS-polyacrylamide-gel          53 

3.3.4.4 Gel electrophoresis          54 

3.3.4.5 Blotting            54 

3.3.4.6 Blocking            55 

3.3.4.7 Protein labeling and detection         55 



3.3.4.8 Membrane stripping           55 

3.3.5 Enzyme-linked immunosorbent assay         55
             
3.3.6 Protein array for detection of protein phosphorylation      56 

3.3.6.1 Protein extraction from Th17 differentiated T cells       57 

3.3.6.2 Reagent preparation           57 

3.3.6.3 Protein labelling             58 

3.3.6.4 Blocking of array slides            58 

3.3.6.5 Coupling             58 

3.3.6.6 Detection             59 

3.3.6.7 Analysis of raw data           60 

 
3.4 Statistical calculations           62 

  

4. Results              63 

 
4.1 Characterization of mice with a T cell specific deletion of Smad7     63 

4.1.1 Thymic T cell development           63  

4.1.2 Distribution of T cell receptor positive CD4+ and CD8+ T cells  

in the thymus             63 

4.1.3 Development of CD4+CD25+Foxp3+ regulatory T cells       64 

4.1.4 Distribution of T cells and B cells in the spleen        65 

4.1.5 Activation status of T cells in the periphery        66 

4.1.6 Distribution of naïve and memory T cells         67 

 
4.2 The role of T cell Smad7 in regulatory T cell function      68 

4.2.1 Does the expression level of Smad7 influence the suppressive  

capacity of regulatory T cells?           68 

4.2.2 Does the expression level of Smad7 determine the proliferation of  

responder T cells in mixed lymphocyte reactions?        70 

 
4.3 In vitro T helper cell differentiation in T cells with altered  

Smad7 expression             72 

4.3.1 Th1 differentiation            72 

4.3.2 Th2 differentiation            75 

4.3.3 Th17 differentiation            76 



4.3.4 Treg differentiation            77 

4.3.5 Smad7 expression in T cells during Th1 and Th17 differentiation     79 

 
4.4 Investigation of Smad-independent signalling pathways  

during Th17 differentiation           80 

4.4.1. TGF-β signals are not exclusively transmitted by 

Smad proteins during Th17 differentiation         80 

4.4.2 Phosphorylation of signalling proteins downstream of TGF-β  

receptor during Th17 differentiation          82 

4.4.2.1 Time kinetic of Th17 differentiation         83 

4.4.2.2 Protein arrays for the detection of the phosphorylation status 

during Th17 differentiation            84 

4.4.2.3 Confirmation of array results by immunoblotting       91 

4.4.2.4 Functional role of the PI3K/AKT/mTOR pathway 

during Th17 Differentiation            92 

4.4.2.5 Functional role of the MAPK pathways during Th17 differentiation     96 

 

5. Discussion             98 

 
5.1 T cell development and Treg function in mice with a T cell specific  

deletion of Smad7             98 

 
5.2 Effect of Smad7 on in vitro T helper cell differentiation    100 

 
5.3 Are TGF-β and Smad proteins required for Th17 helper cells  

differentiation?           102 

 
5.4 The PI3K/AKT/mTOR pathway and Th17 differentiation    104 

 
5.5 The MAPK pathways and Th17 differentiation      107 

 

6. Summary           110 

 
7. References           111 

 
8. General list of abbreviations        145 



 
9. List of Tables           149 

 
10. List of Figures          150 

 
11. Appendix           152 

 
12. CV            172 

 
13. Acknowledgements         174 

 
14. Declaration           175 



Introduction 

1 

 

1. Introduction 
 
1.1 The immune system - an overview 
 

The main role of the immune system is to protect the host from infection. Host 

defense against infection requires dramatically different responses, depending on the 

character of the pathogen and on the tissue under attack (Chaplin 2010). The 

presence of infection is detected by components of the innate immune system, 

among others neutrophils, eosinophils, natural killer (NK) cells and macrophages. 

This detection system during the innate immune response uses a series of pattern 

recognition receptors. Key components of such receptors are the "toll-like receptors" 

(TLRs), which recognize a panel of microbial molecules (Gewirtz 2003).The response 

of the innate immune system is unspecific but relatively fast and often the infection is 

cured. If not, the second line of defence is provided by the adaptive immune system 

which consists of T and B lymphocytes which are very specific. Innate immunity to 

microbes stimulates adaptive immune responses and can influence the nature of the 

adaptive responses to make them optimally effective against different types of 

microbes. Immune cells of the adaptive immune system build a memory effect after 

encountering an antigen for the first time and if these cells are confronting the same 

antigen again, the immune response is faster and more specific. T cells play a central 

role in orchestrating the immune response. Further, they are instrumental in 

eliminating intracellular pathogens (viruses, some bacteria) through the generation of 

cytotoxic T cells. B cells defend against extracellular pathogens by producing 

antibodies. Immune cells of the adaptive immune system constitute the foundation of 

the defense network to protect the host. Any perturbation in this network severely 

endangers the efficiency of the immune system to protect the host (Gorska and Alam 

2003).  

The immune system is normally focused on responding to foreign materials and has 

an inbuilt tendency to avoid attacking self-tissues. But when this process goes wrong, 

the immune system can attack self-tissues resulting in autoimmune disease. The 

perplexing issue of what allows the immune system to attack self-tissues is a 

continuing focus of research. In patients with an autoimmune disorder, the immune 

system cannot recognize the difference between healthy body tissue and antigens, 

which can result in an immune response that destroys normal body tissues. What 
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causes the immune system to no longer distinguish the difference between healthy 

body tissues and antigens is unknown. One theory is that some microorganisms (Lee 

et al. 2011 and Berer et al. 2011) or drugs may trigger some of these changes, 

especially in people who have genes that make them more likely to get autoimmune 

disorders. Multiple sclerosis (MS), which is an autoimmune disease of the central 

nervous system, is associated with activated microglia (Jack et al. 2005) and 

infiltrating CD8+ T cells found in lesions (Babbe et al. 2000). The experimental 

autoimmune encephalomyelitis (EAE), which is the animal model for MS is also 

associated with infiltrated macrophages and auto-reactive T cells (Gold and 

Lassmann 2006, Lassmann 1983).  These auto-reactive T cells are mainly interferon 

γ (IFN-γ) and interleukin 17 (IL-17) producing T cells which can cause inflammation in 

the target organ (Goverman 2009). Mast cells and B cells also play a role in 

autoimmunity (Benoist and Mathis 2002, Lassmann and van Horssen 2011). Immune 

cells are also involved in allergic diseases. Allergy involves an exaggerated response 

of the immune system. When the immune system of a healthy person responds to 

normally harmless substances in the environment allergic reactions take place. T 

helper cells 1 (Th1), Th2, Th17 and regulatory T cells (Tregs) are known to be 

involved in allergic reactions (Schmidt-Weber 2008). Natural killer cells and mast 

cells also play an important role in allergic inflammation (Erten et al. 2008, Taube and 

Stassen 2008).  Moreover, the effector Th2 and Th17 cells promote experimental 

airway asthma whereas Tregs play regulatory function (Finotto 2008). 

 
1.1.1 Generation and maturation of T cells   

T cell progenitors arise from hematopoietic stem cells in the bone marrow and 

migrate to the thymus. Their development requires signals from nonhematopoietic 

stromal cells including various types of thymic epithelial cells and mesenchymal 

fibroblasts. These cells reside in distinct anatomic locations in the thymus, and 

movement of precursor cells between these microenvironments is critical for the 

perception of differentiation signals (Anderson and Jenkinson 2001). Differentiation is 

characterized by the temporally coordinated expression of cell surface proteins on 

the thymocyte, including CD4, CD8, CD44, and CD25. Upon entry into the thymus, 

precursors lack expression of T cell receptor (TCR), CD4 and CD8 and are called 

double negative (DN) thymocytes. In general, thymocyte maturation can be divided 
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into three broad categories based on co-receptor surface expression: 1. an early 

double negative (DN) CD4-CD8- stage, 2. a predominant double positive (DP) 

CD4+CD8+ stage, and 3. mature CD4+ or CD8+ single positive (SP) cell stage (von 

Boehmer and Fehling 1997). Lind et al. in 2001, showed that progenitor cells enter 

the thymus at the cortico-medullary junction (CMJ) and move through the cortex as 

the cells progress through DN1 (CD44+/CD25-) and DN2 (CD44+/CD25-), arriving at 

the sub capsular zone as they enter DN3 (CD44-/CD25+) (MacDonald et al. 2001) 

and finally DN4 (CD44-/CD25-) (Godfrey et al. 1993). Immature DN thymocytes 

upregulate the co-receptors following TCRβ locus re-arrangement and preTCR or β-

selection. TCRα chain rearrangement is initiated and TCRαβ heterodimers are 

expressed on the cell surface at the DP stage. At this point, these thymocytes 

become eligible for both positive and negative selection. T cells that express MHC 

class II restricted receptors are positively selected to the CD4 lineage, while T cells 

expressing class I–restricted TCRs are generally selected to the CD8 lineage (von 

Boehmer and Fehling 1997). The intrathymic developmental process is determined 

by positive- and negative-selection events shaping the pre-immune T cell repertoire. 

Positive selection promotes survival of thymocyte clones expressing TCRs binding to 

self-antigens presented on the MHC, whereas negative selection removes those with 

no or high-affinity binding to self-peptide MHC, because the latter could potentially 

cause autoimmune diseases (Starr et al. 2003). The selection takes place mainly in 

the medulla where T cells encounter with strongly activating self-ligands on 

haematopoietic and dendritic cells (Germain 1994, Biddison et al. 1982). Finally, 

properly selected mature T cells leave the thymus for peripheral lymphoid organs 

such as lymph nodes and spleen through the blood stream and rarely come back to 

their organ of origin (Sprent and Surh 2009). While recirculating between blood and 

peripheral tissue mature T cells are encountered to specific antigen and are induced 

to proliferate and differentiate into effector T cell subsets. 

 

1.1.2 T cell subsets and their role in adaptive immune system 
 

CD4+ T cells play important roles in the cellular arm of the adaptive immune system. 

They participate in autoimmunity, asthma, and allergic responses as well as in tumor 

immunity. In addition, CD4+ T cells promote humoral immunity by helping B cells in 

making antibody and, maintain CD8+ T cells response as well as regulate 
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macrophage function. Depending on the particular cytokine milieu, naive CD4+ T cells 

can differentiate upon T cell receptor (TCR) activation into one of several lineages of 

T helper cells, including Th1, Th2, Th17, and induced Tregs (iTregs) (Zhu et al. 

2010a) (Figure 1).  

 

 

Figure 1: Overview of T cell subset differentiation, cytokine production and effector functions during 
adaptive immunity and pathologic conditions. Upon TCR activation driven by antigen presenting cells 
(APC), naïve CD4

+
 T cells differentiate to distinct T cell subsets in the presence of corresponding 

cytokines and activation of transcriptional regulators and STAT proteins. T cell subsets perform their 
immune functions with their respective cytokines they produce.  

 

Until few years ago, CD4+ T cells were considered to be subdivided into two 

independent subsets, Th1 and Th2 (Mossmann and Coffman 1989). They could be 

distinguished mainly by the cytokines produced, but also through the expression of 

different patterns of cell surface molecules. Th1 cells produce large quantities of 

interferon (IFN)-γ, interleukin (IL)-2 and TNF and are predominantly involved in the 

clearance of intracellular pathogens through the activation of macrophages and 

induction of immunoglobulin class switching to complement-fixing antibodies. Th1 

cells are also involved in cell-mediated and delayed-type hypersensitivity responses. 

The signature cytokines of Th2 cells are IL-4, IL-5, IL-9, IL-10, IL-13 and IL-25 and 

participate in the elimination of extracellular pathogens and parasites through the 

induction of immunoglobulin class switching to IgG1 and IgE (Mossmann et al. 1989, 

Fort et al. 2001). Atopic disorders are associated with elevated levels of allergen-
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specific IgE in the serum. Recent reports indicate that enhanced allergen-specific IgE 

production in atopic disease results from selective activation of allergen specific Th2 

cells producing IL-4 but little or no IFN-γ (Kapsenberg et al. 2002). 

The differentiation of Th1 cells is initiated by activation of T cells in the presence of 

IFN-γ which is secreted by already differentiated Th1 cells, NK and NKT cells and IL-

12, which is mainly produced by  monocytes and dendritic cells, and results in the 

activation of STAT-4 and STAT1 and the Th1 specific transcription factor T-bet 

(Dardalhon et al. 2008a). T-bet is a member of the T-box family of transcription 

factors and is considered to be the master regulator of Th1 differentiation. 

Subsequently, T-bet induces the production of IFN-γ and the activation of the 

transcription factor H2.0-like homeobox (Hlx) and Runx3 (Wilson et al. 2009). TCR-

signalling represses the up-regulation of the IL12Rβ2 subunit in an NFAT-dependent 

manner (Afkarian et al. 2002). The termination of TCR-signalling finally allows the up-

regulation of IL12Rβ2. As a consequence, STAT4 activation through IL-12 signalling 

together with T-bet, Hlx and Runx3 activate the ifnγ locus and thereby positively 

enhances STAT1 signalling (Schulz et al. 2009). The ability of IFN-γ to stimulate T-

bet expression and the ability of T-bet to enhance IFN-γ transcription sets up a 

positive feedback loop which drives differentiation of T cells towards the Th1 

phenotype. The stability of the phenotype is further enhanced by the cooperation of 

Runx3 with T-bet in silencing of the il4 gene in Th1 cells by binding to the il4 silencer 

and by binding to the ifnγ promoter to further promote IFN-γ production (Djuretic et al. 

2007, Naoe et al. 2007). 

The differentiation of Th2 cells is induced by IL-4 provided by mast cells, basophils, 

NKT cells, eosinophils or previously differentiated Th2 cells and regulated by the Th2 

specific transcription factor GATA-3 and activation of STAT-6 (Dardalhon et al. 

2008b). Gata3 is a transcription factor that acts as a master regulator of Th2 

differentiation, enhancing expression of IL-4, IL-5 and IL-13, which are located in the 

same genetic locus. Gata3 induces the transcription of the long form of viral 

musculoaponeurotic fibrosarcoma oncogene homolog (c-MAF), which additionally 

helps to activate il4 transcription (Kurata et al. 1999, Ouyang et al. 2000). This 

activation results in a strong autocrine feedback loop that activates il4, il5 and il13. 

Furthermore, IL-4 appears to repress IL-12 signalling through inhibition of IL12Rβ2 
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expression, thus antagonizing Th1 differentiation and stabilizing the Th2 phenotype 

(Szabo et al. 1997). 

Th1 cells were also described to be the pathogenic subset in experimental 

autoimmune encephalomyelitis (EAE), an autoimmune disease of the central nervous 

system (CNS) (Sospedra and Martin 2005) and in diabetes of NOD mice (Nicholson 

et al. 2006). Th1 specific cytokines such as IFN-γ are present in CNS inflammatory 

lesions at the peak of EAE but decrease during remission. T helper cells invading the 

CNS at the peak of EAE express IFN-γ (Ben-Nun et al. 1981; Pettinelli et al. 1981, 

Renno et al. 1995). However, IFN-γ KO mice develops EAE (Ferber et al. 1996), 

which indicates that IFN-γ has a paradoxical effect on EAE. One reason might be the 

failure of encephalitogenic CD4+ T cells to convert into CD4+CD25+Foxp3+ Tregs in 

IFN-γ KO mice during EAE (Wang et al. 2006b). In the same study it was shown that 

reduced suppression activity of Tregs was also detected in IFN-γ KO mice during 

EAE.  

IL-12, a key cytokine in the development of Th1 cells, is a heterodimeric cytokine 

composed of two subunits, p35 and p40. The of the role of Th1 cells in autoimmunity 

was challenged when it was shown that IL-12p35-/- mice were susceptible to EAE or 

collagen induced arthritis whereas IL-12p40-/- mice were resistant to the 

development of EAE (Gran et al. 2002, Becher et al. 2002, Cua et al. 2003, Murphy 

et al. 2003). It was shown later that the p40 subunit was shared with another 

cytokine, IL-23, which consists of p40 plus a unique subunit p19 (Oppman et al. 

2000). Interestingly, loss of IL-12p40 or IL-23p19 results in complete resistance to 

EAE suggesting that it is IL-23 and not IL-12 that is necessary for the induction of 

EAE and potentially other autoimmune diseases (Cua et al. 2003). Later it was found 

that IL-23 could drive the expansion of an IL-17-producing T cell population 

subsequently termed Th17 cells, which could induce more severe EAE upon adoptive 

transfer than IL-12-driven Th1 cells (Langrish et al. 2005). Furthermore, when IL-23 is 

not available to maintain and expand a population of already primed Th17 cells, EAE 

is markedly attenuated (Cua et al. 2003, Veldhoen et al. 2006a). 

Subsequently, interleukin 17 (IL-17) producing Th17 cells were classified as an 

additional effector CD4+ T cell subset on the basis of their independence of the 

transcription factors GATA-3 and T-bet that, together with the marker cytokines IFN-γ 

and IL-4, define Th1 and Th2 cells, respectively (Harrington et al. 2005, Park et al. 
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2005). Since IL-23 receptor is not expressed on naive T cells, IL-23 cannot act on 

naive T cells to induce their differentiation into Th17 cells. Indeed, three independent 

studies have demonstrated that the combination of IL-6, which is a proinflammatory 

cytokine together with TGF-β induces the differentiation of Th17 cells from murine 

naive T cells both in vitro and in vivo (Bettelli et al. 2006; Mangan et al. 2006, 

Veldhoen et al. 2006a). Contradictory data are reported regarding the necessity of 

TGF-β for human Th17 differentiation (Anne et al. 2008, Das et al. 2009). The 

differentiation is induced by transcription factors mainly ROR-γt, STAT3, IRF-4 (Korn 

et al. 2009) and many more. Th17 cells are characterized by the secretion of the 

cytokines IL-22, IL-21, IL-17A and IL-17F (Littman and Rudensky 2010).  

 
Regulatory T cells are, a subset of CD4+ T cells which express the IL-2 receptor α-

chain (CD25) (Sakaguchi et al. 1995). Tregs also express increased levels of CD5 

and cytotoxic T-lymphocyte antigen 4 (CTLA4) in resemblance of activated T cells 

(Takahashi et al. 2000, Sakaguchi et al. 1985). Being consistent with these findings, 

more research was conducted to find the genetic mechanisms underlying 

differentiation and function of Treg cells. These studies were facilitated by the 

discovery of the X chromosome encoded transcription factor Foxp3 and its loss of-

function mutations in humans leading to a severe multi-organ autoimmune and 

inflammatory disorder immunodysregulation polyendocrinopathy enteropathy X-linked 

syndrome (IPEX) and similarly devastating widespread lesions in the scurfy mouse 

mutant strain (Brunkow et al. 2001, Bennett et al. 2001, Wildin et al. 2001, Chatila et 

al. 2000). Upon activation, naïve T cells are transformed to Tregs by TGF-β induced 

Foxp3 transcription (Chen et al. 2003, Fu et al. 2004). These Tregs control 

homeostasis of peripheral CD4+ T cells (Almeida et al. 2002, Banz et al. 2003). 

 
1.1.2.1 Trans-differentiation of T cell subsets  
 
Even if different CD4+ T cell subsets are classified based on the different effector 

cytokines they produce, they can also secret some common cytokines e.g. IL-2, IL-9 

and IL-10. In addition, the pattern of cytokine secretion may switch from one lineage 

towards another under certain circumstances, suggesting that T helper cells are 

plastic. Deleting Gata3 from Th2 cells allows the production of IFN-γ (Zhu et al. 

2004). After 2-3 rounds of stimulation, Th2 cells fail to produce INF-γ (Zhu et al. 
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2010b). The plasticity of Th1/Th2 cells seems to depend on their differentiation state 

(Murphy et al. 1996). Therefore, although fully differentiated Th1 cells cannot turn on 

IL-4 expression, Th1 cells primed in vitro for one round are able to produce IL-4 when 

they are switched to Th2 culture conditions (Zhu et al. 2004). When TGFβ is given to 

Th2 cells, IL-4 production is suppressed, while IL-9 is induced (Veldhoen et al. 2008, 

Dardalhon et al. 2008b). On the other hand, reduction of FoxP3 in Tregs renders 

them able to gain a Th2 phenotype (Wan et al. 2007). Gfi1 deletion from Th2 cells 

results in active epigenetic modifications at Th17- and iTreg-related gene loci, 

including Rorc, Il23r, and CD103 (Zhu et al. 2009). Tregs cultured under Th1 

conditions gain the capacity to produce IFN-γ (Wei et al. 2009). Tregs can also be 

converted to pathogenic memory T cells in vivo if the Foxp3 expression on Tregs is 

not stable (Zhou et al. 2009). Tregs can be self-induced to become IL-17-producing 

cells in the absence of TGFβ but with the help of IL-6 signalling (Xu et al. 2007). The 

presence of IL-17-producing Foxp3+ cells, both in mice and humans is also reported 

(Lochner et al. 2008, Voo et al. 2009). Transferring Tregs into a lymphopenic host 

also results in downregulation of Foxp3 which results in IL-17 and IFN-γ producing 

effector cells (Komatsu et al. 2009).  Soon it has become clear that Th17 cells have 

considerable plasticity and readily acquire the ability to produce IFN-γ in addition to 

IL-17 production or completely shut off IL-17 production in vitro (Annunziato et al. 

2007, Bending et al. 2009, Lee et al. 2009, Martin-Orozco et al. 2009, Shi et al. 

2008). Upon adoptive transfer of in vitro   differentiated encephalitogenic Th17 cells 

from IL-17F-reporter-positive mice either to RAG-deficient (T and B lymphocyte 

deficient mice) or to wild type mice it was shown that these Th17 cells partially loose 

IL-17 expression and adopt a Th1 phenotype (Kurschus et al. 2010). However, none 

of the aforementioned cytokines produced by Th17 cells have been found to be 

mandatory for the development of EAE (Kreymborg et al. 2007, Hofstetter et al. 2005, 

Haak et al. 2009, McGeachy et al. 2007, Coquet et al. 2008, Sonderegger et al. 

2008a). Recently it has been shown that the main factor of encephalitogenictiy of 

Th17 cells might be GM-CSF, a cytokine produced by Th17 cells and driven by ROR-

γt (Sonderegger et al. 2008b, El-Behi et al. 2011, Codarri et al. 2011). A summary of 

the plasticity of T helper cells is shown in Figure 2. 
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Figure 2: Plasticity of T helper cell subsets. At the early stages, Th1 and Th2 can be transdifferentiated 
to other lineages, whereas the majority of Th17 and Treg cells remain plastic throughout their 
differentiation process. Transdifferentiation depends on the differentiation state, cell types and the 
cytokine milieu. 

 
1.2 The Transforming growth factor-β (TGF-β) 
 
In 1975, Holley discovered that the interplay between several polypeptide hormones 

and hormone-like growth factors which are present in tissue fluids largely controls the 

growth of normal cells. Using normal rat kidney fibroblasts, it was demonstrated that 

the growth factor cocktail actually consisted of two distinct polypeptide growth factors, 

coined transforming growth factor (TGF)- α and -β (Roberts et al. 1981, Anzano et al. 

1983). TGF-α displayed mitogenic activity though, it later became clear that TGF-β 

served as a potent growth inhibitor in most other cell types (Roberts and Sporn 

1990). TGF-β serves as the prototype for the large and still growing TGF-β 

superfamily, consisting of more than 30 members which include bone morphogenetic 

proteins (BMPs), activins, inhibins, anti-mullerian hormone (AMH) and growth and 

differentiation factors (GDFs) (Massague 1990).  

Three homologous TGF-β isoforms are presents in mammals, TGF-β1, TGF-β2, and 

TGF-β3, encoded by different genes (Govinden and Bhoola 2003). Besides forming 

homodimers, it has been reported that heterodimers can also form between TGF-β1 

and TGF-β2, and between TGF-β2 and TGF-β3 (Cheifetz et al. 1987, Ogawa et al. 
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1992). The three TGF-β isoforms affect TGF-β signalling in a rather similar and 

redundant way in vitro, but display different in vivo expression patterns and functions 

(Roberts and Sporn 1992). TGF-β1 is the predominant isoform in the immune system 

(Li et al. 2006a). 

 
1.2.1 Control of TGF-β production and activation         
 
TGF-β is synthesized as a precursor protein, which is inactive and cannot bind to 

TGF-β receptors until being activated. After released from cells, the precursor protein 

associates with latency-associated protein (LAP) and form a small inactive complex. 

In the extracellular matrix, this complex is bound by latent TGF-β-binding protein 

(LTBP), a component of the extracellular matrix that is necessary for the secretion 

and storage of TGF-β (Li and Flavell 2008). The latent TGF-β can be activated either 

by enzymatic proteolysis, executed by plasmin, integrin, or thrombin, or through a 

conformational change (Nunes et al. 1997, ten Dijke et al. 2007). 

 
1.2.2 TGF-β super family signalling 
 
Transmembrane proteins are receptors for polypeptide growth factors and are able to 

transduce the extracellular information across the plasma membrane into an 

intracellular signal. The TGF-β and related factors signal through a group of trans-

membrane protein serine/threonine kinases known as the TGF-β receptor family 

(Figure 3). The signal initiated by the TGF-β superfamily ligands is transduced by 

type I and type II serine/threonine kinase receptors into the intracellular space. Type I 

and type II receptors exist as homodimers at the cell surface in the absence of 

ligands, yet have an inherent heteromeric affinity for each other (Greenwald et al. 

2004). Most ligands bind with high affinity to the type II or type I receptor, while others 

bind efficiently only to heteromeric receptor combinations.  
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Figure 3: TGF-β superfamily members and their signalling molecules. 

 
Interestingly, by using single-molecule microscopy to visualize TGF-βRII labelled with 

green fluorescent protein, it has been demonstrated that TGF-βRII is actually present 

on the cell surface as a monomer in the absence of TGF-β; TβRI also exists as a 

monomer on the cell surface in its non-active form, and TGFβ binding to TβRII results 

in the dimerization of both receptors (Zhang et al. 2009, 2010; Huang et al. 2011). 

Furthermore, TGFβ treatment causes a substantial increase in the number of dimeric 

receptors on the cell surface in a form of TβRII: TβRI heterodimers instead of 

TβRII2:TβRI2 heterotetramers (Huang et al. 2011). 

 
The TGF-β superfamily ligands bind type II receptor, forming a heterodimeric 

complex which can recruit and activate the type I receptor by phosphorylating serine 

and threonine residues located primarily in the GS domain (Souchelnytskyi et al. 

1996, Wrana et al. 1994). TGF-β1, TGF-β3 and activins bind efficiently to their 

respective type II receptors, TβRII and ActRII/ActRIIB, without the need for a type I 
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receptor though, the ligand contacts both receptor ectodomains to stabilize the type 

II-type I receptor complex (Boesen et al. 2002, Greenwald et al. 2004, Hart et al. 

2002). TGF-β2 (Rodriguez et al. 1995), as well as BMP2 and BMP7, have affinity for 

both type I and II receptors, and associate with the receptor complex through co-

operative binding (Massague 1998). The activated receptor can recruit downstream 

signalling molecules, known as Smad proteins. 

 
1.2.2.1 The Smad family of signal transducers 
 
Smad proteins, the only substrates for type I receptor kinases known to have a 

signalling function, were first identified as the products of the Drosophila Mad and C. 

elegans Sma genes, which lie downstream of the BMP-analogous ligand-receptor 

systems in these organisms (Patterson and Padgett 2000, Whitman 1998). Even 

earlier, in a genetic screen looking for enhancers of a weak decapentaplegic (dpp) 

maternal phenotype in Drosophila, a new gene mad (mothers against dpp) was 

isolated (Raftery et al. 1995, Sekelsky et al. 1995). This was followed by the 

discovery of three Mad14 homologues: sma-2, sma-3 and sma-4 in C. elegans 

(Savage et al. 1996). Mutations of these sma genes resembled the small body sized 

phenotype observed in the Daf4 mutants (type II serine/threonine receptor) of C. 

elegans. The vertebrate homologues of the mad-and sma-genes are called Smad 

proteins. Smad proteins are ubiquitously expressed throughout development and in 

all adult tissues (Flanders et al. 2001, Luukko et al. 2001). The proteins derived from 

these genes can be divided into three different subclasses, i) receptor activated 

Smad proteins (R-Smad proteins), ii) common mediator Smad proteins (Co-Smad 

proteins), and iii) inhibitory Smad proteins (I-Smad proteins) depending on their 

diverse roles in signalling (Figure 3). Smad proteins have two conserved domains, 

the N-terminal Mad homology 1 (MH1) and the C-terminal Mad homology 2 (MH2) 

domain. The MH1 domain is highly conserved among R-Smad proteins and Co-

Smad proteins (Heldin et al. 1997). The R-Smad proteins, Smad2 and Smad3 

mediate signals from TGF-β and activin ligands through the TβR-I/Alk-5 and ActR-IB 

receptors, respectively (Eppert et al. 1996, Macias-Silva et al. 1996, Zhang et al. 

1996). BMP signalling is mediated through R-Smad proteins 1, 5 and 8 which 

become phosphorylated and activated by the ActR-I, BMPR-IA or BMPR-IB receptors 

(Thomsen 1996) (Figure 3). The determinant of specificity between the R-Smads and 
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their interaction with either TGF-β/activin or BMP receptors is the L3 loop region 

within the MH2 domain (Lo et al. 1998). However, some reports suggest that Smad1, 

5, and 8 might be promiscuous towards the TGF-β receptors as well (Lux et al. 1999, 

Macias-Silva et al. 1998, Oh et al. 2000). The Co-Smad, Smad4 protein (also known 

as DPC4, deleted in pancreatic carcinomas), appears to play a critical role in both 

BMP- and TGF-β/activin-mediated pathways. 

The affinity of Smad4 for R-Smad proteins can be increased through phosphorylation 

of the C-terminal part of R-Smad proteins (Souchelnytskyi et al. 1997). Moreover, 

Smad4 has a unique Smad activation domain (SAD) in the linker region, which 

governs transcriptional activation via the co-activator p300 (de Caestecker et al. 

2000).  

 
1.2.2.2 The canonical Smad signalling pathway  
 
In the ligand induced complex, the type II receptor phosphorylates the GS domain 

and this activates the type I receptor, which catalyses R-SMAD phosphorylation. 

Phosphorylation decreases the affinity of R-Smad proteins for SARA (SMAD anchor 

for receptor activation) and increases their affinity for co-Smad proteins. The resulting 

R-Smad and co-Smad heteromeric complex is translocated to the nucleus where it 

regulates transcription of target genes (Lo et al. 1999) (Figure 4). Phosphorylation of 

the C-terminal serine residues in R-Smad proteins by type I receptor kinases is a 

crucial step in TGF-β family signalling (Abdollah et al. 1997, Macías-Silva et al. 1996,  

Souchelnytskyi et al. 1997). The two most C-terminal serine residues become 

phosphorylated and, together with a third, non-phosphorylated serine residue, form 

an evolutionarily conserved SSXS motif in all R-Smad proteins (Abdollah et al. 1997,  

Souchelnytskyi et al. 1997). Substrate specificity is determined by the L45 loop in the 

type I receptors and by the L3 loop in the R-Smad MH2 domain. Thus, TGF-β and 

activin receptors phosphorylate Smad2 and Smad3, and BMP receptors 

phosphorylate Smad1, Smad5 and Smad8 (Chen et al. 1998). Smad3 and Smad4 

have been shown to interact directly with specific DNA sequences via their MH1 

domain (Dennler et al. 1998, Vindevoghel et al. 1998, Yingling et al. 1997). In order 

to fully activate transcription of the target promoters, the Smad protein complexes 

must recruit additional factors, like the transcription factor components AP-1 (Liberati 

et al. 1999), DNA-binding adaptors like FAST-1 (Chen et al. 1996), or co-activators 
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such as CBP/p300 (Feng et al. 1998, Janknecht et al. 1998, Nishihara et al. 1998, 

Shen et al. 1998, Topper et al. 1998). R-Smad proteins that move into the nucleus 

may return to the cytoplasm, but their ubiquitination - and proteasome-dependent 

degradation in the nucleus provides a way to terminate TGF-β responses (Lo et al. 

1999).  

 
 
Figure 4: The TGF-β induced Smad signalling pathway and its inhibitor Smad7. Upon receptor ligand 
activation the TGF-β-receptor complex phosphorylates Smad2 and Smad3 which in turn form a 
heterodimeric complex with Smad4. This complex then translocates to nucleus to bind Smad binding 
element (SBE) and transcribes the target genes e.g. Smad7. Subsequently, in a negative feedback 
loop, Smad7 egresses from the nucleus to the cytoplasm and blocks the phosphorylation of Smad2 
and Smad3. In addition, Smad7 breaks down TGF-βRI by lysozomal and proteosomal pathway. 
Smad7 can also be upregulated by IFN-γ and TNF-α through STAT and NF-kB pathway activation, 
respectively. 

 
To date, two Inhibitory Smad (I-Smads) proteins have been identified in mammals, 

Smad6 and Smad7 (Imamura et al. 1997, Nakao et al. 1997, Topper et al. 1997). In 

contrast to R-Smad expression, the expression of the inhibitory Smad6 or Smad7 is 

highly regulated by extracellular signals. Although differentially controlled during 

development, R-Smad proteins and Smad4 are expressed in most, if not all, cell 

types (Massague 2000, Itoh et al. 2000, Moustakas 2001). Inhibitory Smad proteins 

have been characterised as inhibitors of TGF-β/activin and BMP signalling and have 
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been proposed to function in negative feed-back loops, since the expression of 

Smad6 and Smad7 is induced by TGF-β/activin and BMPmembers (Christian and 

Nakayama 1999). Accordingly, the downregulation of Smad6 and Smad7 expression 

during adipocyte differentiation may result from concomitant loss of autocrine TGF-β 

and BMP signalling (Choy et al. 2000).  

 
Activation of the epidermal growth factor (EGF) receptor and possibly other tyrosine 

kinase receptors, interferon-γ signalling through STAT (signal transducer and 

activator of transcription) proteins, and activation of NF-kB by tumour-necrosis factor-

α, also induce Smad7 expression, leading to inhibition of TGF-β signalling 

(Massague 2000, Itoh et al. 2000, Moustakas 2001). 

 
It has been shown that I-Smad proteins can interact stably with the type I receptor 

and block further activation of R-Smad proteins (Imamura et al. 1997, Nakao et al. 

1997, Souchelnytskyi et al. 1998). For Smad6, an additional mechanism has been 

suggested, where Smad6 competes with Smad4 for binding to Smad1, thereby 

preventing the formation of a functional heteromeric Smad1/Smad4 complex (Hata et 

al. 1998). Smad7 is considered as a general inhibitor of TGF-β superfamily-induced 

responses; whereas Smad6 is thought to preferentially block BMP mediated 

signalling (Itoh et al. 1998), although this is controversial (Imamura et al. 1997).  

 
In addition, Smad7 antagonizes TGF-β signalling through other mechanisms. BAMBI 

(BMP and activin membrane-bound inhibitor) along with activated TβRI and Smad7 

forms a ternary complex and synergizes with Smad7 to antagonize TGF-β signalling 

by interfering with the recruitment of R-Smad proteins (Yan et al. 2009). Smad7 also 

functions as an adaptor protein to induce the degradation of TβRI. Once TGF-β 

signalling is activated, Smad7 associates with Smurf1/2 in the nucleus, together they 

translocate into the cytoplasm, and Smad7 then binds to activated TβRI (Kavsak et 

al. 2000, Ebisawa et al. 2001, Suzuki et al. 2002). E2-conjugating enzyme UbcH7 

(ubiquitin-conjugating enzyme 7), HSP90 (heat-shock protein 90) and two further 

HECT-type E3 ubiquitin ligases, NEDD4–2 and WWP1/Tiul1 may also enhance the 

Smad7/Smurf2-mediated ubiquitination and degradation of TβRI (Ogunjimi et al. 

2005, Wrighton et al. 2008, Seo et al. 2004, Komuro et al. 2004, Kuratomi et al. 

2005). In addition, Smad7 can engage the phosphatase GADD34 (growth-arrest and 
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DNA-damage-inducible protein 34) and PP1c (protein phosphatase 1c) to control the 

TβRI receptor activity (Shi et al. 2004). Besides, there are many other proteins which 

interact with Smad7 and regulate TβRI activity and/or stability, including STRAP 

(serine/threonine kinase receptor-associated protein), SIK (salt-inducible kinase), 

AIP4 (atrophin 1-interacting protein 4), YAP65 (Yes-associated protein 65), Cas-L 

(Crk-associated substrate lymphocyte type) and Hic5 (H2O2-inducible clone 5) (Datta 

et al. 2000, Kowanetz et al. 2008, Lallemand et al. 2005, Ferrigno et al. 2002, 

Inammoto et al. 2007, Wang et al. 2008). In some cell lines, including Hep3B, HeLa, 

Mv1Lu (mink lung epithelial cells), and human normal lung epithelial HPL-1 cells, 

Smad7 also antagonizes TGF-β signalling in the nucleus by interfering with the 

functional R-Smad proteins/Smad4–DNA complex formation on target gene 

promoters (Zhang et al. 2007). Smad7 may also affect the TGF-β target gene 

transcription by regulating the epigenetic status of chromatin since Smad7 is found to 

be able to associate with the histone deacetylases HDAC1 and SIRT1 and the 

acetyltransferase p300 (Gronroos et al. 2002, Simonsson et al. 2005, Kume et al. 

2007). Arkadia promotes the degradation of Smad7 where Axin may act as an 

adaptor between Arkadia and Smad7, thus Arkadia enhances TGF-β signalling 

(Koinuma et al. 2003, Liu et al. 2006). Finally, Jab1/CSN5 regulates the stability of 

Smad7 and thereby controls TGF-β signalling (Kim et al. 2004a).   

 
1.2.2.3 The alternative non-Smad signalling pathways 
 
As of now, it has been well understood that the TGF-β pathway performs through its 

receptors kinases and intracellular Smad signalling (=canonical signalling pathway), 

though recent studies have shown that non-Smad pathways are also involved in 

signalling downstream of the TGF-β receptors (=non-canonical signalling pathway). 

Indeed, non-Smad signalling proteins which take part in the TGF-β signalling 

cascade were identified prior to the discovery of the Smad proteins (Yue and Mulder 

2000).  

There are three general mechanisms by which non-Smad signalling pathways are 

involved in physiological responses to TGF-β: (i) non-Smad signalling pathways 

directly modify (e.g. phosphorylate) the Smad proteins and thus modulate the activity 

of the central effectors; (ii) Smad proteins directly interact and modulate the activity of 

other signalling proteins (e.g. kinases), thus transmitting signals to other pathways; 
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and (iii) the TGF-β receptors directly interact with or phosphorylate non-Smad 

proteins, thus initiating parallel signalling that cooperates with the Smad pathway in 

eliciting physiological responses (Moustakas and Heldin 2005).  

Non-canonical signalling cascades activated by TGF-β include the TGF-β-activated 

kinase-1 (Ono et al. 2003), Ras (Yue and Mulder 2001), various Rho proteins 

(Edlund et al. 2002, Mucsi et al. 1996), c-Jun NH2-terminal kinase (Engel et al. 1999 

and Hocevar et al. 1999), extracellular signal-regulated kinase (Munshi et al. 2004), 

p38 (Kim et al. 2004b), and phosphatidylinositol 3-kinase (PI3K) (Chen et al. 1998, 

Horwitz et al. 2004, Bakin et al. 2000, Kim et al. 2004c) (Figure 5).  

 

 

 

Figure 5: TGF-β signalling through Smad-independent pathways. Apart from the canonical TGF-β-
Smad pathway, TGF-β can also activate other pathways like Rac/cdc42, PI3K/AKT/mTOR, and 
TAK1/MAPK etc. to accomplish its cellular functions. Well defined pathways are shown only.  

 
Activation with slow kinetics in some cases may result from Smad-dependent 

transcription responses, but the rapid activation (5–15 min) in other cases suggests 

independence from transcription (Massague 2000). Studies using Smad4-deficient 

cells, or dominant-negative Smad proteins, support the possibility of MAPK pathway 

activation that is independent from Smad proteins (Engel et al. 1999). In addition, 
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mutated TGF-β type I receptors, defective in Smad activation, activate p38 MAPK 

signaling in response to TGF-β (Yu et al. 2002). The mechanisms of ERK, JNK or 

p38 MAPK activation by TGF-β and its biological consequences are poorly 

characterized. Rapid activation of Ras by TGF-β in epithelial cells may implicate Ras 

in TGF-β-induced ERK-MAPK signaling (Yue et al. 2000). The rapid guanosine 5'-

triphosphate loading of Ras in response to TGF-β in epithelial cells may cause 

recruitment of Raf, a MAP kinase kinase kinase (MAP3K), to the plasma membrane 

and lead to activation of ERK through MEK1. Subsequently, rapid activation of ERK 

by TGF-β was observed in epithelial cells (Hartsough et al. 1995), breast cancer cells 

(Frey et al. 1997), and fibroblasts (Mucsi et al. 1996). The canonical TGFβ-Smad 

signalling pathway leading to growth inhibition is inhibited by the ERK-MAPKs, as 

they both negatively affect the activities of the transcription factors that cooperate 

with the Smad proteins (Feng and Derynck 2005, Lo et al. 2001) and the nuclear 

translocation of the Smad proteins, by phosphorylation of their linker regions (Guo 

and Wang 2009, Kretzschmar et al. 1997). The tyrosine kinase activity of TβRII 

suggests that the receptor by itself could promote non-Smad signalling pathways. 

Moreover, the expression levels and ratio of the TβRII/TβRI heterooligomers might 

be important for the determination of the downstream specificity of the activated 

TβRII/TβRI complex (Huang et al. 2011; Zhang et al. 2009, 2010). TGFβ selectively 

activates ERK1/2 in certain cell types and provides direct evidence for TβRI-

independent TβRII signalling to a R-Smad-independent pathway. In dermal cells, 

high TβRII expression levels selectively activate Erk1/2 but not in epidermal cells 

since the expression levels of TβRII are 7- to 18-folds higher in dermal cells than in 

epidermal cells. Upregulation of TβRII expression in epidermal cells to a similar level 

as that in dermal cells switches TGFβ-induced ERK1/2 inhibition to ERK1/2 

activation. Knockdown of TβRI/Alk5 does not block activation of ERK1/2, in dermal 

cells. Higher expression of TβR1 in epidermal cells shows no change in ERK 

activation (Bandyopadhyay et al. 2011). In addition, ERK substrates, such as AP-1 

family members, can interact and function in conjunction with Smad proteins to 

regulate gene expression (Davies et al. 2005, Zhang et al. 1998, Hall et al. 2003). 

Probably the best-characterized non-Smad pathways are the JNK and p38 MAPK 

signaling cascades. TGFβ-induced activation of the p38 and JNK MAPK pathways 

has been implicated in the regulation of apoptosis, cell migration, and the Epithelial-
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mesenchymal transition (Adhikari et al. 2007, Heldin et al. 2009, Sorrentino et al. 

2008, Yamashita et al. 2008). Like ERK, JNK and p38 are activated by TGF-β 

through the MAP kinase kinases (MKKs), specifically MKK4 and MKK3/6, 

respectively (Weston et al. 2007, Frey et al. 1997, Engel et al. 1999, Hocevar et al. 

1999, Hanafusa et al. 1999, Sano et al. 1999, Bhowmick et al. 2001, Yu et al. 2002). 

Experiments with a dominant-negative form of Smad3 or using Smad3- or Smad4-

deficient cells show that Smads are dispensable for the TGF-β-induced activation of 

JNK (Engel et al. 1999, Hocevar et al. 1999), suggesting that the MAPK pathway is 

activated by TGF-β independently of Smad proteins. A direct demonstration of Smad 

independence was based on the utilization of a mutant TβRI receptor with an altered 

L45 loop (A nine amino acid sequence between kinase subdomains IV and V in type 

I receptors), which renders the receptor defective in Smad binding and activation, but 

allows an intact kinase activity. This mutant type I receptor is still capable of 

mediating TGF-β-induced activation of JNK and p38 MAPK (Yu et al. 2002, Itoh et al. 

2003). TGF-β-induced TGF-β-activated kinase1 (TAK1) activation has recently been 

shown to cause activation of the NFκB pathway in osteoclasts, leading to the 

transcription of pro-survival genes (Gingery et al. 2008). TAK1 is a critical activator 

upstream of p38 in osteoblasts (Greenblatt et al. 2010). TAK1 regulates cell survival, 

differentiation, and inflammatory responses through its activity on p38, JNK and 

components of the NFκB pathway, thus regulating a number of specific transcription 

factors (Adhikari et al. 2007, Rincon and Davis 2009, Wagner and Nebreda 2009). 

TAK1 is shown to be absolutely required for TGF-β-induced JNK and NFκB activation 

by using TAK1-deficient mouse embryonic fibroblasts (Shim et al. 2005). Smad7 also 

facilitates TGF-β-induced activation of the p38 and JNK MAPK pathways by inhibiting 

the TGF-β-Smad signalling cascade (Kamiya et al. 2010, Yan and Chen 2011). 

 

TGF-β can also activate phosphatidylinositol-3-kinase (PI3K), as indicated by 

phosphorylation of its effector AKT (Bakin et al. 2000, Vinals et al. 2001). This 

mechanism appears to be independent of Smad2/3 activation (Wilkes et al. 2005).  

Both TβRII and TβRI appear to be required for the activation of the PI3K pathway, 

and TβRI has also been found to associate with the p85 subunit of PI3K (Yi et al. 

2005). In addition, TGF-β may also induce activation of PI3K indirectly through TGF-

β-induced TGF-α expression and subsequent activation of EGF receptor signalling 
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(Vinals and Pouyssegur 2001). On the other hand, TGF-β is shown to down-regulate 

PI3K/AKT signalling activity through Smad-dependent expression of the lipid 

phosphatase src homology 2-containing inositol phosphatase (SHIP) in 

haematopoietic cells (Valderrama et al. 2002). The recent identification of TGFβ-

induced regulation of the mammalian target of rapamycin (mTOR) pathway suggests 

that TGFβ utilizes this pathway to regulate cell survival, metabolism, migration, and 

invasion (Lamouille and Derynck 2007, 2011). The Rho-like GTPases, including 

RhoA, Rac and Cdc42, play important roles in rapid regulation of the cytoskeleton in 

cells, cell motility, and gene expression through a variety of effectors (Jaffe and Hall 

2005). TGF-β rapidly activates RhoA-dependent signalling pathways to induce stress 

fiber formation and mesenchymal characteristics in epithelial cells and primary 

keratinocytes (Bhowmick et al. 2001, Edlund et al. 2002). The rapid activation of 

RhoA induced by TGF-β is likely to be independent of Smad2 and/or Smad3, as 

suggested by the rapid onset and the inability of a dominant-negative Smad3 mutant 

to block RhoA activities in epithelial cells (Bhowmick et al. 2001). Besides RhoA, 

TGF-β can also induce activation of the Cdc42 GTPase. Activation of Cdc42 by TGF-

β appears to be independent of Smad proteins, because blocking either Smad2 or 

Smad3 phosphorylation, or both simultaneously, does not affect activation of the p21-

activated kinase (PAK) 2, which acts downstream of Cdc42 (Wilkes et al. 2003). 

Smad7 appears to be required for TGF-β-mediated Cdc42 activation (Edlund et al. 

2004), but whether Smad7 works here as tight junction accessory protein is not 

known. 

 

1.3 Regulation of T cell mediated immunity by TGF-β 
 
Mice deficient in TGF-β1 develop a multiorgan autoimmune inflammatory disease 

and die a few weeks after birth (Shull et al. 1992, Kulkarni et al. 1993). Various 

transgenic mice whose T cells are unstable to respond specifically to TGF-β1 have 

also been shown to develop autoimmunity, indicating that TGF-β1 signalling is 

essential for T cell homeostasis (Gorelik et al. 2000a, Marie et al. 2006, Li et al. 

2006b). The pathology in Tgfbr2-conditional-knockout mice was accompanied by the 

early activation and expansion of CD4+ and CD8+ T cells. (Li et al. 2006b, Marie et al. 

2006). The pleiotropic cytokine TGF-β plays a critical role in thymic T cell 

development, in peripheral T cell homeostasis, tolerance to self-antigens and T cell 



Introduction 

21 

 

differentiation during cell mediated immune regulation (Li and Flavell 2008). TGF-β 

controls inflammatory responses through the regulation of chemotaxis, activation, 

and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast 

cells, and granulocytes (Li et al. 2006a). In addition, it also exerts 

immunosuppressive functions (Becker et al. 2006). TGF-β affects T cell proliferation, 

and survival (Gorelik et al. 2002a, Cerwenka et al. 1999). The effect of TGF-β on T 

cells is context dependent since many regulatory signals, including co-stimulatory 

molecules and inflammatory cytokines, influence TGF-β regulation on T cell function 

(Li et al. 2006a).  

1.3.1 TGF-β signalling during T cell proliferation and T cell survival 
 
TGF-β inhibits T cell proliferation in vitro (Kehrl et al. 1986), by inhibiting the 

expression of IL-2 through the suppression of IL-2 transcription (Brabletz et al. 1993). 

In contrast, TGF-β co-stimulated splenic T cells proliferate in the presence of 

immobilized anti-CD3 antibody. This bi-functional capability of TGF-β on T cell growth 

regulation is largely controlled via IL-2 and IL-4 independent pathways (Lee and Rich 

1991). TGF-β inhibits TCR-stimulated proliferation of naive T cells. However, in the 

presence of CD28, TGF-β inhibits T cell apoptosis and promotes T cell expansion 

(Sung et al. 2003, Gunnlaugsdottir et al. 2005). The antiapoptotic effect of TGF-β is 

associated with reduced c-myc expression that results in reduced levels of FasL 

(Genestier et al. 1999). IFN-γ participates in T cell Activation Induced Cell Death by 

inducing caspase 8 expression (Refaeli et al. 2002) and TGF-β downregulates IFN-γ 

expression in response to TCR stimulation which results in reduced apoptosis 

(Bommireddy et al. 2003). 

 
1.3.2  TGF-β and T helper cell differentiation 
 
Upon activation, naive CD4+ T cells differentiate under polarizing conditions into 

various helper T cells subsets (Murphy and Reiner 2002). TGF-β inhibits Th1 and 

Th2 differentiation in vitro. In particular, TGF-β inhibits Th2 development via inhibition 

of IL-4 and/or GATA-3 expression (Gorelik et al. 2000b, Heath et al. 2000). The 

effects of TGF-β on Th1 development are less clear. Some reports have described 

TGF-β inhibits Th1 development by suppressing T-bet expression (Gorelik et al. 
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2002b), others have described that TGF-β enhances Th1 differentiation (Lingnau et 

al. 1998, Smeltz et al. 2005). 

A combination of TGF-β and IL-6 results in upregulation of expression of the 

transcription factor ROR-γt as well as Th17 differentiation (Ivanov et al. 2006). A 

recent study indicates that Th17 cells also produce TGF-β in vivo and that this TGF-β 

plays a role to maintain Th17 cells in an autocrine manner (Gutcher et al. 2011). 

TGF-β also plays a role in the generation and expansion of Tregs (Horwitz et al. 

2003). There are mainly two types of Tregs, e.g. natural Tregs and inducible Tregs. 

The differentiation of naturally occurring CD4+Foxp3+ Treg (nTreg) cells in the thymus 

is regulated by TCR affinity. Experiments with TCR transgenic mouse models reveal 

that engagement of agonist self-peptides induces not only T cell negative selection 

but also nTreg cell differentiation (Apostolou et al. 2002, Jordan et al. 2001, 

Kawahata et al. 2002, Walker et al. 2003). Mechanism by which TGF-β controls 

nTreg cell differentiation and homeostasis remain poorly understood. Studies with 

mice with T cell-specific deletion of the TGF-β type II receptor (TGFβRII) gene show 

that TGF-β signalling in T cells is dispensable for the development of nTreg cells in 

12- to 16-day-old mice (Li et al. 2006b, Marie et al. 2006). However, another study 

reveals an earlier requirement for TGF-β signalling in nTreg cell development. 

Conditional deletion of the TGF-β type I receptor (Tgfbr1) gene in T cells blocks 

thymic nTreg cell differentiation in 3- to 5-day-old mice but triggers nTreg cell 

expansion in mice older than 1 week (Liu et al. 2008). It is postulated that TGF-β 

signalling is required for the induction of Foxp3 gene expression and nTreg cell 

lineage commitment in neonatal mice similar to iTreg cells (Liu et al. 2008). A recent 

report shows that TGF-β signalling is not necessary for nTreg cell lineage 

commitment; rather TGF-β promotes nTreg cell survival by antagonizing T cell 

negative selection (Quyang et al. 2010). 

 
Some of the early evidence of peripheral conversion of naïve conventional CD4+ T 

cells into Foxp3+ T cells originated from adoptive transfer experiments in which 

polyclonal CD4+CD25+ naïve T cells were injected into lymphopenic mice or mice 

containing a monoclonal T cell repertoire devoid of nTreg cells (Curotto de Lafaille et 

al. 2004, Furtado et al. 2002). TGF-β converts naïve CD4+CD25- precursors to T 

regulatory cell by inducing Foxp3 transcription (Chen et al. 2003, Fu et al. 2004). The 
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mechanism by which TGF-β induces transcription of Foxp3 involves cooperation of 

the transcription factors STAT3 and NFAT at a Foxp3 gene enhancer element 

(Fantini et al. 2004, Josefowicz and Rudensky 2009). 

 
Numerous in vitro studies of both human and mouse CD4+ T cell differentiation 

suggest the existence of two additional types of CD4+ T cell that have suppressive 

properties, these cells are known as Tr1 and Th3 cell, which produce IL-10 and TGF-

β1, respectively (Thomas et al. 2005, Roncarolo et al. 2006). It has been reported 

that TGF-β1 facilitates the differentiation of both Tr1 and Th3 cells (Levings et al. 

2002, Weiner 2001). A summary of the effects of TGF-β in T helper cell differentiation 

and homeostasis is shown in Figure 6. 

 

 
Figure 6: Effects of TGF-β on T cell differentiation and homeostasis. TGF-β inhibits T cell proliferation 
by blocking IL-2 production via Smad3 and blocking the function of Cyclin E, and c-myc. TGF-β blocks 
activation induced cell death by inhibiting c-myc induced FasL expression and through other 
mechanisms yet to be found. TGF-β inhibits Th1 and Th2 differentiation by blocking T-bet/STAT4 and 
GATA3/NFAT transcription. TGF-β induces Treg and, together with IL-6, Th17 differentiation by 
enhancing Foxp3 and ROR-γt transcription respectively. 
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1.3.2.1 Smad dependent and independent regulation of T helper cell 

differentiation by TGF-β 

As mentioned earlier, TGF-β signals through both Smad dependent and independent 

pathways. Accumulating reports indicate that TGF-β is required to orchestrate T cell 

immunity, but whether various TGF-β–mediated effects on T cells are equally 

dependent on Smad signalling is not well understood. Evidences reveal that Smad3 

is essential for the suppressive effect of TGF-β on IL-2 production and T cell 

proliferation (McKarns et al. 2004). Smad3 is also required for the suppressive effects 

of TGF-β on Th2 type cytokine productions and Th2 type disease in the skin (Anthoni 

et al. 2008). Smad2-KO mice are embryonic-lethal (Nomura et al. 1998), and Smad3-

KO mice exhibit inflammatory diseases (Yang et al. 1999). T-cell-specific Smad2 

conditional KO mice show unexpected overlapping functions of Smad2 and Smad3 in 

TGF-β-induced Foxp3 induction as well as Treg suppression (Takimoto et al. 2010). 

Smad2/Smad3-double KO mice, but not single KO mice, develop fatal inflammatory 

diseases, with higher IFN-γ production and reduced Foxp3 expression in CD4+ T 

cells in the periphery (Takimoto et al. 2010). TGF-β mediated induction of Foxp3, as 

well as suppression of IFN-γ and IL-2 is partially impaired in Smad2- and Smad3-

deficient T cells, and is completely eliminated in Smad2/3-double KO T cells 

(Takimoto et al. 2010). By using T cell specific Smad2 and Smad3 conditional 

knockout mice, recent studies reveal that neither Smad2 nor Smad3 alone are 

sufficient for the differentiation of Th17 cells or Th17 cell mediated EAE (Lu et al. 

2010). p38 (Lu et al. 2010, Noubade et al. 2011) and ERK MAPK pathways which 

are independent of TGF-β-Smad cascade, positively regulate Th17 differentiation as 

well as modulate EAE and iTreg differentiation, respectively (Lu et al. 2010). It was 

also reported that ERK signalling negatively regulates Th17 development (Tan and 

Lam 2010). 

 
1.4 Role of TGF-β and Smad7 in experimental autoimmune 

encephalomyelitis  

Experimental autoimmune encephalomyelitis (EAE) is a T cell-mediated 

demyelinating disease of the CNS that is frequently used as a model for the human 

disease multiple sclerosis (Sospedra and Martin 2005). EAE can be induced in 

susceptible mice by adoptive transfer of myelin-reactive CD4+ T cells or by 



Introduction 

25 

 

immunization with myelin antigens. The course of EAE can be subdivided into an 

initiation stage involving activation and expansion of myelin-specific T cells in the 

periphery, which then cross the blood brain barrier (BBB), an effector stage involving 

re-activation of myelin-specific T cells in the CNS, resulting in cytokine-induced 

chemokine expression in the CNS-resident cells and a stage of remission and repair 

in which the immune response is down-regulated (McFarland and Martin 2007, 

Steinman 2001). Early studies show that administration of exogenous TGF-β1 to 

mice or treatment of myelin basic protein (MBP)-specific T cells with TGF-β is able to 

prevent or inhibit EAE (Johns et al. 1999, Racke et al. 1999, Kuruvilla et al. 1991). 

Increased expression of TGF-β1 mRNA or protein is associated with remission of the 

disease (Racke et al. 1992, Issazadeh et al. 1995). Administration of neutralizing 

antibody to TGF-β also enhances the clinical severity of the disease (Johns et al. 

1993). TGF-β1 functions as an effector cytokine of Th3 cells which secrete high 

amounts of TGF-β1 and protect mice from EAE. Anti-TGF-β1 antibody treatment 

abrogates the protection (Chen et al. 1994). In T cells, TGF-β1 induces both Foxp3 

and ROR-γt in the presence of IL-2 and IL-6, respectively. IL-6, as a pro-inflammatory 

cytokine inhibits Foxp3 expression, whereas Foxp3+ Treg cells are increased in IL-6 

knockout mice, which are resistant to EAE induction (Tang et al. 2004, Bettelli et al. 

2006, Korn et al. 2008), indicating that TGF-β1 decreases the severity of the disease 

by upregulating Foxp3 expression in the absence of IL-6. Deletion of the Tgfb1 gene 

from activated T cells and Treg cells, but not Treg cells alone, abrogates Th17 cell 

differentiation which results in almost complete protection from EAE. In this model, it 

was shown that Th17 cells also produce TGF-β in vivo and that this TGF-β plays a 

role to maintain Th17 cells in an autocrine manner which helps to maintain the 

disease activity (Gutcher et al. 2011). Studies with CD4dnTGFbRII showed that 

TGFβ is required for Th17 differentiation and EAE induction (Veldhoen et al. 2006b). 

TGF-β production by CNS resident glial cells induces TGF-β signalling in neurons 

and in inflammatory T cells which results in earlier onset of EAE (Luo et al. 2007). 

Although it has been shown that TGF-β has paradoxical effects in EAE, the overall 

effect of TGF-β seems to be immunosuppression. As the cytokine TGF-β directly 

regulates the differentiation, maintenance and the function of effector T and 

regulatory T cells and also their cytokine production, a context-dependent regulation 

of TGF-β signalling is indispensable to control EAE. Smad7 can be a suitable 
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candidate since Smad7 negatively regulates TGF-β signalling in a negative feedback 

loop. Smad7 expression is upregulated in the spinal cord of SJL/J mice and DA rats 

with EAE and systemic administration of Smad7-antisense oligonucleotides results in 

significantly milder disease course in these animals (Kleiter et al. 2007). Thus, the 

regulation of Smad7 expression is instrumental to study the role of TGF-β regulated 

T helper cell differentiation and their function in the context of EAE. To this end, mice 

with a T cell specific Smad7 deletion (CD4Cre-Smad7fl/fl ) were made, which showed 

a significantly reduced EAE disease onset as compared to control mice (Figure 7A). 

In the presence of TGF-β, activated T cells from CD4Cre-Smad7fl/fl mice showed 

enhanced TGF-β signalling in T cells with an upregulation of Smad2 phosphorylation 

(Figure 7B). 

 

 

 
Figure 7: Reduced EAE disease course in CD4Cre-Smad7

fl/fl
 mice and enhanced TGF-β signalling in 

CD4Cre-Smad7
fl/fl

 T cells. (A) Clinical scores of MOG (33–55)-induced EAE (n=5) of WT, CD4Cre-
Smad7

fl/fl
 and Smad7Tg mice. The difference in mean clinical scores for the CD4Cre-Smad7

fl/fl
 and the 

control groups were statistically significant from Day 14 to 27 (P<0.05, ANOVA). Results are 
presented as mean values ±SEM and are representative of two different experiments. (B) MACS 
sorted naïve CD4

+
 T cells from WT, CD4CreSmad7

fl/fl
 and Smad7Tg mice were stimulated with anti-

CD3 and anti-CD28 in the presence of TGF-β1 (2ng/ml) for the indicated time points. Protein samples 
were prepared from stimulated cells and phosphorylation of Smad2 was checked at different time 
points by immunoblotting (Kleiter et al. 2010).  
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2. Objectives  
 
Mice with a T  cell-specific Smad7 deletion show a significantly reduced phenotype of 

experimental autoimmune encephalomyelitis and increased TGF-β signalling in 

Smad7-deficient T cells. Having these results as a basement, the aim of this thesis 

was to study TGF-β-induced Smad-dependent and independent signalling pathways 

in T cell differentiation. First, the immune phenotype of mice with a T cell-specific 

deletion of Smad7 should be studied. Second, it should be elucidated whether an 

altered expression of Smad7 determines T helper cell differentiation and function, in 

particular the suppressive capacity of regulatory T cells. Third, the role of TGF-β-

induced Smad-dependent and Smad-independent intracellular signalling pathways in 

Th17 differentiation should be characterized, to finally identify and confirm pathways 

that are involved in controlling T helper cell differentiation and their effector functions.  
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3. Materials and methods 
 

3.1 Materials 
 
Consumables 

Product Supplier 

Amersham Hyperfilm TM ECL GE Healthcare, München 

BD Plastikpak™, syringe (1ml)                                  Becton Dickinson, Heidelberg 

BD Microlance TM 27G Becton Dickinson, Heidelberg 

BD Microlance TM 20G Becton Dickinson, Heidelberg 

BD Falcon™ Cell Strainer, 40 µm Becton Dickinson, Heidelberg 

BD Falcon™ Cell Strainer, 70 µm Becton Dickinson, Heidelberg 

Blotting paper A.Hartenstein, Würzburg 

Combitips Eppendorf, Hamburg 

Disposable gloves Hartman, Heidenheim 

MACS® Cell Separation Columns, MS Miltenyi Biotec, Bergisch Gladbach 

MACS® Cell Separation Columns, LS Miltenyi Biotec, Bergisch Gladbach 

MACS® Cell Separation Columns, LD Miltenyi Biotec, Bergisch Gladbach 

Nitrocellulose Membrane Whatman, Dassel 

Petridishes  Becton Dickinson, Heidelberg 

Pipette tips Gilson, Middleton, USA 

 Sarstedt, Nürmbrecht 

Pipette Tipps with filters Biozym, Hessisch Oldendorf 

Polystyrene tubes 15 ml Sarstedt, Nürmbrecht 

Polystyrene tubes 50 ml Sarstedt, Nürmbrecht 

RT-PCR-Tubes: Optical Cap + Tube Stratagene, Agilent Technologies, 

 Oberhaching 

Test plate (12-well/24-well/96-well) Omnilab, Schubert & Weiß, München 

 TPP, Schweiz 

Vials  Eppendorf, Hamburg 

 Falcon BD, Heidelberg 

 Gibco BRL, Karlsruhe 

 Sarstedt, Nürmbrecht 

Table 1: Basic consumables  

 

http://www.bdbiosciences.ca/ptProduct.jsp?prodId=364191&catyId=720549
http://www.bdbiosciences.ca/ptProduct.jsp?prodId=364191&catyId=720549
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Reagents and chemicals 

Product  Supplier 

Agarose, electrophoresis grade AppliChem, Darmstadt 

Albumin bovine (BSA) Fraction V Biomol, Hamburg 

Ammoniumpersulfat (APS) Sigma, Taufkirchen 

Ammoniumchlorid (NH4CL) 0,15M  Sigma, Taufkirchen 

Bromophenol-blue Merck, Darmstadt 

Collagenase Sigma, Taufkirchen 

Dimethyl Sulfoxide (DMSO) Sigma, Taufkirchen 

DNase Worthington Biochemicals, England 

Dulbecco`s PBS PAA, Pasching, Österreich 

Ethylenediaminetetraacetic acid (EDTA) Sigma, Taufkirchen 

Ethanol J.T.Backer, Deventer, Niederlande 

Ethidium bromide Sigma, Taufkirchen 

Fetal Calf Serum (FCS) Biochrom, Berlin 

Ficoll 400 Amersham Pharmacia, Freiburg 

Glutamin 200 mM  PAN Biotech GmbH, Aidenbach 

Glycerin  Merck, Darmstadt 

Glycine Merck, Darmstadt 

Hank’s Buffered Salt Solution (HBSS) Gibco, Invitrogen, Karlsruhe 

Heparin-Natrium (5000 IE/ml) Ratiopharm, Ulm 

(4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) 

1M  Gibco Invitrogen, Karlsruhe 

Isopropanol AppliChem, Darmstadt 

Ketanest (Ketamin) 100 mg/ml Bela-Pharm GmbH&Co KG, Vechta 

LymphoPrep Axis-Shield PoCAS, Oslo, Norwegen 

Mannide monooleate Sigma, Taufkirchen 

Methanol Merck, Darmstadt 

MOG 35-55 peptide Pepceuticals, Nottingham, England 

Mycobacteria tuberculosis H37RA Difco, BD Bioscience, Heidelberg 

Non-Essential Amino Acid (NEAA) PAN Biotech GmbH, Aidenbach 

Nonidet P-40 Sigma, Taufkirchen 

Penicillin/Streptomycin 100 µg/ml  PAN Biotech GmbH, Aidenbach 
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Pertussis Toxin  Calbiochem, San Diego, USA 

Phosphotase-Inhibitor, PhosSTOP Roche, Mannheim 

Phenylmethylsulfonyl fluoride (PMSF)  Sigma, Taufkirchen 

Ponceau S solution Sigma, Taufkirchen 

Potassiumbicarbonate (KHCO3) 10mM  Merck, Darmstadt 

Precision Plus Protein Dual Color 

Standards Biorad, München 

Protease-Inhibitor, Complete Mini Roche, Mannheim 

Proteinase K Roche, Switzerland 

Restore Western Blot Stripping Buffer Thermo Scientific, Karlsruhe 

Rompun (Xylazine) 20 mg/ml Serumwerk, Bernburg 

Roswell Park Memorial Institute medium 

(RPMI)1640 Gibco Invitrogen, Karlsruhe 

Sodium-Deoxycholate Sigma, Taufkirchen 

Sodium-Pyruvat 100mM  Gibco Invitrogen, Karlsruhe 

Sodiumchlorid (NaCl) VWR, Darmstadt 

Sodium Dodecyl Sulfate (SDS) Merck, Darmstadt 

Tetramethylethylenediamine (TEMED) 

Plus One GE Healthcare, München 

Tris-Base Sigma, Taufkirchen 

Trypanblue Sigma, Taufkirchen 

Trypsin Sigma, Taufkirchen 

Polysorbate 20 (or TWEEN 20) Sigma, Taufkirchen 

Table 2: Reagents and chemicals for cell culture and molecular biology 
 

Pharmacological inhibitors 

Inhibitor  

Pathway or molecule  

blocked Supplier  

LY 294002 AKT, PI3K Calbiochem, Merck, Darmstadt 

LY 294002 AKT, PI3K 

JS Research Chemicals Trading 

Wedel 

PD98059 ERK, MAPK Calbiochem, Merck, Darmstadt 

Rapamycin mTOR Calbiochem, Merck, Darmstadt 

Rapamycin mTOR JS Research Chemicals Trading 
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Wedel 

SP600125 JNK Calbiochem, Merck, Darmstadt 

SB202190 p38 Sigma, Taufkirchen 

U0126 MEK1 & MEK2 Calbiochem, Merck, Darmstadt 

Table 3: Pharmacological inhibitors for cell culture 
 

Kits and PCR master mix 

Product Supplier 

Bio-Rad Protein Assay Kit Bio-Rad laboratories GmbH, Munich 

Brilliant® II SYBR® Green QPCR Master 

Mix 

Stratagene, Agilent Technologies, 

Oberhaching 

Brilliant® QPCR Master Mix 

 

Stratagene, Agilent Technologies, 

Oberhaching 

CD4 (L3T4) Micro Bead kit, mouse Miltenyi Biotec, Bergisch Gladbach 

CD4+CD62L+ T Cell Isolation kit II, 

mouse Miltenyi Biotec, Bergisch Gladbach 

CD25 Micro Bead kit, mouse Miltenyi Biotec, Bergisch Gladbach 

CD90.2 T cell depletion kit, mouse  Miltenyi Biotec, Bergisch Gladbach 

Immobilon Western, Chemoluminescent 

HRP Substrate 

Millipore, Schwalbach 

 

QuantiTect® Reverse Transcription Kit Qiagen, Hilden 

Rneasy® Micro Kit Qiagen, Hilden 

TGF-beta signalling phospho-specific 

antibody microarray  

Fullmoon Biosystem, BioCat GmbH, 

Heidelberg 

Wizard SV Genomic DNA purification 

system 

Promega, Mannheim 

 

X 5 Green Go Taq kit Promega, Mannheim 

Table 4: Kits for cell culture and molecular biology 
 
Cytokines and antibodies  

Antibody or 
Cytokine 

Clone  Concentration 
used  

Supplier 

Anti-mouse CD3 145-2C11 1μg/ml BD Bioscience, Heidelberg 

Anti-mouse CD28 37.51 1ng/ml BD Bioscience, Heidelberg 

Anti-mouse IL-4 11B11 10μg/ml BD Bioscience, Heidelberg 

Anti-mouse IFN-γ XMG1.2 10μg/ml BD Bioscience, Heidelberg 

r-mIL-12  20ng/ml R&D Systems, Wiesbaden 
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r-mIL-6  20ng/ml R&D Systems, Wiesbaden 

r-mIL-2  10ng/ml R&D Systems, Wiesbaden 

rh-TGF-β  0, 0.4, 2ng/ml R&D Systems, Wiesbaden 

Table 5: Cytokines and antibodies for cell culture 
 
RT-PCR-primer (Murine) :  

Primer  Sequence  Supplier 

FoxP3 QT00138369 Qiagen, Hilden 

IFNγ QT01038821 Qiagen, Hilden 

IL17a QT001103278 Qiagen, Hilden 

RORyt f GGTGATAACCCCGTAGTGGA Invitrogen, Karlsruhe 

RORyt r TCAGTCATGAGAACACAAATTGAA Invitrogen, Karlsruhe 

Serpine1 (PAI-1) QT00154756 Qiagen, Hilden 

Smad7 QT00124607 Qiagen, Hilden 

T-bet 

 

Mn00450960_m1 

 

Applied Biosystems, 

Darmstadt 

18s rRNA f CGGCTACCACATCCAAGGAA     Invitrogen, Karlsruhe 

18s rRNA r GCTGGAATTACCGCGGCT         Invitrogen, Karlsruhe 

Table 6: Primers for gene expression analysis 

Sequence from 3` to 5`, f = forwards, r = reverse, QT = QuantiTect Primer Assay 

 
Western Blot-antibodies  

Product Supplier  

Actin Sigma, Taufkirchen 

AKT Assay Biotech, Acris Antibodies GmbH, 
Herford 

p-AKT (Tyr474) Assay Biotech  Acris Antibodies GmbH, 
Herford 

Goat-anti- mouse IgG 
HRP 

Chemicon International, Millipore, 
Schwalbach 

m-TOR Cell Signalling, New England Biolabs 
GmbH, Frankfurt am Main 

p-mTOR (Thr2446) Millipore, Schwalback 

PI3K Cell Signalling, New England Biolabs 
GmbH, Frankfurt am Main 

p-PI3K p85 (Tyr458)/p55 Cell Signalling, New England Biolabs 
GmbH, Frankfurt am Main 

Smad2 Cell Signalling, Beverly, USA 

p-Smad2 (Ser465/467) Cell Signalling, Beverly, USA 

Table 7: Antibodies for Immunoblotting 
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Fluorescence conjugated-antibodies  

Specificity  Clone Supplier 

CD4 GK.1.5/4 BD Pharmingen, Heidelberg 

CD8 53-6.7 BD Pharmingen, Heidelberg 

CD25 (IL2Ra) 7D4 BD Pharmingen, Heidelberg 

CD62L (L-Selectin) MEL-14 BD Pharmingen, Heidelberg 

CD69 H1.2F3 BD Pharmingen, Heidelberg 

CD11c HL3 BD Pharmingen, Heidelberg 

CD19 ID3 BD Pharmingen, Heidelberg 

CD44 KM114 BD Pharmingen, Heidelberg 

CD90.2 (Thy 1.2) CFO-1 BD Pharmingen, Heidelberg 

FoxP3 FJK16s eBioscience, Frankfurt 

IFN-γ XMG1.2 BD Pharmingen, Heidelberg 

IL-17A TC11-18H10 eBioscience, Frankfurt 

Table 8: Antibodies for Flow cytometric analysis 
 

Enzyme-linked immunosorbent assay kits 

Product  Supplier 

IFN-γ Biozol, Eching 

IL-2 BD Bioscience, Heidelberg 

IL-4 BD Bioscience, Heidelberg 

IL-10 BD Bioscience, Heidelberg 

IL-12 BD Bioscience, Heidelberg 

IL-17 Biozol, Eching 

TGF-β R&D Systems, Wiesbaden 

Table 9: ELISA kits for measuring cytokine from supernatant 

 
Technical equipment 

Blotting chamber Biometria, Göttingen 

Centrifuge 5417 R Eppendorf, Hamburg 

Emax Precision Microplate Reader Molecular Devices, Union City, USA 

Incubator HERA Cell Heraeus Instruments GmbH,  
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Megafuge 1.0 R Heraeus Instruments GmbH, Hanu 

Mighty Small, multiple gel caster Hoefer, Biostep, Jahnsdorf 

Neubauer counting chamber VWR, Darmstadt 

Olympus CK 30 (Mikroscop) Olympus, Hamburg 

Perfect Spin 24 (Zentrifuge) PeqLab, Erlangen 

Photometer Gene Quant II Amersham/Pharmacia Biotech, Freiburg 

Pipet boy Integra Biosciences, Fernwald 

Power Supply - EPS 601 Amersham/Pharmacia Biotech, Freiburg 

SE 260 Gelelektrophoresekammer Hoefer, Biostep, Jahnsdorf 

Thermocycler Mastercycler gradient Eppendorf, Hamburg 

Thermomixer comfort Eppendorf, Hamburg 

Vortex-Genie 2 Scientific Industries, New York, USA 

Table 10: Basic laboratory equipments 

 

Computer software 

Adobe Photoshop C2 version 9.0 Adobe Systems GmbH, München 

Flow Jo FACS analysis software Tree Start, Inc. Ashland, OR, USA  

GraphPad Prism 5 GraphPad Software Inc., USA 

Microsoft Office Microsoft Corporation 

Mx3005P QPCR System 

 

Stratagene, Agilent Technologies, 

Oberhaching 

Table 11: Software for data analysis 

 

Medium and buffer 

T cell medium:  

RPMI 1640 450 ml 

1M HEPES 7.6 ml 

100 mM Na-Pyruvate 5 ml 

NEAA (100x) 5 ml 

200 mM Glutamin 5 ml 

100 µg/ml Penicillin/Streptomycin 5 ml 

FCS (10%) 50 ml 

2-Mercaptoethanol (14.3 mol/l) 1.7 ml 
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MACSbuffer:  

Dulbecco`s PBS 500 ml 

BSA (5mg/ml) 2.5 g 

0.5 M EDTA 2 ml 

  

ACK lysis buffer: Total volume 1 L 

0.15 M Amoniumchlorid (NH4CL) 8,.9 g 

10 mM  Potassiumbicarbonate (KHCO3) 1 g 

0.1 mM EDTA 37. mg 

Distilled Water 800 ml 

Hydrochloric acid (HCL) pH was adjusted to 7.2-7.4  

  

Wash buffer T-TBS: Total volume 1 L 

Tris-Base 6.05 g 

Sodiumchloride (NaCl) 8.76 g 

Distilled Water 800 ml 

Hydrochloric acid (HCL) pH was adjusted to 7.5  

TWEEN 20 (final conc 0.1%) 1 ml 

  

Radioimmunoprecipitation assay 

(RIPA) buffer: 

Total volume 100 ml 

10% Nonidet P-40 10 ml 

10% Na-Deoxycholate 2.5 ml 

100 mM EDTA 1 ml 

Tris-Base in dest. H20 (pH=7.4) 790 mg 

Sodiumchloride (NaCl) in dH20 (pH=7.4) 900 mg 

Distilled Water Up to 100 ml  

  

Protease-Inhibitor, Complete Mini 1 Tablet per 10 ml 

Phosphotase-Inhibitor, PhosSTOP 1 Tablet per 10 ml 

  

300 mM PMSF (just before use ) 33.3 µl per 10 ml 
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Protein loading-buffer: 10 ml 

0.625 M Tris/HCL pH 6.8 2 ml 

Sodiumdodecylsulfate (SDS) 0.2 g 

85% Glycerin 5 ml 

2-Mercaptoethanol (14.3 mol/l) 0.5 ml 

Bromophenol-Blue 0.001 g 

Distilled Water 2.4 ml 

  

Western blot running buffer: Total volume 1 L 

Tris-Base 30.2 g 

Glycine 144 g 

Distilled Water 800 ml 

Hydrochloric acid (HCL) pH was adjusted to 8,8  

10% Sodiumdodecylsulfate (SDS) 100 ml 

  

Western blot transfer buffer: Total volume 1 L 

Tris-Base 3.03 g 

Glycine 11.26 g 

100% Methanol 100 ml 

Distilled Water 800 ml 

Hydrochloric acid (HCL) pH was adjusted to 8.3  

  

Western blot stacking gel buffer: Total volume 1 L 

Tris-Base 61 g 

Distilled Water 800 ml 

Hydrochloric acid (HCL) pH was adjusted to 6.8  

  

Western blot separating gel buffer:  

Tris-Base 182 g 

dest. Wasser 800 ml 

Hydrochloric acid (HCL) pH was adjusted to 8.8  
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PBS/EDTA solution:  

0.5 M EDTA pH=7.4 1 ml 

PBS 500 ml 

  

PBS/Heparin solution:  

Heparin 5000 IE/ml 500 µl 

PBS 500 ml 

  

FACS buffer:  

Dulbecco`s PBS 500  ml 

BSA (10mg/ml) 5 g 

Sodium azide 2.5g 

Table 12: Medium and buffers for cell culture and molecular biology 
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3.2. Methods in cell biology 

3.2.1 Animals 

CD4Cre-Smad7fl/fl (Kleiter et al. 2010) and CD2-Smad7 (Dominitzki et al. 2007) mice, 

both with C57BL/6 genetic background and control wild type C57BL/6 mice (Charles 

River) were used for experiments. The mouse strain TGF-βRII (Chytil et al. 2002) 

was crossed to CD4Cre (Lee et al. 2001). Unless indicated, mice were around 6-8 

weeks old and of both sexes. All experiments were conducted in compliance with the 

guidelines of the Central Animal Testing Facilities (CTL) of the University of 

Regensburg. Ethical approval for the in vivo animal experiments was obtained from 

the Regierung der Oberpfalz (AZ 54-2531.1-27/05). 

 
3.2.2 Preparation of single cell suspensions  

The animals were sacrificed with CO2 and single cell suspension from lymphoid 

organs, spleen, additionally thymus when indicated, were prepared by homogenizing 

the organs mechanically and passing suspensions through a 70 and a 40 μM  mesh 

(Falcon strainer). Primary cell suspensions were washed with PBS twice. 

Contaminant erythrocytes in the suspension were lysed by incubation with 1x ACK 

lysis buffer for 2 min at room temperature. Immediately, PBS with 10% FCS 20 ml 

was added to the suspension in order to stop the lysis reaction. Next, cells were spun 

down for 5 minutes at 550 g at 40C. This step was repeated once again. Cells were 

then resuspended in PBS once and counted after staining with Trypan blue dye 

which allowed for exclusions of dead cells. Cell suspensions were either kept on ice 

in PBS or processed according to the further steps. Preparation of the cell 

suspension and all subsequent cell culture work was conducted in a laminar flow 

cabinet. Sterile working tools were used.  

 
3.2.3 Cell sorting and analysis 

 
3.2.3.1 Magnetic cell sorting  

Specific cell populations were sorted for negative and positive fractions according to 

the cell population of interest by magnetic cell sorting (MACS technique; Miltenyi 

Biotec, Bergisch Gladbach, Germany) according to the manufacturers protocol. 

These include the incubation of cell suspensions with microbeads which are 

antibodies conjugated with magnetic particles of a size of 50nm. During incubation, 

these antibodies bind to surface molecules of the cells. Cells are then allowed to 
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pass through a column which is positioned in a strong magnetic field. Negative 

populations are collected from the flow through and for positive fractions; the column 

is transferred to a new collection tube and filled with usually 5 ml MACS buffer. The 

liquid in the column is then flushed out firmly by a plunger. For instance, if CD4 

microbeads are used, negative population will contain other lymphocytes than CD4+ 

T cells and positive population will contain only CD4+ T cells.   

 
Briefly, for example, in the case of naïve CD4+CD62L+ T cells, a total lymphocyte cell 

suspension was incubated with 100μl CD4+ T cell Biotin-Antibody Cocktail II and 

400μl MACS buffer per 108 cells for 10 minutes at 4-80C in 50 ml falcon tube. Next, 

300 μl MACS buffer and 200 μl Anti-Biotin microbeads were added per 108 cells, 

mixed well and incubated for 15 minutes at 4-80C. More MACS buffer were added to 

the falcon tube to make the total volume 40 ml. Cells were then washed by 

centrifuging at 550 g for 5 minutes at 40C. Cells were resuspended in 500 μl MACS 

buffer per 108 cells. Next, cells went through magnetic separation and the unlabelled 

pre-enriched CD4+ T cell fraction was collected. This fraction was incubated with 

200μl CD62L microbeads and 800 μl MACS buffer per 108 cells for 15 minutes at 4-

80C. Cells were washed with additional MACS buffer in a volume of 40 ml by 

centrifuging at 550 g for 5 minutes at 40C. Cells were resuspended in 500 μl MACS 

buffer per 108 cells. Naïve CD4+CD62L+ T cells were obtained by magnetic 

separation. Purity of the selected population was always checked by flow cytometry 

(FACS Calibur). From one mouse around 5 x 106 naïve T cells were obtained which 

were 97% pure (for one representative figure, see Appendix: S1). 

 
3.2.3.2 FACS cell sorting  

Naïve T cells CD4+CD62L+CD25- were sorted by FACS Aria as well. Cells were first 

MACS purified to enrich CD4+ T cells and subsequently surface stained for CD4, 

CD62L and CD25 with fluorochrome conjugated antibodies. The cells were then 

sorted using FACSAria to get CD4+CD25-CD62L+ naïve cells unless stated 

otherwise.  
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3.2.4 Flow cytometry 

Flow cytometry is a method based on laser detection of single cell suspensions in a 

flow sheath. Surface or intracellular markers of a particular cell type are labelled with 

antibodies which are artificially conjugated with flurochromoes. In principle, when the 

cells are analysed by flow cytometry, the cells expressing the marker for which the 

antibody is specific will manifest fluorescence. Cells lacking the marker will not 

manifest fluorescence. Cells stained with fluorochrome conjugated antibodies are 

excited by a laser beam emit the light in a different wavelength, which is detected by 

photomultipliers since Flow cytometers use the principle of hydrodynamic  focusing 

for presenting cells to a laser. By changing the excitation light and using more than 

one fluorochrome, it is possible to analyse several parameters of the sample at any 

one time. This forms the basis of multicolour fluorescence studies.   

 
3.2.4.1 Surface marker staining 

After making the cell suspension from organs or tissues (see 3.2.2), cells were 

counted and 0.1-1x106 cells were used for staining. First, cells were washed with 

PBS by spinning down with 600 g at 4°C for 5 min. Cells were resuspended in 200μl 

dPBS and 2% FCS buffer (FACS buffer) and centrifuged with 600 g at 4°C for 5 min. 

Cells were resuspended in 50μl FACS buffer containing the fluorochrome conjugated 

antibodies and incubated for 15 minutes in the dark at 4°C. Cells were then washed 

once with FACS buffer at 600 g at 40C for 5 minutes. After discarding the 

supernatant, the pellet was resuspended in 200μl FACS buffer for flow cytometric 

analysis by FACS Calibur (BD Bioscience). Data were analysed by Flow Jo software. 

 
3.2.4.2 Intracellular and intranuclear marker staining 

Intracellular and nuclear staining was performed to check the transcription factor 

expression and cytokine production of different T cell subsets after 5 days. For 

intracellular FACS analysis of IL-17, IL-4 and IFNγ producing T cells, cells were 

stimulated for 4h with PMA (50 ng/ml), Ionomycin (500 ng/ml) and 1μg/ml Golgi stop 

(all from BD Bioscience) in T cell medium at 37°C, 5%CO2. Intracellular staining was 

performed by using BD Bioscience staining kit for intracellular staining of IFNγ and 

IL17 (BD Cytofix/CytopermTMplus Fixation/Permeabilization kit with BD golgiPlugTM; 

BD Bioscience, Germany) according to the manufacturers’ protocols. Briefly, for 

cytokine staining, after harvesting, cells were washed once with FACS buffer at 600 g 
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at 40C for 5 minutes. Fc receptors were blocked by anti-FcR-antibody in FACS buffer 

for 10min. Next, cells were stained for surface markers with FACS buffer for 15 

minutes. Cells were then washed once with FACS buffer at 600 g at 40C for 5 

minutes. Cells were resuspended with 100μl Cytofix/Cytoperm buffer and incubated 

for 30min at 4°C in the dark in order to fix surface markers. The reaction was stopped 

by 1x Perm/Wash buffer followed by two washing steps with Perm/Wash buffer in 

order to make pores through the cell wall so that intracellular fluorochrome 

conjugated antibodies can bind to the intracellular molecules. Subsequently, cells 

were incubated with the fluorochrome conjugated antibodies (e.g. IFNγ, IL17) diluted 

with Perm/Wash buffer for 20min at 4°C in the dark. Cells were washed twice in the 

Perm/wash buffer at 600 g at 40C for 5 minutes. Afterwards, cells were resuspended 

in 200μl FACS buffer for FACS analysis. For the transcription factor FoxP3 staining, 

FoxP3 staining kit from eBioscience was used. Cells were directly (no PMA, 

Ionomycin, BrefeldinA stimulation) stained for surface markers in FACS buffer for 15 

minutes. Cells were then washed once with FACS buffer at 600 g at 40C for 5 

minutes and incubated for 2h in Fix/Perm buffer (prepared according to the protocol 

provided in the kit) at 4°C in the dark. Cells were washed with 1x permeabilization 

buffer at 600 g at 40C for 5 minutes. Subsequently, cells were incubated with the 

fluorochrome conjugated antibodies (PE anti-FoxP3) diluted with permeabilization 

buffer for 20min at 4°C in the dark. Afterwards, cells were washed twice with 

Permeabilization buffer at 600 g at 40C for 5 minutes and resuspend in 200μl FACS 

buffer for flow cytometric analysis by FACS Calibur and Data were analysed by Flow 

Jo software. 

 
3.2.5 Carboxyfluorescein succinimidyl ester staining 

In order to check the proliferation of T cells, carboxyfluorescein succinimidyl ester 

(CFSE) staining was performed. CFSE is partitioned equally among daughter cells 

with each division. Since CFSE has bright fluorescence, it is possible to check cell 

proliferation in each division by FACS analysis. 10x106 cells were washed with ice 

cold PBS (no FCS) in 15ml tube and resuspended in 500μl of PBS and 500μl of 

CFSE (2μM) in order to set the final concentration of 1μM CFSE in the total volume 

and incubated at dark at room temperature for 3 minutes. Immediately, 10 ml of 10% 

FCS was added to the suspension to stop the reaction and centrifuged at 550 g, 40C 

for 5 minutes. This washing step was repeated once again. Cells were then 



Materials and methods 

42 
 

resuspended in 10 ml T cell medium and centrifuged at 550, 40C for 5 minutes and 

resuspended again in the T cell medium and used for further experiment. 

 
3.2.6 T helper cell subset differentiation in vitro 
 
3.2.6.1 Th1 cell differentiation 

Naïve CD4+CD25-CD62L+ T cells were sorted either by FACS Aria or magnetic 

separation. 0.3x106 cells in 200μl/well were stimulated in T cell medium 

supplemented with anti-CD3 (1μg/ml), anti-CD28 (10ng/ml), anti-IL4 (10μg/ml), rm-IL-

12 (20ng/ml) in round bottom 96-well plates for 5 days at 37° and 5% CO2. After 5 

days of incubation, supernatants were analysed for IFN-γ production by ELISA. In 

addition, IFN-γ production was also checked by flow cytometry. 

3.2.6.2 Th2 cell differentiation  

Naïve CD4+CD25-CD62L+ T cells were sorted either by FACS Aria or magnetic 

separation. 0.3x106 cells in 200μl/well were stimulated in T cell medium 

supplemented with anti-CD3 (1μg/ml), anti-CD28 (10ng/ml), anti-IFN-γ (10µg/ml), rm-

IL-4 (10ng/ml) in round bottom 96-well plates for 5 days at 37° and 5% CO2. After 5 

days of incubation, supernatants were analysed for IL-4 production by ELISA. In 

addition, IL-4 production was also checked by flow cytometry.  

3.2.6.3 Th17 cell differentiation  

Naïve CD4+CD25-CD62L+ T cells were sorted either by FACS Aria or magnetic 

separation. 0.3x106 cells in 200μl/well were stimulated in T cell medium 

supplemented with anti-CD3 (1μg/ml), anti-CD28 (10ng/ml), rh-TGFβ1 (2ng/ml), rm-

IL-6 (20ng/ml), anti-INFγ (10μg/ml) in round bottom 96-well plates for 5 days at 37° 

and 5% CO2. After 5 days of incubation, supernatants were analysed for IL-17 

production by ELISA. In addition, IL-17 production was also checked by flow 

cytometry.  

3.2.6.4 Treg cell differentiation   
 
Naïve CD4+CD25-CD62L+ T cells were sorted either by FACS Aria or magnetic 

separation. 0.3x106 cells in 200μl/well were stimulated in T cell medium 

supplemented with anti-CD3 (1μg/ml), anti-CD28 (10ng/ml), rmIL-2 (10ng/ml) and rh-

TGF-β (2ng/ml) in round bottom 96-well plates for 5 days at 37° and 5% CO2. After 5 
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days of incubation, cells were harvested and surface stained for CD4, CD25 and for 

intranuclear FoxP3 to confirm Treg differentiation by flow cytometry. 

 

3.2.7 Mixed lymphocyte reaction 

In order to elucidate whether T cell specific Smad7 deletion affects the suppressive 

function of Tregs and the capability for T cells to proliferate, co-culture experiments 

between Tregs and T responder cells were performed. 

 
3.2.7.1 Cell suspension 

Spleens and LNs were collected from 8-12 weeks old male and female mice. Cell 

suspension was made as described in section (3.2.2). 

 
3.2.7.2 Cell sorting procedure 

The following sub types from mouse T cells were sorted by MACS beads and FACS 

Aria:  

 

Mice Sub type mouse T cells Function 

WT CD4+CD25- 

CD4+CD25+ 

CD4-CD25-CD90.2- 

Responder T cells 

Tregs 

APC 

Smad7KO CD4+CD25- 

CD4+CD25+ 

Responder T cells 

Tregs 

Smad7Tg CD4+CD25- 

CD4+CD25+ 

Responder T cells 

Tregs 

 

Cell suspensions from all these three strains were prepared in a concentration of 

10x106 cells/100μl and washed once with FACS buffer and incubated with following 

antibodies:  
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Antibody Stock 

conc. 

Amount used 

per 100μl 

Incubation time on ice 

Fc-receptor 

blocker 

0.5mg/ml 1μl 5 minutes before addition of 

anti-CD25 PE 

anti-CD25 PE 0.2mg/ml 0.5μl 20 minutes at dark 

Afterwards, cells were washed once with FACS buffer and incubated with 10μl anti-

PE beads per 10x106 cells for 20 minutes on ice and then washed once with MACS 

buffer and resuspended in 500 μl MACS buffer per 108 cells. Cells were passed 

through magnetic bead separation and both CD25+ (from 3 different mice) and CD25- 

T cells were collected. 

CD25+ T cells from all mice were washed once with FACS buffer and incubated with 

1μl anti-CD4-APC (stock conc. 0.2mg/ml) per 10x106 cells/100μl and 0.5μl anti-

CD25-PE per 10x106 cells/100μl for 20 minutes on ice at dark. Cells were washed 

and resuspended in FACS buffer (<20x106 cells/300μl FACS buffer and >20x106 

cells/500μl FACS buffer) for FACS Aria sorting. CD4+CD25+ Tregs were sorted by 

FACS Aria. Purity was over 98% (for one representative figure, see Appendix: S2). 

CD25- T cells were incubated with 10μl anti-CD4 (L3T4) micobeads per 10x106 

cells/100μl in MACS buffer for 20 minutes on ice. Cells were then passed through 

magnetic separation. Both CD4+CD25- (responder T cells) and CD4-CD25- fractions 

were collected. 

CD4+CD25- responder T cells were then washed once with FACS buffer and 

incubated with 1μl anti-CD4-APC per 10x106cells/100μl and 0.5μl anti-CD25-PE per 

10x106 cells/100μl for 20 minutes in dark and resuspended in FACS buffer and then 

went through FACS Aria sorting in order to get pure CD4+CD25- responder T cells. 

CD4-CD25- cell fractions were incubated with 10μl anti-CD90.2 (a T lymphocyte 

marker) per 10x106 cells/90μl for 20 minutes on ice and then washed once with 

MACS buffer and resuspended in 500 μl MACS buffer per 108 cells. Cells were 

passed through magnetic separation with LD columns and only the negative fraction 

(flow through) was collected which were regarded as CD4-CD25-CD90.2- and used 

as APC (antigen presenting cells). 10,000 cells of this APC were incubated with 

FACS antibodies against CD4, CD25 and CD90.2 for 20 minutes at dark on ice and 
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purity was checked by FACS Calibur. Usually, >95% purity was obtained. 

CD4-CD25-CD90.2- APC were irradiated at 3000 rad for 316 seconds. This cell 

fraction was then used as pure APC for the co-culture. APCs were irradiated so that 

these cells would not proliferate in the culture but would activate T responder cells.  

 
3.2.7.3 Co-culture procedure 

Each condition of co-cultures were made in a total volume of 200 μl in round bottom 

96 well plates and incubated for 3 days at 37° and 5% CO2.  

 
Conditions for Co-culture  

Treg (Regulatory/suppressor T cells)…………50,000 cells/50μl 

Tresp (Responder T cells)……………………...50,000 cells/50μl 

APC (Antigen presenting cells)………………..100,000 cells/50μl 

Anti-CD3 (final conc. is 0.5μg/ml) added in…..50μl T cell medium  
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3.3. Methods in molecular biology 
 
3.3.1 Genomic DNA extraction 

The wizard SV Genomic DNA purification system from Promega was used for DNA 

extraction. Mice tail tips (0.5 cm length) were cut off and digested in 1.5 ml 

microcentrifuge tube with 275 μl of Digestion Solution Master Mix (Nuclei Lysis 

Solution 200 μl, 0.5M EDTA of pH 8.0 50 μl, Proteinase K of 20mg/ml, 20 μl, and 

RNase A solution of 4mg/ml,  5 μl ) to each tube. Sample tubes were incubated 

overnight for 18 hours in a 550C heat block. Wizard SV lysis buffer 250 μl was added 

to each tube and mixed well by vortexing. Samples were transferred to Wizard SV 

minicolumn assembly and spun down at 13,000 g for 3 minutes. Liquid in the 

collection tube was discarded. 650 μl of Wizard SV wash solution (with 95% ethanol 

added) was added to each assembly and spun down at 13,000 x g for 1 minute. 

Liquid in the collection tube were discarded. This washing step was repeated 4 times. 

Liquid in the collection tube was discarded and the complete assembly was spun 

down without adding anything for 2 minutes at 13,000 g to dry the binding matrix. The 

Wizard SV minicolumn was transferred to a new 1.5 ml microcentrifuge tube 

(collection tube) and supplemented with 250 μl of room temperature nuclease-free 

water and incubated for 2 minutes at room temperature and spun down at 13,000 g 

for 1 minute. Liquid containing purified DNA remained in the collection tube. An 

additional 250 μl of room temperature nuclease-free water was added to the 

minicolumns and incubated for 2 minutes at room temperature and spun down at 

13,000 g for 2 minutes. Purified DNA was collected from the collection tube and 

stored at -20 to -800C unless it was used immediately.  

3.3.2 Polymerase Chain Reaction  
 
Polymerase chain reaction (PCR) is a common detection method of creating copies 

of specific fragments of DNA. PCR rapidly amplifies a single DNA molecule into many 

millions of molecules. The method is based on binding of appropriate oligonucleotide 

primers (18-75 nucleotides) to DNA fragments. Binding of primers to DNA templates 

is catalysed by the heat resistant taq polymerase (X 5 green Go Taq kit, Promega, 

Mannheim) which synthesizes the DNA starting from the 3’ end of the primer. In this 

thesis, PCR was performed to screen experimental mice for presence of targeted 

alleles or transgenes.  
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3.3.2.1 Typing of CD4Cre-Smad7fl/fl, Smad7 Tg and TGFβRIIfl/fl mice 
 
Materials: 
 

Materials  Amount in μl 

X 5 Green Go Taq reaction buffer 6 

dNTPs 0.3 

Primer 1 

Taq Polymerase                             0.3 

Molecular biology H20                  21.4 

Genomic DNA                               1 

Table 13: List of reagents for PCR. 
 
Total volume used for PCR analysis was 30 μl containing 10pmol of each primer. 

PCR protocols were followed as shown in (Table 14). 

 

A) Smad7flox 

            Temp. Time Cycle  number 

Initial denaturation 95.0 3´           

Denaturation     95.0 45´´           

Annealing       61.8 30´´ 35 

Elongation     72.0 45´´           

final elongation   72.0 5´           

 

Primer: Fragment size: 

Smad7fl sen 5´-GTCAGGTTGGATCACCATGCC-3´ 

Smad7fl ase 5´-GACTGCCTGGAGAAGTGTGTC-3´ 

WT   413 bp 

HET (Smad7fl/+) 413, 568 bp 

KO (Smad7fl/fl)   568 bp 

B) CD4Cre 

 

            Temp. Time Cycle  number 

Initial denaturation 95.0 3´           

Denaturation     95.0 45´´           

Annealing       56.65 30´´ 35 

Elongation     72.0 45´´           

final elongation   72.0 5´           

 

Primer: Fragment size: 

CD4Cre sen 5´-CCCAACCAACAAGAGCTC-3´ 

CD4Cre ase 5´-CCCAGAAATGCCAGATTACG-3´ 

WT  300 bp 

CD4Cre 600 bp 
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C) Smad7Tg-strain (CD2-Smad7) 

            Temp. Time Cycle  number 

Initial denaturation 95.0 1´           

Denaturation     95.0 1´           

Annealing       55.0 1´ 35 

Elongation     72.0 1´           

Final elongation   72.0 7´           

Primer sequence: Fragment size: 

CD2:     5´-CCCAGCTTTCCCTGAAAGTG-3´   WT no band 
Smad7: 5´-CCGTAAGATTCACAGCAACAC-3´TG 650-700bp  

 

 

 

D) TGFβRII-strain (TGFβRIIfl/fl) 

 

            Temp. Time Cycle  number 

Initial denaturation 94.0 4´           

Denaturation     94.0 45´´           

Annealing       68.0 45´´ 35 

Elongation     72.0 1´           

final elongation   72.0 8´           

Primer: Fragment size: 

mEIIf:  5' –GCA GGC ATC AGG ACC TCA GTT TGA TCC-3' 

mSAr:  5' –AGA GTG AAG CCG TGG TAG GTG AGC TTG-3' 

WT   556 bp 

HET (TGFbRIIfl/+) 556, 711 bp 

KO (TGFbRIIfl/fl) 711 bp 

 

 
Table 14: Conditions for genotyping. 
 
 
3.3.2.2 Agarose gel electrophoresis 
 
Agarose gel electrophoresis is the easiest and commonest way of separating and 

analysing DNA. Here, the purpose of the gel is to quantify the size of a particular 

band. In principle, negatively charged DNA migrates in an electric field towards the 

anode, resulting in DNA to be separated in a size dependent manner. The DNA is 

visualised in the gel by addition of ethidium bromide. This binds strongly to DNA by 

intercalating between the bases and absorbs invisible UV light and transmits the 
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energy as visible orange light. The size of DNA fragments was measured by loading 

a size marker 3 μl (DNA molecular weight marker VIII, Roche Diagnostics; 

GeneRulerTM 1Kb plus DNA ladder, Fermentas; 1Kb DNA ladder, Invitrogen) to the 

2% Agarose gel along with the DNA samples.  After agarose gel electrophoresis, the 

following principle was used to screen experimental mice (Table 15).   

 

Strain name Band size  Band size 

CD4Cre-Smad7fl/fl CD4Cre 600 bp Smad7 flox 568 bp 

CD4Cre-Smad7fl/+ CD4Cre 600 bp Smad7 flox 413 and 568 bp 

Smad7Tg  CD2 no band Smad7 650-700 bp 

Table 15: Corresponding band size of WT, CD4Cre-Smad7fl/fl and Smad7Tg 
mice 
 
3.3.3 Gene expression analysis 
 
3.3.3.1 Preparation of ribonucleic acid 
 
In order to quantify the target gene expression, as a first step, ribonucleic acid (RNA) 

was extracted from the experimental samples. RNAse free equipments and reagents 

were used  since most ribonucleases are very stable and can contaminate the gene 

expression. Samples and reagents were always kept in ice. To ensure a good quality, 

full-length RNA was used as starting material. 

 
3.3.3.2 Ribonucleic acid isolation  
 
To isolate RNA from purified cells, the RNeasy® Micro Kits from Qiagen was used. 

RW1 and RPE buffer were put on ice prior to use. After stimulation, cells were 

harvested and washed twice with ice cold PBS at 14000 g, 40C for 15 mintues in 1.5 

ml Eppendorf tube and resuspended in 350μl RLT buffer  supplemented with 1% 2-

mercaptoethanol and mixed well until a viscous solution was formed. 350 μl of 70% 

cold ethanol was added to each sample and mixed well so that no solid particle was 

viewed. This solution was then transferred to RNeasy MinElute spin column placed in 

a 2 ml collection tube (supplied) and spun down at 8,000 g for 30 seconds. Flow 

through was discarded. RW1 buffer 350 μl was added and spun down at 8,000 g for 

30 seconds. Flow through was discarded. DNase1 10 μl and RDD buffer 70 μl were 

mixed per sample and pipetted directly on the membrane of the column of each 

sample tube and incubated at room temperature for 15 minutes. In this step, all the 

genomic DNA were destroyed. Subsequently, the columns were washed twice with 

RW1 buffer 350 μl by spinning down at 8,000 g for 30 seconds. Flow through was 
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discarded. The coloumns were then resuspended in RPE washing buffer 500 μl and 

spun down at 8,000 g for 30 seconds and flow through was discarded. Columns were 

resuspended in 80% ethanol 500 μl and spun down at 8,000 g for 2 minutes and the 

flow through was discarded. The columns in new 2 ml collection tubes (lid was open) 

were spun down without adding anything in order to dry the columns at 14,000g for 5 

minutes. The flow-through and collection tubes were discarded. The columns where 

RNA lies were then placed to new 1.5 ml collection tubes. RNase free water 14 μl 

were added directly on the membrane in the column and incubated for 1 minute on 

ice to elute RNA. The colums were then spun down at 14,000 g for 1 minute. RNA 

solution was accumulated in the 1.5 ml collection tubes. In order to check the purity, 

RNA was mixed well with 10 mM Tris-C1 buffer at a ratio of 1:30 and RNA-

concentration was measured by UV-photometer. The purity was measured by 

calculating the ratio of absorbance at 260 nm for RNA and absorbance at 280 nm for 

proteins. A ratio between 1.8 to 2.2 of RNA was considered to be useful. RNA was 

stored at -20 to -800C unless it was used immediately. 

 
3.3.3.3 Complementary deoxyribonucleic acid synthesis 
 
The cDNA synthesis was performed using the QuantiTect® Reverse Transcription Kit 

from Qiagen. Up to 1 μg of RNA was mixed with 2 μl of genomic DNA wipeout buffer 

and filled with a variable amount of RNase-free water to set the volume 14 μl and 

then incubated for 3 min at 42° C placed in a thermal cycler. After that, reverse 

transcription master mix 6 μl was added to the RNA solution and incubated for 15 

minutes at 420C. 

 
The master mix contained the following elements: 
 
1 µl Quantiscript Reverse Transcriptase  

4 µl Quantiscript RT buffer 

1 µl RT Primer Mix 

For the cDNA synthesis the following temperature profile was used for the thermo 

cycler: 

42°C   15 min. 

95°C   3 min. 

4°C     5 min. 

The cDNA were then stored at -200C unless it was used immediately. 
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3.3.3.4 Quantitative Real Time PCR   
 
Real-time quantitative PCR (qPCR) allows the sensitive, specific and reproducible 

quantification of nucleic acids. The Ct (cycle threshold) is defined as the number of 

cycles required for the fluorescent signal to cross the threshold (i.e. exceeds 

background level). Different samples can be compared if the Ct values of specific 

probes are normalized to Ct values of a standard “housekeeping gene”. The relative 

mRNA amounts were determined by normalization to the 18S mRNA content. The 

relative expression of transcripts was calculated using the ΔΔCT method (Livak and 

Schmittgen 2001). 

 
SYBR green system 
 
SYBR Green is a dye that intercalates with double-stranded DNA. This intercalation 

causes the SYBR Green to emit light. The qPCR machine detects the fluorescence 

and software calculates Ct values from the intensity of the fluorescence. The 

following protocol and temperature condition was used. 

 

10 min. 95°C 1 cycle  

30 sec. 95°C  

1 min. 55°C 35-45 cycles 

1 min. 72°C  

1 min. 95°C  

30 sec.  variabel 1 cycles 

30 sec.  95°C  

 
 
Annealing temperatures for qPCR 
QuantiTect Primer Assay (Qiagen) 55°C 

Primer from Applied Biosystems 55°C 

RORc 62°C 

RORyt 68°C 

18s-RNA 67°C 
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3.3.4 Western blot analysis 
 
Western blotting is an analytical method to characterize the molecular weight and 

amount of a specific protein from a complex mixture (e.g. crude cell extract) of 

proteins. This method horizontally separates proteins by gel electrophoresis based 

on their size and subsequently vertically transfers these proteins onto a nitrocellulose 

or PVDF membrane. The nitrocellulose is then soaked in blocking buffer (3-5% 

skimmed milk solution or BSA 3-5%) to "block" the nonspecific binding of proteins. 

Afterwards, the nitrocellulose is incubated with the specific antibody to detect the 

protein of interest. The nitrocellulose is then incubated with a second antibody, which 

is specific for the first antibody. The second antibody will typically have a covalently 

attached enzyme provided with a chromogenic substrate such as horseradish 

peroxidase, HRP. The chemoluminescence is then detected at the end with a photo 

film.  

3.3.4.1 Protein extraction  
 
Proteins were extracted from differentiated T helper cells. Extraction of protein was 

performed on ice. All buffers and solutions were kept cold at 40C to prevent 

degradation of proteins. Cells were harvested and washed twice with ice cold PBS at 

14,000 g for 10 minutes at 40C. Supernatants were discarded. Subsequently, the cell 

pellet (typically 2-5 million cells) was resuspended in 100-200 μl RIPA extraction 

buffer. Pipetting up and down was done to mix the cell pellet and buffer uniformly. 

Afterwards, a 1 ml syringe with a 20 Gauge needle was used to mix the solution well 

until a clear viscous and homogenous solution was viewed. Then the solution was 

incubated for half an hour on ice and vortexed at 5 minutes intervals, followed by 

spinning down at 14,000 g for 15 minutes at 40C. Supernatants (protein lie here) 

were collected to new tubes and stored at -200C unless used immediately. 

 
3.3.4.2 Measurement of protein concentration  
 
In order to measure the protein concentration a Bradford protein assay kit (Bio-Rad 

laboratories GmbH, Munich) was used. 5μl of protein and BSA standards (from 0 to 2 

mg/ml) were pipetted in a 96 well plate. 25 μl of the mixture of substance S (1:50) 

and substance A were added. Finally, 200 μl substance B was added to the wells. 

The plate was incubated for 15 minutes at room temperature and readings were 

obtained by measuring at 650 nm by Emax Precision Microplate Reader. Protein 
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concentration of samples was calculated by the BSA-protein standard curve using 

Microsoft Excel.  

 
3.3.4.3 SDS-polyacrylamide-gel 

Polyacrylamide gel electrophoresis (PAGE), a polymer of acrylamide monomer, is a 

method used to separate proteins according to their size. Gels were made in a 

“Multiple Gel Caster” by Hoefer. First the separation gel and then the stacking gel, in 

which a plastic comb was placed, were made. Samples of proteins were 

administered in the pockets of the stacking gel. Different proteins migrated differently 

due to differences in their secondary, tertiary or quaternary structure. SDS, an 

anionic detergent, was used in SDS-PAGE to reduce proteins to their primary 

(linearized) structure and label them with uniform negative charges which mean 

proteins with the negative charges moved towards the positive pole when placed in 

an electric field. Depending on which proteins to be detected, separation gels of 

different acrylamide concentration were used. The table shows the recipes for the 

different gels.  

Separation gel       

Protein size in kDa > 100 ~ 80 40-70 30-40 20-30 < 20 

% Acrylamide 7,5 10 12,5 15 17 20 

Total volume in ml 10 10 10 10 10 10 

Water in ml 4,7 4 3,1 2,3 1,5 0,675 

10% SDS in ml 0,1 0,1 0,1 0,1 0,1 0,1 

buffer in ml 2,5 2,5 2,5 2,5 2,5 2,5 

30% Acrylamid in ml 2,5 3,3 4,2 5 5,8 6,65 

100% TEMED in µl 7,5 7,5 7,5 7,5 7,5 7,5 

10% APS in µl 75 75 75 75 75 75 

Table 16: Contents and amounts of reagents for separation gels 
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Stacking gel (5% Acrylamid) 

Total volume: 3 ml 1xGel 2xGel 4xGel 

Water in µl 1830 3660 7320 

Buffer in µl 750 1500 3000 

30% Acrylamid in µl 390 780 1560 

10% SDS in µl 30 60 120 

10% APS in µl 15 30 60 

100% TEMED 5 10 20 

Table 17: Contents and amounts of reagents for stacking gels 
 

3.3.4.4 Gel electrophoresis 
 
For gel electrophoresis, 10-20 μg proteins were used per lane. First the protein 

solution was mixed with loading buffer (1:5) and incubated at 950C for 10 minutes in 

a heating chamber. In this step, proteins were denaturized meaning they lost most of 

their secondary and tertiary structure which increases binding of antibodies to the 

protein. After denaturation, proteins were applied to the SDS-PAGE gel. In the first 

gel pocket the protein standard (whose size was known) Dual Colour Standard from 

Bio-Rad was pipetted. The negatively charged proteins migrated from top to bottom 

through the polyacrylamide gel and separated according to their molecular weight. 

The gel was run for about 1 h at 150 V and 45 mA. 

 
3.3.4.5 Blotting 
 
The separated proteins were transferred from the gel to nitrocellulose membranes. 

First two blotting papers, the membrane, the gel containing protein and then two 

blotting papers were soaked with transfer buffer and placed one after the other in a 

semidry Blotter from Biometra whose bottom layer was connected to the anode. Then 

the blotting chamber was covered which was connected to the cathode. The chamber 

was run for 50-60 minutes at 110V and 400mA. After the blotting procedure, the 

membrane was exposed to Ponceau S solution to check the protein bands as well as 

whether the transfer process was carried out well. The membrane was washed 

several times with T-TBS. 
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3.3.4.6 Blocking 
 
The membrane was then placed in a plastic box for one hour with 3-5% milk powder 

or 3-5% BSA in TBS-T on a shaker (40-60 rpm) at room temperature. This step was 

done to prevent unspecific binding of the antibody.  

 
3.3.4.7 Protein labeling and detection 
 
After blocking, the membrane was incubated with the first antibody (diluted with 0.3-

5% milk powder or 0.3-5% BSA in TBS-T) which was specific to the protein of interest 

for 15 hours at 40C on a shaker (40-60 rpm). Then the membrane was washed three 

times with T-TBS, each time 5 minutes on the shaker (40-60 rpm) to get rid of the 

unbound antibody. Subsequently, the secondary antibody (diluted with 0.3-5% milk 

powder or 0.3-5% BSA in TBS-T) conjugated with HRP was added and incubated for 

one hour on a shaker (40-60 rpm) at room temperature. Then the membrane was 

washed three times with T-TBS, each time 5 minutes on the shaker (40-60 rpm) to 

get rid of the unbound antibody from the membrance. The membrane then was 

incubated with a chemiluminescence solution (Amersham hyperfilm TM ECL) 

according to the manufacturers’ protocol for 1 minutes on a shaker (40-60 rpm). Then 

protein bands were detected by The ImageQuant LAS 4000 (GE Health Care, 

München) or a film. 

 
3.3.4.8 Membrane stripping  
 
To be able to use the same membrane for detection of other proteins, the membrane 

was  incubated with 7 ml stripping buffer (Thermo Scientific) on a shaker on a water 

bath at 300C for 5-7 minutes. Then the membrane was washed three times with T-

TBS, each time for 5 minutes on the shaker (40-60 rpm). ECL solution was added to 

the membrane and checked by ImageQuant to ensure that membranes were washed 

well. Then the membrane was blocked and incubated with antibodies as described 

above. 

 
3.3.5 Enzyme-linked immunosorbent assay 
  
In order to check secretion of cytokines in supernatants of lmyphocyte cultures, the 

ELISA technique was performed. Flat bottom 96 well plates were coated with 

unlabeled capture antibodies (primary antibody of interest, see table 9) diluted with 

coating buffer at 1:200 ratio over night at 40C.  Wells were washed 4 times. Plates 
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were incubated for 1 hour at room temperature with assay diluent 200µl per well to 

block non-specific binding sites. Wells were washed 4 times. Samples were diluted 

(1:10 or 1:100) with assay diluent and plated as 100µl per well. Plates were sealed 

and incubated at room temperature for 2 hours or overnight at 40C. Wells were 

washed 4 times. Plates were incubated with detection antibody diluted with assay 

diluent at 1:200 ratios for 1 hour at room temperature. Wells were washed 4 times. 

Diluted enzyme conjugate streptavidin-HRP (optimal concentration was pre-

determined) with assay diluent was added to the plate at 100µl/well. Plates were 

sealed and incubated for 30 minutes at room temperature. Wells were washed 5 

times this time. 100µl of TMB solution (substrate) were plated per well and incubated 

for 20-30 minutes for color development. To stop the color reaction, 50µl stop 

solution 2N H2SO4 was added to each well. After 15 minutes, optical density for 

each well was measured with a microplate reader at 450nm.  

 
3.3.6 Protein array for detection of protein phosphorylation  

 
Protein arrays are rapidly becoming established as a powerful means to identify 

protein–protein interactions, to check protein phosphorylation, to identify the 

substrates of proteins kinases, to identify transcription factor protein-activation, or to 

identify the targets of biologically active small molecules. To locate reactive proteins 

on a proteome chip, small molecule probes are labelled with either fluorescent, 

affinity, photochemical, or radioisotope tags. Fluorescent labels are generally 

preferred, as they are safe and effective and are compatible with readily available 

microarray laser scanners. 

In this thesis, protein microarrays were used to characterize the phosphorylation 

status of proteins obtained from polarized T cells. Using the TGF-β signalling 

phospho-specific antibody microarray, (Fullmoon Biosystems, Sunnyvale, USA), a 

total of 44 proteins can be detected both in phosphorylated and non-phosphorylated 

form, 3 proteins can be detected only in phosphorylated form and 18 proteins can be 

detected only in the non-phosphorylated form by Streptavidin- Cy3 (Appendix IV: 

Table 22 and 23). All proteins have 6 replicates. The process of protein detection is 

based on the principle of a sandwich ELISA method. 
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3.3.6.1 Protein Extraction from Th17 differentiated T cells 
  
Naive CD4+CD62L+ T cells were sorted by magnetic separation as described in 3.2.3 

from female Smad7Tg mice with C57BL/6 genetic background and from female WT-

C57BL/6 mice. Subsequently, naïve T cells were polarized to Th0 and Th17 

phenotypes. After 48 hours, cells were harvested and washed three times with ice 

cold PBS in 1.5 ml eppendorf tubes at 1,000 g for 10 minutes at 40C. Supernatants 

were collected to measure the IL-17 production to check whether Th17 differentiation 

worked. IL-17 production was also checked by flow cytometry. Protein extraction 

buffer (RIPA buffer contained 1 tablet of each phospho and protease inhibitor per 10 

ml) was added to the tubes at a concentration of 200 μl/5x106 cells. Pipetting up and 

down was done to mix the cell pellet and solution uniformly. Subsequently, a 1 ml 

syringe with a 20 Gauge needle was also used to mix the solution well until a clear 

viscous and homogenous solution was viewed. Then the solution was incubated for 

half an hour on ice and vortexed at 5 minutes intervals, followed by spinning down at 

14000 rpm for 15 minutes at 40C. Supernatant (proteins lie here) were collected both 

for array and western blot analysis. Protein concentration was measured by Bradford 

assay as described in 3.3.4.2. 

 
3.3.6.2 Reagent preparation 

 
The following REAGENTS (from Fullmoon Biosystems, USA) were warmed prior to 
use 
 

Blocking Reagent 
Coupling Reagent 
Wash buffer 

25-300 C in a water bath. 

Biotin 
Detection Buffer 
DMF 
Dry Milk 
Labelling Buffer 
Stop Reagent 

Room temperature  

Table 18: Reagents for phospho protein array 

 
The washing solution was diluted 10 times with ddH20 and mixed well. The blocking 

solution was made by adding 1.8g of Dry Milk to 60 ml ddH20; the coupling solution 

was made by adding 0.36g of Dry Milk to 12 ml ddH20. 
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3.3.6.3 Protein labelling 
 
The Biotin reagent was centrifuged briefly before use. 100 μl of DMF (N, N-

Dimethylformamide) was added to 1 mg of Biotin reagent to make a concentration of 

10 μg/ul. Aliquots of the protein samples were adjusted to 10-25 μl containing 40-100 

μg of proteins by vacuum speed. In all experiments, concentration of the proteins 

was always within the range of 2-10 μg/μl. 25-40 μl Labelling Buffer were added to 

the protein sample to bring the volume to 50 μl. Subsequently, 1.5 μl of the 

Biotin/DMF solution was added to the protein samples. Protein samples were then 

mixed and incubated at room temperature for 2 hours and vortexed at 15 minutes 

intervals. Reaction was stopped by adding 25 μl of stop reagent and incubated for 30 

minutes at room temperature with mixing or shaking. 

 
3.3.6.4 Blocking of array slides  
 
Antibody microarrays were warmed to room temperature for 30 to 45 minutes before 

usage. Slides were placed in 100x15 mm petri dishes and 30 ml of Blocking Solution 

was added. Each slide was submerged in one petri dish in the Blocking Solution 

having the barcode label of the slides faced up. Slides were incubated on an orbital 

shaker rotating at 55 rpm for 30 to 45 minutes at room temperature. Slides were then 

washed extensively with Milli-Q grade water by placing one slide into one 50 ml 

conical Falcon tube filled with 45 ml water and vigorous shaking with hands for 10 

seconds. Tubes were filled with fresh water after pouring off the previous water and 

washed again. Washing was repeated 5 to 10 times to ensure that any blocking 

solution residues were removed from the slide surface. Excessive water on the slide 

surface was removed by shaking off and by tipping the edge of the slide on a paper 

towel. The next step was started immediately so that slides did not dry out 

completely. 

 
3.3.6.5 Coupling  
 
6 ml of Coupling Solution and the biotin labelled proteins (40-100 μg) were placed 

into a 15 ml tube per protein samples and vortexed briefly to mix. Each slide was 

placed in an individual well of the Coupling Chamber, with the arrays facing up. 6 ml 

of protein coupling Solution were slowly poured over the slide and mixed to ensure 

that the slides were completely submerged. The Coupling Chamber was covered and 

incubated on an orbital shaker rotating at 35 rpm for 1-2 hours at room temperature. 
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After incubation, slides were transferred to each 100x15 mm Petri dish containing 30 

ml of 1x Wash Solution and incubated on an orbital shaker rotating at 55 rpm for 10 

minutes at room temperature. The washing solution was discarded. This step was 

repeated twice. Slides were then washed extensively with Milli-Q grade water by 

placing one slide into one 50 ml conical Falcon tube filled with 45 ml of water by 

inverting the tube up and down or shaking by hand for 10 seconds. Tubes were filled 

with fresh water after pouring off the previous water and washed again. Washing was 

repeated 5 to 10 times. Excessive water on the slide surface was removed by 

shaking off and by tipping the edge of the slide on a paper towel. The next step was 

started immediately so that slides did not dry out completely. 

  
3.3.6.6 Detection 
 
Cy3-Streptavidin (0.5 mg/ml) 60 μl was added to 60 ml of Detection Buffer. 30 ml of 

the Cy3-Streptavidin solution was poured into a 100x15 mm Petri dish per array slide. 

Then each array slide was submerged in the Cy3-Streptavidin solution and incubated 

on an orbital shaker rotating at 55 rpm for 30 to 45 minutes at room temperature in 

the dark or covered with aluminium foil. After incubation, slides were transferred to 

each 100x15 mm Petri dish containing 30 ml of 1x Wash Solution and incubated on 

an orbital shaker rotating at 55 rpm for 10 minutes at room temperature. The washing 

solution was discarded. This step was repeated twice. Slides were then washed 

extensively with Milli-Q grade water by placing one slide into one 50 ml conical 

Falcon tube filled with 45 ml of water by shaking with hand for 10 seconds. Tubes 

were filled with fresh water after pouring off the previous water and washed again. 

Washing steps were repeated 5 to 10 times. Slides were kept in 50 ml tube, put in the 

eppendorf centrifuge 5810R and spun down at 450 g for 1 minute at room 

temperature to dry out the slides to make them ready for scanning.  

Slides were scanned with Axon GenePix 4400A microarray scanner (Department of 

Pathology, University of Regensburg). Each slide was analysed by the software 

GenePix Pro 7126 at 760nm wavelength and raw data were produced by the 

software in gpr files according to the GAL file (provided by Fullmoon Biosystems). 

The following raw data were provided for each spot of the array (= specific proteins 

and positive and negative controls):  
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1. Median intensity of fluorescence   

2. Mean intensity of fluorescence   

3. Median intensity of background of the slide 

4. Mean intensity of background of slide  

5. Median intensity of fluorescence subtracted from median intensity of 

background of slide  

6. Mean intensity of fluorescence  subtracted from mean intensity background 

of slide  

7. Furthermore, the whole image was provided in jpeg form.  

 
3.3.6.7 Analysis of raw data 
 
Processing of samples 

For analysis of protein phosphorylation, the median fluorescence intensity of array 

spots was used. First, the median background signal was subtracted from the median 

fluorescence intensity for each spot. Any negative values with a background signal 

higher than the foreground signal were set to zero. Next, potential outliers from the 6 

replicate samples that were statistically inconsistent with the other replicates (e. g., 

due to an artefact) were identified using Z score with α=0.05. The Z score was 

calculated as the difference between the potential outlier value yi and the mean of the 

replicates ymean divided by the standard deviation SD. 

                                                       Z = 
(

mean
y -

i
y )

SD
 

 
Measurements with Z= >1.96 or <-1.96 were excluded from further analysis.  

 
Finally, the adjusted mean of 6 replicates were computed after the outliers were 

removed.  

 
Normalization of arrays 

To be able to compare the median fluorescence signals of different arrays (e.g. 

comparison between an experimental stimulation on one array to the control 

stimulation on a second array), normalization was done. The total median intensity of 

all positive values (= values with median fluorescence intensity higher than the 

background signal) from individual arrays were calculated. The signal intensities of 
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phospho and non phospho proteins were normalized to the respective total median 

intensity of each array:  

 
1. Non-P Th0norm  = non-phosphorylated proteins Th0 / total median intensity of 

all proteins on Th0 array 
2. P Th0norm  = phosphorylated proteins Th0 / total median intensity of all proteins 

on Th0 array 
3. Non-P Th17norm  = non-phosphorylated proteins Th17 / total median intensity of 

all proteins on Th17 array 
4. P Th17norm = phosphorylated proteins Th17 / total median intensity of all 

proteins on Th17 array 
 

P and Non-P stands for phosphorylated and non-phosphorylated protein respectively. 

Calculation of protein ratios to detect protein expression and phosphorylation status: 

The following ratios were calculated to measure the degree of protein expression and 

protein phosphorylation in control and experimental samples: 

A. Non-phosphorylated protein ratio (Th17/Th0) = (Non-P Th17norm x 100) / Non-
P Th0norm 
 

B. Phosphorylated protein ratio (Th17/Th0) = (P Th17norm x 100 ) / P Th0norm 
 

C. Signal ratio of phosphorylated protein to non-phosphorylated protein (Th0)= P 
Th0norm / Non-P Th0norm 
 

D. Signal ratio of phosphorylated protein to non-phosphorylated protein (Th17)= 
P Th17norm / Non-P Th17norm 
 

E. Signal ratio of phosphorylated protein to non-phosphorylated protein (Th17 / 
Th0) = D (Signal ratio of phosphorylated protein to non-phosphorylated protein 
Th17) / C (Signal ratio of phosphorylated protein to non-phosphorylated 
protein Th0) 

  

                    

phosphorylation- ratio= experiment
phospho

experiment
unphospho

control
phospho

control
unphospho

 

 

Ratios >150% were defined as an increase of protein concentration (equation A, B) 

or phosphorylation (equation C, D), ratios of <50% as decrease of protein 

concentration or dephosphorylation, respectively.  Ratio between 50% and 150% 

were defined as no change. Calculation E finally was not used because of the high 
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variance of the phosphorylation ratio of proteins between different experiments 

detected.     

 
After calculation of the protein ratios A-D, 10 categories were made to describe the 

expression and phosphorylation status of proteins during Th17 differentiation. They 

were as follows: 

 

1 Both Non-P and P proteins absent 

2 Non-P>P proteins, Th0=Th17   

3 Non-P>P proteins, only in Th17 or Th17>Th0 

4 Non-P>P proteins, only in Th0 or Th0>Th17 

5 Non-P=P proteins, Th0= Th17  

6 Non-P= P proteins, only in Th17 or Th17>Th0 

7 Non-P= P proteins, only in Th0 or Th0>Th17 

8 P> Non-P proteins, Th0= Th17 

9 P> Non-P proteins, only in Th17 or Th17>Th0 

10 P> Non-P proteins, only in Th0 or Th0>Th17 

 Table 19. Categories to describe the expression and phosphorylation status of   
  proteins during Th0 and Th17 differentiation. P stands for phosphorylation.  
 

 

3.4 Statistical calculations 

To test for statistical significance of differences between two subpopulations, 

Student’s t-test was performed. One way ANOVA was performed by the Tukey’s 

multiple comparisons test to identify differences between individual subpopulations. A 

value of P<0.05 was considered statistically significant. All statistical tests were 

performed either with Microsoft excel or SigmaStat 3.0 software (SPSS Inc.) or 

GraphPad Prism 5. 
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4. Results  
 

4.1 Characterization of mice with a T cell specific deletion of Smad7 
 
TGF-β has an essential role in T cell homeostasis (Li et al. 2006b). To elucidate the 

effects of a deletion of the TGF-β signalling inhibitor Smad7 in T cells on the 

development, maturation and differentiation of T cells, we carried out flow cytometric 

analyses from naïve CD4Cre-Smad7fl/fl (Kleiter et al. 2010) and control mice. 

 
4.1.1 Thymic T cell development  

 
TGF-β produced by thymic epithelial cells limits the development progression of CD4-

CD8- double negative thymocytes to CD4+CD8+ double positive thymocytes (Suda 

and Zlontnik 1992, Plum 1995). We hypothesized that enhanced TGF-β signalling in 

T cells with a Smad7 deletion might alter T cell development. To this point, 

frequencies of CD4+ and CD8+ T cells were checked. No difference was found 

regarding the distribution of double positive (CD4+CD8+) and single positive CD4+ T 

cells, but the maturation of CD8+ thymocytes was around two fold increased in 

CD4Cre-Smad7fl/fl mice as compared to control mice (Figure 8).  

 

                    
                     

Figure 8: Thymic T cell development in mice with a T cell-specific Smad7 deletion. Ex vivo thymocytes 
were collected from naïve Smad7

fl/fl
, CD4Cre-Smad7

fl/+ 
and CD4Cre-Smad7

fl/fl
 mice and were surface 

stained to check the frequency of CD4
+
 and CD8

+
 T cells present in the thymus. The figure shows cell 

populations as CD4
+
 vs CD8

+
 T cells gated on live thymocytes. The different T cell populations are 

characterized by CD4
-
CD8

-
 for double negative, CD4

+
CD8

+
 for double positive, CD4

+
CD8

-
 for single 

positive CD4 T cells and CD4
-
CD8

+
 for single positive CD8 T cells. The percentage of gated cells is 

indicated. Three female mice of 6-8 weeks age were used per group. The figure is representative of 3 
independent experiments with similar results. 
 

4.1.2 Distribution of T cell receptor positive CD4+ and CD8+ T cells in the 
thymus 
 
Stimulation of the T cell receptor (TCR) is required during T cell development in 

particular when cells are differentiating to be single positive cells such as CD4+ or 
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CD8+ T cells. To investigate whether Smad7 has a role on altered TCR expression, 

ex vivo cells from mice were surface stained with TCR-β, CD4 and CD8. There was 

no difference found in the expression of TCR-β on CD4+ and CD8+ cells between 

CD4Cre-Smad7fl/fl mice and controls (Figure 9). Summarized results of 3 

independent experiments are shown in Table 20. 

 

                          
 
Figure 9: TCRβ expression of thymic CD4

+
 and CD8

+
 T cells in mice with a T cell-specific Smad7 

deletion. Ex vivo thymocytes were collected from naïve Smad7
fl/fl

, CD4Cre-Smad7
fl/+

 and CD4Cre-
Smad7

fl/fl 
mice and were surface stained for TCRβ, CD4 and CD8. Cells were gated on live CD4

+
 and 

CD8
+
 thymocytes. This figure shows CD4

+
 vs TCRβ

+
 T cells and CD8

+
 vs. TCRβ

+
 T cells. The 

percentage of gated cells is indicated. Three female mice of 6-8 weeks age were used per group. The 
figure is representative of 3 independent experiments with similar results. 
 

4.1.3 Development of CD4+CD25+Foxp3+ regulatory T cells 
 
Both naturally occurring regulatory T cells (nTreg), which are derived from the thymus 

(Sakaguchi et al. 2008) and inducible regulatory T cells (iTregs) from the periphery 

(Baecher-Allan et al. 2004) are defined by the surface markers CD4+, CD25+ and the 

intranuclear marker Foxp3+. TGF-β converts CD4+CD25- precursors to Treg cells by 

inducing Foxp3 transcription (Chen et al. 2003, Fu et al. 2004). So, it was worth to 

check whether Smad7 has a role in inducing Treg cells, since Smad7 is an inhibitor 

of TGFβ signalling. Therefore, ex vivo thymocytes and splenocytes from indicated 

mice were stained for the markers CD4 and CD25 and for the FoxP3. Deletion of 

Smad7 did not change the amount of Tregs both in the thymus and the spleen as 

compared to controls (Figure 10). Summarized results of 3 independent experiments 

are shown in Table 20. 
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Figure 10: Frequencies of Foxp3

+
 regulatory T cells in the thymus and spleen of mice with a T cell-

specific Smad7 deletion. Ex vivo thymocytes and splenocytes were collected from naïve Smad7
fl/fl

, 
CD4Cre-Smad7

fl/+
 and CD4Cre-Smad7

fl/fl
 mice and were stained for surface markers for CD4, CD25 

and for the intranuclear marker FoxP3. Cells were gated on lymphocytes and CD4
+
 T cells. The 

percentage of gated cells is indicated. Three female mice of 6-8 weeks age were used per group. The 
figure is representative of 3 independent experiments with similar results. 
 

4.1.4 Distribution of T cells and B cells in the spleen 
 
We also checked whether Smad7 influences the distribution of CD4+ and CD8+ T 

cells in the periphery. No difference was found in the distribution of CD4+ and CD8+ 

cells in the periphery between naïve CD4Cre-Smad7fl/fl mice and controls (Figure 11). 

Summarized results of 3 independent experiments are shown in Table 20. 

 

                  

 
Figure 11: Frequencies of CD4

+
 and CD8

+
 T cells in the periphery of mice with a T cell-specific Smad7 

deletion. Ex vivo splenocytes were collected from naïve Smad7
fl/fl

, CD4Cre-Smad7
fl/+

 and CD4Cre-
Smad7

fl/fl
 mice and were surface stained for CD4 and CD8. Cells were gated on live splenocytes CD4

+
 

vs CD8
+
. The percentage of gated cells is indicated. Three female mice of 6-8 weeks age were used 

per group. The figure is representative of 3 independent experiments with similar results. 

 

Distribution of T and B cell in the periphery was also checked. Ex vivo splenocytes 

from CD4Cre-Smad7fl/fl and control mice were stained with the surface markers CD19 

(B cell marker) and CD90.2 (T cell marker). The deficiency of Smad7 did not 
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influence the frequencies T and B cells or the T to B cells ratio in the spleen (Figure 

12).                        

                       
 

Figure 12: Frequencies of T and B cells in the spleen of mice with a T cell-specific Smad7 deletion. Ex 
vivo splenocytes of naïve Smad7

fl/fl
, CD4Cre-Smad7

fl/+
 and CD4Cre-Smad7

fl/fl
 mice were stained for 

the surface markers B220 and CD90.2. Gate was set on live lymphocytes. The percentage of gated 
cells is indicated. Three female mice of 6-8 weeks age were used per group. The figure is 
representative of 3 independent experiments with similar results. 
 
 

4.1.5 Activation status of T cells in the periphery 
 
TGFβ regulates proliferation and the activation status of T lymphocytes (Rubtsov and 

Rudensky 2007). To check whether deletion of Smad7 in T cells influences the 

activation status, ex vivo cells from lymph nodes were stained with the surface 

markers CD69, CD4 and CD8. The molecule CD69 is not expressed on the surface 

of peripheral resting T cells, but is found on activated T cells (Testi, D'Ambrosio et al. 

1994). Frequencies of activated CD4+ and CD8+ T cells were significantly reduced in 

the periphery of CD4Cre-Smad7fl/fl mice as compared to controls (Figure 13). 

Summarized results of 3 independent experiments are shown in Table 20. 
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Figure 13: Frequencies of activated T cells in the periphery of mice with a T cell-specific Smad7 

deletion. Cells derived from lymph nodes of naïve mice with the genotype Smad7
fl/fl

, CD4Cre-Smad7
fl/+

 
and CD4Cre-Smad7

fl/fl
 were stained with the surface markers CD69, CD4 and CD8. Live cells were 

gated on CD4 or CD8 single positive cells. This figure shows CD69 vs. CD4 or CD8 positive cells. The 
percentage of gated cells is indicated in the figure. Activated T cells are positive for CD69. Three 
female mice of 6-8 weeks age were used per group. The figure is representative of 3 independent 
experiments with similar results. 
 
 

4.1.6 Distribution of naïve and memory T cells 
 
Upon activation, naïve T cells (CD4+CD44lowCD62L+) become memory T cells 

(CD4+CD44+CD62Llow). In order to check whether altered Smad7 expression affects 

the frequencies of naïve and memory T cells, lymphocytes from lymph nodes were 

stained with the markers CD62L and CD44. The frequency of naïve T cells and 

memory T cells was unaltered in CD4Cre-Smad7fl/fl mice as compared to controls 

(Figure 14). 

                        
 
 
Figure 14: Frequencies of naïve and memory T cells in the periphery of mice with a T cell-specific 
Smad7 deletion. Ex vivo cells from lymph nodes of naïve Smad7

fl/fl
, CD4Cre-Smad7

fl/+
 and CD4Cre-

Smad7
fl/fl

 mice, were stained with the surface markers CD4, CD44 and CD62L. The gate was set on 
live CD4

+
 T cells. The percentage of gated cells is indicated. Three female mice of 6-8 weeks age 

were used per group. The figure is representative of 3 independent experiments with similar results. 
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4.2 The role of T cell Smad7 in regulatory T cell function 

 
4.2.1 Does the expression level of Smad7 influence the suppressive capacity of 
regulatory T cells? 
 
It is well established that TGF-β is an immunosuppressive cytokine involved in the 

regulatory properties of Tregs (Nakamura et al. 2004, Maloy et al. 2003). By using 

transgenic CD2-∆kTβRII mice it was shown that TGF-beta signalling is required for 

the in vivo expansion and for the maintenance of the immunosuppressive capacity of 

regulatory CD4+CD25+ T cells (Huber et al. 2004). Another study showed that TGF-β 

signalling is essential for maintenance of the suppressive function of CD4+CD25+ 

Tregs in vitro and in vivo, (Su et al. 2008). However, it was also reported that in TGF-

β1-/- mice, CD4+CD25+ Tregs were able to develop up to an age of 2 weeks and that 

autocrine TGF-β1 production was not essential for these cells to exhibit suppressive 

activity in vivo (Mamura et al. 2004). Furthermore, because of the rapid onset of 

inflammation in TGF-β1-/- mice (Shull et al. 1992), it is difficult to study Treg cell 

function over time in TGF-β1-/- mice. T cells from CD4Cre-Smad7fl/fl mice produce 

more TGF-β upon TCR stimulation (Kleiter et al. 2010) which could increase the 

suppressive function of Tregs. So, comparing the function of Tregs from WT mice 

with Tregs from CD4Cre-Smad7fl/fl and Smad7Tg mice should be helpful to 

characterize the role of TGF-β signalling in the suppressive capacity of Tregs. 
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Figure 15: Altered Smad7 expression does not influence the functional capacity of regulatory T cells. T 
responder cells (CD4

+
CD25

-
) from WT and Treg cells (CD4

+
CD25

+
) from WT,  CD4Cre-Smad7

fl/fl
 and 

Smad7Tg mice were sorted as described in methods and were co-cultured at different ratios as 
indicated for 3 days, stimulated with antigen presenting cells and anti-CD3 (0.5µg/ml). T responder 
cells were labelled with CFSE before putting them in the culture. On day 4

th
, cells were harvested, 

stained with the surface markers CD4 and CD25 and propidium iodide (PI) which is a marker to 
distinguish dead cells was added to each samples few minutes before the samples were measured by 
flow cytometry. Cells were gated on CD4

+
 which was gated on live (PI negative) cells. CD25

+
 (Treg 

marker) was used to track down the frequency of Tregs present in each condition (not shown). In the 
co-culture experiment, number of T responder cells was constant. Tregs were diluted to the indicated 
ratio. (A) The histogram shows one representative figure of CFSE staining of T responder cells of all 
co-culture experiments. Black and red lines show the proliferation of T responder cells after 24 hours 
and on day 3, respectively. (B) A summary of three experiments is shown. For each experiment, 6 
female mice of 6-8 weeks age were used from WT to obtain Tregs and responder T cells and 4 female 
mice of 6-8 weeks age were used per other two genotypes to obtain Tregs. Values represent the 
mean ± SEM of 3 experiments. 

 

An allogeneic co-culture was made to check whether an altered expression level of 

Smad7 influences the suppressive function of Tregs on WT responder T cell 

proliferation. Without Tregs about 70% activated T responder cells were proliferating 

after 3 days. With increasing number of Tregs the proliferation of T responder cells 

was downregulated, meaning Tregs were suppressing responder T cell proliferation 

in general. Like WT Tregs, Tregs with a Smad7 deletion (CD4Cre-Smad7fl/fl) or 

overexpression (Smad7Tg) had the same suppressive capacity (Figure 15B). 

Furthermore, there was no difference in TGF-β production in the supernatants of 

mixed lymphocyte reactions with Tregs from the three different genotypes and WT 
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responder T cells (data not shown). This experiment showed that Smad7 does not 

influence the capacity of Tregs to suppress T cell proliferation. 

 
4.2.2 Does the expression level of Smad7 determine the proliferation of 
responder T cells in mixed lymphocyte reactions? 
 

Enhanced Smad7 protein expression was found to be critical in EAE in SJL/J and B6 

mice and in effector T cells upon antigen stimulation (Kleiter et al. 2007). Systemic 

treatment of mice with Smad7-antisense oligonucleotides downregulates Smad7 

mRNA expression levels in ex-vivo-treated primary mouse lymph node cells (LNC) 

and causes a reduction of antigen specific proliferation and encephalitogenicity of 

lymph node cells. It was also reported that responder T cells from Smad7Tg mice 

show a higher proliferation as compared to WT responder T cells in response to Treg 

suppression in vitro (Fantini et al. 2009). Moreover, T cells not able to respond to 

TGF-β1 due to an overexpression of the dominant negative form of the TGF-β 

receptor II (dnTGF-βRII) are resistant to Treg-mediated suppression (Fahlen et al. 

2005). Thus, we wanted to check whether altered expression of the TGF-β inhibitor 

Smad7 influences the proliferation of responder T cells in mixed lymphocyte 

reactions with Tregs. An allogeneic co-culture with T responder cells from WT, 

CD4Cre-Smadfl/fl, or Smad7Tg mice and Tregs from WT mice was made. T 

responder cells from Smad7Tg mice seemed to proliferate more, but the difference 

was not statistically significant (Figure 16A). Interestingly, Smad7Tg responder T 

cells already proliferated without the addition of Tregs to a high extent than control T 

responder cells, arguing that a general hyper-proliferation, rather than a specific 

inhibition of Treg suppression took place. It is also worth to notice that Smad7 

deficient T responder cells did not show a higher suppression than WT T responder 

cells, which suggests that either TGF-β is not the main suppressive effector 

mechanism of Tregs or if TGF-β is needed for the effector mechanism of Tregs, it 

does not signal through the Smad signalling cascade.  
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Figure 16: Expression of Smad7 controls the proliferation of responder T cells. T responder cells 
(CD4

+
CD25

-
) and Tregs cells (CD4

+
CD25

+
) sorted as described in methods were co-cultured at 

different ratios as indicated for 3 days, stimulated with antigen presenting cells and anti-CD3 
(0.5µg/ml). T responder cells were labelled with CFSE before putting them in the culture. On day 4, 
cells were harvested, stained with the surface markers CD4 and CD25 and PI was added to each 
sample few minutes before the samples were measured by flow cytometry. Cells were gated on CD4

+
 

which was gated on live (PI negative) cells. CD25
+
 (Tregs marker) was used to track down the 

frequency of Tregs present in each condition (not shown). Number of T responder cells was constant. 
Tregs were diluted to the indicated ratio. (A) A summary of three independent experiments was 
shown. Co-cultures were made with T responders from WT, CD4Cre-Smad

fl/fl
 and Smad7Tg mice and 

Tregs from WT mice. (B) A summary of three independent experiments was shown. Co-cultures were 
made with T responders and Tregs both from WT, CD4Cre-Smad

fl/fl
 and Smad7Tg mice. 8 female 

mice of 6-8 weeks age were used from WT and 6 female mice of 6-8 weeks age were used per other 
two genotypes. Values represent the mean ± SEM of 3 experiments. * P <0.05 (ANOVA). 
 
 

Furthermore, co-cultures from responder and suppressor cells of one genotype were 

made, meaning WT T responder cells and Tregs; CD4Cre-Smadfl/fl T responder cells 

and Tregs; Smad7Tg T responder cells and Tregs. T responder cells from Smad7Tg 

mice showed a trend of higher proliferation compared to WT and CD4Cre-Smadfl/fl T 

responder cells but the difference between Smad7Tg and WT at 4:1 and 2:1 

condition is statistically significant (Figure 16B). These results indicate that 

expression of Smad7 makes T responder cells resistant to the suppressive effect of 
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Tregs. Noticeably, Smad7 deficient T responder cells did not show a higher 

suppression than WT T responder cells which could mean either TGF-β is not 

required for Tregs suppressive function or TGF-β signals through other pathways 

than Smad signalling cascade.  

 

4.3 In vitro T helper cell differentiation in T cells with altered Smad7 
expression 
 
4.3.1 Th1 differentiation. 
 
As mentioned earlier, TGF-β suppresses Th1 differentiation by downregulating the 

expression of T-bet which is the transcription factor responsible for the induction of 

Th1 differentiation (Gorelik et al. 2002b). In order to determine whether Smad7, the 

negative regulator of TGF-β signalling, plays a role in Th1 differentiation, naïve 

CD4+CD62L+ T cells from WT, CD4Cre-Smad7fl/fl and Smad7Tg mice, were sorted 

and differentiated under Th1 polarizing conditions for 5 days with increasing 

concentrations of TGF-β.   In cultures of WT T cells, IFN-γ production indicating Th1 

differentiation was gradually reduced with increasing concentrations of TGF-β. 

Expression of IFN-γ and T-bet on the mRNA level was also reduced in CD4Cre-

Smad7fl/fl and Smad7Tg Th1 cultures with addition of TGF-β (2ng/ml). Without 

addition of TGF-β, lowest IFN-γ production was detected in CD4Cre-Smad7fl/fl and 

highest in Smad7Tg Th1 cultures as compared to WT controls. There are two 

possibilities to explain this phenomenon found in CD4Cre-Smad7fl/fl T cell culture.   
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Figure 17: Decreased Th1 differentiation in CD4Cre-Smad7

fl/fl
 T cell cultures. Naïve T cells from WT, 

CD4Cre-Smad7
fl/fl

 and Smad7Tg mice were cultured under Th1 differentiating conditions using a-CD3, 
a-CD28, rIL-12, a-IL-4 with increasing concentrations of TGF-β for 5 days. Cells were restimulated 
with PMA, ionomycin and golgi stop for 4 hours. (A) The figure is representative of 3 independent 
experiments with similar result. After restimulation, cells were harvested, surface stained with the CD4 
marker followed by intracellular staining for IFN-γ and analysed by flow cytometry. IFN-γ is the 
signature cytokine for Th1. Cells were gated on lymphocytes. The percentage of gated cells is 
indicated. (B and C) After 5 days of differentiation with and without TGF-β (2ng/ml) treatment, cells 
were harvested and RNA was isolated from these cells. Real Time PCR (RT-PCR) was performed to 
check the mRNA expression of IFN-γ and the transcription factor T-bet which induces Th1 
differentiation. In RT-PCR, expression is presented relative to the 18S-RNA content and normalized 
on the unstimulated control. Three female mice of 6-8 weeks age were used per group. Values 
represent the mean ± SEM of 3 experiments. * P <0.05 (ANOVA). 
 

Firstly, T cell medium containing TGF-β or TGF-β in the supernatant produced by T 

cells themselves could have downregulated IFN-γ production. Secondly, Smad7 

could have an intrinsic direct role in promoting Th1 differentiation as highest IFN-γ 

production was detected in Smad7Tg T cell cultures. Lowest and highest expression 

of IFN-γ and T-bet was also detected on the mRNA level in the CD4Cre-Smad7fl/fl 

and Smad7Tg Th1 cultures respectively. Interestingly, Th1 cultures from all 

genotypes equally responded to TGF-β found in both flow cytometric analysis (Figure 

17A) and real time PCR (Figure 17B and C) even if canonical TGF-β-Smad signalling 

cascade was blocked in Smad7Tg T cells which indicates TGF-β can also suppress 

Th1 differentiation through TGF-β-Smad independent pathways.  

To investigate whether the increased or decreased susceptibility to TGF-β 

determined Th1 differentiation in Smad7-altered T cells or whether Smad7 had an 



Results 

74 

 

intrinsic property to regulate Th1 differentiation further experiment were done. Naïve 

CD4+CD62L+ T cells from wild type, CD4Cre-Smad7fl/fl and Smad7Tg mice, were 

sorted and differentiated under Th1 polarizing conditions for 5 days in serum free 

medium where TGF-β was absent, with or without a neutralizing anti-TGF-β antibody 

(5 μg/ml). IgG antibody was used as control.  After addition of Th1-polarizing 

cytokines a higher frequency of activated INFγ+CD25+ T cells was found in cultures 

from Smad7Tg mice as compared to CD4Cre-Smad7fl/fl and WT control. After 

addition of a neutralizing TGF-β antibody, IFN-γ production was almost 2 fold 

increased in WT and CD4Cre-Smad7fl/fl T cells but remained unchanged in Smad7Tg 

T cells (Figure 18). 

                                       
 
 
Figure 18: The expression level of Smad7 determines Th1 differentiation. Naïve T cells from WT, 
CD4Cre-Smad7

fl/fl
 and Smad7Tg mice were cultured under Th1 differentiating conditions using a-CD3, 

a-CD28, rIL-12, a-IL-4 with or without anti-TGF-β (5μg/ml) for 5 days. Cells were then restimulated 
with PMA, ionomycin and golgi stop for 4 hours. Afterwards, cell were harvested, surface stained with 
CD4 and CD25 marker and finally intracellular staining for IFN-γ was performed and analysed by flow 
cytometry. Cells were gated on lymphocytes and CD4

+
 T cells. 2 female mice of 6-8 weeks old per 

group were used. Data are representative of 2 independent experiments. 
 

These results implicate that in addition to regulating the susceptibility towards TGF-β, 

Smad7 might have an intrinsic role in regulating Th1 differentiation, unrelated to the 

canonical TGF-β-Smad signalling pathway.  
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4.3.2 Th2 differentiation. 

 
TGF-β suppresses Th2 differentiation by downregulating the expression of GATA-3 

which is the transcription factor responsible for the induction of Th2 differentiation (Li 

et al. 2006a). In order to determine whether altered Smad7 expression plays a role in 

Th2 differentiation by regulating TGF-β signalling, naïve CD4+CD62L+ T cells from 

wild type, CD4Cre-Smad7fl/fl and Smad7Tg mice, were sorted and differentiated 

under Th2 polarizing conditions for 5 days with increasing concentrations of TGF-β. 

In WT T cell cultures, IL-4 production indicating Th2 differentiation was as expected 

gradually reduced with increasing concentrations of TGF-β (Figure 19). Without 

addition of TGF-β, the lowest IL-4 production was detected in CD4Cre-Smad7fl/fl and 

the highest in Smad7Tg T cell cultures as compared to WT controls. Two 

explanations are possible for this above phenomenon found in CD4Cre-Smad7fl/fl T 

cell cultures. First, TGF-β present in the T cell medium or produced by T cells which 

might downregulate IL-4 production. Alternatively, Smad7 might have an intrinsic 

direct role in promoting Th2 differentiation as highest IL-4 production was detected in 

Smad7Tg T cell cultures. Interestingly, like Th1 differentiated T cells, Th2 polarized T 

cells from all genotypes equally responded to TGF-β even when the canonical TGF-

β-Smad signalling cascade was blocked in Smad7Tg T cells. This indicated that 

TGF-β can also suppress Th2 differentiation through TGF-β-Smad independent 

pathways.  
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Figure 19: Decreased Th2 differentiation in CD4Cre-Smad7
fl/fl

 T cell cultures. Naïve T cells from WT, 
CD4CreSmad7

fl/fl
 and Smad7Tg mice were cultured under Th2 differentiating conditions using a-CD3, 

a-CD28, rIL-4, a-IFN-γ with increasing concentrations of TGF-β for 5 days. Cells were then 
restimulated with PMA, ionomycin and golgi stop for 4 hours. Afterwards, cells were harvested, 
surface stained with the CD4 marker and finally intracellular staining for IFN-γ and IL-4 was performed 
and cells analysed by flow cytometry. IL-4 is the signature cytokine for Th2. Cells were first gated on 
lymphocytes and then on CD4

+ 
T cells. The percentage of gated cells is indicated. 2 female mice of 6-

8 weeks age were used per group. Data are representative of 2 independent experiments. 

 
4.3.3 Th17 differentiation. 

 
TGF-β along with IL-6 induces Th17 differentiation (Ivanov et al. 2006). Enhanced or 

reduced intracellular TGF-β-Smad signalling in T cells with Smad7 deletion or 

overexpression, respectively, might play a role in Th17 differentiation. To investigate 

this, naïve CD4+CD62L+ T cells from wild type, CD4Cre-Smad7fl/fl and Smad7Tg 

mice, were sorted and differentiated under Th17 polarizing conditions for 5 days with 

increasing concentrations of TGF-β. 

 
T cells were polarized to a Th17 phenotype by adding TGF-β in all 3 genotypes, WT, 

CD4Cre-Smad7fl/fl and Smad7Tg (Figure 20A). Increased Th17 differentiation was 

found in CD4Cre-Smad7fl/fl T cell cultures and decreased Th17 differentiation in 

Smad7Tg T cell cultures as compared to WT cultures.  Regarding mRNA expression, 

IL-17A and ROR-γt was also upregulated in CD4Cre-Smad7fl/fl T cell cultures (Figure 

20B and C). Interestingly, Th17 differentiation was detected in Smad7Tg T cell 

cultures even though the TGF-β-Smad signalling cascade was blocked, which 

suggests that Th17 differentiation in Smad7Tg T cell culture was induced by TGFβ 

but not exclusively propagated by the canonical TGF-β-Smad signalling pathway. 
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Figure 20: Increased Th17 differentiation in CD4Cre-Smad7

fl/fl
 T cell cultures. Naïve T cells from WT, 

CD4Cre-Smad7
fl/fl

 and Smad7Tg mice were cultured under Th17 differentiating conditions using a-
CD3, a-CD28, rIL-6, a-IL-4, a-IFN-γ with increasing concentrations of TGF-β for 5 days. Cells were 
restimulated with PMA, ionomycin and golgi stop for 4 hours. (A) The figure is the representative of 3 
independent experiments with similar results. Afterwards, cells were harvested, surface stained with 
the CD4 marker and finally intracellularly stained for IL-17 and analysed by flow cytometry. IL-17 is the 
signature cytokine for Th17. Cells were gated on lymphocytes. The percentage of gated cells is 
indicated. (B and C) After 5 days of differentiation with and without TGF-β (2ng/ml) treatment, cells 
were harvested, RNA was isolated from these cells. Real Time PCR (RT-PCR) was performed to 
check the mRNA expression of IL-17A and the transcription factor ROR-γt which induces Th17 
differentiation. In RT-PCR, expression is presented relative to the 18S-RNA content and normalized 
on the unstimulated control. 3 female mice of 6-8 weeks age were used per group. Values represent 
the mean ± SEM of 3 experiments. * P <0.05 (ANOVA). 
 
 

4.3.4 Treg differentiation. 

 
TGF-β positively regulates Treg differentiation (Horwitz et al. 2003) and genetic 

deletion of Smad2 and Smad3 strongly reduces Foxp3 expression and Treg 

differentiation (Takimoto et al. 2010 and Lu et al. 2010). Altered TGF-β signalling in T 

cells with Smad7 deletion or overexpression should have an impact on the signal 

transduction processes leading to Treg differentiation. Naïve CD4+CD62L+ T cells 

from wild type, CD4Cre-Smad7fl/fl and Smad7Tg mice, were sorted and differentiated 

under Treg polarizing conditions for 5 days with indicated increasing concentrations 

of TGF-β. 
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Figure 21: Increased Treg differentiation in CD4Cre-Smad7

fl/fl
 T cell cultures. Naïve T cells from WT, 

CD4Cre-Smad7
fl/fl

 and Smad7Tg mice were sorted and cultured under Tregs differentiating conditions 
using a-CD3, a-CD28 with increasing concentrations of TGF-β for 5 days. (A) The figure is 
representative of 3 independent experiments with similar results. Cells were harvested; surface 
stained with the CD4 marker and finally intranuclearly stained for Foxp3. Foxp3 is the signature 
molecule and also transcription factor for Tregs. Cells were gated on lymphocytes. The percentage of 
gated cells is indicated as analysed by flow cytometry. (B) After 5 days of differentiation with and 
without TGF-β (2ng/ml) treatment, cells were harvested, RNA was isolated from these cells. Real Time 
PCR (RT-PCR) was performed to check the mRNA expression of the transcription factor Foxp3 which 
induces Treg differentiation. In RT-PCR, expression is presented relative to the 18S-RNA content and 
normalized on the unstimulated control. 3 female mice of 6-8 weeks age were used per group. Values 
represent the mean ± SEM of 3 experiments. * P <0.05 (ANOVA). 

 
 
Increased Treg differentiation was found with an increased concentration of TGF-β in 

T cell cultures of all genotypes (Figure 21A). Treg differentiation was upregulated in 

CD4Cre-Smad7fl/fl T cells which was also confirmed by an upregulation of Foxp3-

mRNA expression (Figure 21B). Apart from the canonical signalling pathway TGF-β 

might induce Treg differentiation through Smad independent pathways since Treg 

differentiation was detected in Smad7Tg T cell cultures, even if with low abundance.  
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4.3.5 Smad7 expression in T cells during Th1 and Th17 differentiation. 
 
Considering the results of the previous experiments, it was clear that the expression 

level Smad7 plays role in T helper cell differentiation. So, it was worth to check 

whether Smad7 expression was upregulated during Th1 and downregulated during 

Th17 differentiation, respectively. To this point, naïve T cells were sorted from WT 

mice and polarized under Th1 and Th17 differentiation for the indicated time and 

Smad7 expression was checked at the mRNA level by RT-PCR to see the time 

kinetic during Th1 and Th17 differentiation. 

     
 
Figure 22: Time kinetic of Smad7 expression during Th1 and Th17 differentiation. Naïve T cells from 
WT mice were cultured under Th1 and Th17 differentiating conditions. Cells were harvested at the 
indicated time points. RNA was isolated and RT-PCR was performed to check Smad7 expression 
during Th1 and Th17 differentiation. (A) The expression of Th1 associated transcription factor and 
genes was checked. (B) Smad7 expression was checked during Th17 differentiation. The expression 
of Th17 associated transcription factors and genes were checked. In RT-PCR, expression is 
presented relative to the 18S-RNA content and normalized on the unstimulated control (=1.0 arbitrary 
units). 3 female mice of 6-8 weeks old were used. Data are representative of 3 independent 
experiments. Values represent the mean ± SEM of 3 experiments. *P <0.05 (ANOVA). 

 
During Th1 differentiation, the expression of the transcription factor T-bet and the 

cytokine IFN-γ was highest after 48 hours and Smad7 expression also increased 

after 48-96 hours (Figure 22). This result shows that upregulation of Smad7 occurs 
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after priming of Th1 differentiation and probably helps to maintain the Th1 phenotype. 

During Th17 differentiation, the expression of the transcription factor ROR-γt and the 

cytokine IL-17A was also highest after 48 hours but Smad7 expression was 

downregulated very early which suggests that TGF-β signal might be important to 

induce Th17-specific genes like ROR-γt and IL-17. 

 

4.4 Investigation of Smad-independent signalling pathways during 
Th17 differentiation.  
 
4.4.1 TGF-β signals are not exclusively transmitted by Smad proteins during 
Th17 differentiation. 
 
Upon binding to TGF-βRI and TGF-βRII, TGF-β signalling results in the activation of 

downstream signal cascade by either Smad-dependent or Smad-independent 

pathways (Li et al. 2006a). The canonical Smad-dependent pathway involves 

phosphorylation of Smad2 and Smad3, which translocate into the nucleus in a 

complex with Smad4 and transcribe or suppress target genes, for example Smad7. In 

this study, Th17 differentiation was also detected in Smad7Tg T cell cultures (Figure 

20), despite the complete blockade of TGF-β-Smad signalling as shown by absent 

Smad2 phosphorylation (Kleiter et al. in 2010). Hence, Th17 cells might also be 

differentiated through non-Smad signalling pathways downstream of TGF-βR 

signalling. In order to confirm this hypothesis, Th17 differentiation was performed in T 

cells either devoid of the TGF-βRII, treated with an ALK-5 inhibitor (SB-431542) or 

with overexpression of Smad7. SB-431542 blocks Smad2 and Smad3 

phosphorylation by inhibiting the TGF-βRI kinase phosphorylation (Inman et al. 

2002). 

In this experiment, Th0 served as a control to show that without TGF-β and IL-6, 

naïve T cells do not differentiate into Th17 cells. DMSO, the solvent of SB-431542 

was added to the control Th17 cultures to be able to specifically analyse the effect of 

the inhibitor during Th17 differentiation. After inhibiting TGF-βRI kinase activity by the 

ALK-5 inhibitor, Th17 differentiation strongly decreased (Figure 23A and B). 

Smad7Tg and CD4Cre-TGFβRII fl/fl T cells showed 6.23% and 0.00% Th17 

differentiation respectively. This figure implies that in order for naïve T cells to 

differentiate into Th17 cells, Smad2 and Smad3 phosphorylation was essential but 

not exclusively mandatory. This means without Smad2 and Smad3 phosphorylation 
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naïve T cells can also differentiate into Th17 cells but to a smaller extent. Importantly, 

in both cases (with and without Smad2 and Smad3 phosphorylation) binding of TGF-

β to the TGF-βRII was indispensable for Th17 differentiation as CD4Cre-TGFβRII fl/fl 

T cells did not differentiate into Th17 at all. The relative mRNA expression of the 

transcription factor ROR-γt was also reduced in WT T cells treated with the ALK-5 

inhibitor and Smad7Tg T cells and absent in CD4Cre-TGFβRII fl/fl T cells, conforming 

the results of IL-17 expression shown by flow cytometry (Figure 23C).  In summary, 

this experiment shows that naïve T cells need TGF-β to differentiate into the Th17 

subset and that Smad-independent signalling pathways are involved in this process. 

In order to find molecules or pathways that are involved in this TGF-β-Smad 

independent pathway during Th17 differentiation, TGF-β signalling phosphorylated 

protein antibody array was performed.  

 

 
 
Figure 23: TGF-β signals through non-Smad pathways during Th17 differentiation. Naïve T cells from 
WT, Smad7Tg and CD4Cre-TGFβRII 

fl/fl
 mice were stimulated under Th17 differentiating conditions 

using a-CD3, a-CD28, rIL-6, a-IL-4, a-IFN-γ and TGF-β (2ng/ml) for 5 days. In case of ALK-5 inhibitor 
treatment, cells were pre-incubated with the 1 μM SB-431542 for half an hour on ice before putting the 
cells into the culture. T cells used for control Th17 differentiation were also pre-incubated with 
equivalent amount of DMSO as the amount was used for SB-431542 as solvent. (A) One 
representative figure of 3 independent experiments with similar results. After 5 days of differentiation, 
cells were restimulated with PMA, ionomycin and golgi stop for 4 hours. Cells were harvested, surface 
stained with the CD4 marker, intracellularly stained for IL-17 and INF-γ and analysed by flow 
cytometry. IL-17 and IFN-γ are the signature cytokine for Th17 and Th1, respectively. Cells were gated 
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on lymphocytes and CD4
+
 T cells. The percentage of gated cells is indicated. (B) Summary of flow 

cytometric analysis of 3 independent experiments of figure A. (C) After 5 days of differentiation, cells 
were harvested, RNA was isolated and Real Time PCR (RT-PCR) was performed to check the mRNA 
expression of the transcription factor ROR-γt which induces Th17 differentiation. In RT-PCR, 
expression is presented relative to the 18S-RNA content and normalized on the unstimulated control 
(=1.0 arbitrary units). Three female mice of 6-8 weeks age were used per group. Values represent the 
mean ± SEM of 3 experiments. ***, P value <0.001. **, P value <0.01 (Student’s t  
test). 

 
4.4.2 Phosphorylation of signalling proteins downstream of the TGF-β receptor 
during Th17 differentiation. 
 
Our previous results showed that TGF-β positively regulates Th17 differentiation, 

mainly through intracellular Smad proteins, but also to a smaller extent through 

Smad-independent signalling. Although several alternative pathways downstream of 

TGF-β receptor, e.g. MAPK signalling, PI3K and AKT signalling and so on are well 

characterized (Yoshimura et al. 2010), the Smad-independent pathways involved in 

Th17 differentiation remain elusive. To this point, the phosphorylation status of 

signalling proteins downstream of TGF-β receptors during Th17 differentiation was 

analysed and identified pathways were verified by western blotting and functional 

assays. A diagram shows briefly the whole procedure (Figure 24, see also methods). 

 

                                    

 

Figure 24: A schematic diagram of the experimental procedures used to identify non-Smad signalling 
pathways during Th17 differentiation.  
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4.4.2.1 Time kinetic of Th17 differentiation 
 
First, a time kinetic of ROR-γt expression was done, to identify the best time point for 

the analysis of signal transduction during Th17 differentiation. After 48h, ROR-γt 

expression was highest and dropped thereafter (Figure 25A), whereas a terminal 

differentiation, shown by IL-17 production, peaks at around 120h (Lazarevic et al. 

2011).  Therefore, we chose 48h for further analysis, since T cells are still in the 

process of Th17 differentiation, driven by ROR-γt, but not terminally differentiated yet. 

Before performing each array, IL-17 production by Th17 cells was checked after 48 

hours of differentiation by flow cytometry (Summary Figure 25B; for a representative 

FACS plot, see Appendix: S3).  

 

                  

Figure 25: Time kinetic of Th17 differentiation used for phospho protein arrays. Naïve T cell from WT 
and Smad7Tg mice were stimulated under Th17 polarizing conditions using a-CD3, a-CD28, rIL-6, a-
IL-4, a-IFN-γ and TGF-β (2ng/ml) for up to 4 days. (A) A summary of 3 independent experiments. Cells 
were harvested at different time points and RT-PCR was performed to check ROR-γt expression. 
Expression is presented relative to the 18S-RNA content and normalized to the 24h stimulation (=1.0 
arbitrary units). (B) A summary of 4 WT and 3 Smad7Tg Th17 differentiation experiments was shown. 
Cells were harvested after 48 hours of differentiation and IL-17 production was checked by performing 
intracellular FACS staining. Two female mice of 6-8 weeks age were used for each experiment (A). 3 
female mice of 6-8 weeks age were used per group for each array. Values represent the mean ± SEM 
of all experiments. ***, P value <0.001 (Student’s t test).  
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4.4.2.2 Protein arrays for the detection of the phosphorylation status during 
Th17 differentiation 
 
To characterize the phosphorylation status of proteins during Th0 and Th17 

differentiation from both WT and Smad7Tg T cells, the TGF-β signalling phospho-

specific antibody array from Fullmoon Biosystem was used. Using this phospho 

protein antibody array, a total of 44 proteins can be detected both in phosphorylated 

and non-phosphorylated form, 3 proteins can be detected only in phosphorylated 

form and 18 proteins can be detected only in non-phosphorylated form (see 

Appendix: S4). In this thesis, Full Moon Biosystems’ antibody array kit was used 

since it provides the major reagents required to perform protein extraction, labeling, 

conjugation and detection. This array allowed simultaneous detection of plenty of 

proteins on a single slide without performing numerous immunoprecipitation and/or 

Western blot analyses, which was cost effective, less time consuming and it also 

reduced the number of variables that could affect our results. All arrays are printed on 

standard size microscope slides. Each slide consists of an array of well-characterized 

antibodies with six replicates and multiple positive and negative controls to maximize 

data reliability. Each set of antibody arrays contains two slides (two identical arrays) - 

one slide is for the control sample and the other is for experimental sample. The 

antibodies are covalently immobilized on high quality glass surface coated with 3-D 

polymer materials to ensure high binding efficiency and specificity. GAL files are also 

provided by the company to extract data. For each array experiment, two slides (one 

for Th0 and the other one for Th17 differentiation) per genotype were used. A total of 

5 independent array experiments were done. In the first experiment, Th17 was 

compared to Th0 differentiation in WT T cells. In the next 4 experiments, Th17 was 

compared to Th0 differentiation in both WT and Smad7Tg T cells. One set of arrays 

for WT and Smad7Tg T cells, had to be excluded from analysis for technical reasons 

(streak artefact; background signal too high).  One example of protein expression is 

shown, where the protein expression of p38 (phospho-Thr180) is upregulated during 

Th17 differentiation in both WT and Smad7Tg T cells (Figure 26). 
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Figure 26: Comparison of protein expression between WT and Smad7Tg T cells during Th0 and Th17 

differentiation. TGF-β signalling phospho-specific antibody microarray. Protein array was performed 

after 48 hours of Th17 differentiation with both WT and Smad7Tg T cells. Six replicates of each 

antibody including positive and negative controls are included. Spots in bright white color are the 

positive controls and black spots are negative controls. Higher intense green light indicates higher 

expression of proteins. Less intense green light depicts decreased protein expression. The red 

marking indicates the protein expression of p38 (phospho-Thr180). Figure represents one complete 

array.   
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In both Th0 and Th17 condition, we saw a high variance in the background median 

intensities and in median intensities of phosphorylated and non-phosphorylated 

proteins when compared to their replicate experiments on corresponding arrays (see 

Appendix: S5). Normalization of total signalling intensities between individual arrays 

allowed us to get rid of this problem. Sometimes, both phosphorylated and non-

phosphorylated forms of proteins were not detected in Th0 and Th17 conditions.  

Other proteins were phosphorylated in Th0 but not in Th17 or in both condition or in 

Th17 but not in Th0. In order to be able to compare the phosphorylation status of 

specific proteins during Th17 differentiation between independent experiments, ten 

different categories describing protein expression and phosphorylation were made 

(Table 19, see methods). Briefly, proteins were first grouped according to their 

phosphorylation status and subsequently according to their expression during Th17 

differentiation. Based on category 9, which is defined as an increased 

phosphorylation and expression during Th17 differentiation, Th17-specific proteins 

were detected which showed increased phosphorylation in at least two experiments 

in WT T cells and Smad7Tg T cells, or both listed (Table 21).  

 
Increase of phosphorylation during Th17 differentiation:  

Protein phosphorylated Th17 vs Th0 WT Smad7Tg 

AKT1 (Phospho-Ser246) Yes No 

AKT1 (Phospho-Tyr474) Yes Yes 

AKT2 (Phospho-Ser474) Yes No 

ERK1-p44/42 MAP Kinase (Phospho-Tyr204) Yes No 

mTOR (Phospho-Thr2446) Yes Yes 

mTOR (Phospho-Ser2448) Yes No 

Myc (Phospho-Ser62) Yes No 

P38 MAPK (Phospho-Thr180) Yes Yes 

PAK1 (Phospho-Thr212) Yes No 

PAK1/2/3 (Phospho-Thr423/402/421) Yes No 

PAK2 (Phospho-Ser192) Yes No 

PAK3 (Phospho-Ser154) Yes No 

PKC alpha (Phospho-Tyr657) Yes No 

PKC theta (Phospho-Ser676) Yes No 
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PKC beta/PKCB (Phospho-Ser661) Yes No 

PKC delta (Phospho-Thr505) Yes Yes 

PKC zeta (Phospho-Thr560) Yes No 

Rac1/cdc42 (Phospho-Ser71) Yes No 

Ras-GRF1 (Phospho-Ser916) Yes No 

SAPK/JNK (Phospho-Tyr185) Yes No 

Smad2 (Phospho-Ser250) Yes No 

Smad2 (Phospho-Ser467) Yes No 

Smad3 (Phospho-Ser213) Yes No 

Table 21: Proteins with increased phosphorylation during Th17 differentiation 
as compared to the control Th0 condition.  
 
In the 4 different experiments using WT T cells, 26 proteins, 26 proteins, 25 proteins 

and 9 proteins were more phosphorylated during Th17 than during Th0 differentiation 

in array1, array2, array3 and array 4, respectively. Using Smad7Tg T cells, 2 

proteins, 2 proteins, and 23 proteins were found to be more phosphorylated during 

Th17 differentiation as compared to the control Th0 condition in array2, array3 and 

array4, respectively. The numbers of proteins based on the other categories are 

summarized in Figure 27. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Statistics Category Protein #

1 11

2 7

Th17 3 18

Th0 4 0

5 6

Th17 6 33

Th0 7 0

8 2

Th17 9 26

Th0 10 1

Statistics Category Protein #

1 1

2 6

Th17 3 0

Th0 4 0

5 50

Th17 6 19

Th0 7 0

8 18

Th17 9 2

Th0 10 8

Statistics Category Protein #

1 28

2 11

Th17 3 2

Th0 4 15

5 7

Th17 6 2

Th0 7 7

8 4

Th17 9 2

Th0 10 26

Statistics Category Protein #

1 6

2 12

Th17 3 0

Th0 4 2

5 20

Th17 6 18

Th0 7 8

8 14

Th17 9 23

Th0 10 1

Statistics Category Protein #

1 13

2 4

Th17 3 7

Th0 4 0

5 18

Th17 6 16

Th0 7 0

8 20

Th17 9 26

Th0 10 0

Statistics Category Protein #

1 31

2 11

Th17 3 9

Th0 4 0

5 11

Th17 6 12

Th0 7 1

8 4

Th17 9 25

Th0 10 0

Statistics Category Protein #

1 0

2 12

Th17 3 0

Th0 4 2

5 35

Th17 6 4

Th0 7 12

8 26

Th17 9 9

Th0 10 4

Array 1 Array 3 Array 4 Array 2 

Array 4 Array 3 

Smad7Tg 

WT 

Array 2 
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Figure 27: An overview of the categorized results of the phospho protein arrays. In each array, 104 
proteins were categorized based on their phosphorylation status and expression during Th17 
differentiation according to the Table 19. The total number of proteins falling into each category is 
shown.    

 
Most proteins from both WT and Smad7Tg T cells which were identified to have an 

elevation of phosphorylation during Th17 differentiation belonged to specific 

signalling pathways, in particular AKT1, ERK1, mTOR, p38 MAPK, PAK, PKC and 

the Smad family (Table 21). Using WT T cells, during Th17 differentiation as 

compared to Th0 condition, AKT1 (Phospho-Ser246), AKT1 (Phospho-Tyr474), AKT2 

(Phospho-Ser474) were found to be more phosphorylated in 3 arrays, ERK1-p44/42 

MAP Kinase (Phospho-Tyr204), mTOR (Phospho-Thr2446), mTOR (Phospho-

Ser2448), Myc (Phospho-Ser62) in 2 arrays, p38 MAPK (Phospho-Thr180) in 3 

arrays, PAK1 (Phospho-Thr212), PAK1/2/3 (Phospho-Thr423/402/421), PAK2 

(Phospho-Ser192) in 2 arrays, PAK3 (Phospho-Ser154) in 3 arrays, PKC alpha 

(Phospho-Tyr657), PKC theta (Phospho-Ser676), PKC beta/PKCB (Phospho-

Ser661), PKC delta (Phospho-Thr505), PKC zeta (Phospho-Thr560) in 2 arrays, 

Rac1/cdc42 (Phospho-Ser71) in 3 arrays, Ras-GRF1 (Phospho-Ser916) in 2 arrays, 

SAPK/JNK (Phospho-Tyr185) in 3 arrays, Smad2 (Phospho-Ser250) and Smad2 

(Phospho-Ser467) were found to be phosphorylated in different single experiment. 

Smad3 (Phospho-Ser213) was detected with increased phosphorylation in 2 arrays 

(Figure 28). 

Using Smad7Tg T cell, AKT (Phospho-Ser473), AKT (Phospho-Thr308), AKT 

(Phospho-Tyr326), AKT2 (Phospho-Ser474), ERK3 (Phospho-Ser189), LIMK1 

(Phospho-Thr508), MKK3/MAP2K3 (Phospho-Thr222), mTOR (Phospho-Ser2481), 

mTOR (Phospho-Ser2448), Myc (Phospho-Ser62), p38 MAPK (Phospho-Thr180),  

p38 MAPK (Phospho-Tyr322), PAK1/2/3 (Phospho-Ser141), PKC delta (Phospho-

Thr505), PKC theta (Phospho-Ser676), PKC zeta (Phospho-Thr410), PKC zeta 

(Phospho-Thr560),  SAPK/JNK (Phospho-Thr183), SAPK/JNK (Phospho-Tyr185),  

Smad1 (Phospho-Ser187) , Smad1 (Phospho-Ser465), Smad2 (Phospho-Ser250), 

Smad2 (Phospho-Ser467), Smad2/3 (Phospho-Thr8)  were found to be 

phosphorylated during Th17 differentiation as compared to Th0 condition (Figure 28).

               



Results 

89 

 

 

            WT          Smad7Tg
Array 1 Array 2 Array 3 Array 4 Array 2 Array 3 Array 4

AbI1 (Phospho-Thr 754/735)

AbI1 (Phospho-Tyr204)

AbI1 (Phospho-Tyr412)

AKT (Phospho-Ser473) 

AKT (Phospho-Thr308) 

AKT (Phospho-Tyr326)

AKT1 (Phospho-Ser124)

AKT1 (Phospho-Ser246)

AKT1 (Phospho-Thr450)

AKT1 (Phospho-Thr72)

AKT1 (Phospho-Tyr474)

AKT2 (Phospho-Ser474) 

c-Abl (Phospho-Tyr245)

c-Abl (Phospho-Tyr412) 

Cofilin (Phospho-Ser3) 

ERK1-p44/42 MAP Kinase (Phospho-Thr202) 

ERK1-p44/42 MAP Kinase (Phospho-Tyr204) 

ERK3 (Phospho-Ser189)

ERK8 (Phospho-Thr175/Tyr177)

Gab2 (Phospho-Tyr643)

JNK1/2/3 (Phospho-Thr183/Tyr185)

LIMK1 (Phospho-Thr508) 

MKK3 (Phospho-Ser189)

MKK3/MAP2K3 (Phospho-Thr222)

MKK6 (Phospho-Ser207) 

mTOR (Phospho-Ser2448) 

mTOR (Phospho-Ser2481)

mTOR (Phospho-Thr2446)

Myc (Phospho-Ser373) 

Myc (Phospho-Ser62)

Myc (Phospho-Thr358) 

Myc (Phospho-Thr58) 

p38 MAPK (Phospho-Thr180) 

p38 MAPK (Phospho-Tyr182) 

p38 MAPK (Phospho-Tyr322)

PAK1 (Phospho-Ser204)

PAK1 (Phospho-Thr212)

PAK1/2 (Phospho-Ser199)

PAK1/2/3 (Phospho-Ser141)

PAK1/2/3 (Phospho-Thr423/402/421)

PAK2 (Phospho-Ser192)

PAK2 (Phospho-Ser20)

PAK3 (Phospho-Ser154)

PI3-kinase p85-alpha (Phospho-Tyr607)

PI3-kinase p85-subunit alpha/gamma (Phospho-Tyr467/199)

PKC alpha  (Phospho-Tyr657)

PKC alpha/beta II (Phospho-Thr638)

PKC beta/PKCB (Phospho-Ser661)

PKC delta (Phospho-Ser645) 

PKC delta (Phospho-Thr505)

PKC epsilon (Phospho-Ser729)

PKC theta (Phospho-Ser676) 

PKC theta (Phospho-Thr538)

PKC zeta (Phospho-Thr410)

PKC zeta (Phospho-Thr560)

PP2A-a (Phospho-Tyr307)

Rac1/cdc42 (Phospho-Ser71) 

Ras-GRF1 (Phospho-Ser916)

Rho/Rac guanine nucleotide exchange factor 2 (Phospho-Ser885)

S6 Ribosomal Protein (Phospho-Ser235) 

SAPK/JNK (Phospho-Thr183) 

SAPK/JNK (Phospho-Tyr185) 

SEK1/MKK4 (Phospho-Ser80) 

SEK1/MKK4 (Phospho-Thr261) 

Shc (Phospho-Tyr349)

Shc (Phospho-Tyr427)

Smad1 (Phospho-Ser187)

Smad1 (Phospho-Ser465)

Smad2 (Phospho-Ser250)

Smad2 (Phospho-Ser467)

Smad2 (Phospho-Thr220)

Smad2/3 (Phospho-Thr8)

Smad3 (Phospho-Ser204)

Smad3 (Phospho-Ser208)

Smad3 (Phospho-Ser213)

Smad3 (Phospho-Ser425)

Smad3 (Phospho-Thr179)

SP1 (Phospho-Thr739) 

TAK1 (Phospho-Thr184)

1 2 3 4 5 6 7 8 9 10
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Figure 28: Heat map showing the phosphorylation status of different proteins during Th17 
differentiation from both WT and Smad7Tg T cells. TGF-β signalling specific phospho protein antibody 
arrays (from Fullmoon Biosystems’) were used to identify proteins which are phosphorylated during 
Th17 differentiation. To this point, proteins were extracted from Th0 and Th17 differentiated cells after 
48 hours. Proteins were categorized into 10 groups according to their expression and phosphorylation 
status (P and Non-P stands for phosphorylated and non-phosphorylated proteins, respectively): 1. 
Both Non-P and P proteins absent; 2. Non-P>P proteins, Th0=Th17; 3. Non-P>P proteins, only in 
Th17 or Th17>Th0; 4. Non-P>P proteins, only in Th0 or Th0>Th17; 5. Non-P=P proteins, Th0= Th17; 
6. Non-P= P proteins, only in Th17 or Th17>Th0; 7. Non-P= P proteins, only in Th0 or Th0>Th17; 8. 
P> Non-P proteins, Th0= Th17; 9. P> Non-P proteins, only in Th17 or Th17>Th0; 10. P> Non-P 
proteins, only in Th0 or Th0>Th17.  

 
Our main goal was to find proteins which signal through TGF-β-Smad independent 

pathways during Th17 differentiation. Hence, we searched for proteins which were 

phosphorylated both in WT and Smad7Tg T cells during Th17 differentiation. There 

were 4 proteins which were found to be more phosphorylated both in WT and 

Smad7Tg T cells as compared to Th0 condition. They were AKT1 (Phospho-Tyr474), 

mTOR (Phospho-Thr2446), p38 MAPK (Phospho-Thr180) and PKC delta (Phospho-

Thr505) (Figure 28). Since T cell specific Smad7 expression did not affect the 

phosphorylation status of these proteins, we concluded that these proteins play a role 

during Th17 differentiation via TGF-β-Smad independent pathways. AKT and mTOR 

belong to PI3K/AKT/mTOR pathway (Yap et al. 2008), p38 belongs to MAPK 

pathways (Yu et al. 2002). PKC-delta is known to be an effector of the PI3K pathway 

and p38 MAPK pathway (Deb et al. 2003, Uddin et al. 2002). Array data indicates 

that PI3K/AKT/mTOR and p38 MAPK, which are non-Smad pathways, were activated 

during Th17 differentiation and proteins belong to these pathways were 

phosphorylated on specific sites.  
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4.4.2.3 Confirmation of array results by immunoblotting 

 
It was found by the antibody protein array that AKT1 (Phospho-Tyr474) and mTOR 

(Phospho-Thr2446) are phosphorylated during Th17 differentiation. These proteins 

belong to one single pathway, the PI3K/AKT/mTOR pathway. So, it was worth to 

confirm these results by immunoblotting. Phosphorylation of PI3K was also checked 

by western blot since PI3K is the upstream kinase of AKT and mTOR (Weichhart and 

Säemann 2008). 

 

 
 
Figure 29: PI3K/AKT/mTOR kinase phosphorylation during Th17 differentiation. Sorted naïve T cells 
from WT mice were stimulated under Th17 polarizing condition using a-CD3, a-CD28, rIL-6, a-IL-4, a-
IFN-γ and TGF-β (2ng/ml). Differentiation was stopped by harvesting cells at different time points as 
indicated and proteins were extracted for immunoblotting. Actin was used as control. Data are the 
representative of two independent experiments.  
 

PI3K was phosphorylated on Tyr 458/Tyr199 at 15 and 30 minutes after induction of 

Th17 differentiation, AKT was phosphorylated on Tyr474 at 15 minutes after 

induction of Th17 differentiation and mTOR was phosphorylated on Thr2446 1h after 

induction of Th17 differentiation (Figure 29).  
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4.4.2.4 Functional role of the PI3K/AKT/mTOR pathway during Th17 
differentiation. 
 
Additionally to the Smad pathway which is critical for many aspects of TGF-β 

signalling, Smad-independent responses have also been documented (Engel et al. 

1999, Hocevar et al. 1999, Derynck and Zhang 2003). A previous study has shown 

that AKT and mTOR regulate TGF-β dependent Smad3 activation in NRP-152 cells 

(Song et al. 2006). However, the exact mechanisms how Smad-independent 

signalling pathways integrate with each other and / or Smad signalling remain 

unknown. 

As stated before, using antibody arrays, AKT and mTOR proteins were found to be 

more phosphorylated during Th17 than during the control Th0 condition. To examine 

whether the entire PI3K/AKT/mTOR pathway plays a functional role in Th17 

differentiation, pharmacological inhibitors which block specific kinases were used.  

After sorting, naïve T cells were pre-incubated with different concentrations of  

rapamycin which inhibits the kinase activity of mTOR (Kim et al. 2002) and LY294002 

which blocks the kinase activity of PI3K and AKT (Vlahos et al. 1994) for an hour on 

ice prior to adding them in the culture to inhibit the PI3K/AKT/mTOR pathway. 

Treatment with 100nM of rapamycin showed no difference in the frequency of Th17 

differentiation as compared to control Th17+DMSO. However, IL-17 production 

started decreasing from 48.37% to 21.48% with 1μM rapamycin treatment. With 10 

and 20μM of rapamycin treatment, cells did not produce IL-17 at all (Figure 30A), 

which clearly indicates mTOR kinase signalling is required to induce Th17 

differentiation and the effect of rapamycin in Th17 differentiation is dose dependent. 

LY294002 was found to be more sensitive in Th17 differentiation. It could block the 

IL-17 production from 48.37% to 13.48% with 100nM concentration. Treatment with 

1μM of LY294002 blocked IL-17 production completely (Figure 30A). The effect of 

LY294002 in Th17 differentiation was also found to be dose dependent. IL-17 

production in the supernatant was also reduced with the same frequency by both 

inhibitors as it was detected by flow cytometry (Figure 30C). Summaries of the results 

of three independent experiments analysed by flow cytometry and ELISA are also 

shown, respectively (Figure 30B and C). These results suggest that pharmacological 

inhibition of PI3K/AKT/mTOR pathway reduces Th17 differentiation in vitro. 
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Figure 30: The non-Smad pathway PI3K/AKT/mTOR is involved in Th17 differentiation. Naïve T cells 
from WT mice were stimulated under Th17 differentiating conditions using a-CD3, a-CD28, rIL-6, a-IL-
4, a-IFN-γ and TGF-β (2ng/ml) for 5 days. Naïve T cells were pre-incubated with Rapamycin (mTOR 
inhibitor) and LY294002 (PI3K inhibitor) with the indicated concentrations for one hour on ice before 
they were added in the culture. (A & B) After 5 days of differentiation, cells were harvested, 
supernatants were collected and cells were restimulated with PMA, ionomycin and golgi stop for 4 
hours. Afterwards, cells were harvested, surface stained with CD4 and finally intracellularly stained for 
IL-17 and INF-γ. Cells were analysed by flow cytometry. IL-17 and IFN-γ are the signature cytokine for 
Th17 and Th1 respectively. Cells were first gated on lymphocytes and then CD4

+ 
T cells. The 

percentage of gated cells is indicated. (C) IL-17 production by Th17 cells was measured by ELISA. 
Three female mice of 6-8 weeks age were used. (A) Data are representative of 3 independent 
experiments. (B and C) Summaries of 3 independent experiments are shown. Values represent the 
mean ± SEM of 3 experiments. ***, P value <0.001 (ANOVA).  
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We also checked whether the functional role of PI3K/AKT/mTOR pathway during 

Th17 differentiation is independent of Smad signalling. In this experiment, treatment 

with 1μM rapamycin, IL-17 production was reduced from 24.82% to 11.95% which 

showed the reduction is 50% (Figure 31A). 50% reduction of IL-17 was also found in 

WT Th17 cells with 1μM rapamycin treatment in the previous experiment. With 

LY294002 treatment, IL-17 production was also reduced from 24.82% to 9.80% 

which indicated the reduction is more than 50% (Figure 31A). Same result was also 

found in the WT Th17 differentiation with 100nM LY294002 in the previous 

experiment. So, the presence of Smad7 on T cells did not affect the inhibitory effect 

of rapamycin and LY294002 during Th17 differentiation. IL-17 production in the 

supernatant was also reduced with the treatment of these inhibitors with the same 

frequency as it was found in the FACS analysis (Figure 31C). Summary of the FACS 

and ELISA figures of three independent experiments along with control WT Th17 

differentiation is also shown, respectively (Figure 31B and C). These results imply 

that PI3K/AKT/mTOR pathway functions during Th17 differentiation independently of 

Smad signalling cascade. However, in the previous figure with the WT Th17 

differentiation, it was found that 10μM of either inhibitor blocked IL-17 production 

completely. But with Smad7Tg cultures, T cells produced IL-17 even after treating 

with 10μM of both inhibitors which means along with PI3K/AKT/mTOR pathway, 

other non-Smad pathways are also functionally involved in Th17 differentiation. 
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Figure 31: The PI3K/AKT/mTOR pathway regulates Th17 differentiation independently of TGF-β-
Smad signalling. Naïve T cells from WT and Smad7Tg mice were stimulated under Th17 
differentiating conditions using a-CD3, a-CD28, rIL-6, a-IL-4, a-IFN-γ and TGF-β (2ng/ml) for 5 days. 
Naïve T cells from Smad7Tg mice were pre-incubated with mTOR and PI3K inhibitor with indicated 
concentrations for one hour on ice before they were added in the culture. (A & B) After 5 days of 
differentiation, cells were harvested, supernatants were collected and cells were restimulated with 
PMA, ionomycin and golgi stop for 4 hours. Cells were then harvested, surface stained with CD4 and 
finally intracellularly stained for IL-17 and INF-γ and cells analysed by flow cytometry. IL-17 and IFN-γ 
are the signature cytokine for Th17 and Th1 respectively. Cells were gated on lymphocytes and CD4

+ 

T cells. The percentage of gated cells is indicated. (C) IL-17 production in the supernatant by Th17 
cells measured by ELISA. Three female mice of 6-8 weeks age were used. (A) Data are 
representative of 3 independent experiments. (B and C) Summaries of 3 experiments are shown. 
Values represent the mean ± SEM of 3 experiments. ***, P value <0.001, ** P value<0.01, *P 
value<0.05 (ANOVA).  
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4.4.2.5 Functional role of the MAPK pathways during Th17 differentiation. 
 
Since the AKT/mTOR inhibitors rapamycin and LY294002 at 10 μM concentrations 

could not block IL-17 production completely, as shown in Figure 31A, additional 

pathways were examined. As it was found in the array that p38 (Thr180) was 

phosphorylated during Th17 differentiation, the MAPK signalling pathway was 

blocked to check its function in Th17 differentiation. Hence, naïve T cells from WT 

mice were stimulated under Th17 differentiating condition for 5 days with or without 

p38 inhibitor (SB202190) and JNK inhibitor (SP00125). Respective naïve T cells 

were pre-incubated with p38 and JNK inhibitor with indicated concentrations.  
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Figure 32: The MAPK pathways positively regulate Th17 differentiation. Naïve T cells from WT mice 
were stimulated under Th17 differentiating conditions using a-CD3, a-CD28, rIL-6, a-IL-4, a-IFN-γ and 
TGF-β (2ng/ml) for 5 days. Some naïve T cells were pre-incubated with p38 (SB202190) 20µM and 
JNK (SP00125) 10µM inhibitor for one hour on ice before they were added in the culture. (A & B) After 
5 days of differentiation, cells were harvested and restimulated with PMA, ionomycin and golgi stop for 
4 hours. Afterwards, cells were harvested, surface stained with CD4 and finally intracellularly stained 
for IL-17 and INF-γ and analysed by flow cytometry. IL-17 and IFN-γ are the signature cytokine for 
Th17 and Th1 respectively. Cells were gated on lymphocytes and CD4

+
. The percentage of gated cells 

is indicated. (C, D & E) Relative mRNA expression of Th17 associated genes IL-17, ROR-γt and 
STAT3. Expression is presented relative to18S-RNA and normalized on the unstimulated control (=1.0 
arbitrary units). (F) Phosphorylation status of p38 and JNK in Th17 differentiation condition using a-
CD3, a-CD28, rIL-6, a-IL-4, a-IFN-γ at 15 minutes. Three female mice of 6-8 weeks age were used. 
(A) Data are representative of 3 independent experiments (A). (B) Summary of three independent 
experiments of (A). Values represent the mean ± SEM of 3 experiments. ***, P value <0.001 
(Student’s t test). 
 
 

Blockade of the p38 and JNK kinases (another member of MAPK pathway) resulted 

in the reduction of IL-17 production from 52.31% to 31.92% and to 22.58%, 

respectively. Summary of the FACS analysis of three independent experiments is 

shown (Figure 32A&B). Expression of the Th17 associated genes IL-17, ROR-γt and 

STAT3 were also downregulated accordingly after p38 and JNK inhibitor treatment to 

the same frequency as IL17 production was reduced (Figure 32C, D, and E). In order 

to check the phosphorylation status of p38 and JNK during Th17 differentiation, naïve 

T cells were stimulated under Th17 differentiation condition for 15 minutes and 

immunoblotting was done. Subtle upregulation in phosphorylation of p38 on Thr180 

and clear upregulation in phosphorylation of JNK on Thr183 was detected in Th17 

differentiation as compared to control Th0. Phosphorylation of p38 and JNK was 

reduced when cells were treated with both p38 (20μM) and JNK (10μM) inhibitors 

during Th17 differentiation (Figure 32F). Taken together, inhibition of p38 as well as 

of the MAPK JNK resulted in reduced Th17 differentiation, probably through TGF-β-

Smad independent pathways.  
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5 Discussion 

The immune system is subject to homeostatic regulation, which ensures that the total 

number of lymphocytes in the periphery is kept more or less at a constant level. 

Among the large numbers of T cells in the periphery, T cells exhibit structural 

diversity, i.e., the expression of a diverse repertoire of T cell receptors (TCRs), and 

functional diversity, i.e., the presence of T cells at naïve, effector, and memory 

developmental stages. TGF-β plays a critical role in thymic T cell development, in 

peripheral T cell homeostasis and T cell differentiation (Li and Flavell 2008). 

5.1 T cell development and Treg function in mice with a T cell 

specific deletion of Smad7 

In order to investigate whether increased TGF-β signalling affects these events, we 

first checked the thymic T cell development in CD4Cre-Smad7fl/fl mice. The frequency 

of double positive CD4+ and CD8+ T cells was unchanged but single positive CD8+ T 

cells were 2 fold increased in CD4Cre-Smad7fl/fl mice compared to control littermates. 

This is in line with the finding that TGF-β signalling positively regulates CD8+ 

thymocyte development (Li et al. 2006a). However, mice with a T cell specific 

deletion of Smad2 and Smad3 and, genomic Smad3 knockout show normal T cell 

development both in thymus and spleen (Takimoto et al. 2010, Wang et al. 2006a). In 

the periphery, the ratio of CD4+ and CD8+ T cells was unchanged in CD4Cre-

Smad7fl/fl mice compared to controls. TGFβ inhibits the proliferation of B lymphocyte 

precursors and induces apoptosis in immature and mature B lymphocytes of different 

stages (Lomo et al. 1995). In CD4Cre-Smad7fl/fl mice, the development of B cells was 

unchanged compared to controls which resemble the finding that mice lacking the 

TGFβ-receptor show no alteration in B cell development (Cazac and Roes 2000). 

The concept of T cell-mediated neuroinflammation implicates the invasion of the CNS 

by autoreactive T cells and a loss of suppressive capability of Tregs both in the 

periphery and the CNS. TGF-β plays a central role in Treg development and 

expansion (Horwitz et al. 2003) and Tregs control the homeostasis of peripheral 

CD4+ T cells (Almeida et al. 2002, Banz et al. 2003). TGF-β is not essential for 

thymic nTreg generation (Quyang et al. 2010). In line with these results, flow 

cytometric analysis showed that there was no difference in thymic nTregs 
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development in CD4Cre-Smad7fl/fl mice compared to control littermates. On the other 

hand, TGF-β plays a positive role in the induction of iTregs (Chen et al. 2003, Fu et 

al. 2004) and generation of iTregs takes place in the spleen. In contrast, analysis 

showed no difference in iTregs generation in the periphery of CD4Cre-Smad7fl/fl mice 

and control littermates. Surprisingly, inhibition of TGFβ signalling in T cells by a 

genetic deletion of Smad2 results in increased natural and induced Treg populations 

(Takimoto et al. 2010). Increased induced Tregs numbers were also found in Smad3 

knockout mice (Wang et al. 2006a). These contradictory findings implicate that tight 

regulation of TGFβ and TGF-β-Smad signalling is important for the generation of 

thymic and induced Tregs and that non-Smad pathways might also be involved in the 

development of these T cell subsets.  

One recent study showed that myelin specific Tregs in CNS fail to prevent EAE 

although these Tregs could suppress MOG-specific encephalitogenic T cells in vitro. 

The authors concluded that controlling tissue inflammation is required for Tregs to 

suppress inflammation (Korn et al. 2007a). We checked whether altered Smad7 

expression affects the efficiency of Tregs to suppress the proliferation of responder T 

cells or the proliferation capacity of responder T cells in response to Tregs 

suppression. By doing co-culture experiments between suppressor Tregs and 

responder T cells, we showed that a Smad7 deletion or overexpression in T cells did 

not change the suppression capability of Tregs. This finding was unexpected 

because Smad7 deficient T cells were shown to produce more TGF-β (Kleiter et al. 

2010) and an increase of TGF-β mediated Foxp3 positive cells is responsible for 

attenuated EAE in IL-6 KO mice (Tang et al. 2004, Bettelli et al. 2006, Korn et al. 

2007a). We also checked the effect of Smad7 on proliferation of responder T cells 

with the same co-culture system. We found that responder T cells from Smad7Tg 

mice were less prone to suppression by WT Tregs or Tregs with an increased Smad7 

expression than responder T cells from WT and CD4Cre-Smad7fl/fl mice. This finding 

is in line with recent reports that responder T cells from Smad7Tg mice are less 

responsive to Treg suppression (Fantini et al. 2009). Moreover, T cells with 

overexpression of the dominant negative form of the TGF-β receptor II (dnTGF-βRII) 

are resistant to Treg-mediated suppression (Fahlen et al. 2005).  
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Naïve T cells become activated in the periphery before they migrate to the CNS and 

TGF-β regulates the status of activated T cells (Rubtsov and Rudensky 2007). Ex 

vivo analysis showed that in CD4Cre-Smad7fl/fl mice with increased TGF-β signalling 

in T cells, both CD4+ and CD8+ peripheral T cells were less activated than control 

littermates. This result is also supported by the finding that inhibition of TGF-β 

signalling in TGF-βRII deficient T cells leads to an increased activation of CD4+ and 

CD8+ T cells (Marie et al. 2006). Blockade of TGF-β signalling in CD4dnTGF-βRII 

mice also results in more activated CD4+ and CD8+ T cells (Gorelik and Flavell 

2000a). Massive activation and expansion of T cells is also observed in TGF-β1-

deficient mice (Shull et al. 1992). T cells undergoing an activation process exhibit a 

change in expression of the surface markers CD62L and CD44 (Shimizu et al. 1989). 

Naïve T cells are CD62LhiCD44low whereas activated memory T lymphocytes are 

CD62LnegCD44hi. There was no difference found in naïve CD62LhiCD44low T cells as 

well as in activated memory CD62LnegCD44hi T cells in CD4Cre-Smad7fl/fl mice in 

comparison with control littermates. But in contrast, reduced naïve CD62LhiCD44low 

CD8+ T cells were found in CD4dnTGF-βRII mice (Gorelik and Flavell 2000a) and 

very low  number of naïve T cells were observed in T cell specific Smad2 and Smad3 

double knockout mice (Takimoto et al. 2010). Smad7Tg mice were not included as 

control since these mice were not available at this time in our lab. 

5.2 Effect of Smad7 on in vitro T helper cell differentiation 

Many previous studies indicate that TGF-β is essential to orchestrate T cell immunity, 

but it is not clear whether various TGF-β–mediated effects on T cells are equally 

dependent on Smad signalling. TGF-β suppresses Th1 differentiation (Li et al. 

2006a). Studies with T cells from CD4dnTGF-βRII mice in which TGF-β signalling is 

blocked only on T cells, show that the canonical TGF-β-Smad signalling is essential 

for TGF-β induced suppression of Th1 differentiation. Inhibition of TGF-β-Smad 

signalling blocks T-bet expression, the master transcription factor for Th1 

differentiation, but leaves the expression of the IL-12 receptor β2 chain unaffected 

(Gorelik et al. 2002b). TGF-β-receptor II (TGF-βRII) deficient CD4+ T cells exhibit an 

enhanced Th1 differentiation program (Marie et al. 2006). Experiments with Smad2 

and Smad3 deficient T cells show that TGF-β–mediated suppression of Th1 cell 

differentiation is dependent on TGF-β-Smad signalling (Takimoto et al. 2010). We 
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showed that a T cell specific Smad7 deletion affects T helper cell differentiation in 

vitro. CD4Cre-Smad7fl/fl T cells showed a decreased frequency of IFN-γ producing 

Th1 cells. Decreased expression of IFN-γ was associated with a decreased T-bet 

expression. On the other hand, Th1 responses were elevated in Smad7Tg T cells. In 

time kinetic experiments, we found that Smad7 expression was correlated to T-bet 

during Th1 but not to ROR-γt expression during Th17 differentiation. So, Smad7 

might have an intrinsic influence on Th1 differentiation. It is known that Th1 cells, but 

not Th2 and Th17 cells overexpress Smad7 (Veldhoen et al. 2006a). Aggravated Th1 

response in CNS mononuclear cells was detected in the CNS from Smad7Tg EAE 

mice (Kleiter et al. 2010). In Th1 differentiation, it was found that difference in INF-γ 

production in WT, CD4Cre-Smad7fl/fl and Smad7Tg T cells was not so pronounced 

which left a question whether other pathways than TGF-β-Smad are involved in the 

suppression of Th1 differentiation.  

Decreased frequency of IL-4 producing Th2 cells was detected in CD4Cre-Smad7fl/fl 

T cells. This supports the finding that TGF-β signalling downregulates Th2 

differentiation (Gorelik and Flavell 2002, Heath et al. 2000). Recently it was also 

shown that the TGF-β induced adaptor protein Ndfip1 suppresses IL-4 producing Th2 

mediated inflammation (Beal et al. 2011) 

TGF-β positively regulates Th17 differentiation (Ivanov et al. 2006) and these Th17 

cells may also play a role in the induction of EAE (Siffrin et al. 2010, El-Behi et al. 

2011). TGF-β signalling through Smad2 and Smad3 is required for effective Th17 cell 

development (Takimoto et al. 2010) since neither Smad2 nor Smad3 alone are 

sufficient for Th17 differentiation (Lu et al. 2010). Ex vivo analysis of CD4dnTGF-βRII 

and CD4Cre-TGF-βR1fl/fl mice reveals a reduced proportion of IL-17 producing T 

cells in the lamina propria but there are no differences detected in the absolute 

number of Th17 cells in these two mice compared to wild type controls (Goreschi et 

al. 2010). By modulating TGF-β signalling through altered Smad7 expression in T 

cells, we showed that enhanced TGF-β signalling results in an increased proportion 

of Th17 cells and decreased TGF-β signalling in Smad7Tg T cells in a reduction of 

Th17 cells as compared to wild type controls. Time kinetic experiments showed that 

the level of Smad7 expression was rapidly decreased after induction of Th17 
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differentiation in vitro. So, Smad7 is reciprocally involved in Th1 and Th17 

differentiation as showed by in vitro experiments.  

TGF-β plays a positive role in the generation and expansion of Tregs (Horwitz et al. 

2003). So, we examined Tregs differentiation in vitro and found more CD4+Foxp3+ T 

cells in CD4Cre-Smad7fl/fl T cells as compared to WT T cells. In Smad7Tg T cells, the 

lowest frequency of Treg differentiation was detected, suggesting that TGF-β 

signalling is crucial for the formation of induced Tregs. This result is supported by the 

recent finding where it was shown that Smad7 expression is downregulated in Treg 

development (Fantini et al. 2004). A possible mechanism is that trans-signalling of 

the proinflammatory cytokine IL-6 induces Smad7 expression in naïve T cells from 

Smad7Tg mice (Dominitzki et al. 2007). There are also reports which show that a 

blockade of Smad7 converts autoreactive T cells to cells with a regulatory function 

(Nakao et al. 2000, Monteleone et al. 2001). Tregs which mediate type V collagen-

induced tolerance to lung allografts do not express Smad7 (Mizobuchi et al. 2003). 

Reports suggest that Smad3 but not Smad2, is critical for the induction of Foxp3 

(Tone et al. 2008). More recent findings indicate that induction of Foxp3+ Treg by 

TGF-β is partially impaired in Smad2 and Smad3 deficient T cells, and is completely 

abolished in Smad2/Smad3-double KO T cells (Lu et al. 2010, Takimoto et al. 2010). 

In our experiment we showed that TGF-β signalling contributed to Treg 

differentiation. However, a small proportion of Tregs was also observed in Smad7Tg 

T cells, which gives rise to the possible involvement of other pathways apart from 

TGF-β-Smad signalling. Studies with pharmacological inhibitors of ERK and JNK as 

well as studies with ERK1 and JNK2 KO T cells show that ERK and JNK pathways 

positively regulate Treg differentiation (Lu et al. 2010). 

5.3 Are TGF-β and Smad proteins required for Th17 helper cells 

differentiation? 

TGF-β along with IL-6 induces the differentiation of Th17 cells from murine naive T 

cells both in vitro and in vivo (Bettelli et al. 2006, Mangan et al. 2006, Veldhoen et al. 

2006a). Absence of Th17 differentiation in CD4dnTGF-βRII T cells indicates the 

necessity of TGF-β signalling in Th17 development (Veldhoen et al. 2006b). Some 

reports also show that Smad2 is crucial for Th17 differentiation (Malhotra et al. 2010, 

Martinez et al. 2010). Others have demonstrated that Smad3 deficiency leads to 
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enhanced Th17 cell development in vitro and in vivo (Martinez et al. 2009). In 

addition, using mice deficient in individual Smad proteins, it was shown that neither 

Smad2 nor Smad3 nor Smad4 are required for Th17 differentiation (Yang et al. 

2008a, Jana et al. 2009, Martized et al. 2009, Lu et al. 2010). Moreover, recently it 

was shown that Th17 cells can be differentiated in the complete absence of TGF-β 

signalling (Ghoreschi et al. 2010). Regarding human Th17 cells, there are reports 

indicating that TGF-β is not required for human naïve T cells to differentiate into Th17 

cells (Chen et al. 2007, Acosta-Rodriguez et al. 2007). Experiments with Stat6-/-T-bet-

/- T cells revealed that simultaneous inhibition of Th1 and Th2 differentiation is 

necessary for Th17 differentiation where TGF-β did not show any effect on Th17 

development (Das et al. 2009). Naïve T cells from Stat6-/-T-bet-/-/dnTGF-βRII mice 

differentiate into Th17 cells in the presence of TGF-β but treatment with anti-TGF-β 

neutralizing antibody has no effect on ROR-γt expression and the differentiation of IL-

17 producing Th17 cells, hence IL-6 is considered to be the main differentiating factor 

(Das et al. 2009). In contrast, experiments with a TGF-βR1 inhibitor (ALK-5) and T 

cell specific Smad2 and Smad3 double knockout mice showed that TGF-β-Smad 

signalling is important for Th17 differentiation but not for ROR-γt expression (Lu et al. 

2010, Takimoto et al. 2010). Taken together, it is clear that TGF-β-Smad signalling is 

an important regulator for Th17 differentiation, but ROR-γt expression seems to be 

independent of Smad signalling. This indicates that other Smad-independent 

pathways might be involved in Th17 differentiation. We found that T cells deficient in 

the TGF-βRII did not differentiate into the Th17 phenotype at all, indicating that TGF-

β/TGF-βR signalling is important for Th17 differentiation which is in line with the 

previous findings. It was also shown that TGF-β signalling through TGFβRI is 

required for generation of both Th17 and iTreg cells (Yang et al. 2008b). We found a 

low proportion of IL-17 producing Th17 cells when TGFβRI and the Smad2/3 

signalling cascade were blocked. We also detected reduced ROR-γt expression by 

Th17 cells. Thus, in our case, expression of ROR-γt was not independent of the 

Smad signalling pathway, which is in contrast to previous findings.  

Taken together, we showed that TGF-β/TGF-βR signalling is crucial for naïve T cells 

to obtain a Th17 phenotype, mainly through Smad signalling, but also to a lesser 

degree through TGF-β induced non-Smad pathways.  
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Experiments with Smad2 and Smad3 double deficient T cells elucidated that 

Eomesodermin, a transcription factor, downregulates Th17 differentiation (Ichiyama 

et al. 2011). Expression of eomesodermin was suppressed by the TGF-β induced 

Smad-independent JNK pathway (Ichiyama et al. 2011). We performed phospho 

protein antibody array with WT and Smad7Tg Th17 cells in order to find TGF-β 

induced, non-Smad signalling pathways which are involved in Th17 differentiation. 

Protein phosphorylation was measured by a series of calculations both in WT and 

Smad7Tg Th17 polarized T cells.  

Four proteins, AKT1 (Phospho-Tyr474), mTOR (Phospho-Thr2446), p38 MAPK 

(Phospho-Thr180) and PKC delta (Phospho-Thr505) were found to be 

phosphorylated both in WT and Smad7Tg proteins during Th17 differentiation, which 

means these four proteins were activated by TGF-β through non-Smad signalling 

pathways. Using immunoblotting, the phosphorylation status of AKT1 (Phospho-

Tyr474), mTOR (Phospho-Thr2446), p38 MAPK (Phospho-Thr180) proteins was 

detected quite early during the Th17 differentiation process. Phosphorylation of PKC 

delta (Phospho-Thr505) and of the other indicated proteins at later time points, e.g.  

48 hours, could not be included in this thesis. However, further experiments 

examining later time points should be done in future.  

5.4 The PI3K/AKT/mTOR pathway and Th17 differentiation 

PI3K as well as mTOR pathways are two key cellular signalling pathways that affect 

broad aspects of cellular functions, including metabolism, growth and survival. 

(Deane et al. 2004, Wullschleger et al. 2006). Although initially viewed as two 

separate pathways, it has been shown that PI3K and mTOR signalling are connected 

via the serine/threonine kinase AKT (Sekulic et al. 2000). AKT, is one of the most 

important survival kinases involved in regulating a similarly wide array of cellular 

processes as PI3K and mTOR, including metabolism, growth, proliferation and 

apoptosis (Brazil et al. 2004). The entire PI3K/AKT/mTOR pathway has been long 

known to be important in regulating adaptive immune cell activation. For example, 

different PI3K heterodimers, but also mTOR, critically control cell survival, 

proliferation, B- and T-cell receptor (BCR and TCR, respectively) signalling and 

chemotaxis in B and T lymphocytes (Koyasu et al. 2003, Okkenhaug et al. 2003).  
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Mice lacking PI3K signals have defective thymocyte survival (Sasaki et al. 2000, 

Webb et al. 2005, Swat et al. 2006), while constitutive activation of AKT increases 

thymocyte survival (Jones et al. 2000). PI3K/mTOR regulates T cell proliferation by 

controlling autocrine IL-2 production by T cells (Colombetti et al. 2006). Activated 

CD4+ T cells can become immune effectors that drive immune responses (Ansel et 

al. 2006) or differentiate into regulatory T cells, which dampen immune responses 

(Sakaguchi et al. 2008) and PI3K/AKT/mTOR signaling controls these events (Sauer 

et al. 2008, Haxhinasto et al. 2008). T lymphocyte trafficking is also regulated by 

PI3K/AKT and the nutrient-sensing mTOR pathway (Sinclair et al. 2008, Waugh et al. 

2009). The adipocyte-derived proinflammatory hormone leptin increases the activity 

of the AKT/mTOR pathway which is required for MOG-specific autoreactive CD4+ T 

cells to induce EAE (Galgani et al. 2010). It has also been reported that 

PI3K/AKT/mTOR kinase signalling blocks regulatory T cell differentiation by inhibiting 

Foxp3 expression (Merkenschlager and Von Boehmer 2010). However, when AKT 

signals through protein kinase B, it induces the function of natural Tregs and 

regulatory T cells formation (Pierau et al. 2009).  

PI3Ks are divided into four classes (IA, IB, II, and III) based on their subunit 

composition (Cantrell et al. 2001). Class IA and IB PI3Ks are the best understood in 

the immune system and are the subject of this discussion (Fruman et al. 2007). Class 

IA PI3Ks are heterodimers consisting of a regulatory adaptor subunit (p85α, p55α, 

p50α, p85β, or p55γ) and a catalytic subunit (p110α, p110β, or p110δ) (Fruman et al. 

2007). Class IB PI3Ks differ in their subunit composition, as they are heterodimers of 

the catalytic subunit p110γ paired with a regulatory subunit p101 or p84 (Andrews et 

al. 2007). There are three isoforms of AKT, AKT1, AKT2, AKT3, the isoforms 1 and 2 

have the highest expression in thymocytes (Juntilla et al. 2007). mTOR signalling 

acts through two sub complexes: TORC1 (TOR Complex 1) and TORC2 (Guertin et 

al. 2006). TORC1 is rapamycin sensitive and contains Rheb (a small GTPase), the 

regulatory-associated protein of mTOR (raptor), G protein b-subunit like protein 

(GbL), and the proline-rich Protein Kinase B (PKB)/AKT substrate 40 kDa (PRAS40). 

TORC1 activation results in the phosphorylation and activation of, among other 

targets, the ribosomal S6 kinase (S6K1), and is thought to be associated with 

ribosome biogenesis, autophagy, and protein translation (Sabatini 2006). TORC2 
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contains, in addition to mTOR and GbL, the rapamycin-insensitive companion of 

mTOR (rictor) and mammalian stress-activated protein kinase interacting protein-1 

(mSin1) (Guertin et al. 2006). Although it was initially thought that rapamycin 

exclusively inhibited mTORC1 activation, it has become clear that it can also inhibit 

mTORC2 (Zeng et al. 2007). 

In the phospho protein antibody arrays, two members of the PI3K/AKT/mTOR 

pathway were found to be phosphorylated during Th17 differentiation which are 

AKT1 (Phospho-Tyr474) and mTOR (Phospho-Thr2446). We showed that inhibition 

of both mTOR and PI3K by rapamycin and LY294002, respectively, resulted in 

reduced Th17 differentiation. Of note, there is no selective AKT inhibitor available. 

LY294002 has the specificity for both PI3K and AKT according to the manufacturer. 

The effect of blocking was found to be dose dependent. It was already reported that 

rapamycin blocks Th17 differentiation but promotes Treg differentiation (Kopf et al. 

2007), which might be due to rapamycin mediated IL-6 signal transduction inhibition 

(Kahan et al. 1991). Two recent studies examining a T cell specific mTOR deletion, 

particularly mTORC1, showed impaired Th1 and Th17 differentiation but induced 

Treg differentiation (Delgoffe et al. 2009, 2011). Until now the specific sites of mTOR 

phosphorylation remained unknown. In our study, we showed that mTOR was 

phosphorylated at Thr2446 through TGF-β-Smad independent signalling and 

positively regulated Th17 differentiation. As we found that mTOR can also be 

phosphorylated at other sites, it may very well be that additional phosphorylation sites 

of mTOR, e.g. Ser2448 and Ser2481, may contribute to the regulation of T helper cell 

differentiation. Constitutive AKT activity blocks Foxp3 induction (Haxhinasto et al. 

2008). mTORC2 activates AKT by phosphorylating it on Ser473, and loss or inhibition 

of mTORC2 inactivates AKT and consequently promotes Foxp3 induction (Delgoffe 

et al. 2009). A recent study utilizing Rictor knockout T cells demonstrated that the 

differentiation of Th1 and Th2 is highly dependent on TORC2 signalling, leading to 

activation of AKT and PKC-θ respectively, whereas the development of Th17 cells 

seems to be unimpaired by the lack of TORC2 activity (Lee et al. 2010). We detected 

AKT1 to be phosphorylated on Tyr474 in both WT and Smad7Tg Th17 polarized 

cells, which indicates that AKT1p474 is involved in non-Smad signalling during Th17 

differentiation.  
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5.5 The MAPK pathways and Th17 differentiation 

Besides the canonical TGF-β-Smad pathway, TGF-β can also activate Smad-

independent pathways, such as MAPKs, in T cells (Zhang 2009b). MAPK pathways 

are involved in T helper cell differentiation. Naïve CD4+ T cells stimulated with TGF-β 

significantly increase phosphorylation of ERK and JNK but not p38 (Lu et al. 2010). 

Experiments with pharmacological inhibitors of JNK or ERK as well as ERK1 and 

JNK2 KO mice show attenuated Foxp3 expression in TGF-β primed CD4+ T cells, 

whereas inhibition of p38 does not have any effect on Foxp3 expression (Lu et al. 

2010). On the contrary, another study showed that TGF-β activates the p38 MAPK in 

naïve T cells and plays a role in the conversion of naïve T cells to iTregs (Huber et al. 

2008). The JNK pathway is also involved in Th17 differentiation (Lu et al. 2010). 

TGF-β induces the JNK pathway, which in turn suppresses the expression of 

eomesodermin, a transcription factor negatively regulating Th17 differentiation 

(Ichiyama et al. 2011). Recent studies with pharmacological inhibition showed that 

p38 positively regulates Th17 differentiation (Lu et al. 2010, Li et al. 2010, Gulen et 

al. 2010, Commodaro et al. 2010, Noubade et al. 2011). The MAPK p38 can be 

phosphorylated at various residues and the specific site of phosphorylation during 

Th17 differentiation was unclear. Performing phospho protein assay, we showed that 

the p38 MAPK pathway was phosphorylated on Thr180 both in WT and Smad7Tg 

Th17 differentiation. So, during Th17 differentiation, p38 was phosphorylated only on 

Thr180 via non-TGF-β-Smad signalling pathway. We also showed site specific JNK 

phosphorylation during Th17 differentiation. In addition, doing functional assay, we 

found that pharmacological inhibition of JNK and p38 MAPK pathways resulted in a 

decreased proportion of IL-17 producing Th17 cells.  In the protein array, we also 

found that protein kinase C delta (PKCδ) was phosphorylated on Thr505 both during 

WT and Smad7Tg Th17 differentiation. PKCδ is the first PKC isotype of the novel 

subfamily nPKC to be identified, which is expressed ubiquitously among cells and 

tissues. Both binding of diacylglycerol/phorbol ester and tyrosine phosphorylation is 

known to regulate enzymatic activation of PKCδ (Kikkawa et al. 2002). Evidences 

indicate that PKCδ plays a critical negative role in cellular functions, e.g. by inhibiting 

proliferation plus promoting cell death (Gschwendt 1999). For example, PKCδ plays a 

role in TCR-induced negative regulation of IL-2 cytokine production and T cell 

proliferation (Gruber et al. 2005). It has been already reported that PKCδ-deficient 
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mice have an increased susceptibility to autoimmune disease. Spleen and lymph 

nodes of PKCδ-deficient mice are enlarged and show a marked increase in the 

production of IgG antibodies that are specific for nuclear antigens (Mecklenbrauker et 

al. 2002, Miyamoto et al. 2002). PKCδ is activated during engagement of the Type I 

IFN receptor and associates with Stat1, which appears to be critical for 

phosphorylation of Stat1 on serine 727. Being activated, PKCδ induces activation of 

the p38 MAP kinase (Uddin et al. 2002). The precise role of PKCδ activated MAPK 

pathway in T helper cell differentiation remains unknown. 

 

      

 

Figure 33: Schematic model of TGF-β-induced Smad and non-Smad signalling pathways in T helper 
cell differentiation. TGF-β downstream signalling through Smad proteins inhibits Th1, Th2 and induces 
Th17 and Tregs differentiation. Additionally, TGF-β-induced non-Smad signalling through 
PI3K/AKT/mTOR and p38, JNK MAPK pathways positively regulates Th17 differentiation. Smad7 has 
an intrinsic role in upregulating Th1 differentiation. It remains unknown if there is a direct role of 
Smad7 on Th1, Th17 and Treg development.   
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In summary, Smad7 regulates T helper cell differentiation by modulating canonical 

TGF-β signalling and by its own direct intrinsic effects. The results of this thesis 

divulge the potential involvement of non-Smad signalling pathways in T helper cell 

differentiation. Further investigation of these pathways, particularly during 

experimental autoimmune diseases, might be worth to find diagnostic measures and 

therapeutic agents for the treatment of T helper cell induced diseases. 
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6.  Summary 

The cytokine transforming growth factor (TGF-β) has a pivotal role in T cell 

differentiation. Regulation of intracellular signalling pathways during T cell 

differentiation has been given a great attention recently. Under certain conditions 

TGF-β inhibits T helper (Th1) and Th2 differentiation or induces regulatory T cell and 

Th17 development, mainly through the Smad-dependent signalling pathway. In 

addition to that, growing evidence implicates the involvement of non-Smad signalling 

pathways in T cell differentiation. Smad7 is the intracellular inhibitor of the canonical 

TGF-β signalling cascade, but its role in T cell differentiation was unknown.  

 
In order to investigate the role of Smad7 in T cell differentiation, we used mice with a 

T cell specific Smad7 deletion, which allowed us to study the function of Smad7 

exclusively in T cells. These Smad7 conditional knockout mice show normal immune 

homeostasis but less activated T cells in the periphery as compared to control wild 

type littermates. Smad7 deletion in T cells results in decreased Th1, Th2 and 

increased Th17 and regulatory T cell differentiation. Smad7 shows no effect on the 

suppressive capacity of regulatory T cells but exerts effects on the proliferation of 

responder T cells when challenged with regulatory T cell suppression. Furthermore, 

Smad7 plays a direct role in priming Th1 differentiation which is associated with T-bet 

transcription. Upon blocking the canonical TGF-β-Smad signalling pathway, naive T 

cells differentiate into Th17 cells to a smaller extent. Using a TGF-β downstream 

signalling phospho-protein antibody array, we show that PI3K/AKT/mTOR and p38 

MAPK signalling pathways, which are independent of the canonical TGF-β-Smad 

cascade, are activated at specific phosphorylation sites during Th17 differentiation. 

Inhibition of these pathways leads to decreased IL-17 production by Th17 cells. 

 
In essence, Smad7 is a major regulator of T cell differentiation. Besides the canonical 

signalling cascade of TGF-β, naïve T cells use non-Smad pathways to differentiate 

into the Th17 subset. Signalling through PI3K/AKT/mTOR and p38 MAPK pathways 

plays a crucial role in this event. This study provides insight into molecular 

mechanisms of T helper cell differentiation and thus helps to elucidate the 

pathophysiology of autoimmune diseases like multiple sclerosis which could 

eventually lead to development of new diagnostic or therapeutic procedures. 
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8. General list of Abbreviations 

ActR                          activin receptor 

APC                                    antigen presenting cell 

ALK                                   activin receptor-like kinase 

AMH                                   anti-Müllerian hormone 

BBB                                    blood brain barrier 

BMP                                   bone morphogenetic protein 

bp                                       base pair 

0C                                       temperature in degrees Celsius 

CD                                      cluster differentiation 

cDNA                                  complementary DNA 

CIA         collagen induced arthritis 

c-MAF               musculoaponeurotic fibrosarcoma oncogene homolog 

Cre                                     site-specific recombinase 

DMSO                                Dimethyl sulfoxide 

DNA                                   desoxyribonucleic acid 

dNTP                                desoxyribonucleotide-triphosphate 

EAE                                   Experimental autoimmune encephalomyelitis 

EDTA                                ethylene-diaminetetraacetic acid 

ELISA                               enzyme-linked immunosorbent assay 

FACS                               fluorescence activated cell sorting 

FasL                                 Fas ligand 

FITC                                 fluorescein-isothiocyanate 

Foxp3                             forkhead box P3 

g                                     gram & gravitational force 

GFP                                green fluorescent protein 
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GM-CSF                         granulocyte-macrophage colony-stimulating factor 

h                 hour & human 

HEPES      N-2—hydroxyethylpiperazine-N’-2-ethanesulfonic acid 

IFN            interferon 

Ig               immunoglobulin 

IL               interleukin 

iTreg          inducible regulatory T cells 

JNK            jun N-terminal kinase 

kb              kilobase pair 

KDa         kilodalton 

L               liter 

LAP        latency-associated protein 

Loxp       recognition sequence for Cre 

LTBP      latent TGF-β-binding protein 

M           molar  

MACS      magnetic cell sorting 

MHC        major histocompatibility complex 

MH1/2       Mad homology1/2 

MOG               myelin oligodendrocyte glycoprotein 

MS                   multiple sclerosis 

min                   minute 

mRNA              messenger ribonucleic acid 

mTOR       mammalian target of rapamycin 

NaCI         sodium chloride 

NaOH              sodium hydroxide  

OD                optical density 
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PBS               phosphate buffered saline 

PCR               polymerase chain reaction 

PE               phycoerythrine 

PI3K          The phosphatidylinositol-3 kinase 

PMA          phorbol 12-myristate 13-acetate 

qPCR        quantitative reverse transcriptase real time PCR 

r               recombinant 

RNA         ribonucleic acid 

ROR        retinoid-related orphan receptor  

RT           room temperature 

Runx3      Runt-related transcription factor 3 

s             second 

SAD       Smad activation domain 

SARA     Smad anchor for receptor activation 

SBE       Smad binding element 

SDS       sodium dodecyl sulfate 

SMURF     Smad ubiquitylation regulatory factor 

Smad7     Smad7 family member 7 

STAT       signal transducer of activated cells 

TAK1       TGF-β-activated kinase1 

TCR         T cell receptor 

TGF-β      Transforming growth factor β1 

Th            T helper 

TLR         toll like receptor 

TNF        tumor necrosis factor  

Treg       regulatory T cell 
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TβR       TGF-β receptor 

v/v        volume per volume 

w/v       weight per volume 

WT         wild type 
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11. Appendix 

S1: Purity of naïve T cells (CD4+CD62L+) - 97.35% pure 

 

                                          

Figure 34: Purity of naïve T cells. Single cell suspensions were made from spleen and LNs from WT, 

CD4Cre-Smad7
fl/fl

 and Smad7Tg mice. From the cell suspension, naïve T cells were sorted either by 

magnetic beads or FACS sorting. This is one representative figure (WT naïve T cells) of all naïve 

CD4
+
CD62L

+ 
T cells sorted by magnetic beads.  Cells were gated on lymphocytes. The percentage of 

gated cells is indicated. 

 

S2: Purity of Tregs (CD4+CD25+) - 98.86% pure 

 

                                                         

Figure 35: Purity of Treg cells. Single cell suspensions were made from spleen and LNs from WT, 

CD4Cre-Smad7
fl/fl

 and Smad7Tg mice. From the cell suspension, Treg cells were sorted either by 

magnetic beads or FACS sorting. This is one representative figure (WT Treg cells) of all Treg cells 

sorted by magnetic beads.  Cells were gated on lymphocytes. The percentage of gated cells is 

indicated. 



Appendix  

153 

 

S3. Th17 differentiation in vitro from WT and Smad7Tg mice after 48 hours 

 

  

Figure 36: Th17 differentiation from WT and Smad7Tg T cells after 48 hours. Naïve T cells were 

sorted from spleen and LNs from WT and Smad7Tg mice and cultured for 48 hours in Th17 

differentiation condition using a-CD3, a-CD28, rIL-6, a-IL-4, a-IFN-γ. This is one representative figure 

of all Th17 differentiations done for the phospho protein arrays.  Cells were gated on lymphocytes and 

CD4
+
 T cells. The percentage of gated cells is indicated. 
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S4. List of proteins detected in phosphorylated and non-phosphorylated form 

on the TGF-β phospho antibody microarray kit from Fullmoon Bioscience. 

A) Proteins in both phosphorylated and non-phosphorylated form 

Number Protein Phosphorylation site Antibody used to 

detect  

non-phosphorylated 

form 

1 Abl1 Thr754/735, Tyr204, 

Tyr412 

Ab-754/735, Ab-Tyr204, 

2 AKT Ser473, Thr308, 

Tyr326 

Ab-473, Ab-Thr308, Ab-

Tyr326 

3 AKT1 Ser124, Ser246, 

Thr450 

Thr72, Tyr474 

Ab-124, Ab-246, Ab-450 

Ab-72, Ab-474 

4 AKT2 Ser474 Ab-474 

5 c-Abl Tyr245, Tyr412 Ab-412 

6 cofilin Ser3 Ab-3 

7 ERK1-p44/42 MAP 

Kinase 

Thr202, Tyr204 Ab-202, Ab-204 

8 ERK3 Ser189 Ab-189 

9 ERK8 Thr175/Tyr177  

10 Gab2 Tyr643 Ab-623 

11 JNK1/2/3 Thr183/Tyr185 Ab-183/185 

12 LIMK1 Thr508 Ab-508 

13 MAP3K1/MEKK1 Thr1381  

14 MKK3 Ser189 Ab-189 

15 MKK3/MAP2K3 Thr222 Ab-222 

16 MKK6 Ser207 Ab-207 

17 mTOR Ser2448, Ser2481, Ab-2448, Ab-2481, 
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Thr2446 Ab-2446 

18 Myc Ser373, Ser62, Thr358, 

Thr58 

Ab-373, Ab-62, Ab-358, 

Ab-58, 

 

19 p38 MAPK Thr180, Tyr182, Tyr322 Ab-180, Ab-182, Ab-322 

20 PAK1 Ser204, Thr212 Ab-204, Ab-212 

21 PAK1/2 Ser199 Ab-199 

22 PAK1/2/3 Ser141, 

Thr423/402/421 

Ab-141, Ab-423/402/421 

23 PAK2 Ser192, Ser20 Ab-192, Ab-197, 

24 PAK3 Ser154 Ab-154 

25 PI3-kinasep85-

alpha 

Tyr607  

26 PI3-kinase p85-

subunit 

alpha/gamma 

Tyr467/199 Ab-467/199 

27 PKC alpha Tyr657 Ab-657 

28 PKC alpha/beta II Thr638 Ab-638 

29 PKC beta/PKCB Ser661 Ab-661 

30 PKC delta Ser645, Thr505 Ab-645, Ab-505  

31 PKC epsilon Ser729,  Ab-729 

32 PKC theta Ser676, Thr538 Ab-676, Ab-538 

33 PKC zeta Thr410, Thr560 Ab-410, Ab-560 

34 PP2A-a Tyr307 Ab-307 

35 Rac1/cdc42 Ser71 Ab-71 

36 Ras-GRF1 Ser916 Ab-916 

37 Rho/Rac guanine 

nucleotide 

Ser885 Ab-885 
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exchange factor 2 

38 S6 Ribosomal 

Protein 

Ser235 Ab-235 

39 SAPK/JNK Thr183, Tyr185 Ab-183, Ab-185 

40 SEK1/MKK4 Ser80, Thr261 Ab-80, Ab-261 

41 Shc Tyr349, Tyr427 Ab-349, Ab-427 

42 Smad1 Ser187, Ser465 Ab-187, Ab-465 

43 Smad2 Ser250, Ser467, 

Thr220 

Ab-250,  Ab-467, Ab-220 

Ab-255, ab-245, 

44 Smad2/3 Thr8 Ab-8 

45 Smad3 Ser204, Ser208,  

Ser213, Ser425, 

Thr179 

Ab-204, Ab-213, 

Ab-425, Ab-179  

46 SP1 Thr739 Ab-739 

47 TAK1 Thr184 Ab-184 

Table 22: List of proteins which can be detected in phosphorylated and non-

phosphorylated forms 

B) Protein only in non-phosphorylated form 

Number Unphosphorylated 
form 

1 Beta actin 

2 CBP (Inter) 

3 ERK1/2 (N-term) 

4 GAPDH 

5 JNKK (MKK4) (Inter) 

6 p300/CBP (C-term) 

7 RAS(p21 H and K) 

(Inter) 
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8 RhoA (Ab-188) 

9 S6K (Inter) 

10 S6K-alpha 6 (Inter) 

11 Smad1/5/9 (Inter) 

12 Smad4 (Inter) 

13 TGF alpha (inter) 

14 TGF beta1 (inter) 

15 TGF beta2 (inter) 

16 TGF beta3 (inter) 

17 TGFBR1 (Ab-165) 

18 TGFBR2 (Ab-250) 

Table 23: List of proteins which can be detected in non-phosphorylated form 

 

S5. Array raw data  

Raw data of all arrays are presented in tables. Equations in the columns 11, 12,13, 

14 and 15 (with letters A, B, C, D and E) correspond to the equations shown in the 

methods sections (page 61), by which protein expression and phosphorylation status 

were calculated. Categories in the interpretation (column 16) were made based on 

columns 11-14. Column 15 was not used because this calculation resulted in high 

variance in protein phosphorylation between experiments.  
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